
Logic Program Transformation
through Generalization Schemata [Extended Abstract]

Pierre Flener
Department of Computer Engineering

and Information Science
Bilkent University
TR-06533 Bilkent, Ankara, Turkey
Email: pf@cs.bilkent.edu.tr

Yves Devflle
Department of Computing Science

and Engineering
Universit6 Cathofique de Louvain
B-1348 Louvain-la-Neuve, Belgium
Email: yde@info.ucl.ac.be

1 I n t r o d u c t i o n

Programs can be classified according to their construction methodologies, such as di-
vide-and-conquer, top-down decomposition, global search, and so on, or any composi-
tion thereof. Informally, a program schema [2] is a template program with a fixed
control and data flow, but without specific indications about the actual parameters or the
actual computations, except that they must satisfy certain constraints. A program sche-
ma thus abstracts a whole family of particular programs that can be obtained by instan-
tiating its place-holders to particular parameters or computations, using the
specification, the program synthesized so far, and the constraints of the schema. It is
therefore interesting to guide program construction by a schema that captures the es-
sence of some methodology. This reflects the conjecture that experienced programmers
actually instantiate schemata when programming, which schemata are summaries of
their past programming experience.

Moreover, in contrast to traditional programming methodologies where program
transformation sequentially follows program construction and is merely based on the
syntax of the constructed program, these two phases can actually be interleaved in
(semi-)automated program synthesis, based on information generated and exploited
during the program construction process.

It would therefore be interesting to pre-compile transformation techniques at the sche-
ma-level: a transformation schema is a pair (T1, T2) of program schemata, such that T 2
is a transformation of T 1, according to some transformation technique. Transformation
at the program-level then reduces to (a) selecting a transformation schema <T 1, T2)
such that T 1 covers the given program under some substitution ~, and (b) applying ~ to
T 2. This is similar to the work of Fuchs et al. [4] [also see this volume], except that they
have a preliminary abstraction phase where the covering schema of the given program
is discovered, whereas we here assume that this program was synthesized in a schema-
guided fashion, so that the covering schema is already known.

It sometimes becomes "difficult," if not impossible, to follow the divide-and-conquer
methodology. One can then generalize the initial specification and construct a (recur-
sive) program from the generalized specification as well as express the initial problem
as a particular case of the generalized one. Paradoxically, the new construction then be-
comes "easier," if not possible in the first place. As an additional and beneficial side-
effect, programs for generalized problems are often more efficient, because they feature
tail recursion and/or because the complexity could be reduced through loop merging..

172

2 P r o g r a m T r a n s f o r m a t i o n b y S t r u c t u r a l G e n e r a l i z a t i o n
In structural generalization [1], one generalizes the structure (type) of some parameter.
For instance, in tupling generalization, an integer parameter would be generalized into
an integer-list parameter, and the intended relation would be generalized accordingly.
Example 1: Let f l a t (B, F) hold iff list F contains the elements of binary tree B as
they are visited by a prefix traversal of B. We also say that F is the prefix representation
of B. A corresponding "naive" divide-and-conquer logic program could be:
flat (void, [])
flat(btree(L,E,R),F) <-- flat(L,U), flat(R,V),

H=[E], append(U,V,I), append(H,I,F)

Tupling generalization yields: f l a t s (B s , F) holds iff list F is the concatenation of
the prefix representations of the elements of binary tree list Bs. We obtain the program:
flat(B,F) <-- flats ([B] ,F)
flats([], [])
flats([voidIBs],F) (-- flats(Bs,F)
flats([btree(L,E,R) IBs], [EITF]) 4- flats([L, RIBs],TF)

In contrast to the "naive" version above, this program has a linear time complexity, a
better space complexity, and it can be made tail-recursive in the mode (in , out) . *
Result 1: Suppose the specification of the initial problem is (where 9[is the intended
relation, and ~ , (T 2 are the types of its parameters):
R(X,Y) r ~ IX,Y], where XE~r I and YET2,

and that the initial program is covered by the following divide-and-conquer schema:
R(X,Y) (--Minimal(X), Solve(X,Y) (Schema I)
R (X, Y) <-- NonMinimal (X) , Decompose (X, HX, TX I, TX 2) ,

R(TXI,TY I) , R(TX2,TY 2) ,
Process(HX,HY), Comp6se(TYi,TY 2,I), Compose(HY,I,Y)

where C o m p o s e / 3 is associative and has some left/fight-identity element e.
The eureka, that is, the formal specification of the tupling-generalized problem is [3]:
Rs(Xs,Y) r (Xs=[] ^Y=e)

v (Xs=[Xl,X 2 Xn] ̂ R(Xi,Yi) ̂ If=Y1 ̂ C~176 Yi , Ii) ̂ Y=In),
where XE list of T 1 andYE T 2.

and the new logic program is the corresponding instance of the following schema:
R(X,Y) <-- Rs([X],Y) (Schema 2)
Rs(Xs,Y) <-- Xs=[], Y=e
Rs(Xs,Y) 4- Xs=[XlTXs], Minimal(X),

Rs (TXs, TY), Solve (X, HY), Compose (HY, TY, Y)
Rs(Xs,Y) 4- Xs=[XlTXs], NonMinimal(X), Decompose(X,HX,TXl,TX2),

Rs([TXI,TX 21Txs],TY), Process(HX,HY), Compose(HY,TY,Y)

If Solve (X, Y) conveas X into a constant "size" Y and/or if Process (HX, HY)

converts HX into a constant "size" HY, then some partial evaluation can be done, which
often results in the disappearance of calls to Compose /3 , if not in the possibility of
making the reeursive calls iterative ones. .

The pair (Schema 1, Schema 2) thus constitutes a first generalization schema.
More generalization schemata must be pre-compiled, for different numbers of heads
and tails of X, and for each ordering of composition of Y from HY and the TY [3].

173

3 Program Transformation by Descending Generalization
In computational generalization [1], one generalizes a state of computation in terms of
"what has already been done" and "what remains to be done." If information about what
has already been done is not needed, then it is called descending generalization.
Example 2: The '%aive" logic program for the well-known r e v e r s e (L, R) is:
reverse([], [])

reverse ([HLITL] ,R) <-- reverse (TL,TR) , HR= [HL] , append(TR,HR,R)

Descending generalization yields: r e v e r s e D e s c (L, R, A) holds iff list R is the
concatenation of list A to the end of the reverse of list L. We obtain the program:
reverse(L,R) ~-- reverseDesc(L,R, [])

reverseDesc ([] ,R,R)

reverseDesc([HLITL],R,A) <-- reverseDesc(TL,R, [HLIA])

In contrast to the '%aive" version above, this program has a linear time complexity, a
better space complexity, and it can be made tail-recursive in the mode (in , o u t) . r
Result 2: Suppose the initial problem exhibits a functional dependency from parame-
ter X to parameter Y, and that the initial program is covered by the following schema:
R(X,Y) <-- Minimal(X), Solve(X,Y) (Schema 3

R (X, Y) <-- NonMinimal (X) , Decompose (X, HX, TX) ,

R(TX,TY) , Process(HX,HY) , Compose(HY,TY,Y)

where C ompo s e / 3 is associative with left-identity element e.
The eureka can be mechanically extracted [1] [3] from the initial program:
R-desc(X,Y,A) r 3S R(X,S) A Compose(A,S,Y)

and the new logic program is the corresponding instance of the following schema:
R(X,Y) <-- R-desc(X,Y,e) (Schema 4

R-desc(X,Y,A) <-- Minimal(X), Solve(X,S), Compose(A,S,Y)

R-desc (X,Y,A) ~-- NonMinimal (X) , Decompose (X, HX,TX) ,

Process(HX,HI) , Compose(A, HI,NewA) , R-desc(TX, Y,NewA)

If P r o c e s s (HX, HY) converts HX into a constant "size" HY and/or if the intended
relation behind R/2 maps the minimal form of parameter X into e, and e is also a right-
identity element of Compose / 3, then some partial evaluation can be done, which usu-
ally results in the disappearance of calls to C o m p o s e / 3 , if not in the possibility of
making the recursive calls iterative ones. �9

The pair <Schema 3, Schema 4) thus constitutes another generalization schema.
4 C o n c l u s i o n
Both generalization techniques are very suitable for mechanical transformation: all op-
erators of the generalized programs are operators of the initial programs. Given a di-
vide-and-conquer program, a mere inspection of the properties of its solving,
processing, and composition operators thus allows the detection of which kinds of gen-
eralization are possible, and to which optimizations they would lead. The eureka dis-
coveries are compiled away, and the transformations can be completely automated.
References
[1] Y. Deville. Logic Programming: Systematic Program Development. Addison-Wesley, 1990.
[2] P. Flener. Logic Program Synthesis from Incomplete Information. Kluwer, 1995.
[3] P. Flener and Y. DeviUe. Logic Program Transformation through Generalization Schemata.

TR BU-CEIS-95xx, Bilkent University, Ankara (Turkey), 1995.
[4] N.E. Fuchs and M.P.J. Fromherz. Schema-based transformations of logic programs. In

Clement and Lau (eds), Proc. of LOPSTR'91, pp. 111-125. Springer-Verlag, 1992.

