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Abstract—This paper proposes a new approach to multilevel
logic optimization based on automatic test pattern generation
(ATPG). It shows that an ordinary test generator for single stuck-
at faults can be used to perform arbitrary transformations in a
combinational circuit and discusses how this approach relates
to conventional multilevel minimization techniques based on
Boolean division. Furthermore, effective heuristics are presented
to decide what network manipulations are promising for mini-
mizing the circuit. By identifying indirect implications between
signals in the circuit, transformations can be derived which are
“good” candidates for the minimization of the circuit. A main
advantage of the proposed approach is that it operates directly
on the structural netlist description of the circuit so that the
technical consequences of the performed transformations can
be evaluated in an easy way, permitting better control of the
optimization process with respect to the specific goals of the
designer. Therefore, the presented technique can serve as a basis
for optimization techniques targeting nonconventional design
goals. This has already been shown for random pattern testability
[11] and low-power consumption [28]. This paper only considers
area minimization, and our experimental results show that the
method presented is competitive with conventional technology-
independent minimization techniques. For many benchmark cir-
cuits, our tool Hannover implication tool based on learning
(HANNIBAL) achieves the best minimization results published to
date. Furthermore, the optimization approach presented is shown
to be useful in formal verification. Experimental results show that
our optimization-based verification technique works robustly for
practical verification problems on industrial designs.

Index Terms—ATPG, implication analysis, logic synthesis, logic
verification, miter, permissible function, recursive learning, re-
dundancy elimination, transduction.

I. INTRODUCTION

M ULTILEVEL logic optimization figures prominently in
the synthesis of highly integrated circuits. The goal

of multilevel logic optimization is transforming an arbitrary
combinational circuit into a functionally equivalent circuit

, circuit being less expensive than according to
some cost function. The cost function typically incorporates
area, speed, power consumption, and testability as the main
objectives of the optimization procedure. This research focuses
on optimizing a given circuit with respect to its area, a minimal
area representation of the circuit being a good basis for sub-
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sequent steps targeting high speed, low power consumption,
and high testability.

The field of multilevel logic optimization is not as well
delineated as the field of two-level optimization [7], and there
exist many different views on the multilevel optimization
problem. An early systematic approach was proposed by
Ashenhurst and Curtis [2], [13] and is known asfunctional
decomposition. Functional decomposition, in general terms, is
the process of expressing a switching function ofvariables
as a composition of a number of functions, each depending on
less than variables. Due to their complexity, early methods
based on functional decomposition have been of limited use in
practice. However, research in this area is still active. Recent
contributions [19], [25], [26], [38] are encouraging, and have
proven to be very useful infield programmable gate array
(FPGA) synthesis.

Presently, the most flexible and powerful synthesis tech-
niques for combinational circuits are based on Boolean and
algebraic manipulations of Boolean networks, pioneered by
Braytonet al. [8]. Since they provide good optimization results
and can handle circuits of realistic size, these methods have
become widely accepted.

Even with much recent progress, e.g., [3], [8], [10], [14],
[16], [18], [19], [25]–[27], [31], [32], [34], and [38], the size
and complexity of today’s integrated circuits leave multilevel
logic optimization a major challenge in the field of computer-
aided circuit design. In particular, high-memory requirements
represent the dominating limitation for many methods.

An important attribute of most common synthesis pro-
cedures is that they divide the synthesis process into an
technology-independent minimization phase and acell-binding
procedure which maps the design to a specific target technol-
ogy (technology mapping). However, the strict separation of
logic minimization from the specific technical design infor-
mation can sometimes be of disadvantage since the powerful
concepts for deriving circuit transformations cannot be ori-
ented at the specific technical data.

Therefore, an important goal of this research is to work
toward general logic minimization techniques which operate
directly on the structural gate netlist description of the circuit
so that the specific technological information of the given
gate library is immediately available to guide the optimization
process.

Our work is motivated by recent advances in test generation.
Over the years, considerable progress has been achieved in
combinationalATPG, and it seems wise to utilize the power of
modernATPG methods also in synthesis.ATPG methods are
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attractive for two reasons. First, in order to obtain effective
test sets,ATPG techniques operate directly on a gate-level
description of the circuit. Second,ATPG methods are very
memory efficient and typically have memory requirements
linear in the size of the gate-level description.

An important contribution exploiting testing techniques in
logic minimization has recently been presented by Entrena
and Cheng [16]. They propose an extension toredundancy
removal(see, e.g., [1]) and describe an effective method which
is based on adding and removing connections in the circuit.
The approach to be presented in this paper can be seen as a
generalization of the technique in [16] applied to combina-
tional circuits. The advantage of operating directly on the gate
netlist has also been recognized by Rohfleisch and Brglez [32]
who presented a technique based onpermissible bridgeswhich
can effectively optimize a circuit after technology mapping.

The methods of [16] and [32] have been shown to be very
useful for postprocessing networks that were preoptimized by
traditional techniques. On the other hand, they only consider a
restricted set of possible network manipulations and, therefore,
do not provide the same reasoning power and flexibility as
traditional technology-independent synthesis methods.

Therefore, our goal is to develop a multilevel logic
minimization method which is competitive with technology-
independent minimization techniques such as [8] and which
uses a test generator as the basic Boolean reasoning engine. In
this paper, we present a method which is general in the sense
that, in principle, it can derive arbitrary transformations in a
combinational network. The second contribution of this paper
is to introduce a new heuristic guidance for logic optimization.
We show how logic minimization (for area) can be guided
effectively by a single heuristic concept: the optimization
process can be controlled by analyzing implications between
circuit nodes. The complexity of reasoning required to derive
logic implications is seen to be related to the optimality of the
circuit structure and is used in optimization.

A major strength of our method is that it efficiently identifies
or createspermissible functions[27]. Therefore, it relates to
Muroga’s transductionmethod. There are two main ingredi-
ents to our method: theD-calculusof Roth [33] andRecursive
Learning[22]. The latter, which is discussed briefly in Section
II, is used to derive logic implications in combinational
circuits. Analyzing implications is crucial for deriving good
circuit transformations. In this aspect our method also relates
to [3] and [18].

Throughout the paper, we attempt to relate the concepts
of our ATPG-based method to common concepts in logic
synthesis (“division,” “permissible functions,” “don’t cares,”
and “common kernel extraction”).

As pointed out [8], “division” is central to Boolean/algebraic
methods of logic optimization. For example, take the function

. A simpler representation of the
same function is . This representation
can be obtained by defining a division operation ‘’ such that

. The expression
is referred to as a “divisor” of . When developing anATPG-
based method for logic minimization, the following two central
issues have to be addressed.

Fig. 1. Implications in combinational circuit [35].

1) How can anATPG-based method perform Boolean di-
vision?

2) How can anATPG-based method provide “good” divi-
sors?

The paper is outlined as follows. The first of the above ques-
tions will be addressed in Section III, and the second question
is discussed in Section IV. Section V describes and illustrates
the general flow of our optimization procedure. Section VI is
dedicated to an unconventional application of an optimization
technique; we formulate the formal logic verification problem
as an optimization problem and demonstrate how the described
method can be tailored for logic verification. Section VII
shows experimental results.

II. I NDIRECT IMPLICATIONS

The optimization method to be presented heavily depends
on analyzing implications derived by recursive learning [22].
A more general method to determineimplicantsin a multilevel
network based onAND/OR graphshas been presented recently
in [36]. The optimization procedure described in the following
sections does not yet exploit the concepts of [36] but only
uses recursive learning. Some previous results and terminology
are briefly summarized. Recursive learning is a method to
determineall value assignments which are necessary for the
detection of a single stuck-at fault in a combinational circuit.
This involves findingall value assignments necessary for the
consistency of a given assignment of values to a set of nodes
in the circuit. Determining value assignments necessary for
the consistency of a given set of value assignments is often
referred to asperforming implications.

Consider the gate-level circuit of Fig. 1. Assume that the
value assignments have been made in the
circuit. By considering the truth table of an AND-gate, we
imply . The variable is an input variable of , and by
another implication, we obtain . Variables and are
input variables of , and we perform the implications
and . In [22], this type of implication has been referred
to as direct implication.

As defined in [22], direct implications are identified by eval-
uating the value assignments at each gate and by propagating
the signal values according to the connectivity in the circuit.
An implication which cannot be determined in this simple
way has been calledindirect.

While the performance of direct implications is a straight-
forward procedure, it is more difficult to perform implications
which are not direct. Reconsider the circuit in Fig. 1 and
assume a value assignment of . A closer study reveals
that implies [35]. The implication
is not direct, and more sophisticated techniques are required
to derive suchindirect implications. Recursive learning as
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presented in [22] represents a technique which allows us to
deriveall direct and indirect implications for a given situation
of value assignments.

Indirect implications play an important role in our strategy
for circuit optimization. As will be shown,indirect implica-
tions identify promisingdivisors for transforming the circuit.
For a more detailed description on how the reasoning in recur-
sive learning can be used to identify circuit transformations,
see also [36].

III. M ANIPULATING COMBINATIONAL NETWORKS BY ATPG

Assume we are given a combinational circuit with
primary inputs and primary outputs and containing only
the primitive gates AND , OR , NOT . The AND-
and OR-gates can only have two inputs. These restrictions
are made in order to simplify the theoretical analysis of our
method. In the following, such circuits will be referred to
as combinational networks. (Of course, a reasonable imple-
mentation of our approach can also handle multi-input gates
including NAND, NOR, and possibly XOR.) Furthermore,
signals in the circuit can have constant values of ‘0’ or ‘1.’
All gates in the circuit have unique labels, and their output
signals realize Boolean functions with

, where the variables correspond to
the primary input signals of the circuit . Following the
usual representation of a combinational circuit as a directed
acyclic graph (DAG), we say, as in [8], that a signal
lies in the transitive fanout of if and only if there exists
a directed path from to in the image of as DAG.
Avoiding formalism, depending on the context, we will refer
to the primary input signals and the output signals of
the gates in circuit as “signals,” “functions,” or “nodes.”
Furthermore, we assume that there are noexternaldon’t cares;
the function of the combinational network
with is completely specified. An extension to our
method using external don’t cares is possible but will not be
further considered in this work.

Two combinational networks, and , are calledequiva-
lent, denoted , if they implement the same function

with . They are called
structurally identical or simply identical if there exists a
one-to-one mapping between and , such that for every
node in there is a in and vice versa, where
and implement the same function. We denote identical
combinational networks by .

A basic technique to describe many manipulations of
switching functions is the well-known Shannon expansion.
Let be a Boolean function of variables . The
Shannon expansion for with respect to is given by

(1)

Shannon’s expansion can be understood as a special case of
an orthonormal expansion [6]

where the functions represent an or-
thonormal basis, i.e.,

i) ;

ii)

The functions are called
the (generalized) cofactorswith respect to the functions .
Shannon’s expansion is the special case of the above expansion
where

and

and is some variable of . Next, we consider another
special case of the above orthonormal expansion where, more
generally than in Shannon’s expansion, we choose

and

where is some arbitrary Boolean function
. This means we obtain an expansion given

by the following equation:

short notation:
(2)

The terms and denote the cofactors
of this expansion. In the special case of Shannon’s expansion,
the cofactors are chosen by restricting the original function
with respect to a particular variable, as in (1). We obtain the
cofactor for with respect to a variable by setting in
the expression for, similarly, the cofactor for results when
setting . Note that there is no such simple rule in the
more general case of (2).

Let the cofactors be denoted , with .
Further, let denote an incompletely specified
function . The cofactors in (2)
must be chosen such that the following equation holds:

if
X (don’t care) otherwise.

(3)
It is easy to see why (3) is true. Assume that the truth table
of is divided into two parts such that is false for all rows
in the first part and true for all rows in the second part. If
we first consider the part of the truth table offor which
is true, we can set to the don’t care value for all rows in
which is false. This means that the cofactor function must
only have the same value asin those rows where is not
don’t care. Therefore, any valid cofactor for the expansion of
(2) covers(denoted ‘ ’) the incompletely specified function

as given by (3). This first part of the function is
described by the expression . In the second
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part, we are looking at those rows of the truth table for which
is false and obtain .
Equation (2) is the basis of our approach to transforming a

combinational network. In order to relate our approach to the
Boolean/algebraic techniques of [8], we can refer to function

asdivisor of . Similarly, can be referred
to asquotient, and represents theremainder
of the division. Further, note that the combined don’t care
sets of the two cofactors in (3) are identical to the don’t care
set passed to a minimization algorithm for Boolean division,
described in [8]. The main issue in our approach, as well as
in [8], is to find appropriate (divisor) functions such
that the internally created don’t cares as given by (3) provide
“degrees of freedom” in the combinational network which can
be exploited to minimize its area.

Obviously, the result of such an orthonormal expansion
(or Boolean division) depends on how the don’t cares are
used in order to minimize the circuit. (Boolean division is
not unique.) In [8], the don’t cares are explicitly passed
to an optimization run by ESPRESSO. The approach to
be described here, proceeds in a different way and uses
a test generatorto determine the cofactors in the above
expansion. As already observed by Brand in [4], circuitry
tends to have an increased number of untestable single stuck-
at faults if it is not properly optimized with respect to a
given don’t care set. This suggests that the don’t cares created
by the expansion of (2) can also cause untestable stuck-at
faults which can be removed by the standard procedure of
redundancy elimination. In fact, redundancy elimination is a
simple way to minimize the circuit with respect to don’t care
conditions. Note that redundancy elimination does not require
any explicit knowledge about the don’t care sets. Throughout
this paper, transformations are examined that createinternal
don’t cares. However, these don’t care conditions are not
explicitly calculated or represented. They are only considered
in our theoretical analysis to illuminate where the redundant
faults to be eliminated come from.

Example 3.1:To illustrate how don’t cares as given by (3)
lead to untestable stuck-at faults, consider Shannon’s expan-
sion as an example, i.e., take the special case where the divisor

is some variable . Note that the original function is a
possible cover for both and so that
according to (2) we can form the expression .
In Fig. 2(b), this is implemented as combinational circuit
for the example, and . Note that
the choice of the original function as a (trivial) cofactor
ignores the don’t care conditions as given by (3). The fact
that the cofactors are not optimized with respect to these
don’t cares leads to untestable stuck-at faults as indicated.
(The cofactors are shaded grey). It is determined byATPG
that , stuck-at-one, and , stuck-at-zero, in the respective
cofactor are untestable and can be removed by settingto a
constant one or zero, respectively. Fig. 2(c) shows the circuit
after redundancy removal. Redundancy removal in this case
obviously corresponds to setting to one or zero in the
respective cofactors of (1).

By viewing redundancy elimination as a method to set
signals in cofactors to constant values, we have just described

(a)

(b)

(c)

Fig. 2. Shannon’s expansion by ATPG.

an ATPG-based method to perform a Shannon expansion.
Clearly, it is not sensible to use a test generator in order
to prove that in the Shannon expansion of (1) can be
set to constant values. However, thisATPG interpretation of
Shannon’s expansion is quite useful in the more general case
of (2), i.e., when we expand in terms of some arbitrary function

. In the general case, it is a priorinot known if and what
signals in the cofactors can be set to constant values. This,
however, can be determined by means of a test generator.

Let be an arbitrary node in a combinational networkand
be some Boolean function represented as a combinational

network. The variables of may or may not be nodes of
the combinational network . A new combinational network

is constructed as follows. We duplicate all nodes in the
transitive fanin of so that there are two implementations of
node . This has been illustrated in Fig. 2(a) and 2(b). One
version is ANDed with , the other version is ANDed with

, and the outputs of the AND gates are combined by an OR
gate whose output replaces the nodein the original network.
In the following, this construction will be represented by the
equation .

Letting and be Boolean functions represented as a
combinational network, we propose to expand functionin
terms of function by the following method:

1) transform network:

2) redundancy elimination with an appropriate fault list.
(4)

This expansion can also be understood as a special ATPG-
basedtransduction[27] as it consists of a transformation and
a reduction. In the following, we use the terms expansion and
transduction synonymously. Since this ATPG-based transduc-
tion is one out of many possibilities to perform a Boolean
division or orthonormal expansion in a combinational network,
it is important to investigate what network transformations are
theoretically possible using it. In the following theorem, we
prove that the construction of (4) and redundancy elimination
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are sufficient for performing arbitrary Boolean transformations
in a network.

Theorem 3.1:Let be a node of a combinational network
. The gates in the combinational network can have no

more than two inputs. Further, let be a divisor which is
represented as a combinational network and realizes a Boolean
function of no more than twovariables which may or may not
be nodes in such that

1) The transformation of node into given by

followed by
2) Redundancy removal (with an appropriate fault list)

generates a combinational network .

For an arbitrary pair of equivalent combinational networks
and there exists a sequence of combinational networks

such that and .
Proof: Switching algebra is isomorphic to two-valued

Boolean algebra. A Boolean algebra can be defined by Hunt-
ington’s axioms. First, we show that all operations (transfor-
mations) defined by the axioms can equally be performed
by the above manipulations in a combinational network.
For each axiom, it has to be shown that the corresponding
transformation can be performed in both directions.

1) Idempotent laws:
for :

Equation (4) redundancy
elimination: redundancy elimination:

Equation (4) redundancy
elimination: redundancy elimination:

for : analogous
2) Commutative laws:
fulfilled by construction (definition) of primitive gates AND,
OR.
3) Associative laws:

for :

Equation (4)
redundancy elimination: redundancy
elimination: (because of commutative laws) ;
in opposite direction analogous
for : analogous.
4) Absorption:
for:

Equation (4)
redundancy elimination: redundancy
elimination:

Equation (4) redundancy
elimination
for: analogous

5) Distributive laws:

for:

Equation (4)
redundancy elimination: redundancy
elimination:

Equation (4)
redundancy elimination: redundancy
elimination:
for: analogous
6) Universal bounds:
for :

Equation (4) redundancy
elimination:

Equation (4) redundancy elimination
for stuck-at-one fault at in second summand:

redundancy elimination for stuck-at-one at signal with
constant one:
7) Unary operation:
for:

Equation (4) redundancy
elimination: redundancy elimination: 1

Equation (4) redundancy
elimination:

In order to complete the proof, it must be shown that the
above expansion also allows arbitrary sharing of logic. This
follows easily from the following construction. Let be the
original network and be the target network. Further, let

denote a network that has tree structure and results from
if all sharing of logic is removed by duplication. Similarly,

let denote the tree version of the target network. Consider
the following construction. First we remove all sharing of logic
between the different output cones of the original network
so that we obtain . It is easy to derive by the above
expansion. Let be some internal fanout branch and assume
its stem is the output of an AND gate with input signals
and . By choosing a divisor and by performing the
above expansion with an appropriate fault list, the AND gate
is duplicated, and the fanout point is moved to the inputs of the
AND gate. For other gate types, the procedure is analogous.
This process is repeated until no more internal fanout points
exist and has been obtained. After all sharing of logic has
been removed, each output cone is isomorphic to a Boolean
expression that can be manipulated arbitrarily as shown using
the above axioms. Therefore, it is also possible to obtain the
network by the above expansion. The target network

results if the duplicated logic is removed. This can be
accomplished if equivalent nodes are substituted. If node
is to be substituted by node, this can be accomplished by
selecting and performing the above expansion. This
process can be repeated for well-selected nodes in until
network is reached.
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Fig. 3. Indirect implication and optimization.

Suppose is the given combinational network and is
the combinational network which is optimal with respect to
the given cost function. Theorem 3.1 states that there always
exists a sequence of the specified expansion operations such
that the optimal combinational network is obtained. However,
it does not say which divisors shall be used when applying
(4). As stated in the theorem, if the network has gates with no
more than two inputs, it is sufficient to only consider divisors
created as function of two nodes in the network. This reduces
the number of divisors that (theoretically) have to be examined.
Of course, this restriction does not imply that more complex
divisors are of no use in the presented expansion scheme. If
more complex divisors are used, the network is transformed in
bigger steps. Theorem 3.1 does not put any restriction on the
choice of divisors to transform the network. Further degrees of
freedom for the expansions lie within redundancy elimination.
The result of redundancy elimination depends on what faults
are targeted and in which order they are processed.

Theorem 3.1 represents the theoretical basis of ageneral
ATPG-basedframework to logic optimization. As mentioned,
redundancy elimination and the transformation of (4)per se
do not represent an optimization technique. However, they
provide the basic tool kit to modify a combinational network.
In order to obtain good optimization results, efficient heuristics
have to be developed to decide what divisors to choose and
how to set up the fault list for redundancy elimination. This
will be described in the following.

IV. I DENTIFYING DIVISORS BY IMPLICATIONS

Our method of identifying divisors has been motivated by
an observation first mentioned in [30].Indirect implications
indicate suboptimality in the circuit. This is illustrated in
Fig. 3.

In the left circuit of Fig. 3, we consider as the initial
situation of value assignments for which we canindirectly
imply . This is can be accomplished by means of
recursive learning. Note that the existence of the indirect
implication is due to the fact that the
circuit is not properly optimized. In the optimized right circuit
which is functionally equivalent to the left circuit, we note
that the implication is direct. One may verify
that all examples of indirect implications shown in [22] or
[35] are also due to poorly optimized circuitry. Apparently,
indirect implications are a key to identifying and optimizing
suboptimal circuitry.

Before developing an optimization strategy based on dis-
tinguishing between direct and indirect implications, we first

study the role of implications in general for multilevel min-
imization.

Consider again the example of Fig. 3. For the above ex-
pansion, the circuit transformation of (4) requires that all
combinational circuitry in the transitive fanin ofis duplicated
before redundancy elimination is applied. This seems imprac-
tical and in the following, we, therefore, consider special cases
of the expansion where only one cofactor has to be considered.
These special cases are obtained if only such divisor functions

are considered which follow from by implication. For the
following lemmas, let and be nodes of the combinational
network such that is not in the transitive fanout of. (This
restriction ensures that the circuit remains combinational after
the transformation).

Lemma 4.1:Consider the transformation .
Then if and only if the implication
is true.

Proof:

“ ”:

in Eq.
(2) can be set to ‘1’ and we obtain:

“ ”:

(Eq. *)

for it follows that , for the function
assumes the same values as(by definition), hence

the implication must be true and by
contraposition the implication must also
be true if Eq. * can be fulfilled.

Lemma 4.2:Consider the transformation .
Then if and only if the implication
is true.

Lemma 4.3:Consider the transformation .
Then if and only if the implication
is true.

Lemma 4.4:Consider the transformation .
Then if and only if the implication
is true.
The lemmas state that implications determine exactly those
functions with respect to which function has only one
cofactor. In other words, in a combinational network, the
expansion of Theorem 3.1 can be simplified without any
circuit duplication if the specified implications are present. It
is interesting to note that this does not sacrifice the generality
of the approach.

Theorem 4.1:Let be a node of a combinational network
. The gates in the combinational network can have no

more than two inputs. Further, let be a divisor which is
represented as combinational network and realizes a Boolean
function of no more than two variables which may or may not
be nodes in such that
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1) The transformation of node into given by

for
for
for
for

followed by
2) Redundancy removal (with appropriate fault list) gen-

erates a combinational network . For an arbi-
trary pair of equivalent combinational networks and

, there exists a sequence of combinational networks
such that and .

Proof: Follows from the proof of Theorem 3.1, by noting
that all functions and divisors used satisfy one of the
implications specified above.

Note that Lemmas 4.1–4.4 only cover those cases where
a node in a combinational network can be replaced by
some equivalent function . A function at node can also
be replaced by some nonequivalent functionif this does not
change the function of the combinational
network as a whole. Such functions are calledpermissible
functions [27]. By considering permissible functions rather
than only equivalent functions as candidates for substitution
at each node, we exploit additional degrees of freedom as
given by observability don’t cares[8]. Permissible functions
can also be obtained by recursive learning:

Definition 4.1: For an arbitrary node in a combinational
network , assume the single fault stuck-at- .
If is a value assignment at a nodewhich
is necessaryto detect the fault at at least one primary output
of , then follows from by “ -implication”
and is denoted .

The conventional implications are a special case of such-
implications. Replacing the implications in Lemmas 4.1–4.4
by -implications, we obtain the following generalization.

Theorem 4.2:Let and be arbitrary nodes in a combi-
national network where is not in the transitive fanout of

and both stuck-at faults at nodeare testable.
The function with is a
permissible functionat node if and only if the -implication

is true.
Proof: “ ”:

If is true, then is true. We
partition the set of possible combinations of input assignments
(rows in the truth table) into two disjoint subsets, where each
fulfills one of the following conditions:

Case 1: ( and ) or :
For these inputs, is true and Lemma 4.1
applies, for these inputs and always assume the same
value.
Case 2: and :
For these inputs, can have a different value than. With

the function can only assume the faulty value ‘1.’
However, this cannot lead to a wrong value at the primary
outputs of because the fault stuck-at-one at nodecannot

be tested since and .

“ ”: The transformation is permissible if one of the fol-
lowing cases is fulfilled:

Case 1: and are equivalent
Lemma 4.1 applies, if is true then

is true.
Case 2: and and stuck-at-zero is untestable
under this condition

, i.e., this case cannot occur.
Case 3: and and stuck-at-one is untestable
under this condition.
With and can only occur if

is true. The term in the above transformation
means that this node can be implemented as an arbitrary
function assuming the same values asfor . As a
special case, assume that . In this special case, if

then is sufficient to produce a “faulty” signal
‘1’ at node . Now consider the set of all test vectors for
stuck-at-one in the original circuit that produce . Every
such test will result in a faulty response of the transformed
circuit. Therefore, the transformation is only allowed if such
a test does not exist. However, if a test forstuck-at-one
exists in general, it is required that there is none which
produces . This means that is necessary for

fault detection and must be true. If this
condition is necessary for the special case that , it is
also necessary for the general statement sinceis one of
the possible choices to implement.

Theorem 4.3:Analogous to Lemma 4.2.
Theorem 4.4:Analogous to Lemma 4.3.
Theorem 4.5:Analogous to Lemma 4.4.
Theorems 4.2–4.5 represent the basis for the circuit trans-

formations in our optimization method. As the transformations
given in Theorems 4.2–4.5 represent special simplified cases
of (2), they also provide simplified cases of (4). As will be
illustrated in Section V, the constructions based on (4) and the
above theorems provide good candidates for the expansion of
Theorem 3.1.

Recursive learning can be used to determine all value
assignments necessary to detect a single stuck-at fault,
i.e., it is a technique to perform all -implications. This
is accomplished by two routinesmake_all_implications(),
and fault_propagation_learning()as given in [22] if they
are performed for the five-valued logic alphabet

of Roth [33]. Therefore, by recursive learning
it is possible to derive all cases where Theorems 4.2–4.5 apply.

The number of implications and -implications can be
very large so that it is impossible to examine all trans-
formations. At this point, however, we come back to the
observation discussed earlier. Implications which can only
be derived by “great effort” represent the promising candi-
dates for the transformations as given in Theorems 4.2–4.5.
These indirect implications are only a small fraction of all
possible implications. In the following, we refer to a-

implication as indirect
if it can neither be derived by direct implication nor by
unique sensitization[17] at the dominators [21] of . In
other words, all those necessary assignments obtained by the
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learning case of routinesfault_propagation-_learning()and
make_all_implications()are implied indirectly and provide
the set of promising candidates for the circuit transforma-
tions.

As it turns out, the concept of relating the complexity of
the implication problem to minimality of the combinational
network permits a new and promising approach to guiding
logic minimization techniques.

V. OPTIMIZATION PROCEDURE

The described concepts have been implemented as part of
the HANNover Implication Tool Based on Learning (HAN-
NIBAL) tool system. Table I summarizes the general program
flow for circuit optimization. HANNIBAL performs logic
optimization by applying the described concepts stepwise to
all nodes in the combinational network. The optimization
procedure moves from node to node in the combinational
network. Experiments showed that the optimization results
are only moderately sensitive to the order in which the
different circuit nodes are processed. However, best results
were generally obtained by processing the nodes according
to their topological level moving from the primary inputs
toward the primary outputs. For a selected node, recursive
learning is used to derive promising divisor functions. The
candidates found promising are stored in lists and tried in
sequence. When identifying implications, it is important that
we run recursive learning only for one node at a time and
then transform the given node by the implications obtained.
Therefore, after modifying the circuit, we have to update the
data only for the current node.

For each candidate implication, the circuit is transformed
according to the rules given in Section IV. After each trans-
formation, redundancy elimination is employed. To make this
process as fast as possible, the deterministic test set is always
maintained for the most recent version of the circuit. After
each circuit transformation, this test set is simulated to quickly
discard many faults from further consideration so that a only
few faults have to be targeted explicitly by deterministic
ATPG. After redundancy elimination has been completed, it
is checked whether the circuit became smaller or not. If it
became smaller, the current circuit is maintained, otherwise the
previous version is recovered. This is continued for all nodes
in the network until no more improvements can be found. In
HANNIBAL, several runs are made through the circuit varying
the recursion depth and the number of candidate implicants
being tried at each node in different runs.

For each step of redundancy removal, we determine the
fault list as follows:

1) include in the fault list both stuck-at faults at all signals
that were “touched” by recursive learning when deriving
the current divisor;

2) exclude from the fault list, all faults in the circuitry
added for the current transformation.

Limiting the fault list to signals being processed by the event-
driven recursive learning routine proved to be a very good
heuristic to speed up fault simulation and ATPG (up to a factor
of 4) without significantly sacrificing optimization quality.

TABLE I
PROGRAM FLOW OF HANNIBAL IN OPTIMIZATION MODE

Fig. 4. Combinational networkC with indirect implication.

Example 5.1—“Good” Boolean Division:Consider Fig. 4.
By recursive learning, it is possible to identify the indirect
implication . (Please refer to [22] for
details of recursive learning.) The fact that the implication

is indirect means that it is promising
to attempt a Boolean division at node using the divisor

. This could be performed by any traditional method of
Boolean division. Instead, we use theATPG-based expansion
introduced in Section III.

Applying Theorem 4.4, we obtain the combinational net-
work as shown in Fig. 5. Actually, in this case we could
also apply Lemma 4.3 since is obtained
without using any requirements for fault propagation. Note that
Theorem 4.4 states that is a permissible function
for . (In this case, and are equivalent.) By transformation
as shown in Fig. 5, we introduce the node . Since

is used as a cover for , it is likely that the internal don’t
cares result in untestable single stuck-at faults. This is used in
the next step (reduction).
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Fig. 5. Combinational network after transformationy0
= f �y using internal

node f as divisor.

Fig. 6. Combinational network after reduction by redundancy elimination.

By ATPG, the untestable faults indicated in Fig. 5 can be
identified. Performing redundancy removal (e.g., [1]) results
in the minimized combinational network as shown in Fig. 6.
Note that we have to exclude the stuck-at faults in the
added circuitry in the shaded area of Fig. 5. If we performed
redundancy elimination on line in Fig. 5, we would return
to the original network.

In the example, node in Fig. 4 is implemented by
. By indirect implication, we identified the

Boolean divisor as “promising” and performed
the (nonunique) division , resulting in

in Fig. 6. Note that this is aBoolean—as
opposed toalgebraic—division [8]. As the example shows,
indirect implications help to identify good divisors that justify
the effort to attempt a Boolean division.

Example 5.2–“Common Kernel Extraction”:Consider the
circuitry of Fig. 7. The circuit implements two Boolean func-
tions: and , each of which
cannot be optimized any further. Note, however, that the two
functions have a common kernel, , which can be extracted
and shared so that a smaller circuit is obtained

with

with

It is interesting to examine how the suboptimality of the
original circuit is reflected by the indirectness of implications.

Consider Fig. 7. By recursive learning, it is possible to
identify the -implication . Remember that
this means that is necessary for detection of, stuck-at-
one. As can be noted, the necessary assignment is not
“obvious.” It can neither be derived by direct implications nor
by sensitization at the dominators of. The reader may verify

Fig. 7. Extraction of common kernel,b+ d, by D-implication.

Fig. 8. Replacingd by permissible functiond0 = b + d.

Fig. 9. Optimized circuit with logic sharing.

that can be obtained by the learning case of recursive
learning usingfault_propagation_learning()[22].

Now the transduction is performed in the usual way. Ac-
cording to Theorem 4.3, the circuit can be modified as shown
in Fig. 8, and redundancy elimination yields the optimized
circuit in Fig. 9.

Note that our method can perform transformations which
cannot be performed by the method of Entrena and Cheng
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[16] and the method of [10]. To the best of our understanding,
in the above example, the minimization cannot be obtained
by only adding and removing connections as in [10] and
[16]. This is because the methods of [10], [16] require the
existence of gates of a certain type at the location where
the added connection (gate) is anchored. Based on the ex-
pansion described in Section III, our approach uses a wider
spectrum of circuit transformation. This could possibly impose
higher computational costs, however, our results show that the
heuristic strategy of only using indirect implications for circuit
transformation can effectively limit the search space.

As presented in [22], recursive learning consists
of two techniques, make_all_implications() and
fault_propagation_learning(). It is interesting to note
that implications obtained bymake_all_implications()result
in transductions that, in conventional terms, often lead
to transformations that are most adequately described
by Boolean division or Boolean resubstitution. This was
illustrated in Example 5.1. If the implication is obtained
by fault_propagation_learning()as in Example 5.2, the
expansion often performs what is commonly referred to as
common kernel extraction.

Limitations: 1) The examples also show the limitation of
our method. By implication analysis we only consider divisors
that are already present as nodes in the network. Therefore, we
do not completely utilize the generality of our basic approach
as given by Theorem 4.1. Extensions are under way to derive
implicants and D-implicants [36] for a given node in the
network which are not explicitly present as nodes in the
network. AND/OR graphs, using which such implications can
be derived, have been introduced in [36].

2) Our techniques operate on a gate-level netlist descrip-
tion. As mentioned, this is of advantage if specific technical
information shall be considered in the optimization process.
However, it has not yet been considered how the presented
techniques can handle circuits withcomplex gatesin an
efficient way. Our tool, HANNIBAL, at this point, is limited to
handling only the basic gate types, AND, OR, NAND, NOR,
INV, XOR. Future work will therefore extend our techniques
to handling complex gates so that arbitrary libraries can be
processed.

VI. A PPLICATION TO LOGIC VERIFICATION

The described minimization approach can also be applied
to logic verification. Formal logic verification of integrated
circuits has become of great interest for many industrial
designers and manufacturers of highly integrated circuits. Es-
pecially, in safety-critical applications, it is of great importance
to verify that the implemented logic circuit is equivalent
to its specification. When verifying digital circuits, an im-
portant subproblem is to check whether two combinational
circuits are functionally equivalent. Traditionally, this problem
is approached by generating a canonical (unique) form
of the circuits to be verified. The circuits are equivalent if
their canonical forms are isomorphic. Unfortunately, canonical
forms of Boolean functions may grow extremely large even
for relatively small designs. The most compact canonical forms

known to date areReduced Ordered Binary Decision Diagrams
(ROBDD’s) [9] and related graph representations of Boolean
functions. Therefore, binary decision diagrams (BDD’s) have
become very popular for solving logic verification problems.
Some classes of circuits, however, are not amenable to a BDD
analysis, since the size of the BDD’s grows exponentially with
the size of the circuit.

More recently, to overcome the limitations of BDD-based
approaches, a different approach to logic verification has been
proposed in [5], [23] which exploits the structural “similarity”
between the designs. Instead of producing canonical forms
these techniques extract the similarity between designs by
ATPG and implications between signals in the two circuits.
These techniques have only little memory requirements and
proved successful in verifying circuits that cannot be verified
by BDD-based approaches. Further developments based on
these techniques have been proposed in [15], [20], [29],
and [37]. Note, however, that such techniques may require
excessive amounts of central processing unit (CPU)-time if
the circuits have little structural similarity. Therefore, it is an
important problem to study how to exploit the “similarity”
between designs as efficiently as possible. In this section, we
propose to use the presented optimization procedure for this
purpose. There is a wealth of powerful synthesis methods,
and it should be noted that many of these methods can also
be useful in logic verification.

A. Logic Verification by Optimization

Logic verification as proposed by [5], [23] relies on com-
bining the circuits to be verified as shown in Fig. 10. This
construction has been calledmiter in [5] and represents a
circuit, which maps the verification problem to solving the
satisfiability problem for the output line. In [5] and [23], a
test generator is used for this purpose. Proving whether the
output of the miter is satisfiable or not is generally a very
complex problem. To overcome this difficulty, the approaches
in [5], [23] make use of the fact that structural similarity
between the two designs can help to break the problem down.
In [23], implications are identified between different signals
of the subcircuits, and these implications are stored at the
respective nodes. Similarly, the complexity of the verification
problem can be reduced by identifying signals in one circuit
which can be used to substitute signals in the other circuit [5].

Making physical connections between the circuits or stor-
ing of implications have a similar effect. They simplify the
reasoning for the satisfiability solver by introducing “short
cuts” between the circuits so that the satisfiability solver does
not necessarily need to fully exhaust both circuits. This has
been shown in [5] and [23] if the satisfiability solver is a test
generator and in [20] and [29] if the satisfiability solver is
based on BDD’s.

Note that this type of approach works well if the circuits
for comparison have a certain degree of similarity but it may
fail otherwise. Therefore, it is important to investigate what
techniques can capture a wide spectrum of similarity in an
efficient way. The techniques of [5] and [23] rely on relatively
strict requirements. The approach of [5] requires that lines
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Fig. 10. Exploiting structural similarity in a miter.

in one circuit can be replaced by lines in the other circuit
exploiting observability don’t cares. In [20] or [23], it is
required that there exist logic implications, e.g., in
circuit implies in circuit . This can be a looser
requirement than demanding a substitution, but on the other
hand, [20] and [23] do not exploit observability don’t cares.

Taking all of this into account suggests that the verification
problem should be simplified effectively by performing logical
transformations in the miter so that logic common to the
two designs can be extracted and shared. If the circuits
are equivalent, then one circuit must eventually be merged
into the other circuit. As a special case, the substitutions of
[5] perform such an operation. More generally, any known
synthesis technique can be used to accomplish this task. The
general goal is tooptimizethe miter. If the miter is reduced to
a constant zero, the two circuits are proved equivalent. If this
is not (or only partially) possible, then it must be attempted to
generate a distinguishing vector using ATPG.

If the circuits have a fair amount of structuralsimilarity,
this means that the miter can be optimized by a sequence
of fairly local circuit transformations. If the circuits become
less similar, then deriving these transformations becomes more
and more complex, and it becomes important to fully exploit
the range and power of modern synthesis techniques. The
advantage of formulating verification as amiter optimization
problem is that the power of modern synthesis techniques
becomes available to the difficult problem of logic verification.

As experimentally confirmed in Section VII, circuit trans-
formations derived by indirect implications cover a large
spectrum of the circuit manipulations performed in stan-
dard synthesis procedures like [8]. Further, since implications
permit an easy and effective guidance of the optimization
process, we base our verification procedure on the optimization
procedure of Section V.

B. Heuristic Guidance in a Miter

Optimization in a miter has special characteristics which
are discussed in this section with respect to the optimization
procedure of Section V.

Selecting Implications:Using our approach, it must be at-
tempted to identify implications that are valid between two
nodes that belong todifferent subcircuits of the miter. If the
corresponding transformations are performed, this introduces
a sharing of logic between the circuits. Enforcing a sharing
of logic between the circuits has two beneficial effects. It
generally reduces the size of the miter, and it tends to increase
the degree of similarity in the remaining, unshared parts of
the circuits if the original circuits are equivalent. If the two
networks are forced to share the same subfunctions, this leaves
less “freedom” for the implementation of the remaining parts.
This is illustrated in the following example.

Example 6.1: Fig. 11 shows two circuit examples that shall
be verified to be equivalent. The circuits are combined to
form a miter. For reasons of clarity, we depict the circuits
without the extra logic to form the miter. Consider signal

in the upper circuit and signal in the lower circuit. By
recursive learning, it is possible to identify the-implication

. The reader may verify that any test for,
stuck-at-one produces the value assignment . According
to Section VI, we can perform the circuit transformation as
shown in Fig. 12.

In the transformed circuit, untestable faults can be identified
as indicated in Fig. 12. Removing these redundancies leads to
the circuit in Fig. 13. Note that this transformation has not
only introduced a sharing of logic between the two circuits and
reduced the size of the miter, it has also increased the degree
of structural similarity in the remaining unshared portions of
the circuit. As a matter of fact, in this example, the remaining
circuit portions are now structurally identical and can be shared
by a sequence of very simple circuit transformations.

Substitution: Often, a lot of CPU-time can be saved by
restricting the circuit transformations to node substitutions.
Notice in Example 6.1 that node in the upper circuit is
substituted by node in the lower circuit after removing
the redundancy , stuck-at-zero. Often it may be sufficient to
restrict all transformations to only finding such substitutions
[5]. In this case, if a transformation has been performed for an
implication between two nodesand as given in Theorems
4.2–4.5, redundancy elimination needs to be performed only
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Fig. 11. Circuits to be verified.

for the appropriate fault at signal. This is faster than
considering all faults in the circuit, but on the other hand,
it overlooks miter transformations which cannot be obtained
by a simple substitution. Therefore, we pass through the circuit
several times. In the early passes of our verification procedure,
we restrict the redundancy check to the node to be substituted.
In the later passes we perform redundancy elimination in the
whole circuit.

ATPG in a Miter: Finally, another important aspect should
be considered when running the optimization approach of
Section V in a miter. The described method heavily relies
on evaluating circuit transformations by ATPG. However, for
many target faults in the circuits for comparison, the ATPG
problem becomes severely more difficult if the circuits are
connected to form a miter. In fact, a large number of faults
become redundant, but proving these redundancies practically
has the same complexity as the verification problem itself.
The reason for this is the global reconvergence created by the
miter. Therefore, the ATPG tool may waste a lot of time on
numerous target faults which eventually have to be aborted.

The effect of the global miter reconvergence on the ATPG
process can be eliminated by the following trick. When
performing ATPG or fault simulation, faults are declared
“detected” as soon as the fault signal has reached the outputs
of the subcircuits, i.e., if it has reached the inputs of the

Fig. 12. Circuit transformation forD-implication a = 0
D
�! z = 0.

XOR-tree that forms signal . In Fig. 10, these signals are
labeled to . Alternatively, the XOR-portion of the miter
could be removed during the ATPG-procedure. Note that this
is extremely important for an efficient ATPG-process.

VII. EXPERIMENTAL RESULTS

The described methods have been implemented by making
extensions to the HANNIBAL tool system. For efficient fault
simulation, we integrated the public domain fault simulator
FSIM [24] into HANNIBAL. HANNIBAL contains the re-
cursive learning technique of [22] and has options to apply
this technique to test generation [22], logic verification [23],
and logic optimization. Section VII-A shows the results for
logic optimization. The results for logic verification using
implications and BDD’s have been shown in [29]. In Section
VII-B, we show results for the verification part of HANNIBAL
enhanced by the optimization approach presented in this paper.

A. Results for Logic Minimization

We compare HANNIBAL with other state-of the art op-
timization tools. For a fair comparison, it is very important
to take into account that several different ways of measuring
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Fig. 13. Miter subcircuits after redundancy elimination.

the area costs are currently common practice. HANNIBAL
and RAMBO [16] operate on a gate netlist description and
measure the area in terms of the number ofconnections. A
connection is an input to a gate with at least two inputs,
i.e., single-input gates (inverters, buffers) are not counted.
Technology-independent optimization tools like SIS measure
the area in terms of numbers of literals. A literal is a variable
or its complement used to describe the Boolean function at
a node in the Boolean network. In a gate netlist, the number
of literals can be obtained by counting the number of inputs
of the fanout-free zones(FFZ’s) in the network. For a fair
evaluation of our tool, we present our results in terms of both,
number of connections and number of literals. For RAMBO
and HANNIBAL, the number of literals (factored form) has
been obtained by reading the optimized circuits into SIS
and postprocessing them such that a technology-independent
factored form is obtained. For this purpose, we used a SIS
script obtained from [12] which performs some standard
network manipulations. To count connections for SIS, we map
the optimized circuit to a generic library which contains the
basic gates that are allowed in our netlist description.

Note that comparing connections or literals may slightly
bias the results. Since RAMBO and HANNIBAL optimize
in terms of connections whereas SIS uses literals, comparing
connections can bias the results in favor of HANNIBAL and

TABLE II
MINIMIZATION RESULTS FORSIS_1.2, RAMBO, AND HANNIBAL (SUN SPARC 5)

RAMBO. Comparing literals gives a certain advantage to
SIS. Therefore, for all circuits we always present both area
measures.

In all experiments, HANNIBAL passes through the circuit
four times performing expansions at every node where recur-
sive learning can identify indirect implications. The recursion
depth is ‘one’ for the first two passes and ‘two’ for the final two
passes. We also experimented with higher depth of recursion.
It turned out that recursion depth higher than ‘two’ did not
lead to improved optimization results because a transformation
that can be derived by high recursion depth can usually also
be obtained by a sequence of local transformations derived
by small recursion depth. (Anyway, for the larger designs a
recursion depth of ‘four’ and more is usually not affordable
in terms of CPU-time.)

Table II shows results for SIS1.2, RAMBO C and HAN-
NIBAL. SIS 1.2 is run usingscript.ruggedwhich includes
the powerful techniques of [31] and [34]. No preoptimization
is used to process the circuits in RAMBO and HANNIBAL.
As can be noted, for most benchmark circuits, HANNIBAL
produces the smallest circuits. This is quite remarkable be-
cause it shows that most circuit manipulations performed by
conventional technology-independent minimization techniques
are covered by the netlist transformations presented in this
paper. In particular, heuristic guidance by indirect implications
proved surprisingly powerful.

In the next experiment, it is examined how much optimiza-
tion is possible by HANNIBAL if the circuits are preprocessed
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TABLE III
RESULTS FORHANNIBAL AFTER PREPROCESSING WITHSIS (SUN SPARC 5)

by SIS. As shown in Table III, substantial area gains are
possible in many cases. For seven out of 25 circuits, the gain is
more than 20%. Also note that the CPU-times for HANNIBAL
are significantly shorter in many cases if the circuits are run
through a technology-independent minimization first, like in
the experiment of Table III.

Finally, we also compare our results with [10]. In [10]
the circuit is mapped to a library with only two-input gates,
and results are only shown after preprocessing with SIS.
Table IV shows the results for RAMBO (taken from [10]),
PERTURB/SIMPLIFY [10], and HANNIBAL if the area is
measured in terms of two-input gates. We take the subset of
the above benchmarks for which results are shown in [10],
and all circuits are preoptimized by SIS. As can be noted,
HANNIBAL obtains smaller or equal circuits than RAMBO
or PERTURB/SIMPLIFY for all circuits. Note that the results
of HANNIBAL and RAMBO could be somewhat improved
when compared with [10] if their cost function was changed
to optimize the number of two-input gates.

Further experiments confirmed the heuristic thatindirect
implications indicate promising divisors. We examined how
many indirect -implications existed in the circuits before and
after optimization. For the ISCAS85 circuits, Table V shows
the number of indirect -implications that have been identified
by recursive learning with depth ‘2’ for the original circuits as

TABLE IV
EXPERIMENTAL COMPARISON WITH [10]

TABLE V
INDIRECT D-IMPLICATIONS BEFORE AND AFTER OPTIMIZATION

well as for the optimized circuits. We note that HANNIBAL
reduces the number of indirect-implications drastically for
all circuits. It is interesting that this is also true for SIS in
most cases, which confirms that optimization in general is
related to reducing the number ofindirect implications in the
circuit. The results of Table V reflect that many (but not all)
“good” divisors for optimization can be obtained byindirect
implication. Also, note that Table V explains why the CPU-
times for HANNIBAL are generally shorter if HANNIBAL
is run after SIS. If SIS is used first, there are less indirect
implications and, hence, less expansions need to be performed.

B. Results for Logic Verification

We demonstrate the performance of our verification tech-
nique based on optimization by means of the public domain
multiplier c6288 which we verified against its optimized
version. The optimized version has been obtained by SIS1.2
[8] using script.rugged. The other circuits listed in Table VI
have been obtained from Mentor Graphics Autologic II Logic
Synthesis Team. The designs are highly datapath oriented,
contain multipliers and rotators and were created in Verilog,
synthesized by Autologic II to a commercial ASIC vendor
library. The designs were synthesized with different design
goals in mind (such as area or performance). The test cases
also contain (intentionally) nonequivalent designs.
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TABLE VI
LOGIC VERIFICATION WITH HANNIBAL (SPARC 5)

The results show that logic verification based on the op-
timization procedure performs efficiently and robustly for
these practical verification problems. The proposed technique
may be outperformed by techniques such as [5] and [23]
if the circuits have a high degree of similarity. On the
other hand, for circuits with less structural similarity, logic
verification by optimization provides a general framework for
a more robust verification approach. Our results show that
the optimization procedure of Section V can be tailored for
efficient miter optimization. In all examined cases the miter
could be minimized to a constant signal ‘0’ within short
CPU-times.

As described in Section VI, our verification approach uses
two phases. The first phase performs substitution only, and
the second phase considers more general transformations by
running redundancy elimination in the whole circuit. In all
cases, the first phase helped to significantly reduce the size of
the miter before starting the more CPU-time expensive phase
two. All circuit transformations have been derived by recursive
learning with recursion depth ‘2’.

VIII. C ONCLUSION

This work has introduced anATPG-based generalization
of Shannon’s expansion that provides an adequate theoretical
description for ATPG-based logic synthesis. Our research
was originally motivated by the observation that indirect
implications indicate suboptimal circuitry. We have presented
anATPG-based approach to logic optimization deriving circuit
transformations from implications. It has been shown that
implications can be used to determine for each node those
functions in the network with respect to which this node
has only one cofactor. Furthermore, it has been shown that

the complexity of performing implications can be related to
potential area reduction by Boolean division. This introduces
new heuristic guidance and a different view on logic optimiza-
tion problems. Our results clearly prove the great potential
of our method. They also show that our notion of “indirect”
implications is indeed most helpful to identify good Boolean
divisors.

As has been shown, netlist optimization by HANNIBAL
is competitive with technology independent minimization
techniques. Future work will, therefore, exploit the main
advantage of this approach. Optimization on the gate netlist
provides much better insight in the technical properties of
the design and, therefore, permits a better guidance when
trying to achieve specific optimization goals. It has already
been shown that the presented approach is very useful
when optimizing for random pattern testability [11] and
for low-power consumption [28].

Further, we formulated logic verification as an optimization
problem and demonstrated the usefulness of our optimiza-
tion approach for logic verification. Our verification method
successfully verified a number of industrial designs. Current
research examines extending the set of circuit transformations
using the concept of AND/OR graphs [36]. This is expected
to improve the capabilities of HANNIBAL for both logic
synthesis and formal verification.
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