
Logic Optimization by An Improved Sequential
Redundancy Addition and Removal Technique

Uwe Gläser* Kwang-Ting Cheng

The German National Research Center for
Computer Science (GMD)

System Design Technology Institute
Schloß Birlinghoven
D53757 St. Augustin

Department of Electrical and Computer
Engineering,

University of California,
Santa Barbara, CA 93106

Abstract
Logic optimization methods using Automatic Test Pattern
Generation (ATPG) techniques such asredundancy addition
and removalhave recently been proposed. In this paper we
generalize this approach for synchronous sequential circuits.
We proposed several new sequential transformations which
can be efficiently identified and used for optimizing large
designs. One of the new transformations involves adding
redundanciesacross time frames in a sequential circuit. We
also suggest a new transformation which involves adding
redundancies toblock initialization of other wires. We use
efficient sequential ATPG techniques to identify more
sequential redundancies for either addition or removal. We
have implemented a sequential logic optimization system
based upon this approach. We show experimental results to
demonstrate that this approach is both CPU-time efficient
and memory efficient and can optimize large sequential
designs significantly.

1. Introduction
Some ATPG-based logic optimization approaches have been
proposed recently ([ChEn93], [EnCh93], [ChSa94],
[KuMe94]). These approaches optimize networks through
iterative addition and removal of redundant connections.
Adding redundant wires to a network may cause one or many
existing irredundant wires and/or gates to become redundant.
If the amount of added redundancies is less than the amount
of created redundancies, the transformation of adding
followed by removing redundancies will result in a smaller
network. The basic idea of these approaches is introduced in
Figure 1.

The example circuit was taken from [ChEn93]. In this circuit

a redundant connection from O1 to g9 is added to the circuit.
The addition causes the irredundant connections g1->g4 and
g6->g7 to become redundant. Removing these created
redundancies results in a much smaller circuit. Identification
of such wires to be added has been formulated as a
redundancy identification problem for stuck-at faults
[EnCh93].

In [ChSa94] several new transformations for combinational
circuits based on redundancy addition and removal are
shown. They introduced a pertubation method to avoid the
solution being stuck at a local minimum. They also presented
severalmultiple wire addition techniques. In [KuMe94],
recursive learning [KuPr92] is used to derive good Boolean
divisors for Boolean optimization of combinational circuits.

This redundancy addition and removal technique can be
viewed as a generalization of redundancy removal and
boolean resubstitution. In this paper we apply this method for
optimizing sequential circuits. We generalize this technique
by introducing several new and useful transformations that
can be identified efficiently by ATPG-based techniques. Our
method allows boolean minimization for synchronous
sequential circuits with feedbacks. In addition to
transformations used in previous ATPG-based approaches,

O2

f

O1

c

b

d

e

c
d
a
b

g1

g2

g3

g4

g5

g6 g7 g8 g9x

x

Figure 1: Example for the basic approach

*: The work was done when the author was with University of
California at Santa Barbara.

we allow the addition of flip flops in order to create more
redundancies for better optimization. We also propose a new
technique to create desired redundancies by blocking the
justification of the wires or gates. We use state-of-the-art
sequential ATPG techniques as the base for sequential
redundancy identification (for either addition or removal).

For combinational circuits, there is no difference between
redundancy and untestability of wires. That is, if a wire is
redundant, the corresponding fault at the wire is untestable.
But for sequential circuits, there may exist wires which are
untestable but not redundant [Chen93]. The main reason for
this is that a wire in a sequential circuit may be partially
testable. That is, it is testable if the power-up state (initial
state) of the circuit is in a particular set of states and
untestable if the initial state is not one of those states. These
faults will be classified as untestable by an ATPG tool.
Addition of such an untestable and irredundant fault will
change the functionality of the circuit and could not be
allowed. Some issues on identification of sequential
redundant faults were discussed in [Chen93].

To determine whether a wire added to a circuit is redundant
and which wires become redundant after the addition of a
redundant connection is the key process of the technique.
Efficient techniques for answering these questions for
combinational circuits have been proposed in [EnCh93],
[ChSa94] and [KuMe94]. It is too computationally
expensive to run a complete test generation to determine
redundancy for a large sequential circuit. We use only
mandatory assignments to identify a redundancy. The set of
mandatory assignments is a subset of all necessary
assignments for detecting a fault. If the set of mandatory
assignments is inconsistent, the corresponding fault is
redundant. We compute the mandatory assignments by using
the implication and the unique sensitization functions of the
FAN-algorithm [FuSh83]. Since we use only mandatory
assignments for redundancy identification and it is possible
that a redundant fault could have a set of consistent
mandatory assignments, the circuit resulting from our
optimization approach is not necessarily 100% irredundant.

We use the well-known time frame model to model the
sequential circuits. In order to identify sequential
redundancies, it is necessary to compute mandatory
assignments across time frames in sequential circuits, i.e.
whenever a flipflop is reached, the computation of
mandatory assignment is continued in a corresponding later
or earlier time frame. Our implementation can handle a large
number of time frames and can therefore identify some
hard-to-identify sequential redundancies. In addition to
using mandatory assignments in sequential circuits, we also
use a data flow analysis to detect wires which are not
observable to further improve the efficiency as well as the
effectiveness of our sequential redundancy identification
process.

The rest of the paper is organized as follows. Section 2
presents the ideas of redundancy addition and removal
across time frames and redundancy addition for causing
inconsistency in justification for the target fault. In section 3
we discuss the algorithm and the implementation.
Experimental results are given in section 4 followed by
conclusions.

2. Adding sequential redundancies
In this section the method of adding and removing
redundancies is described in detail. There are basically two
ways to make an irredundant fault to become redundant and
thus removable:

• Adding redundant logic (wires and/or gates) to
block the propagation of the fault [EnCh93].

• Adding redundant logic to block the initialization of
the fault.

If a redundancy is added in order to block the propagation of
a fault, the wire is added to one of the dominators of the
target fault. Dominators of a fault are the gates that the fault
must be propagated through to reach a primary output for
detection. As stated in the introduction, this is the main idea
used in [EnCh93] and [ChSa94]. Since the ATPG process
depends on both propagatability and justifiability of the
fault, blocking the justification is a second possibility to
make a fault redundant. If blocking the justification of the
fault is desired a redundancy has to be added to the input
cone of the to-be-removed target wire. This method will be
illustrated in the next section.

For sequential circuits, redundancy addition and removal is
performed across time frames. The time frame model and a
method of adding redundant connections across time frames
is described in section 2.2.

2.1. Adding redundancy to block
justification

We have generalized the redundancy addition technique to
allow adding redundant wires to the transitive fanin of a
target fault. The addition will make justification of the target
fault impossible and thus make the target fault redundant and
removable. The idea is illustrated in the example in Figure 2.

In order to test the s-a-0 fault in Figure 2, signals a, b and d
have to be assigned to “1” value and c has to be assigned to
“0” value. As there is a mandatory assignment “1” at d, we
can use this value for blocking the initialization of the fault.
The candidate connection for additiond->e as shown in a
dashed line is in the transitive fanin of the target fault. The
addition will make it impossible to justify a “1” at wire e and
in the meantime propagate the fault effect to the output.
Therefore, this addition will make the target wire redundant.
It can be verified easily that the added wired->e in Figure 2
is redundant itself since the propagation of the

corresponding fault is prohibited. Therefore, we can add
the dashed wire without changing the circuit
functionality and in turn remove the target wire (e->f
stuck-at 0).

For sequential circuits, adding of such redundancies will
either (1) make the state required to test the target fault
unreachable or (2) invalidate the initialization sequence
for the target fault. For both cases, the target fault will
become sequentially redundant.

2.2. Adding redundancies across time
frames

We canadd flip-flops to create sequential redundancies,
if it results in a better design. To analyze a sequential
circuit, the time frame model (or called the iterative array
model) is commonly used. Consider the iterative array
model shown in Figure 3.

Suppose that we would like to find a set of candidate
connections that their addition would cause the target
fault (input of g2 stuck-at-1) to become redundant. To
detect this fault, the target wire must have a value 0 for
the fault activation and the side inputs of the dominators
(including g3) must be in their non-controlling values for
fault propagation. The implication of these initial
assignments is then performed. The implication will be
performed across time frames. After the implication is
completed, candidate connections to be added to make
the target fault redundant will be collected and examined
one at a time to check whether it is redundant.

a

b

c

d

x
s-a-0e

f

Figure 2: Blocking the initialization

Figure 3: The iterative array model

The candidate connection list includes the following
connections (with a proper polarity):

• from one of the signals that has an implied value
to a dominator of the target fault or

• from one of the signals that has an implied value
to a gate in the transitive fanin of the target fault
and its addition will block the initialization.

Current techniques [EnCh93] only allow the source and
destination of the added connection to be within the same
time frame. In addition to that, we provide a technique
for redundancy addition across time frames. In Figure 3,
the connection from g1 at time frame n-1 (with implied
value 0) to g3 in time frame n (dominator of the target
fault) could block the propagation path and thus make
the target fault redundant. In a real implementation, this
transformation will require the addition of a flip-flop.
Signal g1 has to be delayed by one cycle to block the
propagation path at g3 as shown in Figure 4. This
transformation is very powerful because it basically
allows us to freely add and remove flip-flops (or
equivalently to change the state assignment
dramatically) during sequential logic optimization and
thus could potentially exploit more circuit configurations
and eventually lead to a better design.

Checking redundancy for such cross-time-frame
candidate connections is similar to those of
same-time-frame candidate connections. Suppose a
candidate connection from time frame n-i to time frame
n has been verified to be redundant and can be added, i
flipflops need to be added between the source and
destination of the added connection in the final netlist to
guarantee to correct functionality of the circuit.

In Figure 5, a simple example circuit is shown to
illustrate the usefulness of this cross-time-frame
transformation. Assume the target wire to be removed is
s1. The mandatory assignment for the stuck-at-1 fault at

Figure 4: Adding a redundancy across time frames

s1 at time n consists of a 0 assignment at wire O1 at time
n-1 (at time n-1, g6, d, g1, g2, g5 and in turn O1 have to
be 0). Therefore, O1 at time n-1 to g9 at time n (a
dominator of the target wire) is a candidate connection.
This transformation requires adding a new flipflop to the
register as shown in shaded lines. This added connection
and flip-flop can be identified as redundant since the set
of mandatory assignments for the corresponding fault is
not consistent. The added logic blocks the propagation of
the stuck-at-1 fault at s1. Removal of this fault will result
in the removal of one flipflop in the register and gates g7
and g6 and thus result in a much smaller design.

We like to point out that it is not allowed to add a

connection from a gate in time-frame n to another gate in
time-frame n-i for any positive integer i because a
negative delay cannot be represented.

2.3. Issues on sequential redundancy
identification

In contrary to the approach for combinational circuits we
need a multi fault model for sequential circuits that every
time-frame has a fault. As in test generation the fault
appears in every time frame. Because we use only
mandatory assignments for redundancy identification, it
may be intuitive that we only need to use a single fault
model - only one time-frame has a fault. In the single
fault model, only the time frame that the target fault is
first activated has a fault. The following example
illustrates that the single fault model will cause
inaccuracy in redundancy identification and could not be
used. Figure 6 shows that an untestable fault could be

CLK

O2

f

O1

c

b

d

e

c
d
a
b

g1

g2

g3

g4

g5

g6

g7
g8 g9

s1

s2

Figure 5: Example for redundancy addition and
removal in a sequential circuit

mistakenly claimed as redundant if the single fault model
is used.

The circuit in Figure 6 consists of one cycle including the
fault location. If we use a single fault model, the
propagation of the fault is blocked in a later time frame
at the fault location. On the other hand, if we use the
multiple fault model, the set of mandatory assignments is
consistent and thus the fault is not redundant. This proves
the necessity of using a multiple fault model in our
approach, where the fault appears in every time frame.

3. The overall algorithm
The overall algorithm of the sequential redundancy
addition and removal is basically an extension of the
algorithm in former approaches [EnCh93] [ChSa94].
The main difference is that our approach has an
enhanced set of sequential transformations and we have
efficient techniques to identify sequential redundancies.
The overall algorithm is as follows:

seq_optimization(){
redundancy_removal(); (1)
for i=1 to number_iterations {

 fanout_pertubation(); (2)
 fanin_pertubation(); (3)
 greedy_optimization(); (4)

}

}

In (1) redundancies are removed from the circuit. For the
redundancy identification, mandatory assignments are
used. If the set of mandatory assignments is inconsistent,
the corresponding fault is identified as redundant.
Sequential redundancies can possibly be removed since
the mandatory assignments are computed across time
frames whenever they exist. In (2) fanout pertubation is
performed followed by fanin pertubation (3). These
processes are similar to the ones proposed in [ChSa94]
and are generalized for sequential circuit such that they
can be executed across time frames. The main
optimization is performed in the greedy optimization
step (4). The pertubation functions in (2) and (3) usually
don’t optimize the circuit themselves, they are mainly

x
s-a-1

Figure 6: The multi fault model

used for getting a network out of a local minima. The
greedy optimization function is described as follows:

greedy_optimization() {
forall circuit wires w1 {
 compute mandatory assignments(start_time); (5)
forall wires w2 with mandatory assign. at time t {

add wire s from w2 to dominator or controller of w;
delay s by adding (t - start_time) flip-flops (6)
if s is redundant {

delete w1 from circuit (7)
detect further redundancies (8)
detect cycles w/o path to a PO (9)

 } else
 delete s from circuit (10)

 } /* for w2 */
} /* for w1 */
}

The greedy optimization function tries to remove a
selected wire from the circuit. For this purpose
mandatory assignments for the corresponding fault are
computed first (5) in order to collect candidate
connections which might cause the target wire to become
redundant. All those candidate connections have a
destination gate which is either a fanin-controller or a
dominator of the fault in the circuit. The fanin-controller
of a fault is a gate that is in the transitive fanin of the
target fault and has a mandatory value in order to activate
the target fault. Since a candidate connection might be
across several time frames, the connection has to be
properly delayed then (6). We then examine the
candidate connections one at a time to check whether
they are redundant. If the candidate connection s is
irredundant s is deleted from the circuit (10). If s is
redundant, we may delete w1 immediately from the
circuit, since addition of s will cause w1 to be redundant
(7), because s was added such that initialization or
propagation of the fault at w1 is prohibited. As addition
of s might cause more than one redundancy, the circuit is
checked for further redundancies (8). The last step is to
check whether there exists a cycle in the circuit which
does not lead to a primary output. For a combinational
circuit, if there are some logic not reachable to primary
outputs, there must exist a gate which does not fanout to
any other gates or primary outputs. However, it is not
necessarily the case for sequential circuits. During
optimization, it may have isolated logic that forms a
cycle. All gates in the isolated logic have fanouts.
Therefore, we need to perform a special check for
removing such logic. For this purpose, the fanout stems
of all removed branches are checked by a reachability
analysis (9). If no primary output can be reached from
the stem, a prime fanout branch was removed and thus
the whole cycle can also be removed since it does not

take part in the circuit function any more.

3.1. Implementation
We have implemented the algorithm in C++ language
and has about 11500 lines of source code. The system is
named RADAR_S (an enhanced Redundancy ADdition
And Removal system for sequential logic optimization).
For comparison purpose, we also implement a simpler
version for combinational circuits, named RADAR_C,
based on the algorithms in [EnCh93] and [ChMa93].

Although theoretically the number of necessary time
frames used for mandatory assignments might be large
(probably several thousand), the number of time frames
used by our software is limited for practical reasons. One
reason for the limitation is the main memory requirement
for storing each time frame which is calculated below for
our approach. As stated below, keeping all time frames
in the main memory at the same time is affordable for our
approach. In our experiments with the ISCAS’89
benchmarks [BrBr89] we found out that limitation of the
number of time frames to less than 100 is senseful. For
our experiments shown in Section 4 we used 100 time
frames as an upper limit. This limit is user provided such
that, if desired, a smaller or larger limit could be used.

The main memory requirement in the software is very
low due to an efficient implementation of our approach.
In addition to the memory requirement of storing the
circuit graph we need only 12 bytes for every node and
every time frame. For example a circuit with 100k graph
nodes would require 120 megabytes of main memory by
using 100 time frames which is not much for a state of
the art workstation.

4. Experimental results
In our experiments we used the ISCAS’89 sequential
benchmark circuits [BrBr89] and circuit Am2910.
Results and CPU-times were computed on a Sparc10
workstation. As a measure for the size of the circuit we
used the number of two-input gates with the assumption
that an n-input gate is equivalent to n-1 two-input gates.

For the experimental results shown in Table 1, as one
experiment we used the benchmarks and first optimized
the combinational logic using SIS from Berkeley (using
script.rugged). Then we used RADAR_C to optimize the
combinational logic further and remove combinational
redundancy. We can consider that these results are what
we can get using existing combinational methods and
tools. For the circuit s13207, SIS cannot complete the job
and the results are produced by only RADAR_C.

As a second experiment we applied RADAR_C and
RADAR_S (including sequential redundancy removal)
on the original ISCAS benchmark circuits. The results

are shown in the last two columns of Table 1. We found
that the circuits resulting from the optimization are most
of the times smaller than the optimized circuits running
through SIS and RADAR_C. For two circuits only (s526,
s820) the results of running RADAR_C+RADAR_S are
a little worse compared with results obtained from SIS +
RADAR_C. The CPU times for RADAR_C+RADAR_S
are given in the last column. It is worth mentioning that
ATPG-based methods such as RAMBO and RADAR use
gate count or connection count as the cost function for
optimization while SIS uses literal count as the cost
function.

Table 1: Results for the sequential ISCAS benchmark
circuits running SIS and RADAR_S

5. Conclusion
Redundancy addition and removal has been shown
recently by several research groups to be an efficient
method for Boolean optimization of combinational and
synchronous sequential circuits. In this paper we further
extend this method by incorporating several new
powerful transformations. The generalization includes
addition of redundant connections across time frames and
addition of redundancies to invalidate justification. Using
such powerful structure transformations will allow
exploration of different circuit configurations with
completely different state assignments and thus lead to a

Circuit

initial circuit
size

2- input
gates / # FF

SIS +
RADAR_C.

RADAR_S with
integrated

RADAR_C

2- input
gates / # FF

2- input
gates / # FFCPU [s]

s208 70 / 8 70 / 8 36 / 5 26
s298 125 / 14 98 / 14 91 / 14 57
s344 109 / 15 105 / 15 102 / 15 68
s382 148 / 21 133 / 21 116 / 21 153
s400 148 / 21 128 / 21 116 / 21 156
s420 140 / 16 139 / 16 38 / 5 36
s444 156 / 21 127 / 21 121 / 21 168
s510 213 / 6 205 / 6 205 / 6 3855
s526 251 / 21 156 / 21 179 / 21 337
s713 160 / 19 158 / 19 132 / 16 320
s820 468 / 5 282 / 5 285 / 5 4277
s832 468 / 5 273 / 5 265 / 5 4302
s1423 491 / 74 442 / 74 440 / 74 1227
s1488 734 / 6 582 / 6 567 / 6 31933
s1494 733 / 6 587 / 6 568 / 6 27776
s5378 1389 / 176 917 / 176 819 / 124 2027
s13207 2573 / 667 2013 / 667 1347 / 443 45908

AN2910 883 / 99 Not applied 827 / 99 7955

better optimized design. We use the time-frame model
and state-of-the-art sequential test generation techniques
to efficiently identify sequential redundancies for either
addition or removal. Experimental results are promising
even for large sequential circuits.

6. References
[FuSh83] H. Fujiwara, T. Shimono: On the Accelaration of

Test GenerationAlgor i thms, IEEE Trans. on
Computers (C-32), pp. 1137-1144, 1983

[ChCh89] W. Cheng, T. J. Chakraborty: GENTEST An
Automatic Test-Generation System for Sequential
Circuits, IEEE Computer’89, pp.43-49

[ChMa93] K. T. Cheng, T. Ma: On the over-specification
problem in sequential ATPG algorithms, IEEE
Trans. Computer aided design, october 1993,
pp. 1599-1604

[BrBr89] F. Brglez, F. Bryant, D. Kozminski: Combinational
Profiles ofSequential Benchmark Circuits, Proc.
1989 Int. Symp. Circ. and Systems

[ChEn93] K.-T. Cheng and L. Entrena: Multi-Level Logic
Optimization by Redundancy Addition and
Removal, Proc. European Conf. on Design
Automation (EDAC-93), Feb. 1993.

[EnCh93] L. Entrena, and K. T. Cheng: Sequential Logic
Optimization by Redundancy Addition and
Removal, Proc. ICCAD-93, pp. 310 - 315

[Kunz93] W. Kunz: HANNIBAL: An Efficient Tool for
Logic Verification Based on Recursive Learning,
Proc. ICCAD-93, pp. 538 - 543

[ChCh93] S. C. Chang, K. T. Cheng, N.-S. Woo and M.
Marek-Sadowska: Layout-Driven Logic Synthesis
for FPGAs, Proc. DAC-93, pp. 308 - 313.

[KuPr92] W. Kunz and D. K. Pradhan: Recursive Learning:
An Attractive Alternative to the Decision Tree for
Test Generation for Digital Circuits, Proc. ITC-92,
pp. 816 - 825

[ChLe91] J. E. Chen, C. L. Lee and W. Z. Shen: Single-Fault
Fault-Collapsing Analysis in Sequential Logic
Circuits, IEEE Trans. on CAD Dec. 1991

[Chen89] W. Cheng: The BACK-Algorithm for Sequential
Test Generation, Proc. ICCD ’88, pp. 66-69

[ChSa94] S. C. Chang and M. Marek-Sadowska: Perturb and
Simplify, Multi-level Boolean Network Optimizer,
Proc. ICCAD-94, pp. 2 - 5

[KuMe94] W. Kunz and P. R. Menon: Multi-level Logic
Optimization by Implication Analysis, Proc.
ICCAD-94, pp. 6 - 13

[Chen93] K.T. Cheng: Redundancy Removal for Sequential
Circuits Without Reset States, IEEE Trans. on
Computer-Aided Design, Vol. 12, pp. 13-24,
Jan. 1993.

