
ICCAD ’96
1063-6757/96 $5.00 1996 IEEE

Logic Optimization by Output Phase Assignment in Dynamic Logic Synthesis

Ruchir Puri Andrew Bjorksten Thomas E. Rosser

IBM Thomas J. Watson Research Center IBM Corporation, 11400 Burnet Road

Yorktown Heights, NY - 10598 Austin, TX - 78758

Abstract

Domino logic is one of the most popular dynamic cir-
cuit con�gurations for implementing high-performance
logic designs. Since domino logic is inherently non-
inverting, it presents a fundamental constraint of imple-
menting logic functions without any intermediate inver-
sions. Removal of intermediate inverters requires logic
duplication for generating both the negative and posi-
tive signal phases, which results in signi�cant area over-
head. This area overhead can be substantially reduced
by selecting an optimal output phase assignment, which
results in a minimum logic duplication penalty for ob-
taining inverter-free logic. In this paper, we present this
previously unaddressed problem of output phase assign-
ment for minimum area duplication in dynamic logic
synthesis. We give both optimal and heuristic algo-
rithms for minimizing logic duplication.

1 Introduction
The use of dynamic logic in high-performance mi-

croprocessor design is an e�cient way of increasing cir-
cuit speed and reducing area. Domino logic [6] allows
a single clock to precharge and evaluate a cascade of
dynamic logic blocks and requires incorporating a sta-
tic CMOS inverting bu�er at the output of each dy-
namic logic gate as shown in Figure 1. Inspite of various
area and speed advantages, the inherently non-inverting
nature of domino gates requires the implementation of
logic network without inverters. This inverter-free logic
constraint is a fundamental constraint for implementing
logic functions with domino gates.

N logic

precharge
transistor

evaluate
transistor

Inverting
 Buffer

Clock Φ

Figure 1: Basic domino CMOS gate.

CMOS static logic is always synthesized using the
exibility of manipulating inverters in the logic network.
The inverter-free constraint in domino logic design lim-
its this exibility. This constraint implies that all the
logic inversions should be performed at the clock phase
boundaries, i.e., at the primary inputs or primary out-
puts where the inverters can be absorbed in registers.
Thus the �rst step in domino logic synthesis is to make
the logic inverter-free. A straight forward approach is
to convert the technology independent logic into AND,

OR, and NOT gates only. Subsequently, starting at the
primary outputs, the inverters can be propagated back
towards the inputs by applying simple De Morgan's laws.
If an inverter is trapped1 at the fanout of a gate G, then
gate G is duplicated for implementing both positive and
negative phases and the inverter is pushed backward.
Pushing the inverters back towards primary inputs is
guaranteed to restrict the increase in the size of the cir-
cuit to at most twice the original size and not increase
the number of logic levels [8]. This procedure trans-
forms the given logic network into an inverter-free logic
network with inverters at its primary inputs only.

 : Negative polarity
 : Positive polarity

N i
N i

invi

coneiconei

O2

O1 O1

O2

O2
O1

Figure 2: Output phase assignment for eliminating
trapped intermediate inverters.

In general, the duplication penalty for removing the
trapped inverters all the way to the primary inputs can
be quite heavy in terms of circuit area. For example,
we have observed a 10% to 80% area overhead in micro-
processor design partitions if all the trapped inverters
are removed by pushing them to the primary inputs. In
addition, this area overhead may also result in a sub-
stantial power dissipation penalty. One of the solutions
is to propagate some of the inverters forward towards
primary outputs thereby avoiding the logic duplication.
Since some inverters can be propagated forward and oth-
ers can be propagated backward, the process may be
very complex in a practical design and the choices expo-
nential. The process of propagating an inverter forward
is equivalent to chosing an implementation phase (i.e.,
polarity) of the outputs that eliminates this inverter.
This is illustrated in Figure 2, where invi is trapped
at fanout net Ni. Propagating invi back towards pri-
mary inputs will require duplication of fanin logic cone
conei. This duplication can be avoided by propagating
invi forward towards primary outputs which is simply
equivalent to implementing primary output O1 in nega-

1An inverter is said to be trapped at a fanout netNi, if it cannot
be propagated back towards primary inputs without duplicating
the logic gate that is feeding the fanout net Ni.

tive phase. Since there are 2n possible phase assignments
for implementing n primary outputs, it is non-trivial to
�nd an optimal output phase assignment for minimum
logic duplication.

To the best of our knowledge, the problem of logic op-
timization by output phase assignment in dynamic logic
synthesis has not been addressed before. A variation of
this problem was alluded to by Brayton et al. in [1]. In
[2], they addressed the problem of output phase assign-
ment for obtaining minimum single ended domino trees,
i.e., minimum number of inverters trapped at fanout
nets. They viewed this problem as being similar to op-
timal output phase assignment problem for PLAs [9][10]
and gave a solution using a branch and bound algorithm.
We show that the inverter minimization problem is a
special case of the more general minimal logic duplica-
tion problem and can be formulated as a simple case of
the unate covering problem.

In the following section we formulate the problem of
output phase assignment for minimum area duplication
in domino logic synthesis and give both optimal and
heuristic algorithms for minimizing logic duplication.

2 Inverter-free Logic Synthesis

As described above, the problem of minimum logic
duplication for obtaining inverter-free domino logic is
reduced to chosing an optimal output phase assignment
such that the logic duplication penalty is minimized.
ProblemDe�nition : Given a combinational logic net-
work, the output phase optimization problem in dynamic
logic synthesis is to chose an optimal phase (i.e., po-
larity) assignment for the primary outputs so as to re-
quire minimal logic duplication2 for obtaining inverter-
free logic.

In the most general case, every fanout net in the
logic network is a potential candidate where an inverter
may get trapped if proper output phase assignment is
not chosen. In practice, many of the inverters that are
trapped at intermediate fanout nets cannot be elimi-
nated by selecting a phase assignment of the primary
outputs. In the following Section, we analyze the in-
verters which cannot be eliminated by output phase op-
timization.

2.1 Inverters trapped at Reconvergent Fanouts

Logic networks that are fanout-free can also be made
inverter-free without any duplication penalty by sim-
ply pushing all the inverters back towards primary in-
puts. In such a case, the inverters cannot get trapped
at any intermediate fanout net and no logic duplica-
tion is required. In comparison, logic networks that are
not fanout-free may require logic duplication to remove

2Optimal output phase assignment solution for minimal logic

duplication implies that the total area of technology independent
logic gates that must be duplicated to obtain an inverter-free logic
must be minimum, i.e., there is no other output phase assignment
solution that can yield a better logic duplication area.

n1 = number of inverter on path 1

n2 = number of inverter on path 2

(a) n1 - n2 = odd (b) n1 - n2 = even

n1 = odd, n2 = odd
path1

path2

path1

path2
n1 = even, n2 = even

path1
path2

path1

path2
n1 = odd, n2 = even

Figure 3: Inverters trapped in reconvergent fanouts

trapped inverters. In general, fanout nets can be di-
vided into two categories: reconvergent fanout nets and
non-reconvergent fanout nets. A reconvergent fanout is
the root of an undirected closed loop of gates as shown
in Figure 4 by highlighted lines. In the following, we
analyze reconvergent fanout nets.

Let n1 be the number of inverters on path1 of the re-
convergent loop and let n2 be the number of inverters
on path2 of the reconvergent loop, as shown in Figure
3. There are two possible scenarios which will deter-
mine whether duplicating logic in the fanin cone of re-
convergent fanout net is essential, i.e., if the di�erence
in number of inverters on path1 and path2, i.e., n1 � n2
is: (a) an odd number (as shown in Figure 3(a)) and
(b) an even number (as shown in Figure 3(b)). In the
following, we analyze these cases in detail.
Case 1: n1 � n2 is odd implies that path1 has an odd
number of inverters and path2 has an even number of
inverters or vice-versa. If path1 has an odd number of
inverters, then they can be reduced to only one inverter
by propagating them forward/backward. Similarly, an
even number of inversions in path2 can be eliminated by
combining them. Thus we will always have one inverter
trapped in one branch of the reconvergent loop. This
inverter can only be made to toggle between the two
paths but cannot be pushed out of the reconvergent loop.
This is illustrated in Figure 3(a).
Case 2: n1 � n2 is even implies that either both path1
and path2 have an even number of inverters or both of
them have an odd number of inverters. If there are an
odd number of inverters in both path1 and path2, then
they can be reduced to only one inverter in each path
by propagating them forward/backward. This leaves
one inverter in each path which can be propagated back
through the fanout net. Thus the condition where one
inverter is trapped in one branch of the reconvergent
loop is avoided. If there are an even number of inverters
in both path1 and path2, then they can be eliminated
from each path by combining them. This leaves no in-
verter in either path1 or path2. Thus in the case of
n1�n2 is even, an inverter can never get trapped at the
reconvergent fanout. This is illustrated in Figure 3(b).

As described above in Case 1, an inverter will be
trapped in the reconvergent fanout loop only if the dif-
ference in the number of inverters between two branches
of the reconvergent fanout loop is an odd number. To

eliminate this inverter the logic fanin cone rooted at the
reconvergent fanout net must be duplicated. Thus the
logic in fanin cones of all the reconvergent fanout nets
with trapped inverters must be duplicated. This de�nes
a bipartition on the logic network : logic that must be
duplicated for removing inverters, i.e., duplicated logic
region and logic that can be minimized for logic dupli-
cation by an optimal output phase assignment, i.e., opti-
mizable logic region. Thus all the nets in the duplicated
logic region need not be considered for minimizing logic
duplication, since the logic in their fanin cones has al-
ready been duplicated. It is obvious that an inverter can
never get trapped in a inverter-free reconvergent fanout
loop. Thus inverter-free reconvergent fanouts need not
be considered for logic optimization by output phase as-
signment. Only non-reconvergent fanout nets in the op-
timizable logic region must be considered for minimizing
logic duplication. These non-reconvergent fanout nets
are called candidate nets which are used in determining
the output phase assignment.

The above analysis signi�cantly prunes the number
of fanout nets that must be considered for an optimal
output phase assignment for minimizing logic duplica-
tion. Finding candidate nets requires the knowledge of
all the reconvergent fanouts in the logic network, which
in itself may be very complex. In the following Section,
we describe an e�cient procedure that determines the
candidate nets for output phase optimization by a sim-
ple traversal through the logic network from primary
outputs to primary inputs.

2.2 Determining the candidate nets

Since the fanout nets are the only possible candi-
dates where inverters may get trapped, every fanout
net de�nes an output phase assignment for eliminating
the trapped inverter or for avoiding an inverter being
trapped. The output phase assignment corresponding
to every fanout net can be determined by a simple tra-
versal from primary outputs towards primary inputs as
follows.

In the given combinational logic network with m pri-
mary outputs O1; O2; : : : ; Om, we associate a phase as-
signment vector fvi1 ; vi2 ; : : : ; vimg with every fanout net
Ni in the logic network, where vij represents the phase of
a primary output Oj required to eliminate the trapped
inverter or to avoid an inverter being trapped at fanout
net Ni. Let P and N represent the positive phase and
the negative phase of a primary output respectively. Net
Ni de�nes the phase assignment of primary output Oj

(i.e., the value of vij) if Oj is in the fanout cone of net
Ni. If primary output Oj is not in the fanout cone of net
Ni, then net Ni is not a�ected by this output and the
corresponding phase value vij is assigned a don't care
value (indicated by a �). If Oj is in the fanout cone
of Ni and every path from Ni to Oj contains an even
number of inverters, then corresponding phase assign-
ment vij is de�ned as positive (P). Similarly, if every

path from Oj to Ni contains an odd number of invert-
ers then corresponding phase assignment vij is de�ned
as negative (N). If one path from Ni to Oj contains
an even number of inverters and another path contains
an odd number of inverters, then there will be two con-
icting values of vij , i.e., positive due to the path with
even number of inverters and negative due to the path
with odd number of inverters. As shown in Figure 3(a),
this condition characterizes a reconvergent fanout with
a trapped inverter and requires the duplication of logic
cone rooted at fanout net Ni. Thus in such a case, none
of the nets in the fanin cone of net Ni are considered for
minimizing logic duplication.

Initially, for each primary output Oj, the output
phase assignment of corresponding net Ni is initialized
as fvi1 = �; vi2 = �; : : : ; vij = P; : : : ; vim = �g. To de-
termine the logic duplication boundary, i.e., to �nd the
optimizable logic region, we start from primary outputs
and traverse towards primary inputs while propagating
phase assignments as follows. In the case of an AND/OR
gate, the input pins of the gate are given the same phase
assignment as its output. In the case of a NOT gate, the
input pin of the gate is given a complementary phase as-
signment as its output. A fanout net Ni will receive a
phase assignment from every logic gate it feeds. The
phase assignment for a net Ni can be obtained by com-
bining the phase assignment of all its fanouts. A positive
or a negative phase assignment when combined with a
don't care phase assignment will yield a positive or neg-
ative phase assignment, respectively. If a fanout net
Ni receives conicting phase assignment for an output
Oj, i.e., negative and positive both, then it is root of
a reconvergent fanout loop with a trapped inverter (as
described in Section 2.1). Thus fanout net Ni is a net
on the logic duplication boundary. This implies that all
the nets in the fanin cone of net Ni can be eliminated
from consideration for minimizing logic duplication and
we can avoid traversing further from net Ni. In this
way, through a simple traversal from primary outputs
towards primary inputs, we can determine the dupli-
cated logic region and the optimizable logic region. All
the fanout nets in the optimizable logic region are pos-
sible candidates for minimizing logic duplication. Since
the optimizable logic region does not contain any re-
convergent fanout nets with a trapped inverter, fanout
nets in this region can only be non-reconvergent; or re-
convergent without a trapped inverter. As explained in
Section 2.1, an inverter can never get trapped in a re-
convergent fanout loop which is inverter-free. This elim-
inates the reconvergent fanout nets without a trapped
inverter from consideration for minimizing logic dupli-
cation. Thus only non-reconvergent fanout nets in opti-
mizable logic region are candidates for minimizing logic
duplication. A fanout net Ni in optimizable logic region
is non-reconvergent if it receives any two disjoint phase
assignments from its fanout gates.

O_1

O_2

[P,-]

[-,P]

[N,P]

[P,P]

N2

N1

G1

2G

8G

12G

13G

14G

INV1

[N,P]/[P,P]

 duplicated
logic region

optimizable logic region

[N,P]

[P,N] / [N,P]

[N,P]

[N,P]
[N,P]

[N,P]

N3

N4

N5

N7

N8

N9

4G

5G

6G

9G10G

11G

INV2

N10

N6
3G

7G

logic duplication boundary

fanin cone
 of N2

fanin cone
 of N1

N0

Figure 4: Output phase assignment: An example.

De�nition : Two phase assignments fvi1 ; vi2 ; : : : ; vimg
and fv0

i1
; v0

i2
; : : : ; v0

im
g are said to be disjoint if and only

if for every output Oj at least one of the corresponding
phase assignment values vij and v0

ij
is a don't care, i.e.,

8j either vij = � or v0

ij
= �.

For example, phase assignments vi = f��PN�g and v0

i

= f�P��Ng are disjoint. In comparison, phase assign-
ments vi = f� � PN�g and v0

i
= f�PP � Ng are not

disjoint since for output O3 both the phase assignments
are de�ned, i.e., vi3 = v0

i3
= P . The candidate nets

for minimizing logic duplication, i.e., non-reconvergent
fanout nets in the optimizable logic region can be de-
termined simply by traversing all the fanout nets in the
optimizable logic region and checking them for disjoint
phase assignments as de�ned above. In the following,
this procedure is explained with a simple example shown
in Figure 4.

Example : After the initial step of propagating inverters
towards primary inputs without any logic duplication,
two inverters INV1 and INV2 are trapped at fanout
nets N2 and N9 respectively, as shown in example logic
network of Figure 4. To �nd the duplicated logic re-
gion and the optimizable logic region, the phase assign-
ments are initialized at the primary outputs and they are
propagated towards primary inputs. Since logic gates
G1; G2; : : : ; G14 are of type AND/OR, their input pins
will receive the same phase assignment as their output.
The input pin of an inverter will receive the complemen-
tary phase assignment as its input, e.g., inverter INV1
output net N 0

0
s phase assignment [P;�] will be prop-

agated as [N;�] to its input N2. Thus fanout net N2

receives an assignment [N;�] from INV1 and an assign-
ment of [�; P] from gate G2. These two assignments
are combined to yield the phase assignment of fanout
net N2, i.e., [N;P]. Similarly, the phase assignment of
fanout net N3 can also be obtained as [N;P]. Fanout net
N9 receives a phase assignment of [P;N] from INV2 and

a phase assignment of [N;P] from gate G10. Since these
two assignments are conicting, net N9 is a reconvergent
fanout with a trapped inverter, as shown by highlighted
lines in Figure 4. This implies that INV2 cannot be re-
moved and the fanin cone of N9, i.e., G12; G13; and G14,
must be duplicated for removing inverter INV2. Thus
fanout net N9 is a net at the logic duplication boundary
and may not be considered as a candidate for minimiz-
ing logic duplication by output phase assignment to ob-
tain inverter free logic. Similarly, fanout net N6 receives
conicting assignments [P; P] from gates G3 and [N;P]
from gate G4. Thus fanout net N6 is root of a recon-
vergent fanout loop fN6; N1; O1; N2; N4; N3; N6g with a
trapped inverter INV1. As shown in Figure 4, both nets
N6 and N9 de�ne the duplicated logic region with gates
G8; G12; G13; and G14. As a result, only fanout nets
N1; N2; N3 in the optimizable logic region may be con-
sidered for minimizing logic duplication by chosing an
optimal output phase assignment. Among these nets,
all the phase assignments that fanout net N3 receives
from its fanout gates are non-disjoint, i.e., assignment
[�; P] from gate G2 and assignment [N;P] from gate G5

are not disjoint. Thus fanout net N3 is a reconvergent
fanout without a trapped inverter and an inverter can
never be trapped inside this reconvergent loop by chos-
ing any output phase assignment. This implies that net
N3 can also be eliminated as a candidate net for min-
imizing logic duplication. This yields only two fanout
nets N1 and N2 that are candidates for selecting an op-
timal output phase assignment.

The candidate nets obtained above can be utilized for
selecting an output phase assignment for minimal logic
duplication to obtain inverter free logic. In the following
section, we formulate this problem as a graph problem
and solve it using boolean satis�ability framework.

2.3 Minimizing logic duplication

Every candidate fanout net in the optimizable logic
region de�nes a phase assignment for primary outputs
that will eliminate a trapped inverter or avoid an in-
verter being trapped. In general these assignments may
be conicting with each other, i.e., chosing a phase as-
signment enforced by candidate net Ni may avoid an in-
verter being trapped at Ni but may trap an inverter at
another candidate net Nj. The conicting nature of out-
put phase assignments enforced by two candidate nets
is de�ned using the incompatibility constraint as follows.
De�nition : Candidate nets Ni and Nj are said to be
incompatible if they de�ne at least one conicting pri-
mary output phase assignment otherwise they are said
to be compatible.

For example in Figure 4, candidate net N1 de�nes an
output phase assignment [P; P] to avoid an inverter be-
ing trapped. Similarly, candidate net N2 de�nes an out-
put phase assignment [N;P] for eliminating a trapped
inverter INV1. Since these assignments de�ne conict-
ing positive and negative phase values for primary out-

Duplicated logic bisection

Non-duplicated bisection

7

6

5 4

3

2

1Incompatibility edge

candidate net

Figure 5: Incompatibility graph.

put O1, candidate nets N1 and N2 are incompatible.
The incompatibility constraint implies that at least

one of the two incompatible nets must have a trapped
inverter. If candidate nets Ni and Nj are incompatible,
then chosing the phase assignment3 enforced by Ni will
trap an inverter at Nj and vice-versa. Thus the logic
fanin cone of one of the candidate nets must be du-
plicated. The tradeo� between duplicating logic fanin
cone of one net over another depends on the associated
area duplication penalty. The penalty for duplicating
a logic cone can be computed by adding the technol-
ogy independent area of its logic gates. Since the logic
gates in duplicated logic region have already been du-
plicated, only logic gates in the optimizable logic region
are considered for calculating duplication penalty. Using
the incompatibility constraint, the output phase assign-
ment problem for minimum logic duplication to obtain
inverter free logic can be restated as follows.
Problem : Given a set of optimizable candidate nets
fN1; N2; : : : ; Nng and their incompatibility constraints,
�nd a phase assignment to the primary outputs that
yields minimum logic area duplication penalty for ob-
taining inverter free logic.

We can formulate this problem using a graph model
and solve it using boolean satis�ability approach de-
scribed as follows.

2.3.1 Graph Theoretic Formulation

We represent the candidate nets and the incompatibil-
ity relationships in a incompatibility graph as shown in
Figure 5. A candidate net Ni is represented by a node
i in the graph. Two nodes i and j are connected by an
undirected edge if their corresponding candidate nets
Ni and Nj are incompatible. In Figure 5 there are seven
nodes 1; 2; : : : ; 7 corresponding to seven candidate nets
N1; N2; : : : ; N7 respectively. Assume that these candi-
date nets require following output phase assignments,
i.e., N1 : [PP�P�]; N2 : [N�P ��]; N3 : [P�PP�];
N4 : [��PP�]; N5 : [��P�N]; N6 : [�NP�N]; and
N7 : [�� �PN]. Among these nets, the output phase
assignments of candidate nets N1 and N6 are incompat-
ible, i.e., only one of them can be chosen to avoid the

3If the output phase assignments corresponding to nets Ni and
Nj are incompatible and the compliment of net Ni's output phase
assignment is compatible with net Nj's output phase assignment
or vice-versa, then it is essential to consider the compliment phase
assignments of Ni and Nj. A complete description of this compli-
mentary phase assignment framework is given in [7].

duplication penalty of its fanin logic cone. This is repre-
sented by an incompatible edge between corresponding
nodes 1 and 6 in the graph shown in Figure 5. Simi-
larly, N1 ,N2 and N2, N3 are incompatible. Since the
logic fanin cones of two incompatible nets may be over-
lapping in general, the duplication cost associated with
a candidate net may not be independent of the other
candidate nets. This constrains us from assigning in-
dependent weights for duplication penalty to individual
nodes in the graph.

As shown in Figure 5, the solution of output phase
assignment problem on the incompatibility graph corre-
sponds to dividing the incompatibility graph into two
partitions such that no two nodes connected by an in-
compatible edge are in the bisection corresponding to
non-duplicated logic and the area penalty cost associ-
ated with the duplicated logic region is minimum. Since
the output phase assignments of candidate nets that
do not have any incompatibility constraint can be com-
bined without any output phase conict, the correspond-
ing nodes in the incompatibility graph are assigned to
non-duplicated logic bisection. For example in the in-
compatibility graph of Figure 5, nets N4, N5, and N7

are not associated with any incompatibility edge. Thus
their output phase assignments, i.e., N4 : [� � PP�],
N5 : [��P �N]; and N7 : [���PN] can be combined
without any conict to yield an output phase assign-
ment of [��PPN]. This does not require duplication of
fanin cones of N4, N5, and N7.. Thus the corresponding
incompatibility graph nodes 4, 5, and 7 are assigned to
the non-duplicated bisection in Figure 5. The remaining
candidate nets (i.e., graph nodes) that must be assigned
to duplicated logic bisection for minimum duplication
penalty can be obtained by representing the incompati-
bility constraints using boolean clauses as follows.

2.3.2 Boolean Constraint Satisfaction

We associate a boolean variable xi with every node i

in the graph. The boolean assignments to variable xi
are de�ned as follows. An TRUE assignment to xi
implies that the fanin cone of candidate net Ni corre-
sponding to node i is chosen for logic duplication and
xi := FALSE implies that the fanin cone of candidate
net Ni corresponding to node i is not chosen for logic
duplication. The incompatible edge between two graph
nodes i and j can represented by a simple two literal
unate boolean clause (xi + xj) which implies that at
least one variable among xi and xj must be TRUE to
satisfy this clause. This is equivalent to duplicating the
fanin cone of at least one corresponding candidate net
Ni and Nj thereby satisfying their incompatibility rela-
tionship. The boolean constraint formula derived from
the incompatibility graph will represent a simple unate
2-SAT formula. The fanin logic cone of every candidate
net Ni whose corresponding boolean variable xi receives
a FALSE assignment will not be duplicated. Thus the

corresponding node, node i in the incompatibility graph,
is assigned to the non-duplicated bisection.

In Figure 5 the incompatibility graph can be repre-
sented by a simple boolean constraint formula F given
as : F = (x1 + x2)(x1 + x6)(x2 + x3). Since our goal
is to minimize the logic duplication penalty, a satis�-
able assignment that results in minimum logic dupli-
cation is chosen. Subsequently, every candidate net
Ni corresponding to boolean variable xi with FALSE

value is assigned to non-duplicated logic bisection in
the incompatibility graph. For example, if assignment
x1 = 1; x2 = 1; x3 = 0; x6 = 0 is chosen, then incompat-
ibility graph nodes 3 and 6 corresponding to FALSE

boolean variables x3 and x6 respectively are assigned to
the non-duplicated logic bisection (shown in Figure 5).
The phase assignment of candidate nets corresponding
to nodes in the non-duplicated logic bisection of incom-
patibility graph can be combined to yield the optimal
solution. This implies that the phase assignments of
candidate nets N3; N4; N5; N6; and N7 (corresponding
to non-duplicated bisection nodes 3; 4; 5; 6; and 7 is for
an optimal output phase assignment of [PNPPN]. The
process of chosing an optimal boolean assignment among
various satis�able assignments is better explained using
the example of Figure 4 as follows.

Consider the logic network shown in Figure 4. As
already discussed in Section 2.2, this logic network has
only two candidate nets N1 and N2 and they are incom-
patible. This can be formulated by the constraint for-
mula F = (x1 + x2). Since fanin cone of candidate net
N1 requires less duplication penalty (i.e., gates G3 and
G7) than the fanin logic cone of candidate net N2 (i.e.,
gates G4; G5; G6; G9; G10; and G11), boolean assignment
fx1 = 1; x2 = 0g is chosen as the �nal solution which
implies an output phase assignment of [N;P], i.e., pri-
mary output O1 is implemented with a negative phase
and primary output O2 is implemented with a positive
phase.

A heuristic solution to the output phase assignment
problem for minimum logic duplication can be obtained
as follows. Assigning a TRUE value to a variable xi
that satis�es maximum number of clauses in the incom-
patibility constraint formula F . Remove these satis�ed
clauses from the constraint formula. Iteratively repeat
these steps until all the clauses in the constraint for-
mulaF are satis�ed. In the logic network, fanin cones of
candidate nets corresponding to boolean variables with
TRUE value must be duplicated since they will have
trapped inverters. Every candidate net Ni correspond-
ing to boolean variable xi with FALSE value is assigned
to non-duplicated logic bisection in the incompatibility
graph. The phase assignment of primary outputs can
be obtained by combining the phase assignments corre-
sponding to the non-duplicated candidate nets, (i.e., the
nodes in the non-duplicated logic bisection of incompat-
ibility graph).

An optimal solution to the minimum logic duplica-
tion problem can be obtained as follows. Derive a bi-
nary decision diagram (BDD) from the incompatibility
constraint formula F , which succinctly represents all of
its possible solutions. In this BDD, every path from the
root node to the constant 1 node represents a satis�able
assignment to the boolean constraint formula F . The
area duplication penalty of this satis�able assignment
can be calculated by adding the technology independent
area of all the gates in the fanin cone of every net Ni

corresponding to every variable xi with TRUE assign-
ment. With the duplication area penalty of the heuris-
tic solution (obtained as described above) as the initial
upper bound, traverse the BDD using a simple branch
and bound algorithm [3]. During traversal, if the par-
tial variable assignment at any BDD node (the BDD
path from the root node) yields more logic duplication
penalty than the upper bound, then prune that node
and backtrack. The upper bound is updated whenever
a complete satis�able assignment solution with less logic
duplication penalty is obtained. The branch and bound
algorithm will yield an optimal satis�able assignment to
the constraint formula F , which corresponds to the min-
imum logic duplication penalty. This satis�able assign-
ment can be translated into the optimal output phase
assignment solution as described above in the case of a
heuristic solution.

After �nding an output phase assignment as de-
scribed above, two inverters are inserted at every pri-
mary output with a negative phase assignment. one of
the two inverters for every primary output is pushed
back all the way to the primary inputs of the logic net-
work. For example, in the logic network shown in Fig-
ure 4(a), we obtained an optimal output phase assign-
ment [NP]. Thus two inverters are inserted at output
O1 which received a negative phase assignment. One
of these inverters is pushed back towards the primary
inputs, thereby eliminating the trapped inverter INV1
and requiring the duplication of optimizable logic re-
gion gates G3 and G7 in the optimizable logic region.
Thus, to make the logic inverter-free with output phase
assignment, duplication of gates G3; G7; G8; G12; G13;

and G14 is required. In comparison, without any out-
put phase assignment, the logic duplication of gates
G6; G5; G4; G9; G10; G11; G8; G12; G13; and G14 would
have been essential to push inverters INV1 and INV2
to primary inputs.

In some dynamic logic synthesis scenarios (e.g., when
designers have the exibility of absorbing inverters in
mid-cycle latches), it may be required to achieve a dif-
ferent design goal of minimizing the number of inverters
trapped at the intermediate fanouts. Inverter minimiza-
tion is a well researched problem in static logic synthesis
[4][5]. In dynamic logic circuits, the output phase assign-
ment problem for obtaining minimumnumber of invert-
ers was solved using a branch and bound algorithm in [2].

Table 1: Experimental results.

Designs Output Phase Assignment Results
Name No. of No. of Gate No. of Area in Icells4 when all Area in Icells after % reduction No. of

primary primary count fanout the trapped inverters are output phase in area due negative
inputs outputs nets pushed to primary inputs optimization to to output polarity

(all outputs have minimize logic phase outputs
positive polarity) duplication assignment

ex1 89 151 4215 743 9167 8346 8.7% 4
ex2 51 28 907 166 3773 2281 39.5% 6
ex3 41 53 905 168 3422 3422 � �

ex4 27 36 181 46 540 410 24.0% 10
ex5 32 6 451 93 1184 1184 � �

The problem of obtaining minimumnumber of inverters
is a special case of the more general minimal duplication
problem discussed in this paper. The minimum number
of inverters correspond to maximum number of nodes
in the non-duplicated bisection of the incompatibility
graph, i.e., minimum number of trapped inverters. This
problem can be reduced to a simple case of the general
unate covering problem on a unate 2SAT (only two lit-
eral clauses) boolean formula as follows.
Find a satis�able assignment to the unate 2SAT incom-
patibility constraint formula F such that the number of
variables (xj) with FALSE assignment are maximum.

A solution to this simpli�ed 2SAT unate covering
problemwill yield minimumnumber of trapped inverters
at intermediate fanout nets in the logic network.

3 Experimental Results

This algorithm has been implemented within the
Booledozer synthesis framework. Experimental results
using the BDD algorithm on our internal designs, i.e.,
microprocessor design partitions are given in Table 1.
Since inverters may get trapped at fanout nets in the
logic network, the number of fanout nets in a design
gives a measure of output phase assignment problem
complexity. The output phase assignment is very ef-
fective in minimizing logic duplication penalty in the
designs having non-reconvergent fanouts with trapped
inverters close to primary outputs. Table 1 shows that
in some designs signi�cant area savings can be obtained,
e.g., ex2 and ex4. The computing time required for the
logic duplication optimization stage was negligible com-
pared to the dynamic logic technology mapping and tim-
ing optimization stages in the dynamic synthesis scenar-
ios. As discussed in Section 2.1, the fanin logic cones of
reconvergent nets with a trapped inverters must be du-
plicated and the inverters trapped in the remaining logic
(i.e., the optimizable logic region) may be eliminated by
an output phase assignment to minimize logic duplica-
tion. In many designs, the optimizable logic region does
not contain any trapped inverters. Such designs do not
o�er any chance of minimizing logic duplication penalty.
Our experiments revealed that our designs ex3, ex5, and
some public benchmarks (e.g., C880, C3540, C7552 etc.)
belonged to such a category.

4An Icell is a basic unit of area.

4 Conclusion
In this paper, we addressed the problem of out-

put phase assignment for minimum logic duplication in
inverter-free dynamic logic synthesis. The problem was
formulated in graph theoretic terms and both optimal
and heuristic algorithms were presented. Experimental
results indicate that in some cases substantial area sav-
ings can be obtained.

Acknowledgements

We would like to thank Daniel Brand and David
Hathaway for valuable discussions. Reinaldo Bergam-
aschi, David Kung, Lakshmi Reddy, Leon Stok, and
Louise Trevillyan provided many useful comments.

References
[1] R. K. Brayton, C. L. Chen, C. T. McMullen, R. H.

J. M. Otten, and Y. J. Yamour. Automated Implemen-
tation of Switching Functions as Dynamic CMOS Cir-
cuits. In IEEE Custom Integrated Circuits Conference,
pages 346{350, 1984.

[2] R. K. Brayton, C. L. Chen, and Y. J. Yamour. Method
for Optimizing Logic for Single-Ended Domino Logic
Circuits. IBM Technical Disclosure BulletinYO883-
0364, 27(7B):4398{4401, December 1984.

[3] S. Even. Graph Algorithms. Comp. Sc. Press, 1979.

[4] J. W. Goetz and D. J. Hathaway. Method and Appara-
tus for Optimizing a Logic Network. US Patent number
5,282,147, January 1994.

[5] A. Jain and R. E. Bryant. Inverter Minimization in
Multi-Level Logic Networks. In IEEE/ACM Interna-
tional Conference on CAD, pages 462{465, 1993.

[6] R. H. Krambeck, C. M. Lee, and H. S. Law. High Speed
Compact Circuits with CMOS. IEEE Journal of Solid
State Cicuits, SC-17(3):614{619, June 1982.

[7] R. Puri, A. Bjorksten, and T. E. Rosser. Logic Op-
timization by Output Phase Assignment in Dynamic
Logic Synthesis. IBM Research Report, April 1996.

[8] S. M. Reddy. Complete Test Sets for Logic Functions.
IEEE Transaction on Computers, C-22(11):1016{1020,
November 1973.

[9] T. Sasao. Input Variable Assignment and Output Phase
Optimization of PLAs. IEEE Transactions on Comput-
ers, 33(10):879{894, October 1984.

[10] C. L. Wey and T. Y. Chang. An E�cient Output Phase
Assignment for PLA Minimization. IEEE Transactions
on CAD, 9(1):1{7, January 1990.

