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Jean-Pierre Descĺes*, Anca Pascu**
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**Université de Bretagne Occidentale, LALICC CNRS, France
20, rue Duquesne, 29200, Brest, France

Anca.Pascu@univ-brest.fr

Abstract

This article constitutes a contribution to an analy-
sis of the notion of variable. Whithin the frame-
work of Combinatory Logic as a formalism without
bound variables, the Logic of Determination of Ob-
jects (LDO) provides an explanation for the necessary
distinction between “whatever, any” and “indetermi-
nate, indefinite” used by the introduction and elimi-
nation rules of quantifiers in Natural Deduction. The
intension of a concept and typical and atypical occur-
rences of a concept are also introduced yielding new
quantifiers which are more adequate to natural lan-
guage processing (NLP) and to the study of natural
inferences in common reasoning.

Keywords : Variable, Natural Deduction, Reason-
ing, Quantifiers, Arbitrary Object, Indefinite, Typical,
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Difficulties with the notion of “variable”.

The variable is perhaps the most distinctively
mathematical of all notions ; it is certainly also
one of the most difficult to understand. (Bertrand
Russell, The Principles of Mathematics, 1903)

Natural languages can be seen as universal represen-
tation systems in the following sense : each artifi-
cial symbolic system, each formal system can be di-
rectly or indirectly interpreted in a natural language.
Curry (Curry and Feys 1958) says that the opposition
between natural languages and artificial languages is
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created by their “semiotic property”: U (universal) for
natural languages and A (artificial) for artificial lan-
guages : “The construction of a formal system has
to be explained in a communicative language under-
stood by both the speaker and the hearer. We call this
language the U-language (the language being used); it
is language in the usual sense of the word. It is well
determined but not rigidly fixed; new locutions may
be introduced in it by way of definition, old locutions
may be made more precise, etc. Everything depends
on the U-language; it can never be transcended; what-
ever we study by means of it. Of course, there is al-
ways vaguennes inherent in the U-language; but we
can, by skilful use, to obtain any degree of precision
by a process of successive approximation.”

and :

“(...) given a certain presentation of a formal sys-
tem, the A-language is that language which is con-
stituted by the symbols and expressions used for the
primitive ideas and their combinations. The symbols
of the A-language are adjoined to the U-language to
be used there; they perform grammatical functions
therein.” (Curry and Feys 1958)

But even if logic and algebraic formalisms have
some autonomy using some formal calculuson and
with a set of symbols, they are not completely inde-
pendent of natural languages, because they can of-
ten be viewed as extensions, by a well-ordered ad-
dition, let us say “adjonction” of external symbols.
These systems sometimes acquire such an autonomy
that they become true “artificial languages” with their
own morphologies, syntaxes and semantic interpreta-
tions.



The notion of “variable” is used in almost all
fields, but with slightly different senses. This notion
comes from logic and mathematics. It was borrowed
by other fields, for example : computer sciences. In
computer sciences there are difficulties in using vari-
ables (Hudak 1989). So, functional programming lan-
guages without bound variables were defined to avoid
“side effects”.

In Curry’s combinatory logic (Curry and Feys
1958) the bound variable is not necessary. In this
formalism it is possible to define complex concepts
from more elementary concepts and also to develop
the illative logic with quantifiers without using bound
variables.

Ambiguity of “variable” in Natural
Deduction

It will be shown that, in the presentation of clas-
sical logic in Natural Deduction given by Gentzen
(Gentzen 1955), there is a crucial distinction between
the two meanings of the variable.

If logic is thout of as a codification of reason-
ing, then it should stay close to the practice of infer-
ence making, instead of being based on the notion of
truth. Natural Deduction explores the non-semantic
approach, by setting up a system for deriving conclu-
sions from premises. Although this approach is of a
formal nature, it is advisable to keep some interpreta-
tion in mind. It introduces rules, separated into intro-
duction rules and elimination rules, which are used to
derive new steps from hypotheses and already proved
steps in a deduction. According to Gentzen (Gentzen
1955), the rules are associated with every proposi-
tional connective, negation and quantifier, to express
an intuitive meaning of them. We follow the presenta-
tion given by Fitch (Fitch 1974) for introduction and
elimination rules quantifiers below :

Universal quantifier :

y
... [ i - ∀ ] (1)

P (y)
(∀x) P (x)

(∀x)P (x)
... [ e -∀ ] (2)
P (y)

It is necessary thaty to be free forx.

The notion of free variable is explained as : In a
general, we will say thaty is free forx in P , if after
writing y instead ofx, no occurence which should be
free becomes bound.

Existential quantifier :

P (y)
... [ i - ∃ ] (3)
...
(∃x) P (x)

(∃x) P (x)

y P (y)
... [ e -∃ ] (4)
B

B

The following condition is required:x is not free
in B and in any hypothesis of a subderivation ofB,
other thanP (x).

It should be noted that the interpretation of the
variable in these rules is not the same. The crucial
difference is between the meaning of “any, whatever
” and the meaning of “indefinite, indeterminate”.

Following Van Dalen (Van Dalen 1991), the sense
of the introduction rule of the universal quantifier is :
If an arbitrary objectx has the propertyP , then every
object has the propertyP .

Van Dalen explains the notion of “arbitrary ob-
ject” as follows: The problem is that none of the ob-
jects we know in mathematics can be considered “ar-
bitrary”. So instead of looking for the “arbitrary ob-
ject” in the real word (as far as mathematics is con-
cerned), let us try to find a syntactic criterion. Con-



sider a variablex (or a constant) in a derivation, are
there reasonable grounds for callingx “arbitrary”?
Here is a plausible suggestion: in the context of the
derivation we shall callx arbitrary if nothing has been
assumed concerningx. In more technical terms,x is
arbitrary at its particular occurence in a derivation if
the part of the derivation above it contains no hypothe-
ses containingx free.

Descĺes (Descĺes and Cheong 2004) gives the in-
troduction rule of the universal quantifier the follow-
ing interpretation : .... It means that we carry out our
reasoning with “any element” / “whatever” denoted
by y (rule (1)). One has no hypothesis ony, one can
not reiterate an expression containing free occurences
of y in the sub-deduction followingy introduction as
hypothesis. If this is the case, then the element de-
noted byy will be not “any” / “whatever” anymore
because of the fact that it has a property (for exem-
ple B(y)). Let us suppose now that carrying out our
reasoning with this “any object”, one obtains that it
has the propertyP . Then we can state(∀x) P (x) that
is we can release the choice ofy by introducing the
universal quantifier.

In the case of the introduction of the universal
quantifier the reasoning is founded on the notion of
“whatever”. In the elimination of the existential quan-
tifier the reasoning runs with the variable interpreted
as an “indeterminate (undefined , non-specified)” ob-
ject. Indeed, in this reasoning we suppose the exis-
tence of an object with the property P. The exact deno-
tation of this object is not known. An “indeterminate”
object calledy is introduced, and inferences about this
object are obtained. If the sequence of inferences con-
cludes to a proposition B, then it can be concluded that
B follows from the hypothesis (∃x) P(x).

In the two rules (universal quantifier introduction
and existential quantifier elimination) the formalism
use the same symbol (a variabley in the rules (1), (4))
but its meaning and its behavior is not the same.

“Whatever” and “indeterminate” in LDO

How can the two notions of “whatever” or “arbitrary
object ” (see Fine 1985) and “indeterminate” or “non-
specified” be distinguished?

In our opinion, LDO (Logic of Determination of
Object) provides a solution to this question. LDO

is defined inside the framework of combinatory logic
with functional types (Desclés 2002, Pascu 2001, Fre-
und and alii 2004). In this approach a concept (see
Frege 1893) is a function from a domain of objects
into truth values. With every conceptf the following
are canonically associated :

• an object called “typical object”,τ(f) which rep-
resents the conceptf as an object . This object is
completely undetermined;

• a function,δ(f) defined on objects : the image-
object is more determined than the argument-object
for this function;

• the intesion of the concept, Int(f) conceived as the
class of all concepts that the conceptf “includes”,
that is a semantic network of concepts structured by
the relation “IS-A”;

• the expanse of the concept, Exp(f) which contains
all “more or less determined objects” such that the
conceptf applies to;

• a part of the expanse is the extension of the concept,
Ext (f) which contains all completely determined
objects such that the conceptf applies to.

In LDO objects are :“more or less determined ob-
jects” and “completely determined objects”. LDO
captures two kinds of objects : typical objects and
atypical objects. Typical objects in Exp(f) inherit all
concepts of Intf ; atypical objects in Exp(f) inherit
only some concepts of Int(f).

In LDO star quantifiers are defined (Desclés and
Guentcheva 2001, Pascu 2001). They are considered
as determiners of objects in Exp(f). These determin-
ers areΠ? et Σ?. They are different to the usual
quantifiersΠ andΣ from the illative version (Curry
1958) of Frege’s quantifiers (Frege 1879) in combi-
natory logic. Indeed, in LDO,Π? is the universal
quantifier retricted to typical objects andΣ (Frege’s
existential quantifier) is the existential quantifier, but
also restricted to typical objects.Π and Σ? are re-
spectively, the universal quantifier and the existential
quantifier not restricted to typical objects, that is, they
work on Ext(f).

In LDO the objectΠ?(τ(f)) starting fromτ(f) is
constructed by applying theΠ? operator (figure 1).
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Figure 1: The construction of the object
“whatever, any”

In figure 1, a1, a2,...., an are completely deter-
mined objects, which can be substituted for the unde-
termined objectΠ?(τ(f)).

Π?(τ(f)) is an object of Exp(f) – Ext(f). It rep-
resents a “whatever typical object” to whichf applies.
This object is not in Ext(f) but it can be identified
with any typical object of Ext(f). Π?(τ(f)) is intro-
duced as a “whatever object”. In the rule of universal
quantifier introduction (1) it is the object correspond-
ing to the variable “y”. In fact, this rule, says that : if
we can state, by the inference process, the proposition
P(Π?(τ(f))), then we can state the universal quanti-
fier introduction.

In LDO the objectΣ?(τ(f)) is constructed start-
ing from τ(f) by applying theΣ? operator (figure 2).

In figure 2 : a1, a2,...., an are completely deter-
mined objects, such that :

f(a1) = f(a2) = . . . f(an) = >

Moreover the following is an axiom :

f(Σ?(τ(f)) = > ⇐⇒ Ext(f) 6= ∅

Σ?(τ(f)) is also an object of Exp(f) – Ext(f). It
represents as an “undetermined object” a non-empty
part of Ext(f). Σ?(τ(f)) is such that new proposi-
tions (like B) from the proposition P (Σ?(τ(f))) that
is, by existential quantifier elimination. This object
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Figure 2: The construction of the “indeterminate ob-
ject”

is the object corresponding to “y” in rule (4). Both
objectsΠ?(τ(f)) andΣ?(τ(f)) are “more or less de-
termined objects” in the sense of the LDO : they be-
long to Exp(f), they are not completely determined
objects. ButΠ?(τ(f)) is the “any object / whatever”
object, as forΣ?(τ(f)) it is the “indeterminate / non-
specified” object. (figure 3)

a

object

Σ?(a)

non-specified object,
abstract from a

Π?(a)

any object,
abstract from a

@
@

@
@

@
@I

�
�

�
�

�
��

Figure 3: “whatever / any” object versus “indetermi-
nate / non-specified object”

Examples

Some examples from natural language are given to
prove that :



• Using classical logic in formalization of the lan-
guage the typicality /atypicality cannot be captured;

• The indefinite article from a language with the vari-
able from classical logic cannot be identified.

Let us consider the following examples :

1. An Alsatian drinks beer. (a typical Alsatian)
/Un alsacien boit de la bière.

In LDO, the statement :

(to−drink−beer)(Π∗(τ(to−be−an−Alsatian)))
is true, but the folowing statements :

(∀x)(Alsatian x) ⊃ ((to− drink − beer) x)1

or equivalently,

Π(to− be− Alsatian)(to− drink − beer)2 are
false.

1*. Anca saw an Alsatian in the street. (an inde-
terminate Alsatian, one does not specify him) /Anca
a vu un alsacien dans la rue.

The applicative expression associated is :

(((SS)(Σ∗(τ(to− be− an−Alsatian)))) Anca)
where SS stands forto− see− in− the− street.

2. A mathematician know how to solve this prob-
lem. (a typical mathematician) /Un math́ematicien
sait résoudre ce problème.

(KSP )(Π∗(τ(to− be− a−mathematician)))
where KSP stands forto− know− solving− this−
problem.

2*. Luc is a strange mathematician. (not necessar-
ily typical) / Luc est un math́ematicien bizarre.

(((to−be)((δ (to−be−strange))(Σ∗(τM)))) Luc)
where M stands forto− be− a−mathematician

2**. Luc has a mathematician in his family. (not
necessarily typical) /Luc a un math́ematicien dans sa
famille.

(((to− have− in− his− family)(Σ∗(τM)))Luc)
1This is the logical form of this sentence in the classical

logic.
2This is the form of this sentence in the Curry’s logic.

3. A triangle has the sum of its angles equal to
180◦. (whatever typical triangle) /Un triangle a la
somme de angleśegaleà 180◦.

(S − 180)(Π∗(τT ))

where T stands forto− be− a− triangle and S-180
stands forto− have− the− sum− of − angles−
equal − to− 180.

3*. I found in the mathematical literature a trian-
gle such that the sum of its angles is different from
180◦. (it is not whatever, it is indeterminate, but it is
atypical versus the property “sum of angles equal to
180◦”) / J’ai trouvé dans la litt́erature math́ematique
un triangle dont la somme des angles est différente de
180◦.

(((to− find . . .)((δ (S − 180))(Σ∗(τT )))) I)

4. A student pay his university fees. (an whatever
student and typical).3 /Un étudiant paie ses droits uni-
versitaires.

(Pay(Π∗(τ(to− be− a− student))))

where Pay stands forto− pay− his− university−
fees. One can see that from(Pay(Π∗(τ(to − be −
a − student)))) we cannot deduceΣ(to − be −
student)(Pay)

The indefinite article in languages such as English
and French cannot be identified (as a notion) with the
variable of classical logic. We can see that the value
of the indefinite article “a, an” (“un, une” in French)
is either “whatever/any” object as in examples 1, 2,
3, 4, or “indeterminate/non-specified” object as in ex-
amples 1*, 2*, 2**, 3*.

Conclusion

LDO extends classical logic since classical logic does
not take into account Intension or typical and atypi-
cal occurrences of a concept. In this latter case Ex-
panse is reduced to Extension, even identical. More-
over, the distinction between “whatever” and “indeter-
minate, non-specified” is confused. This distinction is
essential in the study of natural deduction as a cogni-
tive process, but also for Artificial Intelligence where

3In France, in public universities all students have to pay
their university fees except the children of university teach-
ers.



reasoning about typical or atypical occurrences leads
to solving local contradictions. LDO tries to explain
this distinction. More generally, LDO gives a logical
foundation to categorization and inference processes
with semantic networks. This distinction is very use-
ful in capturing the meaning of indefinite articles and
linguistic quantifiers in natural languages.
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Mathématiques et Sciences Humaines 74 pages.

Freund, M., Desclés, J.-P., Pascu, A. and Cardot,
J. Typicality, Contextual Inferences and Object Deter-
mination Logic. In Proceedings of the International
Florida Artificial Intelligence Research Society Con-
ference, 491-495. Menlo Park, Calif.: AAAI Press.

Fine, K. 1985.Reasoning with Arbitrary Objects
Aristotelian Society Series, vol 3, Oxford :Blackwell.

Fitch, F. 1974. Elements of Combinatory Logic.
Yale University Press.

Frege, G. 1879. Begriffsschrift. Eine Formel-
sprache des reinen Denkens. Halle.

Frege, G. 1893.The Basic Laws of Arithmetic
(translated and edited with an introduction by Mont-
gomery Furth in 1967. University of California Press.

Gentzen, G.1955.Untersuchungen̈uber das logis-
che Schließen - Recherches sur la déduction logique
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