
 Open access Book Chapter DOI:10.1007/978-0-387-30164-8_489

Logic of generality — Source link

Luc De Raedt

Published on: 01 Jan 2010

Topics: Computational logic, Dynamic logic (modal logic), Substructural logic, Autoepistemic logic and Multimodal logic

Related papers:

 Logic of Generality.

 Functions and Generality of Logic

 On the logic of design

 A general logic

 Logic and Its Applications

Share this paper:

View more about this paper here: https://typeset.io/papers/logic-of-generality-
btfi3ei2zo

https://typeset.io/
https://www.doi.org/10.1007/978-0-387-30164-8_489
https://typeset.io/papers/logic-of-generality-btfi3ei2zo
https://typeset.io/authors/luc-de-raedt-3qnnsnuhfh
https://typeset.io/topics/computational-logic-3mxh1eaz
https://typeset.io/topics/dynamic-logic-modal-logic-h64k1rav
https://typeset.io/topics/substructural-logic-1w39v6ah
https://typeset.io/topics/autoepistemic-logic-2y3bcp6w
https://typeset.io/topics/multimodal-logic-22ngcksc
https://typeset.io/papers/logic-of-generality-58iw3829g0
https://typeset.io/papers/functions-and-generality-of-logic-3jpevbumu7
https://typeset.io/papers/on-the-logic-of-design-1gcajo7crl
https://typeset.io/papers/a-general-logic-2shc9uzxh4
https://typeset.io/papers/logic-and-its-applications-4x43dxdscb
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/logic-of-generality-btfi3ei2zo
https://twitter.com/intent/tweet?text=Logic%20of%20generality&url=https://typeset.io/papers/logic-of-generality-btfi3ei2zo
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/logic-of-generality-btfi3ei2zo
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/logic-of-generality-btfi3ei2zo
https://typeset.io/papers/logic-of-generality-btfi3ei2zo

The logic of generality

Luc De Raedt

Department of Computer Science, Katholieke Universiteit Leuven, Celestijnenlaan

200A, BE - 3001 Heverlee, Belgium, email: luc.deraedt@cs.kuleuven.be

Definition

One hypothesis is more general than another one if it covers all instances that are

also covered by the later one. The former hypothesis is called a generalization of

the later, and the later a specialization of the former. When using logical formulae

as hypotheses, the generality relation coincides with the notion of logical entail-

ment, which implies that the generality relation can be analyzed from a logical

perspective. The logical analysis of generality, which is pursued in this entry, leads

to the perspective of induction as the inverse of deduction. This forms the basis for

an analysis of various logical frameworks for reasoning about generality and for

traversing the space of possible hypotheses. Many of these frameworks (such as for

instance, θ-subsumption) are employed in the field inductive logic programming

and are introduced below.

Synonyms

generality and logic, induction as inverted deduction, is more general than, is more

specific than, specialization, inductive inference rules,

Motivation

Symbolic machine learning methods typically learn by searching a hypothesis

space. The hypothesis space can be (partially) ordered by the generality relation,

which serves as the basis for defining operators to traverse the space as well as

for pruning away unpromising parts of the search space. This is often realized

through the use of refinement operators, that is, generalization and specialization

operators. Because many learning methods employ a hypothesis language that is

logical or that can be reformulated in logic, it is interesting to analyze the general-

ity relation from a logical perspective. When using logical formulae as hypotheses,

the generality relation closely corresponds to logical entailment. This allows us to

directly transfer results from logic to a machine learning context. In particular, ma-

chine learning operators can be derived from logical inference rules. The logical

1

theory of generality provides a framework for transferring these results. Within

the standard setting of inductive logic programming, learning from entailment,

specialization is realized through deduction, and generalization through induction,

which is considered to be the inverse of deduction. Different deductive inference

rules lead to different frameworks for generalization and specialization. The most

popular one is that of θ-subsumption, which is employed by the vast majority of

contemparary inductive logic programming systems.

Theory

A hypothesis g is more general than a hypothesis s if and only if g covers all

instances that are also covered by s, more formally, if covers(s) ⊆ covers(g),
where covers(h) denotes the set of all instances covered by the hypothesis h.

There are several possible ways to represent hypotheses and instances in logic

[3, 2], each of which results in a different setting with a corresponding covers
relation. Some of the best known settings are learning from entailment, learning

from interpretations and learning from proofs.

Learning from entailment

When learning from entailment, both hypotheses and instances are logical formu-

lae, typically definite clauses, which underly the programming language Prolog [5].

Furthermore, when learning from entailment, a hypothesis h covers an instance e
if and only if h |= e, that is when h logically entails e, or equivalently, when e is a

logical consequence of h. For instance, consider the hypothesis h:

flies :- bird, normal.

bird :- blackbird.

bird :- ostrich.

The first clause or rules can be read as flies if normal and bird, that is,

normal birds fly. The second and third state that blackbirds, resp. ostriches, are

birds. Consider now the examples e1:

flies :- blackbird, normal, small.

and e2:

flies :- ostrich, small.

2

Example e1 is covered by h, because it is a logical consequence of h, that is h |= e1.

On the other hand, example e2 is not covered, which we denote as h 6|= e2.

When learning from entailment, the following property holds.

Property 1 A hypothesis g is more general than a hypothesis s if and only if g
logically entails s, that is g |= s.

This is easy to see. Indeed, g is more general than s if and only if covers(s) ⊆
covers(g) if and only if for all examples e : (s |= e) → (g |= e) if and only if

g |= s. For instance, consider the hypothesis h1:

flies :- blackbird, normal.

Because h |= h1, it follows that h covers all examples by h1, and hence, h gener-

alizes h1.

Property 1 states that the generality relation coincides with logical entailment

when learning from entailment. In other learning settings, such as when learning

from intepretations, this relationship also holds though the direction of the relation-

ship might change.

Learning from interpretations

When learning from interpretations, hypotheses are logical formulae, typically sets

of definite clauses, and instances are interpretations. For propositional theories,

interpretations are assingments of truth-values to propositional variables. For in-

stance, continuing the flies illustration, two interpretations could be

{blackbird, bird, normal, flies}

{ostrich, small}

where we specify interpretations through the set of propositional variables that

are true. An interpretation specifies a kind of possible world. A hypothesis h
then covers an interpretation if and only if the interpretation is a model for the

hypothesis. An interpretation is a model for a hypothesis if it satisfies all clauses

in the hypothesis. In our illustration, the first interpretation is a model for the

theory h but the second is not. Because the condition part of the rule bird :-

ostrich. is satisfied in the second interpretation (as it contains ostrich), the

conclusion part, that is bird, should also belong to the interpretation in order to

have a model. Thus, the first example is covered by the theory h, but the second is

not.

When learning from interpretations, a hypothesis g is more general than a hy-

pothesis s if and only if for all examples e: (e is a model of s)→ (e is a model of

g) if and only if s |= g.

3

Because the learning from entailment setting is more popular than the learning

from interpretations setting, we shall employ in this section the usual convention

which states that one hypothesis g is more general than a hypothesis s if and only

if g |= s.

An operational perspective

Property 1 lies at the heart of the theory of inductive logic programming and gen-

eralization because it directly relates the central notions of logic with those of ma-

chine learning [10]. It is also extremely useful because it allows us to directly

transfer results from logic to machine learning.

This can be illustrated using traditional deductive inference rules, which start

from a set of formulae and derive a formulae that is entailed by the original set. For

instance, consider the resolution inference rule for propositional definite clauses:

h← g, a1, . . . , an and g ← b1, . . . , bm

h← b1, . . . , bm, a1, . . . , an

(1)

This inference rule starts from the two rules above the line and derives the so-called

resolvent below the line. This rule can be used to infer h1 from h. An alternative

deductive inference rule adds a condition to a rule:

h← a1, . . . , an

h← a, a1, . . . , an

(2)

This rule can be used to infer that h1 is more general than the clause used in exam-

ple e1. In general, a deductive inference rule can be written as

g

s
(3)

If s can be inferred from g and the operator is sound, then g |= s. Thus applying

a deductive inference rule realizes specialization, and hence, deductive inference

rules can be used as specialization operators. A specialization operator maps a

hypothesis onto a set of its specializations. Because specialization is the inverse

of generalization, generalization operators — which map a hypothesis onto a set

of its generalizations — can be obtained by inverting deductive inference rules.

The inverse of a deductive inference rule written in format (3) works from bottom

to top, that is from s to g. Such an inverted deductive inference rule is called

an inductive inference rule. This leads to the view of induction as the inverse of

deduction. This view is operational as it implies that each deductive inference rule

can be inverted into an inductive one, and also, that each inference rule provides in

an alternative framework for generalization.

4

An example generalization operator is obtained by inverting the adding condi-

tion rule (2). It corresponds to the well-known “dropping condition” rule [6]. As

we will see soon, it is also possible to invert the resolution principle (1).

Before deploying inference rules, it is necessary to determine their properties.

Two desirable properties are soundness and completeness. These properties are

based on the repeated application of inference rules. Therefore, we write g ⊢r s
when there exists a sequence of hypotheses h1, · · · , hn such that

g

h1

,
h1

h2

, · · · ,
hn

s
using r (4)

A set of inference rules r is then sound whenever g ⊢r s implies g |= s; and com-

plete whenever g |= s implies g ⊢r s. In practice, soundness is always enforced

though completeness is not always required in a machine learning setting. When

working with incomplete rules, one should realize that the generality relation “⊢r”

is weaker than the logical one “|=”.

The most important logical frameworks for reasoning about generality, such as

θ-subsumption and resolution, will be introduced below using the above introduced

logical theory of generality.

Frameworks for generality

Propositional Subsumption

Many propositional learning systems employ hypotheses that consist of rules, often

definite clauses as in the flies illustration above. The propositional subsumption

relation defines a generality relation amongst clauses and is defined through the

adding condition rule (2). The properties then follow by applying the logical theory

of generalization presented above to this inference rule. More specifically, the

generality relation ⊢a induced by the adding condition rule states that a clause g is

more general than a clause s if s can be derived from g by adding a sequence of

conditions to g. Observing that a clause h← a1, · · · , an is a disjunction of literals

h ∨ ¬a1 · · · ∨ ¬an allows us to write it in set notation as {h,¬a1, · · · ,¬an}. The

soundness and completeness of propositional subsumption then follow from

g ⊢a s if and only if g ⊆ s if and only if g |= s (5)

which also clarifies states that g subsumes s if and only if g ⊆ s.

The propositional subsumption relation induces a complete lattice on the space

of possible clauses. A complete lattice is a partial order — a reflexive, anti-

symmetric and transitive relation — where every two elements posses a unique

5

flies.

flies :- normal. flies :- small.

flies :-bird, normal. flies :- bird,small. flies :- small, normal.

flies :-bird, normal, small.

flies :- bird.

Figure 1: The Hasse diagram for the predicate flies.

least upper and greatest lower bound. An example lattice for rules defining the

predicate flies in terms of bird, normal and small is illustrated in the Hasse

diagram depicted in Figure 1.

The Hasse diagram also visualizes the different operators that can be used. The

generalization operator ρg maps a clause to the set of its children in the diagram,

whereas the specialization operator ρs maps a clause to the set of its parents. So

far we have defined such operators implicitly through their corresponding inference

rules. In the literature, they are often defined explicitly:

ρg(h← a1, · · · , an) = {h← a1, · · · , ai−1, ai+1, · · · , an|i = 1, · · · , n} (6)

In addition to using the inference rules directly, some systems like Golem [11]

also exploit the properties of the underlying lattice by computing the least upper

bound of two formulae. The least upper bound operator is known under the name

of least general generalization (lgg) in the machine learning literature. It returns

the least common ancestor in the Hasse diagram. Using set notation for clauses the

definition of the lgg is:

lgg(c1, c2) = c1 ∩ c2 (7)

The least general generalization operator is used by machine learning systems that

follow a cautious generalization strategy. They take two clauses corresponding to

positive examples and minimally generalize them.

6

θ-subsumption

The most popular framework for generality within inductive logic programming

is θ-subsumption [13]. It provides a generalization relation for clausal logic and

it extends propositional subsumption to first order logic. A definite clause is an

expression of the form h ← a1, · · · , an where h and the hi are logical atoms. An

atom is an expression of the form p(t1, · · · , tm) where p is a predicate name (or,

the name of a relation) and the ti are terms. A term is either a constant (denoting

an object in the domain of discourse), a variable, or a structured term of the form

f(u1, · · · , uk) where f is a functor symbol (denoting a function in the domain of

discourse) and the ui are terms, see [5] for more details. Consider for instance the

clauses

likes(X,Y) :- neighbours(X,Y).

likes(X,husbandof(Y)) :- likes(X,Y).

likes(X,tom) :- neighbours(X,tom), male(X).

The first clause states that X likes Y if X is a neighbour of Y. The second

one that X likes the husband of Y if X likes Y. The third one that all male

neighbour of tom like tom.

Θ-subsumption is not only based on the adding condition rule (2) but also on

the substitution rule:

g

gθ
(8)

The substitution rule applies a substitution θ to the definite clause g. A substitution

{V1/t1, · · · , Vn/tn} is an assingment of terms to variables. Applying a substitution

to a clause c yields the instantiated clause where all variables are simultaneously

replaced by their corresponding terms.

Θ-subsumption is then the generality relation induced by combining the sub-

stitution with the adding condition rule in the set t.

g θ-subsumes s if and only if g ⊢t s if and only if ∃θ : gθ ⊆ s (9)

For instance, the first clause for likes subsumes the third one with the substitu-

tion {Y/tom}.
θ-subsumption has some interesting properties:

• θ-subsumption is sound.

• θ-subsumption is complete for clauses that are not self-recursive. It is in-

complete for self-recursive clauses such as

7

nat(s(X)) :- nat(X)

nat(s(s(Y))) :- nat(Y)

for which one can use resolution to that the first clause logically entails the

second one, even though it does not θ-subsume it.

• Deciding θ-subsumption is an NP-complete problem.

Because θ-subsumption is relatively simplicity and decidable whereas logical

entailment between single clauses is undecidable, it is used as the generality rela-

tion by the majority of Inductive logic programming systems. These systems typ-

ically employ a specialization or refinement operator to traverse the search space.

To guarantee the systematic enumeration of the search space, the specialization op-

erator ρs can be employed. ρs(c) is obtained by applying the adding condition or

substitution rule with the following restrictions.

• the adding condition rule only adds atoms of the form p(V1, · · · , Vn) where

the Vi are variables not yet occurring in the clause c;

• the substitution rule only employs elementary substitutions, which are of the

form

– {V/Y }, where X and Y are two variables appearing in c

– {V/ct}, where V is a variable in c and ct a constant

– {V/f(V1, · · · , Vn)}, where V is a variable in c, f a functor of arity n
and the Vi are variables not yet occurring in c.

A generalization operator can be obtained by inverting ρs, which requires one

to invert substitutions. Inverting substitutions is not easy. Whereas applying a

substitution θ = {V/a} to a clause c replaces all occurrences of V by a and yields

a unique clause cθ, applying the substitution rule in the inverse direction does not

necessarily yield a unique clause. If we assume the elementary substitution applied

to

c

q(a,a)
(10)

was {V/a}, then there are at least three possibilities for c: q(a,V), q(V,a), and

q(V,V).

Θ-subsumption is reflexive, transitive but unfortunately not anti-symmetric,

which can be seen by consider the clauses

8

parent(X,Y) :- father(X,Y).

parent(X,Y) :- father(X,Y), father(U,V).

The first clause clearly subsumes the second one because it is a subset. The second

one subsumes the first with the substitution {X/U, V/Y}. The two clauses are

therefore equivalent under θ-subsumption, and hence also logically equivalent. The

loss of the anti-symmetry complicates the search process. The naive application of

the specialization operator ρs may yield syntactic specializations that are logically

equivalent. This is illustrated above where the second clause for parent is a

refinement of the first one using the adding condition rule. In this way, uselesss

clause are generated and there is a danger that if the resulting clauses are further

refined, there is a danger that the search will end up in an infinite loop.

Plotkin [13] has studied the quotient set induced by θ-subsumption and proven

various interesting properties. The quotient set consists of classes of clauses that

are equivalent under θ-subsumption. The class of clauses equivalent to a given

clause c is denoted by

[c] = {c′|c′ is equivalent with c under θ-subsumption} (11)

Plotkin proved that

• the quotient set is well-defined w.r.t. θ-subsumption.

• there is a representative, a canonical form, of each equivalence class, the

so-called reduced clause. The reduced clause of an equivalence class is the

shortest clause belonging to class. It is unique up to variable renaming. For

instance, in the parent example above, the first clause is in reduced form.

• the quotient set forms a complete lattice, which implies that there is a least

general generalization of two equivalence classes. In the inductive logic

programming literature, one often talks about the least general generalization

of two clauses.

Several variants of θ-subsumption have been developed. One of the most im-

portant ones is that of OI-subsumption [4]. For functor-free clauses, it modifies

the substitution rule by disallowing substitutions that unify two variables or that

substitute a variable by a constant already appearing in the clause. The advantage

is that the resulting relation is anti-symmetric, which avoids some of the above

mentioned problems with refinement operators. On the other hand, the minimally

general generalization of two clauses is not necessary unique, and hence, there

exists no least general generalization operator.

9

Inverse resolution

Applying resolution is a sound deductive inference rule, and therefore, realizes

specialization. Reversing it yields inductive inference rules or generalization oper-

ators [7, 9]. This is typically realized by combining the resolution principle with

a copy operator. The resulting rules are called absorption (19) and identification

(21). They start from the clauses below and induce the clause above the line. They

are shown here only for the propositional case, as the first order case requires one

to deal with substitions as well as inverse substitutions.

h← g, a1, . . . , an and g ← b1, . . . , bm

h← b1, . . . , bm, a1, . . . , an and g ← b1, . . . , bm

(12)

h← g, a1, . . . , an and g ← b1, . . . , bm

h← b1, . . . , bm, a1, . . . , an and h← g, a1, . . . , an

(13)

Other interesting inverse resolution operators perform predicate invention, that

is they introduce new predicates that were not yet present in the original data. These

operators invert two resolution steps. One such operator is the intra-construction

operator (14). Applying this operator from bottom to top introduces the new pred-

icate q that was not present before.

q ← l1, . . . , lk and p← k1, · · · , kn, q and q ← l′1, · · · , l
′

m

p← k1, · · · , kn, l1, · · · , lk and p← k1, · · · , kn, l′
1
, · · · , l′m

(14)

The idea of inverting the resolution operator is very appealing because it aims

at inverting the most popular deductive inference operator, but is also rather com-

plicated due to the non-determinism and the need to invert substitutions. Due to

these complications, there are only few systems that employ inverse resolution op-

erators.

Background knowledge

Inductive logic programming systems employ background knowledge during the

learning process. Background knowledge typically takes the form of a set of

clauses B, which is then used by the covers relation. When learning from en-

tailment in the presence of background knowledge B an example e is covered by a

hypothesis h if and only if B∪h |= e. This notion of coverage is employed in most

10

of the work on inductive logic programming. in the intial flies example the two

clauses defining bird would typically be considered background knowledge.

The incorporation of background knowledge in the induction process has re-

sulted in frameworks for generality relative to a background theory. More formally,

a hypothesis g is more general than a hypthesis s relative to the background theory

B if and only if B ∪ g |= s. The only already seen inference rules that deal with

multiple clauses are those based on (inverse) resolution. The other frameworks can

be extended to cope with this generality relation following the logical theory of

generalization. Various frameworks have been developed along these lines. Some

of the most important ones are relative subsumption [14] and generalized subsump-

tion [1], which extend θ-subsumption and the notion of least general generalization

towards the use of background knowledge. Computing the least general generaliza-

tion of two clauses relative to the background theory is realized by first computing

the most specific clauses covering the examples with regard to the background the-

ory and then generalizing them using the least general generalization operator of

θ-subsumption.

The first step is the most interesting one, and has been tackled under the name

of saturation [15] and bottom-clauses [8]. We illustrate it within the framework

of inverse entailment due to Stephen Muggleton [8]. The bottom clause ⊥(c) of

a clause c with regard to a background theory B is the most specific clause ⊥(c)
such that

B ∪ ⊥(c) |= c (15)

If B consist of

polygon :- rectangle.

rectangle :- square.

oval :- circle.

and the example c is

positive :- red, square.

Then the bottom-clause ⊥(c) is

positive :- red, rectangle, square, polygon.

The bottom-clause is useful because it only lists those atoms that are relevant to the

example, and only generalizations (under θ-subsumption) of ⊥(c) will cover the

example. For instance, in the illustration, the bottom-clause does neither mention

oval or circle as clauses for pos containing these atoms will never cover the

11

example clause c. Once the bottom-clause covering an example has been found

the search process continues as if no background knowledge were present. Either

specialization operators (typically under θ-subsumption) would search the space of

clauses more general than ⊥(c), or else the least general generalization of multiple

bottom-clauses would be computed.

Equation (15) is equivalent to

B ∪ ¬c |= ¬⊥(c) (16)

which explains why the bottom-clause is computed by finding all factual conse-

quences of B ∪ ¬c and then inverting the resulting clause again. On the example:

¬c = {¬ positive, red, square}

and the set of all consequences is

¬⊥(c) = ¬c∪{rectangle, polygon}

which then yields ⊥(c) mentioned above. When dealing with first order logic,

bottom-clauses can become infinite, and therefore, one typically imposes furthe

restrictions on the atoms that appear in bottom-clauses. These restrictions are part

of the syntactic bias.

Further reading

The textbook by Nienhuys-Cheng and De Wolf [12] is the best reference for an

in-depth formal description of various frameworks for generality in logic, in par-

ticular, for θ-subsumption and some of its variants. The book by De Raedt [3]

contains a more complete introduction to inductive logic programming and rela-

tional learning, and also introduces the key frameworks for generality in logic. An

early survey of inductive logic programming and the logical theory of generality

is contained in [10]. Plotkin [13, 14] studied the use θ-subsumption and rela-

tive subsumption (under a background theory) for machine learning. Buntine [1]

extended these frameworks towards generalized subsumption, and [4]introduced

OI-subsumption. Inverse resolution was first used in the system Marvin [16], and

then elaborated by [7] for propositional logic and by [9] for definite clause logic.

Various learning settings are studied by [2] and discussed extensively by [3]. They

are also relevant to probabilistic logic learning and statistical relational learning.

12

References

[1] W. Buntine. Generalized subsumption and its application to induction and

redundancy. Artificial Intelligence, 36:375–399, 1988.

[2] L. De Raedt. Logical settings for concept learning. Artificial Intelligence,

95:187–201, 1997.

[3] L. De Raedt. Logical and Relational Learning. Springer, 2008.

[4] F. Esposito, A. Laterza, D. Malerba, and G. Semeraro. Refinement of Datalog

programs. In Proceedings of the MLnet Familiarization Workshop on Data

Mining with Inductive Logic Programing, pages 73–94, 1996.

[5] P.A. Flach. Simply Logical: Intelligent Reasoning by Example. John Wiley,

1994.

[6] R. S. Michalski. A theory and methodology of inductive learning. Artificial

Intelligence, 20(2):111–161, 1983.

[7] S. Muggleton. Duce, an oracle based approach to constructive induction. In

Proceedings of the 10th International Joint Conference on Artificial Intelli-

gence, pages 287–292. Morgan Kaufmann, 1987.

[8] S. Muggleton. Inverse entailment and Progol. New Generation Computing,

13(3-4):245–286, 1995.

[9] S. Muggleton and W. Buntine. Machine invention of first order predicates

by inverting resolution. In Proceedings of the 5th International Workshop on

Machine Learning, pages 339–351. Morgan Kaufmann, 1988.

[10] S. Muggleton and L. De Raedt. Inductive logic programming: Theory and

methods. Journal of Logic Programming, 19/20:629–679, 1994.

[11] S. Muggleton and C. Feng. Efficient induction of logic programs. In Proceed-

ings of the 1st Conference on Algorithmic Learning Theory, pages 368–381.

Ohmsma, Tokyo, Japan, 1990.

[12] S.-H. Nienhuys-Cheng and R. de Wolf. Foundations of Inductive Logic Pro-

gramming. Springer, 1997.

[13] G. D. Plotkin. A note on inductive generalization. In Machine Intelligence,

volume 5, pages 153–163. Edinburgh University Press, 1970.

13

[14] G. D. Plotkin. A further note on inductive generalization. In Machine Intelli-

gence, volume 6, pages 101–124. Edinburgh University Press, 1971.

[15] C. Rouveirol. Flattening and saturation: Two representation changes for gen-

eralization. Machine Learning, 14(2):219–232, 1994.

[16] C. Sammut and R. B. Banerji. Learning concepts by asking questions. In

R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, editors, Machine Learn-

ing: An Artificial Intelligence Approach, volume 2, pages 167–192. Morgan

Kaufmann, 1986.

14

Coverage relation

Definition

In concept-learning (and also in rule-learning and inductive logic programming),

the goal is often to find a hypothesis that covers, or matches, all positive examples

by means of a search through the hypothesis space. The covers relation speci-

fies the relationship between the hypothesis language, which is used to represent

concepts, and the language used to represent instances or examples. The covers

relation forms the basis for defining the generality relation, used to structure the

search space. More formally, an example e is covered by a hypothesis h when

the example e belongs to the concept defined by h, that is, when the hypothesis

classifies the example as positive. Sometimes the set of all examples covered by a

hypothesis h is denoted as covers(h).

Synonyms

matches

See Also

concept-learning; rule-learning; inductive logic programming; generality relation;

learning from entailment; learning from interpretations; learning from proofs; hy-

pothesis language

References and recommended reading

1. T.M. Mitchell. Machine Learning. McGraw-Hill. 1997.

15

Generality Relation

Definition

The generality relation is used in concept-learning, rule-learning and inductive logic programming.

It specifies when one hypothesis g is more general than another hypothesis s. It is

defined in terms of the covers relation, which specifies for each hypothesis the set

of examples it covers or matches. More precisely, a hypothesis g is more general

than a hypothesis s if g covers all instances that are also covered by s. This is

sometimes written as covers(s) ⊆ covers(g). The hypothesis g is called a gener-

alization of s, and s a specialization of g. The generality relation (partially) orders

the hypotheses space and can therefore be employed to prune the search for con-

sistent hypotheses. For instance, when a hypothesis h does not cover a positive

example e, then no specialization of h will cover e, and hence, all specializations

of h can be pruned.

Synonyms

See Also

Logic of Generality; Refinement Operators; Subsumption; Minimally general gen-

eralization; least general generalization

References and recommended reading

1. T.M. Mitchell. Machine Learning. McGraw-Hill. 1997.

16

Subsumption

Definition

Subsumption is the term used in inductive logic programming to refer to various

generality relations between hypotheses in the form of clauses. In propositional logic,

one clause g subsumes a clause s if and only if g |= s, that is, if and only if, g ⊆ s.

For instance, the clause flies :- bird, normal, which states that normal

birds fly, subsumes the clause flies :- bird, normal, black because

{flies, ¬ bird, ¬ normal} ⊆ {flies, ¬ bird, ¬ normal, ¬
black}. While in the propositional case, the subsumption relation is relativey

straightforward, it is more involved when working with first order logic as in

inductive logic programming. In this case, one typically employs the θ-subsumption

relation, which states that a clause g θ-subsumes a clause s if and only if there ex-

ists a substitution θ such that gθ ⊆ s. For instance, the clause father(X,Y) :-

male(X), parent(X,Y) θ-subsumes the clause father(Z,mary) :- male(Z),

parent(Z,mary), female(mary) because applying θ = {X/Z, Y/mary}
to the first clause yields { father(Z,mary), ¬ male(Z), ¬ parent(Z,mary)}
which is a subset of the second clause { father(Z,mary), ¬ male(Z),

¬ parent(Z,mary), ¬ female(mary)}.

Synonyms

See also

Logic of generality; inductive logic programming; refinement operator;

References and recommended reading

1. L. De Raedt. Logical and Relational Learning. Springer. 2008.

2. S.-H. Nienhuys-Cheng and R. de Wolf. Foundations of Inductive Logic Pro-

gramming. Springer, 1997.

17

Refinement operator

Definition

Many machine learning methods search through a hypothesis space structured by a

generality relation. For instance in concept-learning, one searches for a hypothesis

that covers all positive and none of the negative examples. These search procedures

repeatedly consider candidate hypotheses and refine them to generate successor

candidates when needed. The successor candidates are generated using a refine-

ment operator. So, a refinement operator that maps a hypothesis to its set of refine-

ments. More formally, a refinement operator is a function ρ : L → P(L), where L
is the set of hypotheses and P(L) denotes its powerset. Usually, one distinguishes

two types of refinement operators: specialization operators, which return a set of

specializations of the hypothesis, and generalization operators, which return a set

of generalizations.

As an illustration of a refinement operator consider the “adding condition rule”

of Ryszard Michalski, which specializes rules. For instance, consider the rule

class = + IF outlook = sunny AND temperature = high

it can be specialized by adding conditions to yield, for instance,

class = + IF outlook = sunny AND temperature = high AND humidity = low

Various types of refinement operators have been studied in an inductive logic programming

context.

See also

Logic of generality; inductive logic programming

References and recommended reading

1. L. De Raedt. Logical and Relational Learning. Springer. 2008.

2. R. S. Michalski. A theory and methodology of inductive learning. Artificial

Intelligence, 20(2):111–161, 1983.

18

Learning from entailment

Definition

Learning from entailment is an inductive logic programming setting that is also rel-

evant to statistical relational learning. In this setting, both hypotheses and instances

are logical formulae, typically definite clauses, which underlie the programming

language Prolog. Furthermore, when learning from entailment, a hypothesis h
covers an instance e if and only if h |= e, that is, when h logically entails e, or

equivalently, when e is a logical consequence of h. For instance, consider the

hypothesis h:

flies :- bird, normal.

bird :- blackbird.

bird :- ostrich.

The first clause or rule can be read as flies if normal and bird, that is, normal

birds fly. The second and third state that blackbirds, resp. ostriches, are birds.

Consider now the examples e1:

flies :- blackbird, normal, small.

and e2:

flies :- ostrich, small.

Example e1 is covered by h, because it is a logical consequence of h, that is h |= e1.

On the other hand, example e2 is not covered, which we denote as h 6|= e2.

Learning from entailment is often employed in a concept-learning context,

where the goal is to learn a hypothesis that covers all positive and none of the

negative examples. It can also be employed when in statistical relational learning.

Synonyms

See also

Logic of generality, inductive logic programming, hypothesis language; statistical

relational learning; entailment.

19

References and recommended reading

1. L. De Raedt. Logical and Relational Learning. Springer. 2008.

2. L. De Raedt. Logical settings for concept learning. Artificial Intelligence,

95:187–201, 1997.

20

Learning from interpretations

Definition

Learning from interpretations is an inductive logic programming setting that is also

relevant to statistical relational learning. When learning from interpretations, hy-

potheses are logical formulae, typically definite clauses, which underlie the pro-

gramming language Prolog, and instances are logical interpretations. For propo-

sitional theories, interpretations are assignments of truth-values to propositional

variables. For instance, when describing birds, two possible interpretations could

be

{ostrich, small}

{blackbird, bird, normal, flies}

where we specify interpretations through the set of propositional variables that

are true. This means that in the first interpretation the only true propositions are

ostrich and small. An interpretation specifies a kind of possible world. A

hypothesis h then covers an interpretation if and only if the interpretation is a model

for the hypothesis. An interpretation is a model for a hypothesis if it satisfies all

clauses in the hypothesis. Consider now the hypothesis h consist of the following

clauses.

flies :- bird, normal.

bird :- blackbird.

bird :- ostrich.

The first clause or rule can be read as flies if normal and bird, that is, normal birds

y. The second and third state that blackbirds, resp. ostriches, are birds. the second

interpretation is a model for the theory h but the first is not. Because the condition

part of the rule bird :- ostrich. is satisfied in the first interpretation (as it

contains ostrich), the conclusion part, that is bird, should also belong to the

interpretation in order to have a model. Thus, the first example is covered by the

theory h, but the second is not.

Learning from interpretations is often employed in a concept-learning context,

where the goal is to learn a hypothesis that covers all positive and none of the

negative examples. It can also be employed in statistical relational learning.

21

Synonyms

See also

Logic of generality, inductive logic programming, hypothesis language; statistical

relational learning;

References and recommended reading

1. L. De Raedt. Logical and Relational Learning. Springer. 2008.

2. L. De Raedt. Logical settings for concept learning. Artificial Intelligence,

95:187–201, 1997.

22

Learning from proofs

Definition

Learning from proofs is an inductive logic programming setting that is also relevant

to statistical relational learning and inductive programming and trace-based programming.

When learning from proofs, hypotheses are logical formulae, typically definite

clauses, which underlie the programming language Prolog, and instances are log-

ical proofs. A hypothesis h then covers an instance if and only if the instance is a

proof in the theory h.

Consider the following theory:

nat(0).

nat(s(X)) :- nat(X).

where the first clause states that 0 is a natural number and the second one, that if,

X is a natural number than also s(X) is a natural number. Given this theory, the

example

:-nat(s(s(0))) --- :-nat(s(0)) --- :-nat(0) --- []

is a legal proof, but the example

:-nat(s(s(5))) --- :-nat(s(5)) --- :-nat(5) --- []

is not because the last step is invalid (where the proofs are shown as SLD-refutation

proofs).

Learning from proofs is often employed in an inductive logic programming

context where the goal is to learn a hypothesis that covers all positive and none

of the negative examples. It can also be employed in statistical relational learning

and inductive programming.

Synonyms

learning from traces.

See also

Logic of generality, inductive logic programming, hypothesis language; statistical

relational learning;trace-based programming; inductive programming.

23

References and recommended reading

1. L. De Raedt. Logical and Relational Learning. Springer. 2008.

24

Minimally general generalization

Definition

One hypothesis is said to be more general than another one if the former hypothesis

covers all instances that are covered by the later one. The resulting generality relation

typically partial orders the hypothesis space, that is, the generality relation is re-

flexive, anti-symmetric and transitive. One cautious strategy for learning performs

cautious generalization by repeatedly computing the minimally general generaliza-

tions of hypotheses. The minimally general generalizations of h1 and h2 are the

most specific hypotheses that are more general than h1 and h2. Using the nota-

tion g � s to denote that g is more general than s, the set of minimally general

generalizations mgg(h1, h2) is defined as follows:

mgg(h1, h2) = max{h ∈ L|h � h1 and h � h2}

where L denotes the hypothesis language and max denotes the most specific ele-

ments of the sets.

As one example of a minimally general generalizations consider the hypoth-

esis language consisting of strings and as generality relation the substring rela-

tion. A string s0...sn is a substring of a string t0...tk if and only if ∃j : s0 =
tj and ... and sn = tj+n. For instance, achin is a substring of machine learning.

The minimally general generalizations of abcdefabc and defabcdef are defabc

and abcdef.

If it is guaranteed that there exists a unique minimally general generalization,

then one talks about the least general generalization.

Synonyms

See also

least general generalization, logic of generality, inductive logic programming

References and recommended reading

1. L. De Raedt. Logical and Relational Learning. Springer. 2008.

2. T. Mitchell. Machine Learning. McGraw-Hill. 1997.

25

Least general generalization

Definition

One hypothesis is said to be more general than another one if the former hypothesis

covers all instances that are covered by the later one. The resulting generality relation

typically partial orders the hypothesis space, that is, the generality relation is re-

flexive, anti-symmetric and transitive. One cautious strategy for learning performs

cautious generalization by repeatedly computing the least general generalization of

hypotheses. The least general generalization of two hypotheses h1 and h2 is the

unique most specific generalization of h1 and h2, that is, it is the least upper bound

of h1 and h2 in the partial order. The least general generalization of two hypotheses

does not always exist. Also, in case that the most specific generalizations are not

unique, one talks about the minimally general generalization.

For instance, when the hypotheses h1 and h2 are propositional conjunctions,

then their least general generalization is the intersection of the conjunctions. In-

deed, consider the hypotheses

red and large and square and filled

blue and large and square and closed

then the least general generalization is

large and square

The least general generalization is especially known in the context of inductive logic programming,

where it is used to refer to Plotkin’s operation for computing the least general gen-

eralization of two clauses under θ-subsumption.

Synonyms

See also

least general generalization, logic of generality, generality relation

References and recommended reading

1. L. De Raedt. Logical and Relational Learning. Springer. 2008.

2. T. Mitchell. Machine Learning. McGraw-Hill. 1997.

26

Resolution

Definition

Resolution is a logical inference rule used in theorem provers and logic program-

ming to perform deductive inference. The resolution inference rule starts from two

clauses and generates a so-called resolvent, that is, a clause that is logically en-

tailed by the two clauses. For propositional logic, the resolution rule can be written

as follows:

h← g, a1, . . . , an and g ← b1, . . . , bm

h← b1, . . . , bm, a1, . . . , an

(17)

or when writing clauses as disjunctions

h ∨ ¬g ∨ ¬a1 ∨ . . . ∨ ¬an and g ∨ ¬b1 ∨ . . . ∨ ¬bm

h ∨ ¬b1 ∨ . . . ∨ ¬bm ∨ ¬ . . . ∨ ¬an

(18)

For instance, consider the clauses

flies :- bird, normal.

bird :- blackbird.

where the first clause states that normal birds fly and the second one that blackbirds

are bird. The resolvent of these two clauses is

flies :- blackbird, normal.

and is therefore logically entailed by the two clauses.

Even though we only introduced resolution for propositional logic, there exists

also a (more involved) version of resolution for first order logic.

Synonyms

See also

Logic of generality, entailment, inverse resolution

27

References and recommended reading

1. L. De Raedt. Logical and Relational Learning. Springer. 2008.

2. P. Flach. Simply Logical. Wiley. 1994.

3. S. Russell and P. Norvig. Artificial Intelligence: a Modern Approach. 2nd

Edition. Prentice Hall.

28

Inverse Resolution

Definition

Inverse resolution is, as the name indicates, a rule that inverts resolution. This fol-

lows the idea of induction as the inverse of deduction formulated in logic of generality.

The resolution rule is the best-known deductive inference rule, used in many the-

orem provers and logic programming systems. Resolution starts from two clauses

and derives the resolvent, a clause that is entailed by the two clauses. This can be

graphically represented using the following schema (for propositional logic).

h← g, a1, . . . , an and g ← b1, . . . , bm

h← b1, . . . , bm, a1, . . . , an

(19)

Inverse resolution operators, such as absorption and identification, invert this pro-

cess. To this aim they typically copy assume the resolvent is given together with

one of the original clauses and then derive the missing clause. This leads to the

following two operators, which start from the clauses below and induce the clause

above the line.

h← g, a1, . . . , an and g ← b1, . . . , bm

h← b1, . . . , bm, a1, . . . , an and g ← b1, . . . , bm

(20)

h← g, a1, . . . , an and g ← b1, . . . , bm

h← b1, . . . , bm, a1, . . . , an and h← g, a1, . . . , an

(21)

The operators are shown here only for the propositional case, as the first order

case is more involved at it requires one to deal with substitions as well as inverse

substitutions.

As one example, consider the clauses

(1) flies :- bird, normal.

(2) bird :- blackbird.

(3) flies :- blakcbird, normal.

Here, (3) is the resolvent of (1) and (2). Furthermore, starting from (3) and the

clause (2) the absorption operator would generate (1), and starting from (3) and (1)

the identification operator would generate (2).

29

Synonyms

See also

Logic of generality, resolution,

References and recommended reading

1. L. De Raedt. Logical and Relational Learning. Springer. 2008.

2. S. Muggleton. Duce, an oracle based approach to constructive induction. In

Proceedings of the 10th International Joint Conference on Artificial Intelli-

gence, pages 287–292. Morgan Kaufmann, 1987.

3. S. Muggleton and W. Buntine. Machine invention of first order predicates

by inverting resolution. In Proceedings of the 5th International Workshop

on Machine Learning, pages 339–351. Morgan Kaufmann, 1988.

30

Entailment

Definition

The term entailment is used in the context of logical reasoning. Formally, a logical

formula H entails a formula c if and only if all models of H are also a model of c.

This is usually denoted as H |= c and means that c is a logical consequence of T
or that c is implied by T .

Let us elaborate this definition for propositional clausal logic, where the for-

mulae are expressions such as:

flies :- bird, normal.

bird :- blackbird.

bird :- ostrich.

Here, the first clause or rule can be read as flies if normal and bird, that is, nor-

mal birds fly, the second and third one stating that blackbirds, resp. ostriches, are

birds. An interpretation is then an assignment of truth-values to the propositional

variables. For instance, for the above domain

{ostrich, bird}

{blackbird, bird, normal}

are interpretations, specified through the set of propositional variables that are true.

This means that in the first interpretation the only true propositions are ostrich

and bird. An interpretation specifies a kind of possible world. An interpretation I
is then a model for a clause h : −b1, ..., bn if and only if {b1, ..., bn} ⊆ I → h ∈ I
and it is model for a clausal theory if and only if it is a model for all clauses in the

theory. Therefore, the first interpretation above is a model for the theory, but the

second one is not because the interpretation is not a model for the first clause (as

{bird, normal} ⊆ I but flies 6∈ I). Using these notions it can now be

verified that the clausal theory T above logically entails the clause

flies :- ostrich, normal.

because all models of the theory are also a model for this clause.

In machine learning, the notion of entailment is used as a covers relation in

inductive logic programming, where hypotheses are clausal theories, instances are

clauses, and an example is covered by the hypothesis when it is entailed by the

hypothesis.

31

Synonyms

logical consequence, implication

See also

Learning from entailment, learning from interpretations, logic of generality, inverse

entailment.

References and recommended reading

1. L. De Raedt. Logical and Relational Learning. Springer. 2008.

2. P. Flach. Simply Logical. Wiley. 1994.

3. S. Russell and P. Norvig. Artificial Intelligence: a Modern Approach. 2nd

Edition. Prentice Hall.

32

Inverse entailment

Definition

Inverse entailment is a generality relation in inductive logic programming. More

specifically, when learning from entailment using a background theory B, a hy-

pothesis H covers an example e, relative to the background theory B if and only if

B ∧H |= e, that is, the background theory B and the hypothesis H together entail

the example (see entailment). For instance, consider the background theory B:

bird :- blackbird.

bird :- ostrich.

and the hypothesis H:

flies :- bird.

Together B ∧H entail the example e:

flies :- blackbird, normal.

This can be decided through deductive inference. Now when learning from en-

tailment in inductive logic programming, one starts from the example e and the

background theory B and the aim is to induce a rule H that together with B entails

the example. Inverting entialment now refest on the observation that B ∧H |= e is

logically equivalent to B ∧ ¬e |= ¬H , which in turn can be used to compute a hy-

pothesis H that will cover the example relative to the background theory. Indeed,

the negation of the example is ¬e:

blackbird.

normal.

:-flies.

and together with B this entails ¬H:

bird.

:-flies.

The principle of inverse entailment is typically employed to compute the bottom clause,

which is the most specific clause covering the example under entailment. It can be

computed by generating the set of all facts (true and false) that are entailed by

B ∧ ¬e and negating the resulting formula ¬H .

33

Synonyms

See also

logic of generality, entailment, bottom clause, inductive logic programming

References and recommended reading

1. S. Muggleton. Inverse entailment and Progol. New Generation Computing,

13(3-4):245286, 1995.

34

Bottom Clause

Definition

The bottom clause is a notion from the field of inductive logic programming. It is

used to refer to the most specific hypothesis covering a particular example when

learning from entailment. When learning from entailment, a hypothesis H covers

an example e relative to the background theory B if and only if B ∧ H |= e,

that is, B together with H entails the example e. The bottom clause is now the

most specific clause satisfying this relationship w.r.t the background theory B and

a given example e.

For instance, given the background theory B

bird :- blackbird.

bird :- ostrich.

and the example e:

flies :- blackbird, normal.

the bottom clause is H

flies :- bird, blackbird, normal.

The bottom clause can be used to constrain the search for clauses covering the

given example because all clauses covering the example relative to the background

theory should be more general than the bottom clause. The bottom clause can be

computed using inverse entailment.

Synonyms

Saturation, starting clause

See also

See also

logic of generality, entailment, inverse entailment, inductive logic programming

35

References and recommended reading

1. S. Muggleton. Inverse entailment and Progol. New Generation Computing,

13(3-4):245286, 1995.

2. L. De Raedt. Logical and Relational Learning. Springer. 2008.

36

Predicate invention

Definition

Predicate invention is used in inductive logic programming to refer to the the au-

tomatic introduction of new relations or predicates in the hypothesis language. In-

venting relevant new predicates is one of the hardest tasks in machine learning,

because there are so many possible ways to introduce such predicates and because

it is hard to judge their quality. As one example, consider a situation where the

predicates fatherof and motherof are known. Then it would make sense

to introduce a new predicate that is true whenever fatherof or motherof is

true. The new predicate that would be introduced this way corresponds to the

parentof predicate. Predicate invention has been introduced in the context of

inverse resolution.

Synonyms

See also

logic of generality, inductive logic programming.

1. L. De Raedt. Logical and Relational Learning. Springer. 2008.

2. S. Muggleton. Duce, an oracle based approach to constructive induction. In

Proceedings of the 10th International Joint Conference on Artificial Intelli-

gence, pages 287–292. Morgan Kaufmann, 1987.

3. S. Muggleton and W. Buntine. Machine invention of first order predicates

by inverting resolution. In Proceedings of the 5th International Workshop

on Machine Learning, pages 339–351. Morgan Kaufmann, 1988.

37

