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Introduction

This article continues the investigation of paraconsistent extensions of min-
imal logic Lj started in [6, 7]. The name “logic of classical refutability” is
taken from the H.Curry monograph [1], where it denotes the logic Le ob-
tained from Lj by adding the Peirce law ((p ⊃ q) ⊃ p) ⊃ p. In [1, Ch. 6,
Sec. A] one can find the discussion of name “logic of classical refutability”.
Due to Curry, the logic Le was introduced by Kripke in his unpublished
work [5], who investigated to which extent one can strengthen minimal logic
so that the resulting system does not contain intuitionistic logic Li. The
reference to this work can be found in [1]. In [11], K. Segerberg studied the
Kripke-style semantics for numerous extensions of minimal logic, and among
them for the system Lj + {p ∨ (p ⊃ q)} equivalent to Le [11, p. 46]. It
was noted in [11] that Le was treated, with different motivation, in 1955 by
S. Kanger [3], whose paper also contains a reference to an earlier discussion
of Gentzen-style deductive system equivalent to Le by P. Bernays. Kanger’s
reason for defining Le is that “it constitutes a weakened classical calculus in
the same sense as the minimal calculus is a weakened intuitionistic calculus”.
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In Section 2 of the present article, we consider the Grzegorczyk-style seman-
tics for Le which vividly demonstrates that minimal logic Lj relates to logic
of classical refutability Le essentially in the same way as intuitionistic logic
Li and classical logic Lk are related.

The special role, which Le plays in the class of Lj-extensions, is deter-
mined by the following fact. In [6], we stated that the class of all non trivial
extensions of Lj partition into three disjoint subclasses. These are the class
of intermediate logics, the class of negative logics containing formula ¬p, and
the class of proper paraconsistent extensions of Lj consisting of logics not
belonging to the first two classes. The negative logics have degenerate nega-
tion in a sense that any negated formula is provable. Thus, the third class
includes all non-trivial cases of paraconsistent negations. The greatest logic
of this class is Le. The above decomposition of the class of Lj-extensions mo-
tivates an effort to describe the class of proper paraconsistent Lj-extensions
in terms of classes of intermediate and negative logics, which was extensively
studied. Note that the class of negative logics is definitionally equivalent to
the class of positive logics.

In [7], isomorphs of classical logic and maximal negative logic Lmn =
Lj+{¬p, ((p ⊃ q) ⊃ p) ⊃ p} were studied, which was inspired by A. Karpen-
ko article [4] considering isomorphs of classical logic in three-valued Bochvar’s
logic B3. It turns out that isomorphs of Lmn and Lk in Le define trans-
lations of these logics into Le. And these translations can be generalized to
translations of arbitrary negative and intermediate logics into proper para-
consistent extensions of the logic Le′ = Lj + {⊥ ∨ (⊥ ⊃ p)}. Note that Le′

is axiomatized by the partial case of the generalized law of excluded middle
p ∨ (p ⊃ q), which axiomatizes Le modulo Lj. In fact, it was proved in [7]
that there exists an effective one-to-one correspondence between the interval
[Le′,Le] and the direct product of classes of intermediate and negative log-
ics. Taking into account that [7] was published only in Russian and for the
article to be self-contained we include some results of [7] in sections 3 and 4.

However, the interval [Le′,Le] constitute a relatively small part of the
class of proper paraconsistent Lj-extensions. It does not contain many in-
teresting paraconsistent systems. One of them, so-called Glivenko’s logic,
the weakest logic in which ¬¬ϕ is provable whenever Lk ⊢ ϕ, is treated in
Section 5.

Finally, in Section 6 we define for every proper paraconsistent extension
L of Lj its intuitionistic and negative counterparts and their translations
into L. We consider classes of logic with fixed intuitionistic and negative
counterparts. Each of such classes will be an interval in the lattice of Lj-
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extensions. These intervals are pairwise disjoint, and their upper points
constitute the interval [Le′,Le]. In this way, we reduce the study of the
lattice of Lj-extensions to the study of intervals consisting of logics with
fixed intuitionistic and negative counterparts.

1. Preliminaries

We only consider logics in the propositional language {∨,∧,⊃,⊥} with the
constant “contradiction” ⊥. The negation ¬ is assumed to be a definable
symbol, ¬ϕ = ϕ ⊃ ⊥. By a logic we mean a set of formulas closed under
modus ponens and the substitution rule. Except for the logics mentioned
in the introduction we need also positive logic Lp, negative logic Ln =
Lj + {¬p}, and trivial logic F consisting of all formulas.

Below we collect some facts and definitions concerning algebraic seman-
tics for different logics. If it is necessary, further details can be found in
[9, 10].

Let A be an algebra of the language {∨, ∧, ⊃, ⊥, 1 }. A mapping
V : Prop → A from the set of propositional variables into the universe of
A is called an A-valuation. We say that a formula ϕ is true in A, or is an
identity of A, and write A � ϕ if V (ϕ) = 1 for every A-valuation V . The
set of formulas L A = {ϕ | A � ϕ} forms a logic, the logic of A. The logic

of a class of algebras is an intersection of logics of algebras from the class.
Given a logic L, an algebra A is a (characteristic) model for L if L ⊆ L A

(L = LA). If L ⊆ L A, we also write A � L. Every logic has a characteristic
model [10, Ch. VIII].

An implicative lattice A = 〈A,∨,∧,⊃, 1〉 is a lattice with the greatest
element 1 and the pseudo-complement (or implication) operation ⊃. All im-
plicative lattices form a variety whose logic is exactly Lp [9, Theorem XI.2.2].

We call a j-algebra an implicative lattice treated in the language 〈∨,∧,
⊃,⊥, 1〉, where ⊥ is interpreted as an arbitrary element of the lattice. A
Heyting algebra is a j-algebra with the least element ⊥, and a negative algebra

is a j-algebra with the greatest element ⊥, i.e., 1 = ⊥. The logics of the
varieties of j-algebras, Heyting algebras, and negative algebras are Lj, Li,
and Ln, respectively.

An implicative lattice satisfying the identity ((p ⊃ q) ⊃ p) ⊃ p is called a
Peirce algebra, and a j-algebra satisfying the same identity is called a Peirce-

Johansson algebra (pj-algebra). The variety of Peirce algebras defines the
positive fragment of classical logic, and the variety of pj-algebras — the logic
Le [8].
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We consider a two-element Heyting algebra 2 = 〈{0, 1},∨,∧,⊃ 0, 1〉 and
a two-element negative algebra 2′ = 〈{0, 1},∨,∧,⊃, 1, 1〉. It is well-known
that L2 = Lk and L2′ = Lmn.

Now we take a four-element pj-algebra 4′ = 〈{0, 1, a,−1},∨,∧,⊃, 0, 1〉,
where −1 ≤ 0 ≤ 1, −1 ≤ a ≤ 1, ⊥ = 0, and the elements 0 and a are
incomparable. That algebra exemplifies a characteristic model for Le [8].
We note also that 4′ ∼= 2 × 2′ and Le = Lk ∩ Lmn.

Let Jhn denote the class of all non-trivial extensions of minimal logic
Lj, Int the class of all intermediate logics, Neg the class of all negative
logics, and Par ⇋ Jhn \ (Int ∪ Neg) the class of all proper paraconsistent
extensions of Lj. For each L ∈ Jhn we have the following equivalences:

L ∈ Int ⇐⇒ Li ⊆ L ⊆ Lk ,

L ∈ Neg ⇐⇒ Ln ⊆ L ⊆ Lmn ,

L ∈ Par ⇐⇒ Lj ⊆ L ⊆ Le .

Thus, Jhn splits into a union of three disjoint intervals.
In conclusion of this section, we note that Le′ = Ln ∩ Li 6= Lj. Indeed,

Le′ is axiomatized relative to Lj by a disjunction of formulas ⊥ and ⊥ ⊃ p
axiomatizing Ln and Li relative to Lj, therefore, Le′ equals to an intersection
of intuitionistic and negative logics. At the same time, Lj has the disjunctive
property and does not contain these formulas, which immediately implies the
above inequality.

2. Grzegorczyk-style semantics for minimal logic

Grzegorczyk [2] suggested a semantics for intuitionistic logic which demon-
strates that classical and intuitionistic logics are related as the logic of onto-
logical thought and the logic of scientific research (positivistically conceived).
A scientific research was formally presented as a triple

R = 〈J, ◦, P 〉,

where J denotes an information set, i.e. the set of all possible experimental
data, ◦ is an initial information, and P a function of possible prolongations
of the information. In propositional case, elements of J are finite tuples of
propositional variables. Define α ≺∗ β ⇋ β ∈ P (α). Passing to the tran-
sitive closure of this relation yields a partial ordering ≺ on the information
set J , which allows in turn to define in a natural way an intuitionistic forc-
ing relation α ⊲R ϕ between informations and formulas. The following is a
propositional version of Theorem 1 [2].
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Proposition 2.1 ([2]). A formula ϕ is an intuitionistic tautology if and only

if ϕ is forced by each information α of every research R.

By a j-research we mean a triple R = 〈J, ◦, P 〉 defined as above except for
the following. Elements of J are tuples of atomic formulas, i.e. the constant
⊥ may occur in elements of J . For the given j-research R we define a relation
≺ as above and a minimal forcing relation α⊲R ϕ as follows.

If ϕ = ⊥ or ϕ is a propositional variable, then

α⊲R ϕ ⇐⇒ ϕ ∈ α .

Further,

α⊲R ϕ ∧ ψ ⇐⇒ α⊲R ϕ ∧ α⊲R ψ ,

α⊲R ϕ ∨ ψ ⇐⇒ α⊲R ϕ ∨ α⊲R ψ ,

α⊲R ϕ ⊃ ψ ⇐⇒ ∀β(α ≺ β ⇒ (β ⊲R ϕ⇒ α⊲R ψ) .

In particular,

α⊲R ¬ϕ ⇐⇒ ∀β(α ≺ β ⇒ (β ⊲R ϕ⇒ α⊲R ⊥).

This forcing relation differs from the intuitionistic one only in cases of ⊥
and ¬. We have the following modification of the theorem cited above.

Proposition 2.2. A formula ϕ is a minimal tautology if and only if ϕ is

forced by each information α of every j-research R.

Proof. The proof can be easily reduced to the characterization of minimal
logic in terms of Kripke semantics [9, 11]. We observe that any j-research
can be transformed in a natural way to a Kripke model 〈W,≤, S, v〉 for Lj

satisfying the following conditions.

1. For any α ∈W , α has only finitely many successors relative to ≤.

2. For any α ∈W , the set { pi | pi ∈ v(α) } is finite.

The converse statement is also valid. Any Kripke model satisfying 1 and 2
is transformed to a j-research.

The correctness of the presented semantics for Lj can be easily verified.
On the other hand, as is known any ϕ, Lj 0 ϕ, is refuted on a finite Kripke
model. Any Kripke model satisfies condition 1. Restricting v to variables
occurring ϕ we also meet condition 2. In this way, we obtain a j-research
which does not force ϕ.

Now, we recall that Le = Lk∩Lmn. This equality leads to the valuation
semantics for Le defined as follows. An e-valuation is a map V : {p0, p1, . . .}∪
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{⊥} → {0, 1}. Every e-valuation extends in a natural way to the set of all
formulas. For any formula ϕ we have the equivalence:

Le ⊢ ϕ if and only if V (ϕ) = 1 for every e-valuation V .

Comparing the semantics for Lj and for Le defined above with the Grze-
gorczyk semantics for Li and the ordinary valuation semantics for Lk we
can see that Lj is related to Le exactly in the same way as Li and Lk are
related. Indeed, classical logic can be defined as the logic characterized by
the class of intuitionistic researches R with trivial prolongation function, i.e.,
P (α) = {α} for all α ∈ J . In the same way, Le is characterized by the class of
j-researches with trivial prolongation function. Therefore, we may consider
minimal logic as a positivistic approximation of logic of classical refutability
and suppose that classical logic and Le have common ontological presuppo-
sitions except for the indefinite status of the contradiction ⊥ in Le. More
precisely, we may consider statements of Le as well as statements of Lk as
judgements which agree or do not agree the reality. To compute the truth
value for the statement of classical logic we need only know the truth values
of propositional variables occurring the statement. It is not enough for Le-
statements, we must also know the status of contradiction ⊥. In this way,
we explain the sense of truth values of Le as follows.

The set of truth-values for Le contains four elements {1, 0,−1, a} [8].
Due to the above considerations, 1 and -1 can be identified with classical
“truth” and “falsehood”, whereas a and 0 are, in a sense, the two opposite
indefinite values. And this indefiniteness is completely determined by the
status of ⊥. In view of the equalities a ⊃ 0 = 0 and 0 ⊃ a = a, if a situation
is consistent (0 = −1), statements with the value a become “true” and with
the value 0 “false”, and vice versa in an inconsistent situation (0 = 1).

3. Paraconsistent extensions of Le
′

In this section, we state that proper paraconsistent extensions of Le′ are ex-
actly intersections of two logics, one of which is intermediate and the other
is negative. Prior to do it we study the algebraic semantics for logics extend-
ing Le′.

For an implicative lattice A = 〈A,∨,∧,⊃, 1〉 and a ∈ A, we put Aa ⇋

{b ∈ A | b ≥ a} and Aa ⇋ {b ∈ A | b ≤ a}. The set Aa is obviously closed
under the operations of A, and we can define an implicative sublattice A

a

of A with the universe Aa. Except for the case a = 1, the set Aa defines a
sublattice, but not an implicative sublattice of A, because Aa is not closed
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under the implication. However, the operation x ⊃a y ⇋ (x ⊃ y) ∧ a turns
Aa into an implicative lattice with unit element a. Denote this implicative
lattice by Aa.

If A is a j-algebra and a = ⊥, A
a can be treated as a Heyting algebra

and Aa as a negative one.
We recall one well-known fact of the lattice theory. Let A be a distributive

lattice, a an arbitrary element of A, and let sublattices A
a and Aa be defined

as above. The mappings ε(x) ⇋ x ∨ a and τ(x) ⇋ x ∧ a are epimorphisms
of A onto A

a and Aa, respectively. And the mapping λ(x) ⇋ (x ∨ a, x ∧ a)
gives an embedding of A into a direct product of lattices A

a and Aa.
These facts does not generally hold for implicative lattices. As before,

the mapping τ is an epimorphism of implicative lattices. But ε : A → A
a

and λ : A → A
a ×Aa are an epimorphism and an embedding of implicative

lattices only if some additional condition is imposed on A. More precisely,
the following assertions hold.

Proposition 3.1. For an implicative lattice A and a ∈ A, the mapping

τ : A → Aa, τ(x) = x ∧ a, is an epimorphism of implicative lattices.

Proof. The proof immediately follows from the definition of implication in
Aa and the identity (x ⊃ y) ∧ z = ((x ∧ z) ⊃ (y ∧ z)) ∧ z satisfied in all
implicative lattices.

Proposition 3.2. Let A be an implicative lattice and a ∈ A. The following

three conditions are equivalent:

(a) For all x, y ∈ A we have

(x ∨ a) ⊃ (y ∨ a) ≤ (x ⊃ y) ∨ a .

(b) The map ε : A → A
a given by the rule ε(x) = x ∨ a is an epimorphism

of implicative lattices.

(c) The map λ : A → A
a × Aa given by the rule λ(x) = (x ∨ a, x ∧ a) is an

isomorphism of A onto a direct product of implicative lattices.

Proof. “(a) ⇒ (b)” We check that ε preserves the implication, i.e., that the
equality (x ⊃ y)∨ a = (x∨ a) ⊃ (y ∨ a) holds. We have Lp ⊢ ((p ⊃ q)∨ r) ⊃
((p ∨ r) ⊃ (q ∨ r)), whence the inequality (x ⊃ y) ∨ a ≤ (x ∨ a) ⊃ (y ∨ a) is
valid in any implicative lattice. The inverse inequality holds by assumption.

“(b) ⇒ (c)” It follows easily by assumption that λ is a homomorphism of
A into A

a ×Aa. We prove the injectivity of λ. Take an element b ∈ A, it is

© 2001 by Nicolaus Copernicus University



98 S. P. Odintsov

a complement of a in the interval [b∧a, b∨a]. Assuming λ(c) = λ(b) for some
c ∈ A yields that c is a complement of a in the same interval [b ∧ a, b ∨ a].
And we have b = c since complements are unique in distributive lattices.
Thus, it remains to prove that λ maps A onto A

a × Aa.
For x ∈ A

a and y ∈ Aa, we set z = (a ⊃ y)∧ x. The direct computation
shows that z ∧ a = y and z ∨ a = ((a ⊃ y) ∨ a) ∧ x. Further, (a ⊃ y) ∨ a =
(a ∨ a) ⊃ (y ∨ a) = a ⊃ a = 1 in view of the assumption that ε is a
homomorphism, whence z ∨ a = x. We have thereby proved λ(z) = (x, y).

“(c) ⇒ (a)” Obviously, 3 implies 2. Therefore, the desired equality follows
from the fact that ε preserves the implication.

Let us consider the following formulas:

((p ⊃ q) ⊃ p) ⊃ p ,(P)

p ∨ (p ⊃ q) ,(E)

((p ∨ r) ⊃ (q ∨ r)) ⊃ ((p ⊃ q) ∨ r) .(D)

We have
Lk+ = Lp + {P} = Lp + {E} = Lp + {D},

where Lk+ is the positive fragment of classical logic. It is well-known that
Lk+ is axiomatized relative to positive logic by the Peirce law (P) or by
the generalized law of excluded middle (D). The last equality can be verified
directly. We have thus obtained that (D) axiomatizes Lk+ modulo Lp.
Combining this fact and Proposition 3.2 yields a characterization of Peirce
algebras in terms of mappings ε and λ.

Proposition 3.3. Let A be an implicative lattice. The following conditions

are equivalent:

(a) A is a Peirce algebra.

(b) For any a ∈ A, the mapping εa(x) = x∨ a defines an epimorphism of A

onto A
a.

(c) For any a ∈ A, the mapping λa(x) = (x∨a, x∧a) defines an isomorphism

of A and A
a × Aa.

Now we turn to the subsystem Le′ of Le, which can be axiomatized
relative to Lj by each of the following substitutional instances of (E) and (D):

⊥ ∨ (⊥ ⊃ p) ,(E′)

((p ∨ ⊥) ⊃ (q ∨ ⊥)) ⊃ ((p ⊃ q) ∨ ⊥) .(D′)
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The equality Lj+{E′} = Lj+{D′} is easily verified. The logic Le′ presented
as Lj+{E′} was treated in [11], where it was proved that Le′ is characterized
by the class of so-called closed frames. In this work, we consider an algebraic
semantics for this logic. We note also the curious fact that the instance of
the Peirce law

(P′) ((p ⊃ ⊥) ⊃ p) ⊃ p = (¬p ⊃ p) ⊃ p ,

which is known as the Clavius law, is not equivalent to the above formulas
relative to Lj. Indeed, Lj ⊢ (P′) ≡ (p ∨ ¬p), and the logics Lj + (P′) and
Le′ are incomparable in the lattice of Lj-extensions.

Proposition 3.4. Let A be a j-algebra. A is a model for Le′ if and only if

one of the following equivalent conditions holds.

1. The mapping ε(x) = x ∨ ⊥ defines an epimorphism of j-algebra A onto

Heyting algebra A
⊥.

2. The mapping λ(a) = (a ∨ ⊥, a ∧ ⊥) determines an isomorphism of j-
algebras A and A

⊥ × A⊥.

3. For any a, b ∈ A with a ≤ ⊥ ≤ b, ⊥ has a complement in the interval

[a, b].

Proof. The inclusion Le′ ⊆ L A is equivalent to the fact that (D′) is an
identity of A, which is equivalent in its own right to item 1 of Proposition 3.2
for a = ⊥. In this way, Proposition 3.2 implies that each of the conditions
1,2 characterizes models for Le′. Proving Proposition 3.2 we stated, in fact,
that 2 implies 3. Now we check the inverse implication, which completes the
proof.

Assume that 3 holds. It is not hard to prove that λ is an isomorphism of
distributive lattices A and A

⊥ ×A⊥. The implication is defined in terms of
the ordering preserved by λ, consequently, λ also preserves the implication.

Corollary 3.5. Let L be an extension of Lj. Then Le′ ⊆ L ⊆ Le if and

only if L = L1 ∩ L2, where L1 ∈ Int and L2 ∈ Neg.

Proof. Let L be an intersection of intermediate and negative logics L1 and
L2. Then Li ⊆ L1 and Ln ⊆ L2, whence Le′ = Li∩Ln ⊆ L. It is clear that
the L is neither intermediate, nor negative, therefore, L ∈ Par and L ⊆ Le.

Conversely, let Le′ ⊆ L ⊆ Le and let A be a characteristic model for L.
By the above proposition, A is presented as a direct product of Heyting alge-
bra A

⊥ and negative algebra A⊥, hence, L = L A = L A
⊥∩LA⊥. It remains

to note that LA
⊥ is an intermediate logic and LA⊥ is a negative one.
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4. Translations of intermediate and negative logics

in paraconsistent extensions of Le
′

First we state one more property of models for Le′.

Letting A be a j-algebra, Le′ ⊆ LA, put CA(⊥) = {a ∈ A | a ∨ ⊥ = 1}
and decompose A into a direct product A

⊥ × A⊥. Then CA(⊥) = {(1, b) |
b ∈ A⊥}. Indeed, for a = (x, y) ∈ A

⊥ × A⊥, we have 1 = a ∨ ⊥ ⇔ (1, 1) =
(x, y) ∨ (0, 1) = (x, 1) ⇔ x = 1. It follows immediately that the set CA(⊥)
is closed under ∨, ∧, and ⊃. We will consider CA(⊥) as a negative algebra
with operations induced from A and 1 = ⊥.

Proposition 4.1. Let a j-algebra A be a model for Le′. Then the mapping

δ(x) = ⊥ ⊃ x defines an epimorphism of j-algebra A onto negative algebra

CA(⊥).

Proof. Again, we need a presentation of A as direct product of Heyting
and negative algebras. For a = (b, c) ∈ A

⊥ × A⊥, we have δ(a) = δ(b, c) =
(0, 1) ⊃ (b, c) = (0 ⊃ b, 1 ⊃ c) = (1, c). Consequently, for ∗ ∈ {∨,∧,⊃} and
for any (a, b), (c, d) ∈ A

⊥ × A⊥,

δ((a, b) ∗ (c, d)) = δ((a ∗ c, b ∗ d)) = (1, b ∗ d) = (1, b) ∗ (1, d) = δ(a, b) ∗ δ(c, d).

It remains to note that δ(⊥) = 1 and δ(a) = a for any a ∈ CA(⊥).

Now we are ready to define translations of intermediate and negative
logics into proper paraconsistent extensions of Le′.

Theorem 4.2. Let L extend Le′, L ∈ Par, and let A be a characteristic

model for L. Set L1 = L A
⊥ and L2 = LA⊥. Then for arbitrary formula ϕ,

the following equivalences hold.

1. L1 ⊢ ϕ ⇐⇒ L ⊢ ϕ ∨ ⊥.

2. L2 ⊢ ϕ ⇐⇒ L ⊢ ⊥ ⊃ ϕ.

Proof. 1. Assume L1 ⊢ ϕ and for an A-valuation V , compute the value
V (ϕ ∨ ⊥). By Proposition 3.2, ε : A → A

⊥ is an epimorphism, from which
we have V (ϕ ∨ ⊥) = εV (ϕ). Here εV denotes an A

⊥-valuation obtained as
a composition of V and ε. By definition of L1, εV (ϕ) = 1. We have thus
proved that V (ϕ ∨⊥) = 1 for any A-valuation V , i.e., L ⊢ ϕ ∨ ⊥.

Conversely, let L ⊢ ϕ ∨ ⊥. Every A
⊥-valuation V can be treated as an

A-valuation with the property εV = V . As above, we have V (ϕ) = εV (ϕ) =
V (ϕ ∨ ⊥) = 1, which immediately implies L1 ⊢ ϕ.

2. This proof is similar to the previous one with ε replaced by δ.
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As it follows from the theorem the logics L1 ⇋ LA
⊥ and L2 ⇋ L A⊥

does not depend on the choice of characteristic model A for the logic L

extending Le′. Indeed,

L1 = {ϕ | L ⊢ ϕ ∨ ⊥}, L2 = {ϕ | L ⊢ ⊥ ⊃ ϕ}.

It is clear that L1 ∈ Int and L2 ∈ Neg. We call the logics L1 and L2

defined as above intuitionistic and negative counterparts of L ⊇ Le′ and
denote them Lint and Lneg, respectively. We have L = Lint ∩ Lneg.

Let, on the contrary, L = L1 ∩ L2, where L1 ∈ Int and L2 ∈ Neg. For
suitable Heyting algebra B and negative algebra C, we have L1 = L B and
L2 = L C. The direct product A = B × C is a characteristic model for
L since L(B × C) = L B ∩ L C = L1 ∩ L2 = L. Moreover, B ∼= A

⊥ and
C ∼= A⊥, consequently, L1 = Lint and L2 = Lneg. In this way, we arrive at
the following statement.

Proposition 4.3. The mapping L 7→ (Lint,Lneg) defines a lattice isomor-

phism between [Le′,Le] and the direct product Int×Neg, and the inverse

mapping is given by the rule (L1,L2) 7→ L1 ∩ L2.

Proof. In fact, it was stated above that the mapping under consideration
is a bijection. It remains to check that it preserves the lattice operations.
The only non-trivial case is that of disjunction. We will denote the least
upper bound of logics L1 and L2 as L1 ∩

∗ L2. Clearly, A is a model for a
disjunction of logics if and only if it is a model for each of the disjunctive
terms. Moreover, for any paraconsistent L ⊇ Le′, A � L if and only if
A

⊥
� Lint and A⊥ � Lneg.
Let L

1,L2 ∈ [Le′,Le]. By the above, A � L
1 ∪∗ L

2 is equivalent to the
conjunction

A
⊥

� L
1

int ∧ A⊥ � L
1

neg ∧ A
⊥

� L
2

int ∧ A⊥ � L
2

neg,

i.e., A
⊥

� L
1

int ∪
∗ L

1

int and A⊥ � L
1

neg ∪∗ L
1

neg. In view of arbitrary choice

of a model for L
1 ∪∗ L

2, we stated the equalities

(L1 ∪∗
L

2)int = L
1

int ∪
∗
L

2

int, (L
1 ∪∗

L
2)neg = L

1

neg ∪∗
L

2

neg ,

which completes the proof.

Thus, the class of paraconsistent extensions of Le′ is completely described
in terms of intermediate and negative logics. It should be emphasized that
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the mapping defined in Proposition 4.3 has essentially effective character.
Theorem 4.2 allows effectively reconstruct intuitionistic and negative coun-
terparts from the given paraconsistent L, whereas the L itself is simply an
intersection of its counterparts, i.e. a formula is proved in L if and only if it
is proved in both Lint and Lneg.

However, the logics from the interval [Le′,Le] constitute relatively small
part of the class Par of all paraconsistent extensions of Lj. There are many
interesting logics which does not belong to this interval. One of them is the
Glivenko logic treated in the next section.

5. Glivenko’s logic

Consider the following substitutional instance of the Peirce law:

(P′) ((⊥ ⊃ p) ⊃ ⊥) ⊃ ⊥ = ¬¬(⊥ ⊃ p).

We call the logic Ljp′ ⇋ Lj + {P′} Glivenko’s logic. It was mentioned in
[11, p. 46] that Glivenko’s logic is the weakest one in which ¬¬ϕ is derivable
whenever ϕ is derivable in classical logic. Unfortunately, this work contains
neither the proof of this assertion, nor any further reference. In this section,
we present a natural algebraic proof of this statement, which we call the
generalized Glivenko theorem. We also show that Ljp′ is a proper subsystem
of Le′.

For a Heyting algebra A, we denote by ∇A its filter of dense elements
and by R(A) the Boolean algebra of its regular elements. Recall that ∇A =
{a ∈ A | ¬¬a = 1}, R(A) = {a ∈ A | a ∨ ¬a = 1}, and R(A) ∼= A/∇A.

Proposition 5.1. 1. Let A be a j-algebra. Then A is a model for Ljp′ if

and only if ⊥ ∨ (⊥ ⊃ a) ∈ ∇
A

⊥ for any a ∈ A.

2. Let A be a model for Ljp′ and ∇ ⇋ ∇
A

⊥ . Then the mapping

π(a) = (a ∨ ⊥)/∇ defines an epimorphism of A onto R(A).

Proof. 1. Immediately follows from the properties of j-algebras.
2. In fact, we need only check that π preserves the implication, i.e., that

π(a ⊃ b) = π(a) ⊃ π(b). The last equality is equivalent to

(a ⊃ b) ∨ ⊥/∇ = (a ∨ ⊥) ⊃ (b ∨⊥)/∇ .

We have ((a ⊃ b)∨⊥) ⊃ ((a∨⊥) ⊃ (b∨⊥)) = 1 ∈ ∇ since the corresponding
formula is provable in Lj. Further, it can be verified directly that

Lj ⊢ (⊥ ⊃ q) ⊃ (((p ∨ ⊥) ⊃ (q ∨ ⊥)) ⊃ ((p ⊃ q) ∨ ⊥)).
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In view of Lj ⊢ (p ⊃ q) ⊃ (¬¬p ⊃ ¬¬q) we obtain

Lj ⊢ ¬¬(⊥ ⊃ q) ⊃ ¬¬(((p ∨⊥) ⊃ (q ∨ ⊥)) ⊃ ((p ⊃ q) ∨⊥)),

i.e.,

Ljp′ ⊢ ¬¬(((p ∨⊥) ⊃ (q ∨ ⊥)) ⊃ ((p ⊃ q) ∨⊥)).

By the assumption, A is a model for Ljp′, consequently,

((a ∨ ⊥) ⊃ (b ∨ ⊥)) ⊃ ((a ⊃ b) ∨ ⊥) ∈ ∇ ,

which completes the proof.

Theorem 5.2 (the generalized Glivenko theorem). For every logic L ⊇ Lj

the following conditions are equivalent:

(a) For any ϕ,

Lk ⊢ ϕ⇐⇒ L ⊢ ¬¬ϕ.

(b) L ⊇ Ljp′ and L /∈ Neg.

Proof. “(a) ⇒ (b)” This implication is trivial.

“(b) ⇒ (a)” Let L = LA. By condition L is not negative, hence Heyt-
ing algebra A

⊥ and Boolean algebra R(A⊥) are non-trivial, in particular,
LR(A⊥) = Lk. Using the properties of epimorphism π from Proposi-
tion 5.1.2 we complete the proof in the same way as was done in Theo-
rem 4.2.

For a j-algebra A and a Heyting algebra B we denote by A + B the
direct sum of these algebras. It is a j-algebra in which unit element of A is
identified with zero of B, and for any a ∈ A and b ∈ B, we have a ≤ b.

Proposition 5.3. Let A be a model for Le′, and B a Heyting algebra.

Then A + B is a model for Le′.

Proof. The proof follows from two facts. For all a ∈ A × B, we have
⊥ ∨ (⊥ ⊃ a) ∈ B, and all elements of B are dense in (A + B)⊥.

Proposition 5.3 implies, in particular, that the inclusion Ljp′ ⊇ Le′ is
proper. Indeed, A + B is not a model for Le′ if B is non-trivial.
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6. Intuitionistic and negative counterparts of Lj-extensions

In conclusion, we define intuitionistic and negative counterparts for any ex-
tension of minimal logic. It will be done so that an intermediate (nega-
tive) logic coincides with its intuitionistic (negative) counterpart, while its
negative (intuitionistic) counterpart is trivial. For extensions of Le′, our
definitions will be equivalent to that of Section 4.

We define the following translation

I(⊥) = ⊥, I(p) = p ∨ ⊥, I(ϕ ∗ ψ) = I(ϕ) ∗ I(ψ),

where p is a propositional variable, ϕ and ψ arbitrary formulas, and ∗ ∈
{∨,∧,⊃}. In other words, if ϕ(p0, . . . , pn) is a formula in propositional vari-
ables p0, . . . , pn, then I(ϕ) = ϕ(p0∨⊥, . . . , pn∨⊥). We will see that I may be
considered as translation of intuitionistic formulas into formulas of minimal
logic.

For L extending Lj, we define

Lint ⇋ {ϕ | L ⊢ I(ϕ)}, Lneg ⇋ {ϕ | L ⊢ ⊥ ⊃ ϕ}.

It can be easily seen that Lint and Lneg are logics. We call Lint and Lneg

intuitionistic and negative counterparts of the logic L, respectively.
The definition of negative counterpart is exactly the same as in Section 4.

As for Lint, using formula (D′) we can easily prove in Le′ the equivalence
(ϕ∨⊥) ≡ I(ϕ) for any formula ϕ. Therefore, if L extends Le′, Lint coincides
with the intuitionistic counterpart defined in Section 4.

In the following proposition we lists some simple properties of the notions
introduced.

Proposition 6.1. 1. For any L ⊇ Lj, Lint ∈ Int, Lneg ∈ Neg, and

L ⊆ Lint∩Lneg. The last inclusion is not proper if and only if L extends Le′.

2. L ∈ Int if and only if L 6= F, L = Lint, and Lneg = F.

3. L ∈ Neg if and only if L 6= F, L = Lneg, and Lint = F.

4. If Lj ⊆ L
1 ⊆ L

2, then L
1

int ⊆ L
2

int and L
1

neg ⊆ L
2

neg.

5. If L ⊆ L1 ∈ Int, then Lint ⊆ L1.

6. If L ⊆ L1 ∈ Neg, then Lneg ⊆ L1.

Proof. We only prove the last two assertions.
5. If L ⊢ I(ϕ), then also L1 ⊢ I(ϕ). Since L1 is intermediate, we have

L1 ⊢ I(ϕ) ⊃ ϕ, and so L1 ⊢ ϕ, which implies the desired inclusion.
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6. Again, from L1 ⊢ ⊥ ⊃ ϕ we conclude L1 ⊢ ϕ since ⊥ belongs to any
negative logic.

We have thus proved, in particular, that Lint is the least intermediate
logic containing L, and Lneg is the least negative logic with the same prop-
erty. In the following proposition we describe intuitionistic and negative
counterparts of the given logic in semantical terms.

Proposition 6.2. Let L ⊇ Lj, and let A be a characteristic model for L.

Then the following equations hold.

1. L A
⊥ = Lint.

2. L A⊥ = Lneg.

Proof. 1. Assume A
⊥

� ϕ and prove A � I(ϕ). For an A-valuation V de-
fine an A

⊥-valuation V ′ by the rule V ′(p) ⇋ V (p)∨⊥. Then it easily follows
that V (I(ϕ)) = V ′(ϕ), which immediately implies the desired conclusion.

Conversely, let A � I(ϕ). For any A
⊥-valuation V we have V = V ′, in

particular, V (I(ϕ)) = V (ϕ), which completes the proof.
2. We will use the mapping τ(x) = x ∧ ⊥, which is an epimorphism

of A onto A⊥ by Proposition 3.1. Note also that ⊥ ⊃ ϕ is equivalent to
⊥ ⊃ (ϕ ∧⊥) in Lj.

Assuming A⊥ � ϕ we take an A-valuation V and consider the composi-
tion τV , which is an A⊥-valuation. In view of the fact that τ is an epimor-
phism, V (ϕ ∧ ⊥) = τV (ϕ). But τV (ϕ) = ⊥ by assumption, which yields
V (⊥ ⊃ (ϕ ∧ ⊥)) = 1. Thus, A � ⊥ ⊃ (ϕ ∧ ⊥) by the arbitrary choice of V .

Now, we let A � ⊥ ⊃ (ϕ ∧ ⊥). Clearly, V = τV for any A⊥-valuation
V . By assumption, V (⊥) ≤ V (ϕ ∧ ⊥) = τV (ϕ) = V (ϕ), ⊥ is the greatest
element of A⊥, whence, V (ϕ) = ⊥. In this way, A⊥ � ϕ.

Further, we consider the classes of logics with the given intuitionistic and
negative counterparts. For L1 ∈ Int and L2 ∈ Neg, we define

Spec(L1,L2) ⇋ {L ⊇ Lj | Lint = L1, Lneg = L2} .

It is clear that for any pair of intermediate and negative logics, (L1,L2), the
set Spec(L1,L2) is non-empty, it contains at least the intersection L1 ∩ L2.
Moreover, in view of Proposition 6.1.1 L1 ∩ L2 is the greatest element of
Spec(L1,L2). It turns out this set contains also the least element and forms
an interval in the lattice of Lj-extensions. Let

L1 ∗ L2 ⇋ Lj + {I(ϕ), ⊥ ⊃ ψ | ϕ ∈ L1, ψ ∈ L2},

where L1 ∈ Int and L2 ∈ Neg.
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Proposition 6.3. Let L1 ∈ Int and L2 ∈ Neg. Then

Spec(L1,L2) = [L1 ∗ L2,L1 ∩ L2].

Proof. Let L
∗

⇋ L1 ∗ L2. It follows from definition that L1 ⊆ L
∗

int and
L2 ⊆ L

∗

neg. On the other hand, we can see that for any L ∈ Spec(L1,L2),
L

∗ ⊆ L. Indeed, L contains all axioms of L
∗. As was noted above L1∩L2 is

the greatest element of Spec(L1,L2), whence by Proposition 6.1.4, L
∗ and all

logics intermediate between L
∗ and L1∩L2 also belongs to Spec(L1,L2).

The next proposition allows to write axioms for L1 ∗ L2 relative to Lj

given the axiomatics of L1 relative to Li and of L2 relative to Ln.

Proposition 6.4. Let L1 ∈ Int, L1 = Li + {ϕi | i ∈ I} and L2 ∈ Neg,

L2 = Ln + {ψj | j ∈ J}. Then

L1 ∗ L2 = Lj + { I(ϕi), ⊥ ⊃ ψj | i ∈ I, j ∈ J }.

Proof. Denote the right-hand side of the last equality by D. The inclusion
D ⊆ L1 ∗L2 is trivial. To state the inverse inclusion we show that L1 ⊆ Dint

and L2 ⊆ Dneg.
We argue for L2 ⊆ Dneg. Note that Ln = Ljneg, i.e., Ln ⊢ ϕ iff

Lj ⊢ ⊥ ⊃ ϕ. Assume ψ ∈ L2, then Ln ⊢ (ψj1 ∧ · · · ∧ ψjn
) ⊃ ψ for suitable

j1, . . . , jn ∈ J . By the above

Lj ⊢ ⊥ ⊃ ((ψj1 ∧ · · · ∧ ψjn
) ⊃ ψ).

The last formula implies in Lj the formula

((⊥ ⊃ ψj1) ∧ · · · ∧ (⊥ ⊃ ψjn
)) ⊃ (⊥ ⊃ ψ),

from which we infer ⊥ ⊃ ψ ∈ D. Consequently, L2 ⊆ Dneg.
The remaining inclusion follows in the same way from the equality Li =

Ljint.

As we can see from Proposition 6.3 the class of Lj-extensions decomposes
into a union of disjoint intervals

Jhn =
⋃
{Spec(L1,L2) | L1 ∈ Int, L2 ∈ Neg}.

It is interesting that the upper points of these intervals also form an interval
in Jhn, [Le′,Le].

In this way, the investigation of the class of Lj-extensions is reduced to
the problem what is the structure of the interval Spec(L1,L2) for the given
intermediate logic L1 and negative logic L2. This problem will be treated in
the subsequent article.
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