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Abstract 

We survey here various approac.hes which we[e proposed to incorporate negation in logic 

programs. We concentrate on the proof-theoretic, and model-theoretic. issues and the rela

tionships between them. 
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1 Introduction 

1.1 Motivation 

Non-monotonic reasoning grew out of attempts to capture the essential aspects of commonsense 

reasoning. It resulted in a number of important formalisms, the most known of them being the 

circumscription method of McCarthy [107], the default theory of Reiter [145] and autoepistemic 

logic of Moore [1111. (For a systematic comparison of these approaches see the recently published 

Marek and Truszczynski [1041.) 

One of the striking features of logic prograuuuing is that it can naturally support non

Inonotonic reasoning - by Ineans of negative literals. Many concepts introduced in the area of 

non-Il1onotonic reasoning have a natural counterpart within logic prograuuuing in spite of its 

lirnited syntax. The dual interpretation of logic progranls - as a cOIl1putationallllechanislll and 

as a formalism for knowledge representation - provided a fertile ground for a study of proof 

theory and selllantics of progranls which support non-Illonotonic reasoning. 
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This paper attempts to survey the outcome of this research. This subject, or some fragments 

of it, were already discussed in no less than five previous survey articles: Shepherdson [158J, 
Shepherdson [159J, Przymusinska and Przymusinski [120], Bidoit [20J and Clark [38J. Moreover, 

while writing this paper we learned of another survey - that of Dix [471 who focuses on the non

monotonic reasoning aspects oflogic programming. However, this field is so fast. growing - about 

half of the references cited here were published during t.he last 3 years - that. another survey of 

it ,night. be justified. We provide here an alternative overview of this area by concentrating on 

the main developments in the proof theory and model theory and on the relationships between 

them. 

No urufied picture emerges from this endevour. A number of interesting proposals were 

made dealing with proof theory and semantics. The multifarious relationship between them, 

revealed by often intricate mathematical arguments, brings to light the complex nature of logic 

progralluning and of non~nlonotonic reasoning in the logic progranuning setting. 

1.2 Setting the Stage 

The SLD-resolution of Kowalski [85J allows us to derive only positive consequences (namely 

conjunctions of at OllIS ) frolll a (positive) progralll. However, in lnany cirCtllllstances it is also 

useful to derive negat.ive consequences. As we shan see in the next subsection, this naturally 

leads to non-Inonotonie reasoning. 

A classic exanlple for the usefulness of negat.ive consequences is the tiInetable, which states 

connections explicitly, but the absence of connections only implicitly. In the case of positive 

programs three approaches to derive negative information became most known. Each of them 

is treated more extensively for the case of general programs (called normal programs in Lloyd 

[93]). 

1. Use the negation as finite failtlrE rtlle of Clark [39], which states t.hat. ~Q is a consequence 

of a program P if a finitely failed SLD-tree for the query Q w.r.t.. P exists (in short, if Q 
finitely fails), 

2. use program completion of Clark [39], which st.rengt.hens the program by - informally

interpreting inlplications as equivalences, 

3. use the closed world a.ss1l1nption (in short CWA) of Reiter [144], which states that for a 

ground atom A, ~A is a consequence of a program P if A cannot be proved from P. 

The relationships bet.ween these concept.s for posit.ive programs are by now well-understood 

(see e.g. Lloyd [93J or Apt [2J for an overview of these resuJt.s). 

Once negative consequences can be derived frmll a positive prograrll, it is natural to extend 

the syntax of programs and allow negat.ive assumpt.ions. This leads t.o the class of general 

programs in which negative lit.erals are aUowed in the bodies of the clauses. However, when 

trying to extend the above approaches t.o the case of general prograrlls several cOlnplications 

arise. The approaches become self-referent.ial, and thereby potentially paradoxical. Moreover, 

as we shall see, a na.ive alnalgcunation of the SLD-resolut.ion and the negation as finite failure 

rule yields an unsound reasoning Inethod, cOlupletion of a general progralll can be inconsistent, 

and the closed world assumption can yield an inconsist.ent. t.heory. So to treat this subject we 

have to carefully review the concepts it relies upon. Let us start by discussing some relevant 

aspects of non-Inonotonie reasoning. 
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1.3 Non-monotonic Inference Relations 

Properties of non-monotonic inference relations have been extensively studied, for example by 

Kraus, Lehmann and Magidor [86]. (For an overview of this topic see Makinson [100].) Dix 

[44] defined how a (proof- or model-theoret.ic) semantics for logic programs can be viewed as an 

inference relation (consequ.ence relation). Given a part.icular semantics S EM, he defined the 

inference relation r.-~EM of a program P as a relat.ion between sets of ground atomsl and sets 

of ground literals: 

One way of classifying semant.ics for logic programming is by studying which properties they 

satisfy (a property is satisfied by S E M if it. is satisfied by r.-~EM for all programs P for which 

SEM is defined). Eventually, if one agrees on which properties are desirable and which ones 

are not, this study can be one of the reasons for considering one s€rnantics better than another 

(another one could be for example comput.abilit.y). 

A very st.rong propert.y of inference relations is monotonicity. Below we use t.he symbol r.

to denote an arbit.rary inference relation, r for a set. of at.olllS, A for an at.om and L for a literal. 

Definition 1.1 (Monotonicity) An inference relat.ion is monotonic if it sat.isfies: 

l' r.- L implies r U r' r.- L. o 

Classical logic is monot.onic, thus so is t.he inference relation determined by the SLD

resolution, as it is a subset of classical logic. The negation as finite failure rule, the program com

pletion, and the closed world aSSllIuption all introduce non-mono tonicity when deriving negative 

literals from positive programs, since 0 r.- {p <- q} ,p, whereas {q} If {p <- q} ,po Consequently, 

all S€ll1antics for logic prograrlls with negation considered in this paper aTe non-Illonotonic. 

The st.udy of non-Inonotollie logics is sneh a large area, that it. is irupossible to give a cOIuplete 

overview of it in this paper. Therefore, we limit ourselves here t.o observations that are relevant 

for logic progranulling. One rnay wonder what Blakes an inference relat.ion logical when it is not 

monotonic. Kraus, Lehmann and Magidor [861 considered the following properties desirable (we 

omit a number of simple properties that. are sat.isfied by all logic programming semantics in this 

paper). 

Cut: r r.- A and 

Cautious Monot.onicity: r r.- A and 

Rationality: r If ,A and 

ru{ A} r.- Limply 

r r.- Limply 

l' r.- Limply 

rr.-L 

l'U{A} r.- L 

rU{A} r.- L 

Cautious rllonotonicity is weaker than rationality (in the presence of sirllple properties). 

A logic that satisfies caut.ions lIlonot.onicity and cut is called cll1lJ.1l1a./i.1Ie. We shall use these 

properties in Sections 4.3, 7.4 and 10. 

Dix calls t.hese propert.ies strong principles [47, 48], as opposed to certain weak principles 

he identifies [47, 49]; these weak principles are more specific t.o logic programs, and should 

be satisfied by every reasonable semantics. Examples of weak principles are the Principle of 

Partial Evalu.ation (PPE), which roughly means that a positive body literal can be replaced by 

lDisjunctions of ground atoms in the case of disjunctive logic programs, see Section 10. 

2 SEM can return a single model, a set of models or a theory. In the case of a set of models, the sceptical 

approach is chosen: SEM(P) 1= L if Lis t.rue in (Ill models in SEA1(P). 
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its definition, and Releva.nce, which means that. t.he t.rut.h value of an at.om is det.ermined solely 

by the part of the program that. at.om depends on (the notion made precise in Definition 2.2). 

There are a nUlllber of good reasons for adopting a non-Inonotonic S€Illantics for negation. 

• Historically, a classical interpretation of negation was ruled out, because it would result 

in full first-order theorem proving, with t.oo high a complexity. This argument is hardly 

valid any more, as the semantics for logic programs with negation studied in this paper 

are highly undecidable to various degrees in the first-order case (see e.g. Apt and Blair 

[5], and Cadoli and Schaerf [28] for an overview), but. some of them can be computed in 

polynomial time in the propositional case (see e.g. Van Gelder, Ross and Schlipf [66]). 

• In many situat.ions, for exaulple in databases, it is natural to record only positive infor

Illation, leaving all negative illfoflllation ilUplicit.. 

• Recently, researchers in artifkial intelligence recognised that. COIlUlIonsense reasoning is 

nOll-Illonotonic. Therefore Iloll-Illonotonic logics, that. is, logics with a non-lllonotonic in

ference relation, becalne popular. Logic prograIllS with nOll-1l10notonic negation constitute 

a small, yet quite expressive class of non-monotonic logics, which is of particular interest 

because they are implement.able. We observed that most motivating examples in papers 

on the S€lllantics of negation ill logic progralllluing are taken frOIll COllunonsense reasoning. 

We distinguish these last two reasons as 'static', respectively 'dynaIllic' non-lllOnotonicity. 

Non-monotonicity is used statically, when the available information is complete and can be 

theoretically, though not practically, captured as classical logic consequences of a theory. The 

standard example for this case is the already mentioned timetable problem for which it is possible 

though not practical t.o list all existing connections and all absent connections. This form of 

non-monotonicity justifies direct.ly the Closed World Assumpt.ion, introduced in Section 1.2. 

Non-rllonotonicity is used dYIl(uuically for 'jUIllping to conclusions' when the available infor

Illation is incolllplete. If, later, IHore inforIllation becOIlles available, it lllay turn out that the 

conclusion is no longer justified, and must be withdrawn. The standard example for this case 

is that, if we learn that Tweety is a bird, we jump to the conclusion that it can fly, but if we 

subsequently find out that Tweety is a penguin, we wit.hdraw that conclusion. This use oflogic, 

called belief revision, is clearly non-lllOilotonic. 

In this exaIllple, there is apparently a defa.ult aSsUlllptioll, nalnely that birds can fly, unless 

there is evidence to the contrary. Reiter [145] proposed Defa.lIlt Logic as a framework for formal

izing such defaults. Also, the example reasons about the beliefs of an agent., for which Moore 

[111J proposed auto-epistcntic logic. In fact, SOIue seIllantics for negation in logic prograIlllning 

are closely related to these proposals. 

One way of using negation in logic programming for belief revision is by means of abnormal

ity-relations. The example of the penguin Tweet.y can be described by the addition of the fact 

penguin(Tweety) to t.he program TWEETY: 

bird(Tweety) <-

fly(x) <- bird(x) "abnormalfly,bird(X) 

abnormalfly,bird(X) <- penguin(x) 

'l. Tweety is a bird. 

'l. Normal birds can fly. 

I. Penguins are abnormal birds 

w.r.t. flying. 

We return to this progralll in Section 11.1; all serllantics lllentioned in this paper coincide on this 

program: they derive fly(Tweety) from TWEETY, but not. from TWEETYU{penguin(Tweety) <-}. 
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1.4 Plan of This Paper 

This paper is organized as follows. In the Ilext section we introduce the syntax and discuss 

the choice of the underlying first-order language. In Section 3 we introduce the basic resolution 

procedure used for general programs - the SLDNF-resolution. Next, in Section 4 we discuss 

another classical concept, that of program completion, and discuss soundness and completeness 

of SLDNF-resolution w.r.t. program complet.ion. Then in Section 5 we return to the SLDNF

resolution by discussing smIle of it.s variants and extensions. 

In Section 6 we study semantics of general programs by concentrating on 2-valued candidates 

for a natural model which were proposed in the literature. Then in Section 7 we consider 3-

valued options. In Section 8 we relate these special models t.o various modifications of program 

completion. Next, in Section 9 we return to the study of proof-theoretic issues and analyze 

another form of resolution, called SLS-resolution. In particular we discuss there soundness and 

completeness of SLS-resolution w.r. t.. the semantics considered in Section 7 and the issue of its 

irnplementation. In Section 10 we discuss clisjuIlct.ive logic prograrlls, i.e. prograIlls built from 

clauses whose heads are disjunctions of atClllg and relat.e various approaches to their s€rnantics 

to the case of general prograUlS. 

Finally, in Section 11 we sUllllllarize the results of the paper by indicating for which classes 

of progral11s all the considered approaches coincide. We also indicate there which topics were 

not treated in this paper. 

2 Preliminaries 

2.1 Syntax 

We recall the usual definitions. A liteml is an atom or its negation. A positive literal is a 

synonyrll for an atOlll and a negafi.'ve l.itel'al. is a negated atoIll. LiteTals are denoted here by 

letters L, M. A general quer·y is a finite conjunction of literals. (Instead of general queries, 

one usually considers general. goals which are expressions ~ L where L is a query.) The en1pty 

general query is denoted by D. To adhere to the syntax of logic programming, we write the 

general query L1 1\ ... 1\ Ln as L 1 , ... , L 11 • 

A general clause is a construct of the form H <- L where H is an atom and L query; H 

is called it.s hea.d and L it.s body. When t.he body is empty, t.he general clause is called a unit 

clause. Finally, a general program is a finite set. of general clauses. We say that. a relation p is 

defined in P if it occurs in a head of a general clause of P and that P uses a relation q if q 

occurs in the body of a general clause of P. 

As in the paper we shall deal exclusively wit.h general queries, clauses and prograIus, we oinit 

froIn now on the qualification IIgeneralll, unless SOllle confusion arises. When all literals used in 

t.he bodies of the program clauses are positive, we call t.he program positive. 

As in the case of queries we often use bold letters to denote finite sequence of syntactic 

objects. Given two sequences of tenus s == S1, . .• , Sn and t ::::: t 1 , . •• , tn of the saIne length we 

ab breviate 81 == t1 1\ ... 1\ S11 == tl1 to s == t. 

We recall now a nUluber of auxiliary notions. 

Definition 2.1 By an expression we lllean here a teTlll, at mIl , literal, query, negation of a 

query or a clause. Var( E) is the set. of variables occurring in the expression E, V E denotes the 

universal closure of E, and 3 E t.he exist.ent.i,,] closure of E. 

A substitution e is a function fron) variables to tenllS with a finite dOlllaill. Its dOluain is 

denoted by D0112(O), the set of variables occurring in the terIIlS fOrIlling its range by Ran(8), and 
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its restriction to the set of variables V by 0IV. For an expression E we abbreviate 01 Var(E) to 

OlE. We write EO for the result of applying the subst.it.ut.ion 0 t.o the expression E. 0 is called a 

renaming substitution for E, if for some substitution" we have AO" = A. E denotes the identity 

substitution. 

The application of a substitution to a (set of) expression( s) and the relat.ion "more general 

than" between the substitutions is defined in the usual way. Given two atoms A and B, a 

substitution 0 is called a unifier of A and B if AO := BO, and is called a most general unifier 

(in short: mgu) of A and B if it. is a unifier which is more general than all unifiers of A and B. 

Finally, an mgu 0 of two atoms A and B is called releva.nt if Dom(O)URan(O) <;;; Var(A)UVar(B). 

o 

When studying programs the relationship bet.ween the relations used is of importance. 

Definition 2.2 (Dependency) Consider a program P. 

• The dependency graph D p fol' P is a directed graph with signed edges. Its nodes are 

the relations occurring in P. For every clause in P which uses relation p in its head and 

relation q in a positive (resp. negative) lit.eral in its body there is a positive (resp. negative) 

edge (p, q) in Dp. We say then that P uses q positively (resp. negatively). 

• We say that p depends positively (resp. negatively) on q if t.here is a path in Dp from pta 

q with only positive edges (resp. at. least. one negative edge). 

• We say t.hat p depends evenly (resp. oddly) on q if there is a path in D p from p to q with 

an even (resp. odd) llU111ber of negative edges. 0 

2.2 The Universal Query Problelll 

A siTnple conlplet.eness result for SLD-resolution reads as follows: 

Let P be a positive program, A an atom and 0 a substitution. If P 1= \lAO, then 

PI- SLD Au, for some substit.ution u such t.hat Au is more general than AO. 

We shall not use classical logic as the semantics for general logic prograIlls, for reasons 

explained in Section 1.3. In some cases, the semantics of a program will be given by a logical 

theory, such as the progrmll cOInplet.ioIl. In luany other cases, the s€lnantics of a program will be 

given by some canonical Herbrand model, such as t.he least Herbrand model Mp for a positive 

program P. The relative merits ofbolh approaches are discussed in Wallace [172], among others. 

When using the canonical model approach, restricting ones attention to Herbrand models often 

leads to considerable technical simplifications. Yet the following statement. is false: 

Let P be a positive program, A an at.om and 0 a substit.ut.ion. If Mp F \lAO, then 

P t- SLD Au, for SOllIe substitut.ion cr such that ACT is lllOr€ general than A8. 

As a counterexample, take P = {pta) (- }, A = p(x) and 0 = E. Since a is the only term in 

the Herbrand Universe, Mp = {p( aJ} 1= \Ix p( x). There are essentially two ways to avoid this 

problem. 

1. Ensure that the language under consideration has sufficiently Iuany tenllS. This can be 

done by 

• adding a clause pUre)) (- to the program P, where p, f and c do not occur in P (as 

e.g. in Ross [147]). 
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• postulating, as in Kunen [88J, an infinite 'universal' language in which all programs 

and queries are expressed. 

2. Consider arbitrary models instead of only Herbrand models. This approach is taken by 

Kunen [87J and by Przymusinski [125], who also termed the above problem the universal 

query problem. 

In this paper we adopt the 'universal language' approach, as it gives rise to siInpler fornlu

lations of results than the other approaches. It. also solves the problem of how to deal formally 

with language elements that Occur in the query but not in the program. Each approach has 

its merits and drawbacks. For example, in the case of the approach here adopted, taking the 

program P ~ {p(a) <- } again, ,'Ix p(x) holds in the least Herbrand model of P w.r.t. the uill

versallanguage, whereas it. does not hold in all models of P. So now we have the "opposite" of 

the universal query problenl: given the prograIll {p(a) ~; q ~ .p(x)}, should qbe "true"? We 

leave this problem aside, and for a more detailed discussion of this issue, we refer to Shepherdson 

[158J. 

In the sequel, Bp denotes the Herbrand Base of P, Mp the least Herbrand model of a positive 

progralll P, and ground{P) the set. of all ground instances of clauses frOlll P, all considered w.r.t. 

this universal language. Finally, by Lp we denot.e the language defined by the program P, that 

is the language whose constants, function and relation sYlubols aTe those occurring in P. 

3 Proof Theory I: SLDNF-resolution 

3.1 A Discussion 

In order to COinpute with general progralllS, one needs to be able to resolve negative literals. A 

natural idea is to use the closed 'World assu.mption, that, is to stipulate for an atoIll A 

,A succeeds iff A cannot. be proved. 

The problem with this rule is t.hat. it. is in general undecidable whet.her an atom can (cannot) 

be proved, even if we restrict. our attention to positive progralllS. Later, in Section 9 we shall 

consider an ineffective form of resolution which formalizes the above idea. 

To make t.he above rule effect.ive Clark [39J proposed t.o replace t.he st.at.ement "A cannot be 

proved" by it.s finit.ary version, the nega.tion as finite failure rule, which makes this rule decidable. 

So, according to Clark [39], the st.atement. "A cannot be proved" should be interpreted as "A 

finitely fails". 

However, for general progranls the considered trees for a query A can contain negative literals, 

so the question now arises when these lit,erals fail. A nat.ural idea is to stipulate that for an 

atolll A, 

,A fails iff A can be proved. 

Interpret.ing the st.at-eluent. "A can be proved" as "there exists a successful derivation for the 

query A", we end up with a resolution Inethod, called SLDNF-resolu.tion, which is appropriate for 

general programs and general queries. It should be mentioned here that another interpretation 

of the above statement is possible which leads t.o another form of resolution. We shall consider 

it in Section 5.1. 

Thus according to the SLDNF-resolut.ion, when the selected literal is positive, the usual 

SLD-like procedure is used to obtain a new resolvent, and when t.he selected lit.eral, say ,A, is 
negative, the following rule is used to obt.ain t.he new resolvent: 
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,A succeeds iff A finit.ely fails, 

,A finit.ely fails iff A succeeds. 

That. is, if ,A succeeds, it is delet.ed from t.he query, and if it finit.ely fails t.he query fails. 

As in the case of the SLD-resolution, t.his not.ion of resolution can be used not only to prove 

but also to comput.e. Let us introduce the le)llowing notation. 

P I-sLDNF V QB if there exist.s a successful SLDNF-derivation of P U {Q} with computed 

answer (), 

P I-SLDNF V ,Q if there exists a finit.ely failed SLDNF-tree for P U {Q}. 

Wit.hout any restrictions the above not.ion of SLDNF-resolution becomes a problematic con

cept. Indeed, take the following program NUMBERS = {positive(x) <- ,zero(",); zero(O) <-}. 

Then the query zero( x) succeeds, so ,zeto( x) finit.ely fails and consequently positive( x) finitely 

fails, as well. Thus NUMBERS I-sLDNF 'Ix ,positive(x). However, for any ground term t different 

from 0, zero(t.) finit.ely fails, so positivc(t) succeeds. Thus NUMBERS I-SLDNF positive(t). This 

excludes any soundness results. In fact, these conclusions will be drawn by most Prolog systems. 

So Prolog is not "sound". 

The problem is caused by t.he use of variables in nonground negative literals. To ensure 

soundness Clark [39] imposed the restriction t.hat only ground negative literals can be selected. 

However, the definition of the SLDNF-resolution sketched above is difficult. to formalize. 

Consider for example t.he program P = {I' <- p}. The query 'I' neither succeeds nor finitely 

fails, since the query p neither succeeds nor finit.ely fails. So it. is not clear whether there is a 

resolvent. (This also shows that SLDNF-resolut.ion is incomplet.e, since neither P I-SLDNF I' 

nor P I-sLDNF 'I' holds here.) The problem is t.hat success and finite failure are not the only 

possible QutcOll1eS of an evaluation: also an unsuccessful tree which is not finitely failed can be 

generated. 

This problem was not properly taken care of in t.he definition of SLDNF-resolut.ion given in 

Clark [39) and reproduced in Lloyd [92). In Lloyd [93) a revised definition of SLDNF-resolution 

was proposed according to which t.he SLDNF-t.rees are constructed "bot.tom-up" by induction 

on t.he number of alternations through negation. Unfortunately, according to this definition for 

the above mentioned example and some other problematic cases no SLDNF-trees or SLDNF

derivations exist. This is clearly undesirable
1 

especially if one reasons about "run tilne" proper

ties of the SLDNF-resolution, like termination. 

These problems were first tackled by Martelli and Tricomi [106J who proposed a revision of 

the original definition in which the subsidiary trees used to resolve negative literals are built 

"inside" the main tree. The solution presented here is clue to Apt and Doets [l1J. 

3.2 A New Definition 

Definition 3.1 (Resolvent) 

(i) We say that Q resolves to Q' via a W.T.t. ~, or: Q' (more explicit.ly, the pair (a, Q')) is a 

resolvent of Q w.r.t. E, notation: Q ~ Q' (~), if 

either: ~ ::::: (L, R), L is (an occurrence of) a positive literal in Q, R is a progralll clause, and 

for some variant H <- L (the input cia use ) of R: a is mgu of Land Hanel Q' = Qa[ La := LaJ 

is obtained froIll Qa by replacing La by La, 

or: ~ is (an occurrence of) a negat.ive literal ill Q, a = f, and Q' = Q - {~} is obtained from 

Q by removing~. 
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(ii) A clause R is called applicable to an atolll if it has a variant the head of which unifies with 

the atom. 0 

Definition 3.2 (Pseudo derivation) A (finite or infinite) sequence Qo ~ ... Qn ~1 Qn+! ... 

of resolution steps is a pseu.do derivation if for every step involving a progralll clause: 

• ("standardisation apart") the input clause employed does not contain a variable from the 

initial query Qo or from an input clause used at some earlier step, 

• ("relevance") the 11lgU €lllployed is relevant. o 

Intuitively, an SLDNF-derivation is a pseudo derivation in which the deletion of every 

(ground) negative literal is just.ified by means of a subsidiary (finitely failed SLDNF-) tree. 

This brings us to consider special types of trees. 

Definition 3.3 A tree is called 

• successful if it contains a leaf tnarked as success, 

• finitely failed if it is finite and all it.s leaves are marked as failed. o 

In the sequel we consider systems of trees called forests. 

Definition 3.4 (Forest) A forest is a syst.em F = (F,T,subs) where 

• :F is a set. of trees, 

• T is an elelll€nt of:F called the main t.ree, 

• subs is a function assigning t.o SOIIle nodes of trees in :F a ("subsidiary") tree fforn F. 

By a path in :F we Il1€an a sequence of nodes No, .. ", Ni"" such that for all i, Ni+l is either a 

child of Ni in some tree in F or the root of the tree subs(N;). 0 

Thus a forest is a special directed graph with two types of edges - the "usual" ones stemming 

frOIn the tree structures, and the ones connecting a node with the root of a subsidiary tree. 

An SLDNF-tree is a special t.ype of a forest. built as a limit. of cert.ain finite forests: pre

SLDNF trees. The nodes of these trees are labeled by queries. Below we shall identify a node 

with its label. 

The construct.ion begins with the main tree which consists of just one node - the original 

query. During the construction new, subsidiary, trees can be added. In each "round" the 

branches of all trees are extended in parallel. The final object is an SLDNF-t.ree. As in the 

original definit.ion of Clark [39] t.he subsidiary t.rees are kept. "aside" of the "main" tree. The 

difference is that their construction is no longer viewed as an atOll1ic step in the resolution 

process. If a subsidiary tree T becomes successful or finitely failed, this information is used in 

the "next round" of the extension process to detennine the status of the query which originated 

the construction of T. 

For the rest of this sectioIl, we fix a progranl P. The Ilext definition is crucial. 

Definition 3.5 (Pre-SLDNF-tree) A l'/'e-SLDNF-tl'ee (relative to P) is a forest whose nodes 

are (possibly marked) queries of (possibly marked) literals. (For queries, there are markers failed, 

success, and floundered; for literals, we have the marker selected.) The function subs assigns to 

nodes cont.aining a marked negat.ive ground lit.eral ,A a t.ree in F with root A. The class of 

pre-SLDNF -trees is defined inductively. 
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• For every query C, the forest consisting of the main tree which has t.he single node C is a 

pre-SLDNF-tree (an initial pre-SLDNF t.ree), 

• If F is a pre-SLDNF-tree, then any extension of F is a pre-SLDNF-tree. 

Here, an extension of a pre-SLDNF-tree F is defined by performing t.he following actions for 

every non-empty query C which is an unmarked leaf in some tree T E F: 

First, if no literal in C is marked yet as selected, mark one as selected. Let. L be the selected 

literal of C. 

• L is positive. 

C has no resolvents w.r.t. L and a clause froIll P. 

Then C is marked as failed. 

C has such resolvent.s. 

For every clause R from P which is applicable to L, choose one resolvent. (Q, D) of C 

w.r.t. Land R and add t.his as child of C in T. These resolvent.s are chosen in such 

a way t.hat all branches of l' feJllain pseudo derivations. 

• L = -,A is negat,ive. 

A is nonground. Then C is marked as floundered. 

A is ground. 

* subs( C) is undefined. 

Then a new tree T' wit.h the single node A is added t.o F and subs( C) is set t.o 

T'. 

* subs( C) is defined and successful. 

Then C is marked as failed. 

* subs( C) is defined and finit.ely failed. 

Then the resolvent (E, C - {L} ) of C is added as the only child of C in T. 

Additionally, all empty queries are marked as success. o 

Note that, if no tree in F has unmarked leaves, then t.rivially F is an extension of itself, and 

the extension process becOllles stationary. 

Every pre-SLDNF-tree is a tree with I.wo types of edges between possibly marked nodes, so 

the concepts of inclusion between sudl t.rees and of li'mit of a growing sequence of such trees 

have clear llieaning. 

Definition 3_6 (SLDNF-tl'ec) 

• An SLDNF-tree is a linli!: of a sequence Fo",", F i, ... such t.hat :Fo IS an initial pre· 

SLDNF-tree, and for all i, F;+l is an extension of F i . 

• An SLDNF-tree for C is an SLDNF-tree in which C is the root of t.he main tree. 

• A (pre- )SLDNF-tree is called successful (resp. finitely fa.iled) if the main tree is successful 

(resp. finitely failed). 

• An SLDNF-tree is called ji:nit£ if no infinite paths exist. in it.. o 
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Next, we define the concept of SLDNF-derivat.ion. 

Definition 3.7 (SLDNF-derivat.ion) A (pre-) SLDNF-derivation for C is a branch in the 

main tree of a (pre-) SLDNF-tree F for C together with the set of all trees in F whose roots 

can be reached from the nodes of this branch. It is called successful if it ends with the empty 

query. An SLDNF-derivation is called finite if all paths of F fully contained within this branch 

and these trees is finite. 0 

Finally, we define the notion of a cOInputed answer substitution. 

Definition 3.8 (Computed answer substitution) Consider a branch in the main tree of a 

(pre-) SLDNF-tree F for C which ends with the empty query. Let aj, ... , an be the consecutive 

substitutions along this branch. 

Then the restriction (aj ... on) Ie of the c.omposit.ion Uj ... an to the variables of C is called 

a computed answer substitu.tion (c.n.s. for short) of e in F. 0 

Let us illustrate the above definit.ions by depicting the SLDNF-t.rees for two "difficult" cases. 

Example 3.9 (Infinite SLDNF-trees) 

(i) Consider the "problematic" case of P = {p <- p} and C = 'p mentioned in Section 3.l. The 

only SLDNF-tree has then the following form: 

'p 
'. 

" p 

1 
p 

1 
(ii) It is important to realize that according to this definition the construction of a subsidiary 

tree can go on forever even if the infoflllat.ion about. it.s "status') has already been passed to the 

main tree. The following program illustrates this point.. 
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Consider P = {p <- 'q; q <- ; q <- q}. Then the only SLDNF-tree for p looks as follows: 

p 

1 
,q 

failed -

o 
success 

o 
Success 

Here the subsidiary tree with the root q grows forever. However, once an extension of the initial 

subsidiary tree with the single node q becomes successful, in the next extension the node ,q 

is marked as failed. Consequent.ly, t.he SLDNF-t.ree for p is finitely failed even though it is not 

finite. 0 

Now note the following simple result. 

Theorem 3.10 (Limit.) 

(i) Every SLDNF-t-ree is the limit of a u.niqlle sequence of pl'e-SLDNF-trees. 

(ii) If the SLDNF-tree F is the limit of the sequence Fo, ... , Fi, ... , then for all T 

(aJ F is successful and yields T as c.a.s. iff some F; is successful a.nd yields T as c.a.s., 

(b) F is finitely failed iff some F; is finitely fa.iled. 0 

This result allows us t.o associat.e wit.h every successful or finit.ely failed SLDNF-tree F a 

natural number, ranJ.,(F, T), which is t.he least. i for which the corresponding equivalence in (ii) 

holds, with T = E when F is finit.ely failed. This measure is useful for carrying out. inductive 

proofs about SLDNF-resolution. 

Finally, let. us mention that. it. is st.raightforward t'o show t.hat if a successful SLDNF

derivation or finit.ely failed SLDNF-t.ree exist.s according to the definit.ion given in Lloyd [93J, 

then so it does according to the definit.ion here present.ed. 

3.3 Floundering 

For further discussion it. is useful to introduce the following notion. An SLDNF-tree F is via 

a selection rule R if in the sequence of pre-SLDNF-trees whose limit is F all the markings of 

literals as selected are perfofllled according t.o R. A selection ru.le is a function which given 

a pre-SLDNF-tree F selects a lit.eral in every non-empt.y unlllarked leaf in some t.ree of F. A 

selection rule is called safe jf ii. never selects a nongrollud negative literal. 
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One of the complications concerning SLDNF-resolution is so-called "floundering" - a gen

eration of a node which consists exclusively of nongroulld negative literals, as then selection of 

any literal ends the derivation in an abnormal way. In t.he definition here provided floundering 

is treated differently ~ it arises as soon as a nongroulld negative literal is selected. Clearly, 

this small change has no effect on the theory of SLDNF -resolution, since the original notion of 

floundering can be easily defined. 

Definition 3.11 (Floundering) 

• We call a query blocked if it consists exclusively of nonground negative literals. 

• We say that P and Q flounder if some SLDNF-tree for P and Q contains a blocked node. 

o 

Note the difference between a blocked node and a node marked as floundered. Thus an 

SLDNF-tree via a safe selection rule does not flounder. Borger [27J (see Apt.[2J for a more direct 

proof) proved that it is undecidable whether P and Q flounder. In the literature a number of 

syntactic conditions was proposed which ensure that a prograIll and a query do not flounder. 

The following notion due to Lloyd and Topor [95J (see also Lloyd [93]) has become best known. 

Definition 3.12 (Allowedness) 

• A query L is called allowed if every variable of it occurs in a positive literal. 

• A clause H t- L is called allowed. if ,H, Lis. 

• A program is called allowed if all its clauses are. 0 

Thanks to the use of the new definition, t.he followitlg result of Lloyd and Topor [95J now 

refers to a larger class of SLDNF-trees. 

Theorem 3.13 Suppose that. P and Q are allowed.. Then 

• P a.nd Q do not flou.nde,·. 

• if e is a c.a.s. of Q, then Qe is grou.nd. o 

When e is a c.a.s. of Q such that QO is ground, we say that. e is a g1'01Ind compu.ted answer 

substitu.tion. Actually, t.he definit.ion of allowedness proposed in Lloyd and Topor [95J is slightly 

lllor€ general than the one we considered. Even this stronger version excludes III any natural logic 

programs, because every allowed unit clause is ground and every cOIuputed answer is grounding. 

Decker and Cavedon [43J and Decker [42J proposed more general synt.actic conditions which 

prevent floundering. 

3.4 K unen 's Definition 

Kunen [88) provided a nrnch silnpler definit.ion of t.he COlllputed answer substitutions and finitely 

failed queries of the SLDNF-resolution and used it. to prove complet.eness in t.he sense discussed 

in the next section for allowed programs and allowed queries. We now present his definit.ion and 

compare it with the one given before. 
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Definition 3.14 The set F of queries and the set R of pairs (C, 0"), where C a query and 0" a 

substitution for which Dom( 0") C;; If m'( C), are defined by a simultaneous inductive definition as 

follows. 

0) ORE, 

R+) if C resolves to D via Ct w.r.t. some positive literal of C and a clause from P and DRO", 

then CR(CtO")IC, 

R-) if A is a ground atolll in F and (C, C')RO", then (C, ,A, C')RO", 

F+) if L is a positive literal in C and for every clause R frOlu P which is applicable to L there 
a 

exist Ct and DE F such that. C =- D (L, R), t.hen C E F, 

F-) if A is a ground at.om such t.hat. ARt, t.hen (C, ,A,C') E F. o 

Recall that for a query C, III C st.ands for t.he rest.rict.ion of the substitution II to the variables 

of C. The intention here is that R is the set of pairs (C, 0") such that 0" is a c.a.S. for C and F 

is the set of queries C such that there is a finitely failed tree for C. 

Note that the formulation of R+) does not. ensure t.hat. the resulting answer substitutions 

are Illost general. Indeed, consider t.he following progrmu 

Q(x,y) <-- Q(y,y), 

Q(x,x) <-. 

Then ORE by 0), Q(y, y )R{yf;r} by R+) and the second clause and consequently Q( x, y)R{ylx} 

by R+), since Q(x,y) resolves to Q(y,y) via f and the first. clause. But. {Ylx} is not a c.a.s.for 

Q(x, y) whereas {ylx'} is. 

In order that R+) produces most general answer substitutions, we amend it as follows: 

tR+) if C resolves t.o D via () w.r.t. some posit.ive literal of C and a clause frolll P, DRO", and 

If art C a) n If art DO") C;; If art D), 

t.hen CR(O'O")IC. 

The following theorem of Apt and Doet.s [lll shows the equivalence between the SLDNF

resolut.ion and K unen 's definition as lllodified above. 

Theorem 3.15 (Equivalence) If C is a query, then 

• CRT iffT is a c.a.s. for C, 

• C E F iff C has t1 finitely failed SLDNF-tree. o 

3.5 Termination 

It is natural to ask then what is t.he use of t.he defmit.ion of SLDNF-resolution given in Sect.ion 3.2. 

To show its usefulness we HOW consider the issue of tefluination which cannot be handled using 

K unen J s approach. 

Definition 3.16 (Terminating program) A program is called termina.ting if all its SLDNF

trees for ground queries are finite. 0 
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Of course, in general one is actually interested in proving termination of a given program not 

only for all ground queries but also for a class of nonground queries constituting the intended 

queries. The approach to prove termination discussed here allows us to identify for each program 

such a class of non ground queries. To characterize tenninating prograll1S, following Cavedon [29J 

and Apt and Bezem [4] we introduce the following notions. 

Definition 3.17 (Acyclic program) 

• A level mapping for a program P is a function I I : B p -> N of ground atoms to natural 

numbers. For A E Bp, IAI is the level of A. 

• Given a level mapping II, we extend it. t.o ground negative literals by put.ting I,AI = IAI. 

• A clause of P is called acyclic wilh respecl. to a level mapping I I, if for every ground 

instance A ~ K, L, L of it 

IAI > ILl· 

• A program P is called acyclic with respect. to a level mapping I I, if all it.s clauses are. P 

is called acyclic if it is acyclic with respect. to SOllle level Iuapping. 0 

Definition 3.18 (Boundedness) 

• A literal L is called bov.nded with respect to a. level mapping I I, if I I is bounded on the set 

[LJ of ground instances of L. For L bounded w.r.t. II, we define ILl, the level of L w.r.t.. 

I I, as the maximum I I takes on [L J. 

• A query is called bounded wilh respect to a level mapping I I, if all its literals are. For 

Q = Ll,· .. ,L" bounded w.r.I·.II, we define IQI, the level of Q w.r.t.ll, as the multi set 

bag(iL11, ... ,IL"I). 0 

The following result explains why bounded queries are relevant:. 

Lemma 3.19 (Finiteness) Let P 

SLDNF-tree for P and Q is finite. 

be an acyclic program a.nd Q a bounded query. Then every 

o 

This leads to the following conclusion. 

Corollary 3.20 Every acyclic 1'rog"/"(Im i, terminnling. o 

Further work on this subject Was done by Ross [149J and on terlllination of progranls w.r.t. 

SLDNF-resolution with the leftmost. selection rule of Prolog by Apt and Pedreschi [6J. We return 

to acyclic progranls in Section 11.1. 

4 Program Completion 

4.1 Definition 

In first· order logic the soundness and completeness results equate the notions of seluantic and 

proof-theoretic implication: for every set. of form1llas T U {cp} we have 

T 1= cp iff T I- cp. 
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A similar result cannot be established for the SLDNF-resolution and the programs. Indeed, 

using SLDNF-resolution we can prove ground negative literals, but all of them are false in the 

largest Herbrand model of a program, Bp. 

Clark [39J proposed to solve t.his problem by strengtbening a program P to it.s completion, 

comp(P) and compare the SLDNF-resolution with comp(P). Int.uitively, in the completion 

the illlplications are replaced by equivalences. The fOrInal definition is a hit subtle, since this 

replacement has to be made at. the right. moment., and the equalit.y relat.ion has t.o be interpreted 

in an appropriate way. We recall here the definit.ion. 

First, aSSUlue that 4."=11 is a new binary relation SYIIlbol not appearing in P. We write s :f:. t 

as an abbreviation for -,(s == t). U=" is interpreted as identity in alllllodels. 

We perfornl successively the following steps, where Xl, ... J Znl ... are new variables. 

Step 1: Transform each clause p(t) <- L of Pinto p(x) f- x ~ tilL. 

Step 2: Transform each formula p(x),... F obtained in t.he previous st.ep int.o p(x) <- 3y F, 

where yare t.he variables of the original clause. 

Step 3: Let p(x),... 3yF" ... , p(x),.... 3yPk• be all formulas oht.ained in t.he previous step with 

a relation p on the left-hand side. Replace t.hem by one formula p(x) ,.... FJ V ... V Pk. If 

F, V ... V Fh is empty, replace it by trlle. 

Step 4: For each relation symbol q not. appearing in a head of a clause in P add a formula 

q(x) <- false. 

Step 5: Replace each formula p(x) f- F by Vx(p(x) <- F). 

Step 6: In each fonnula replace" i;- " hy " .--r n, 

Additionally, we add the following free equalit.y axioms, EQ, which enforce that the equality 

theory of comp(P) is the saHIe as that. of Herbrand universe: 

(1) f(x) = fly) -; x = y for each fundioll SYlllhol J, 

(2) f(x) i g(y) for all function symhols f and 9 such that fig, 

(3) x i t for each variable x and term t such that. x '" t. and x occurs in t, 

and call the resulting set of formulas comp(P). 

Additionally, we int.erpret ,,~" in all 2-valued and 3-valued interpretations as identity. This 

allows us to dispose of t.he usual equality axioms. 

4.2 Two-valued Model Theory 

While prograln cOlnplet.ion is a nat.ural concept in the case of positive prograrns) in the case of 

general prograills things dranlat.ically change) due to the following disturbing observation. 

Note 4.1 For P ~ {p <- ,p}, comp(P) is inconsist.ent.. o 

As inconsistent prograll1 corupletion allows us to derive arbitrary first·order fonnulas from 

the program, the above note seems to rule out. the use of program completion to model negative 

information. 

Before we discuss some ways of resolving this difficulty, it is useful to recall the immediate 

consequence operator Tp of Van Emden and Kowalski [169J which act.s on Herhrand interpre

tations of a given progranl. This operat.or plays an iIllportant role in the theory of positive 

progranls, 
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Definition 4.2 (Immediate consequence operator) For a program P and a Herbrand 

interpretation I for P we define 

Tp(I) 00 {H I j L (H ;- L E ground(P), IF L)}. o 

The following simple observation (originally made for positive programs) by Van Emden and 

Kowalski [169] explains the interest in this operator by characterizing the Herbrand models of 

P in terms of the operator Tp. 

Lell1ma 4.3 For every Herbra.nd interpretation I, IF P iff Tp(I) <;; I. o 

A bit more complicated argument (originally made for positive programs) by Apt and Van 

Emden [8J characterizes the Herbrand models of comp( P) in terms of the operator Tp. 

Lemma 4.4 (Fixpoint) FOT every Herbl"and interl'retation I, 1100 comp(P) iff Tp(I) 00 1.0 

For positive progranls Tp exhibits a very regular beha.viour -w.r .t. the set inclusion it is lnono

tonic (I <;; J implies Tp(I) <;; Tp(J)) and continuous (for every infinite sequence 10 <;; I, <;; ... , 
Tp(U;;"=o In) 00 U;;"=o Tp(I,,)). Thanks to the first property the least. Herbrand model Mp is 

the <;; -least fixpoint of Tp and thanks to the second property this model can be reached in w 

iterations of Tp starting with t.he empty Herbrand interpretation. 

For general programs both properties of Tp are lost. Indeed, consider again P 00 {p;- ~p}. 

Then Tp(0) 00 {p}, whereas Tp({p}) 00 {0}, so Tp is not monotonic and a fortiori not continous. 

Consequently, for general programs the well-known Knaster- Tarski theorem cannot be used to 

find a fixpoint of Tp. In fact, the fixpoints need not to exist: just take Tp for P 00 {p <- ~p}. 

A natural question is under what conditions cOlupletion is consist.ent. The following result 

was established by Sato [15:1]. 

Definition 4.5 (Call-col1sist.ent.) A program. is called call-consistent if no relation depends 

oddly on itself. 

Theorelll 4.6 If P is call-consistent, then comp(P) has a Herbrand model. o 

Further work on the subject. of consistency of comp(P) can be found in Kunen [88J, Cavedon 

[30) Cortesi and File [40], Cort.esi and File [41], Baratella [17) and Fages [60J. 

An alt.ernative solution is t.o use three valued logic. 

4.3 Three-valued Model Theory 

Fitting [61J proposed t.o use a 3-valued logic to provide semant.ics to programs and their com

plet.ions. The idea is that. a query can yield three outc01nes: it Inay succeed, it Inay fail, and it 

may also diverge. The t.hird value is meant. to capture the last possibilit.y. 

Fit.ting [61 J based his approach on a logic due to Kleene [83], in which 3 values are assumed: 

{O, ~, I}, 0 representing false, ~ representing unknown and 1 representing true. Assullle now 

a mapping II from Bp to {O, t, I}. To define the meaning of the programs we put for ground 

quantifier-free fannulas 

I~AI 1 - IAI, 

IA II BI min(IAI, IBI), 

IA,.....BI { ~ if IAI2IBI, 
if IAI < IBI 
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and identify the program with the set groltnd( Pl. Note that" <- " received here a 2-valued inter

pretation. (Actually in Fitting [61J t.he valuat.ion of" <- " is not used. The above interpretation 

differs from that of Kleene [83J and was later added in Przymusinski [130J.) 

For the moment the meaning of other connectives is not needed. When a ground formula 

evaluates to 1, we say it is true relative to 1 I, and when it evaluates to 0, we say it is false 

relative to 1 I· 
The mapping 1 1 can be conveniently presentee! in the form of a 3-valuee! Herbrane! interpre

tation. 

Definition 4.7 A pair I = (1+,1-), wit.h .T+,1- c;:; B p , is callee! a 3-valued Herbrand interpre

tation. j+ are at0111s assulued t.rue, and j- are at-anlS assulued false. 0 

For example when.T = ({A},{B}), then A and ,B are true in.T, B and ,A are false in I, 

and Cane! ,C are undefined in J. 

Definition 4.8 

• J is total if 1+ U J- = Bp, 

• .T is consistent if 1+ n J- = 0. o 

Note that every (2-valued) Herbrand interpretation J can be identified with the 3-valued, 

total, consistent Herbrand interpretat.ion (J, B p -1) in t.he sense that t.ruth and falsity coincides 

in both interpretations for all fornllllas. 

The following natural ordering 011 3-vaJued OIl Herbrand-interpretatioIlS 

1 c;:; J if I' J+ c;:; J+ and r c;:; r 

formalizes the int.uition: J contains more infonuation than I (detefIllines stat.us of 1l10r€ literals). 

This ordering is usually called "information ordering". Other natural orderings can be considered 

- see e.g. Section 7. 

Note that both truth and falsity behave monotonically w.r.t. the information ordering in the 

following sense. 

Lemma 4.9 Let 1 C J. Then Jo,. (J. 91'Ound query Q, Q is true (Jalse) in I implies that Q zs 

true (false) in J. 0 

These two implications do not hold for 2-vallled Herbrand interpretations and C interpreted 

as set-theoretical inclusion. Also, in contrast to 2-valued Herbrand interpretations, consistent 

3-valued Herbrand interpretations with the c.; ordering do not form a lattice. Indeed, if I and 

J are total and I oF J, then I U J does not exist. However, consistent 3-valued Herbrand 

interpretations do fornl a cpo, that is a partial ordering in which the limits of growing chains 

exist. This is sufficient for building 3-valued Inodels inductively. 

Following Fitting [61J we now introduce a 3-valued analogue of the Tp operator (originally 

denoted by <1? p), which acts on 3-valued Herbrand interpretations of a given prograrll. 

Definition 4.10 (Iuuuediate cOllsequellce operator) For a prograul P and a 3-valued 

Herbrand interpret.ation J for P we define 

T3p(1) = (1', F), 

where 

T = {H 13 L (H;- L E ground(P), L is true in In, 
F = {H I \j L (H <- L E g"ound(P) implies L is false in In· o 
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The following lemma summarizes the relevant. propert.ies of the T3p operator. 

Lenuna 4.11 

• If I consistent, then T3p(I) consistent, 

• T3p is monotonic, 

• In general T3p is not continuous. o 

Let us return now to t.he program completion. To define its meaning in 3-valued logic we 

need also to assign rneaning to disjunctioIl, equivalence and quantifiers. We do it as follows: 

IA V ill 

IA ;-; BI 

max([AI, IBI)' 

{ 
1 if IAI = IBI, 
a if IAI f IBI, 

so "oH>" as "f----.-" receives a 2-valued interpretation. The quantifiers are interpreted in the 

standard way. This definition allows us to det.ermine when a first.-order formula <P is true in an 

arbitrary 3-valued interpret.at.ion I, writ.t.en as J P3 <p. In analogy with the 2-valued semantics, 

we also use the P3 relation t.o stat.e t.hal. a forlllula is t.rue in all 3-valued models of a theory 

(e.g. comp(P) P3 Q). 
The Fixpoint. Lenulla 4.4 has a cOllnterpart for the :3-valued case. 

Lemma 4.12 (Fixpoint.) For cneTY HeTbmnd interp"etation I, I 1=3 comp(P) iff T3p(I) = I. 

o 

Consequent.ly, by Lemma 4.11 and the generalizat.ion of t.he Knaster- Tarski Theorem to cpo's 

we get 

Corollary 4.13 The ~-least fi"'point ofT:lp is a consistent 3-na.llled model of comp(P). 0 

For exaluple, for the progralll P ::::: {p.- ,p} we now get a 3-valued Illodel, naruely (0,0), 
in which every ground atOlll is undefined, and consequelltly in which p H 'p is true. Thus the 

3-valued logic approach offers a solut.ion t.o t.he problenl of possible inconsistency of cOIllpletion 

w.r.t.. 2-valued logic. 

A natural question is for which prograills the 3-valued and 2-valued seluantics of comp(P) 

coincide. An answer was provided by Kunen [88]. 

Definition 4.14 (Strictness) Consider a program P and a query Q. We say that P is strict 

w. r. t. Q if no relat.ion occurring in Q depends both evenly and oddly on a relation defined in 

the program. 

Theorem 4.15 (Equivalence) SlIppose that P is caU-consistent and P is si"ict w. r. t. Q. Then 

comp(P) 1=3 Q iff comp(P) 1= Q. 0 

It was shown by Dix [44] that t.he two-valued complet.ion semantics does not satisfy cautious 

monotonicit.y, but that. the three-valued completion semantics is rational. For the first st.atement 

consider the following program P = {q f-- '1'; q <- r; l' f-- q; l' <- r; r f-- d. Then comp(P) P 
{p,q,r} but comp(PU {p}) = Th({p,q;-, T}) [;f {q,r}. 

For a further discussion of t.he progranl cOlllpletion we refer the reader to Section 8. 
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4.4 Soundness and Completeness Results 

Let us relate now SLDNF-resolution and program completion. Clark [39J proved soundness of the 

SLDNF-resolution w.r.t. 2-valued semantics of program completion. In fact. (see Shepherdson 

[158J for a sketch and Doets [50J for a complete proof), soundness holds also w.r.t. 3-valued 

semantics. More precisely, we have the following result. 

Theorem 4.16 (Soundness) Given a program P and a. query Q we have 

• if Tis Q. c.a.s. far Q, then camp(P) 1=3 \f Qr, 

• if there is a finitely failed SLDNF-trce for Q, then camp(P) 1=3 \f 'Q. o 

A lot of effort has been devoted to establish some sort of completeness of SLDNF-resolution. 

Already Clark [39J noticed that when comparing SLDNF-resolution with camp(P) some restric

tions are necessary. For example, for P = {p <- g, l' <- ,g, g <- q} we have camp(P) 1= l' but no 

successful SLDNF-derivation exists. In this example p depends both positively and negatively 

on q. The definition of strict.ness was designed to avoid this type of situations. Cavedon and 

Lloyd [31J established a conjecture of Apt, Blair, Walker [9J and proved completeness of SLDNF

resolution w.r.t. 2-valued semantics of comp(P) for allowed P and Q such that P is strict w.r.t. 

Q and P is stratified (the concept to he introduced in Section 6). Independently Kunen [88J 

established t.he following stronger result. which refers to 3-valued s€Inantics. 

Theorem 4.17 (Completelless I) Suppose that P and Q aTC allowed. Then 

• if camp(P) 1=3 \fQB, then QRB, 

• if campi P) 1=3 \f--,Q, then Q E F. o 

A crucial lenulla for establishing this cOIllpleten€ss theoren), and nUlllerous generalizations 

of it discussed further in t.he t.ext, is the following result of K unen [87J which allows us to set up 

induction in a proper way. 

Lelnma 4.18 F01' every fi'f'sf.-ordcr formu.la <P 110t containing __ and ..---Jo we have 

camp(P) 1=3 ¢> ijjT3p r n 1=3 ¢> faT same finite n. o 

T3p i n denotes here the n-fold iteration of the operator T3p starting at the empty 3-valued 

interpretation (0,0). In this lemma non-Herbrand models of comp(P) are used in an essential 

way. Also, as not.ed by Shepherdson [158J this lemma critically depends on the existence of 

infinitely luany function SYlllbols (cQuuting constants as O-ary function sYlubols) 1 a property 

satisfied by the universal language adopt.ed in this paper. When t.he used language has only 

finitely function symbols the free equality axioms have t.o he appropriat.ely strenght.ened. 

Recently, Doets [50J provided a simpler presentation of it.s proof. See also Stark [161J for 

another proof. 

When comp(P) 1= \fQB (resp. comp(P) 1=3 \fQB) we say that B is a 2-valued (resp. 3-valued) 

correct answer substitution for Q. Addit.ionally, when QB is ground, we say that B is a ground cor

rect answer substituti01!. The Completeness I Theorem 4.17 in conjunction with Theorems 3.13 

and the Equivalence Theorem 3.15 implies t.hat 3-valued correct answer substitutions for allowed 

programs and queries are ground. Shepherdson [157J showed that this claim also holds for the 

2-valued case for allowed prograIlls whose c0111plet.ion is consist.ent.. 
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A problem with the above completeness result. is that, as already mentioned at the end of 

Section 3.3, the class of allowed programs is quite restricted and excluded many natural Prolog 

programs. So a natural question arises how to generalize the above completeness result. to a 

larger class of programs. This problem was studied by several researchers. 

By providing more general conditions prevent.ing floundering Decker and Cavedon [43] and 

Decker [42] generalized the Completeness I Theorem 4.17 to a larger class of programs. Cave

don [30] proved completeness of SLDNF-resolutioll for acyclic programs which subsumes an 

early result of Clark [39] who (essentially) proved completeness w.r.t. 2-valued completion for 

recursion-free programs which satisfy a syntactic condition which prevents floundering. Nu

merous other extensions of the Completeness I Theorem 4.17 were obtained by modifying the 

underlying computation mechanism, so the SLDNF -resolution. 

5 Proof Theory II: SLDNF-resolution Revisited 

We explained in Section 3.1 why in the definition of SLDNF-resolution only ground negative 

literals are allowed to be selected. In this section we discuss how this restriction call be irnposed 

or modified. 

5.1 Modifications of SLDNF-resolutiou 

An interesting theoretical alternative is to modify the SLDNF -resolution by allowing the selection 

of nonground negative literals under certain circumstances. Consider the following modification 

of the definition of SLDNF-resolution, already mentioned in Clark [39]. Let L = ,A be the 

selected literal of a query G. If there exist.s an empty c.a.s. for the query A, then G is marked 

as failed. If the subsidiary tree 87II1S( G) is defined and finitely failed, then G - {L} is the only 

child of G. In terms of Kunen 's definition (Definit.ion 3.14) this modification simply amounts to 

dropping in clauses R-) and F -) t.he qualificat.ion "ground". 

Call the resulting not.ion SLDNFE-resolution (for SLDNF extended). Then for the SLDNFE

resolution the Soundness Theorem 4.16 still holds. 

Shepherdson [156] further generalized this form of resolution by allowing a preliminary sub

stitution 0 to be applied to nonground negative literals when trying to build a finitely failed 

subsidiary tree. In terms of Definition 3.14 this modification amounts to changing the clause 

R-) to 

R'-) if A is an atom such that for some B, AB E F and (G, C')R<T, then (C, ,A, G')RO'O, 

and dropping the qualificat.ion "ground" in clause F -). He called this form of resolution SLDNFS 

(for SLDNF with substitution) and established its soundness in the sense of the Soundness 

Theorenl 4.16. Also, he proved its cOlllpleten€ss \V.r.t. a rather involved S€lnantics. 

Stark [162] observed that the same soundness and completeness results hold for simple gen

eralizations of SLDNF- and SLDNFS-resolution, called, respectively, ESLDNF- and ESLDNFS

resolution. In these resolution methods the qualification "ground" is dropped in clause R-) and 

clause F-) is replaced by 

F'-) if A is an atom such that for a renaming II for A, ARB, then (G, ,A, G') E F. 

He also studied tranSfOrIllat.ion of proofs ill t.he sequent calculus int.o proofs uSlng t.hese resolut.ion 

methods. 

Moreover Stark [1621 proved colllpleteness of ESLDNF-resolut.ion for a syntactically defined 

class of decomposa.ble prograllls which includes t.he positive progranls and allowed programs. As 
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allowed programs and allowed queries by Theorem 3.13 do not. flounder, the ESJ,DNF-resolution 

(with the selection of negative literals delayed until no more positive lit.erals are available) 

coincides with the SLDNF-resolut.ion. Consequently, this result generalizes the Completeness I 

Theorem 4.17. 

Recently, Stark [165] proved a much stronger and more natural generalization of the Com

pleteness I Theorem 4.17. The point. of depart.ure for St.ark is the observation that completeness 

depends on certain closure properties. 

Definition 5.1 Let C+ and C- be two set.s of queries. A program is called a (C+ ,C-) - program 

if the following conditions are satisfied, where io.,I.( P) denotes the set of all instances of clauses 

from P: 

(AI) If Q E C+ then QB E C+ 

(A2) IfK,A,M E C+ and A <-- L E in$I.(P) t.hen K,L,M E C+ 

(A3) If (,A 1 , • •. , ,AK) E C+ then for i E [1, A,] A; is ground and A; E C-. 

(Bl) IfQ E C- then QB E C-. 

(B2) If K, A, ME C- and A <-- L E in8t(P) then K, L, ME C-. 

(B3) If K, ,A, ME C- then A E C+ o 

The following result of St.iirk [165] explains t.he import.ance of t.his not.ion. Here yet another 

Illodification of the SLDNF-resolut.ioll is used according to which in Definition 3.14 clause F~) 

is replaced by F'-). 

Theorem 5.2 (Completeness II) Suppa8e tlwt P i$ a (C+,C-) - program. Then for a query 

Q 

• if comp(P) 1=3 VQII and Q E C+, t.hen. for 80111.£ $ubstitution u, QRu a.nd Qu is more 

geneml than Q8, 

• if comp(P) 1=3 V,Q and Q E C-, then Q E F. o 

This result generalizes the Completeness I Theorem 4.17 because for C+ = {Q 1 Q is allowed} 

and C- the set. of all queries we get. that an allowed program is a (C+ ,C-) - program and by 

Theorems 3.13 and 4.17 both comput.ed and 3-valued correct. answer substit.utions for allowed 

programs and queries are ground. Stark found a syst.ematic way of reducing previous com

pleteness results to t.he Completeness II Theorem 5.2 by means of modes, that is input/output 

specifications. 

Another modificat.ion was proposed by Di Pierro, Martelli and Palamidessi [119]. Their 

approach is based 011 a rule tenlled "negat.ion as instantiation" according to which in the case of 

SLD-resolution a query consist.ing of one (possibly nongrouncl) at.om fails if all t.he branches in 

the SLD-t.ree either fail or iW5t.ant.iat.e t.he at-Olil. This rule is t.hen incorporated int.o a resolution 

met.hod for general programs. The resultillg met.hod, called SLDNI-resolut.ion, was proved sound 

w.r .t. 2-valued S€Inantics of progranl cOlllplet.ion. 

Finally, let. us ment.ioll here Shepherdson [160], where an extension of t.he SLDNF-resolution 

with unification w.r.t. an equality is studied. 
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5.2 Prolog and its Variants 

Let us consider now Prolog. From the pure t.heoret.ical point of view it is an implementation 

of SLDNF-resolution with the leftmost. select.ion rule wit.h the except.ion t.hat. t.he selection of 

nonground negat.ive Iit.erals is allowed, that is /loundering is ignored. This leads to various 

difficulties. 

As already noted in Sect.ion 3.1, we obt.ain undesired conclusions for the program NUMBERS = 
{positive( x) +- ,zc,'o( x); zel'o( 0) +- }, as bot.h If x 'po.<it.;ve( x) and positive( t), for any ground 

terIn t different frmll 0, can be established. However) for its COlllplet.ion 

comp(NUMBERS) = {If x (po.<itive(>:);-; ,0c1'0(x)), Ifx (ze1'o(x);-; x = O} U EQ 

we do get. the int.ended conclusions, since comp(NUMBERS) 1= Ifx (po.<itive(x);-; x # 0). 

In turn, consider the following program SINK where G is a finite graph: 

p(a,b) +- for(a,b)EG, 

sink(x) +- ,p(x,y) . 

Then for a constant. G, t.he query .<in"{ n) succeeds iff for no b, (n, b) E G, t.hat. is iff ,3y p( a, y). 

On the other hand, t.he complet.ion interpretat.ion of t.he sink relation is: Ifx( sinl.,( x) ;-; 3y,p( x, y)). 

Thus for some programs t.he right. interpret.at.ion is provided by it.s complet.ion and for ot.hers by 

its cOlnputation 1l1€chanisI1l. In general, it is not clear whether to interpret the negative literal 

,A in a clause as 3y ,A or ,3y A, where y st.ands for t.he sequence of local variables of ,A. 

A natural solution is to find condit.ions which prevent selection of nonground negative literals 

in Prolog computations. This problem was st.udied by Apt and Pellegrini [7J and, independently, 

Stroetman [166J. Using the notion of modes they introduced a syntactically defined class of 

programs and queries for which they proved absence of /loundering w.r.t.. t.he SLDNF-resolution 

with the leftnl0st selection rule. 

However 1 it is useful to not.e that in SOJll€ restricted situat.ions the choice of nonground 

negat.ive literals does not lead to any complications. Naulely, the following result is a direct 

consequence of t.he soundness of SLDNFE-resolnt.ioll, where by SLDNF+ resolut.ion we mean 

SLDNF-resolut.ion with floundering ignored. 

Theorem 5.3 Given a positive prog1'Om. P and a geneml qu.ery Q we have 

• if P f- SLDNF+ If QT, then comp( P) 1=3 If QT. o 

The Soundness Theorem 4.16 st.at.es t.hat. SLDNF-resolution is sound for all safe selection 

rules, i.e. selection rules which never select a non ground negative literal. In MU-Prolog of Naish 

[113], a safe selection rule is used by delaying t.he nonground negat.ive lit.erals unt.il they becolne 

ground. In other words, MU-Prolog iIllpleIHent.s SLDNF-resolut.ion wit.h t.he "leftulOst adluissible 

literal" selection rule, where a literal is a(hnissible if it is negat.ive and ground, or positive. Even 

Ulore cOluplicated selection rules are allowed in NU -Prolog, the successor of MU- Prolog, of Naish 

[114J and in Godel, t.he language proposed by Hill and Lloyd [76J. In t.hese languages so-called 

delay control declarat.ions cause certain literals to be delayed until they become sufficiently 

instantiated. Liittringhaus-Kappel [99J provides a thorough theoretical account of such delay 

declarations. 

The rest.riction of the SLDNF-resolut.ion to the leftmost selection rule results in loss of 

completeness, even for very simple programs. Indeed, take P = {p +- p} and Q = p, q. Then 

comp(P) 1= ,Q, but. the only SLDNF-derivat.ion ofQ w.f.t.. the left.most selection rule diverges. 
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Still, some limited forms of completeness can be obtained here by restricting one's attention to 

terminating programs - see Apt and Pedreschi [6J and Stroetman [166J. Lately, anot.her aproach 

to this issue was proposed in Stiirk [163J - see Section 8.3. 

In Prolog negation can be applied to an arbitrary query, and not only to an atom, as in the 

SLDNF-resolution and its variants. Also disjunction can be used in queries and bodies of the 

clauses. Lloyd and Topor [94] (see also Lloyd [93]) modelled these syntactic extensions by means 

of a more general syntax in which the queries and bodies of clauses can be arbitrary first-order 

formulas. These generalized queries and programs can be interpreted by means of a syntactic 

transfOfluation which transfOfIllS thenl t.o a general query and a general progranl cOlllbined with 

the SLDNF-resolution. Lloyd and Topor [94] showed that. this transformation preserves program 

completion (which is defined for the generalized programs in the expected way). 

This syntactic extension of general programs allows us to deal properly with the program 

SINK discussed above - to enforce its right interpretation w.r.t. program completion it suffices 

to replace its second clause by 

sink(x) i- ,3p(x ,y). 

This extended syntax is used in the language Giidel of Hill and Lloyd [i6] mentioned above. 

5.3 Constructive Negation 

In SLDNF-resolution only positive lit.erals can generat.e a comput.ed answer substitution. In 

SLDNFS-resolut.ion negative literals can generate answers, as well. Unfort.unately, these answer 

substitutions need to be guessed and subseqnent.ly verified. Chan [34] suggested a modification 

of SLDNF-resolution in which nonground negative literals can be selected and can generate 

answers but, in contrast to the SLDNFS-resolution, these answers can be effectively computed. 

This way of using negative lit.erals is called constructive negation and the resulting fOrIll of 

resolution SLD-CNF-resolution. 

First, let us introduce the following helpful notation. For a substitution (} = {Zl/t 1, ... , zn!tn}, 

let iJ denote the formula 3Y(X1 = 1, II '" II Xn = In), where y is the sequence of variables from 

Ran(lI) - Dom(/I). 

The departure point for Chan's approach is the fol1awing property of SLD-resolution (essen

tially proved by Clark [39]). 

Consider a finite SLD-tree for a query Q. Let /1" ... ,Ilk be all c.a.s's for Q present 

in this SLD-tree. Denote by FQ the formula 0, V .,. V Ok. Then comp(P) 1= 
V(Q<->FQ ). 

Consequent.ly comp(P) 1= V( ,Q ;-; ,FQ), which suggests to interpret ,FQ as the computed 

answers generated by -.Q. 

There are two problenl~ which have 1.0 be solved for this interpret.ation. First, the fonnula 

,FQ cannot be int.erpret.ed as a set of subst.itutions any more. Thus it. has t.o be defined what 

it means to apply this formula t.o a query. Secondly, FQ is not always defined. To solve the 

first problem Chan [34] ext.ended the language of logic programs by allowing equalities s = t 

and inequalities V(s cJ t) in the queries and bodies of the clauses, and provided a normalization 

algorithm which transforms every formula of t.he form ,FQ to a disjunction of simple equality 

formulas, that is existentially quantified conjunctions of equalities or their negations. 

The second problem is that Chan's definition is based on the original definition of SLDNF

resolution due to Clark [391, according t.o which, as noted as noted in Section 3.2, for SOllIe 

24 



problematic cases no SLDNF-trees exists_ It. was adequately solved in Marchiori [103] who 

provided a formal definition of SLD-CNF resolution in the style of Apt and Doets [11]-

Chan [34] noticed that SLD-CNF-resolution is sound w.r.t. program completion (for the 2-

valued semantics). In particular, SLD-CNF-resolution allows us to treat correctly the previously 

mentioned program NUMBERS - the query positi1le(x) succeeds with the desired answer :r '" O. 

Marchiori [103] studied termination of programs w.r.t. constructive negation and among 

others proved completeness of the SLD-CNF-resolution for acyclic programs w.r.t. program 

completion for bounded queries. Further generalizations of constructive negation were proposed 

by Stuckey [167], and more recently by Drabent [51]. Both of them proved completeness results 

which subsume the Completeness I Theorem 4.17. 

6 2-valued Alternatives for the Least Herbrand Model 

In the case of positive logic programs the least Herbrand model of the program exists. This model 

enjoys a number of nat.ural properties. For example, it is the least pre-fixpoint of the operator 

Tp and also its least fixpoint. Consequently it is customary to view it as the standard model of 

the program. In the case of general programs the situation dramatically changes because there 

is no least Herbrand model. .Just take P = {p ~ 'q}. Then {p}, {q} are the only minimal 

Hebrand models but none is the least.. Thus by Lemma 4.3 Tp may have no least pre-fixpoint 

and at the end of Subsection 4 _2 we already noted t.hat. Tp may have no fixpoint. at all. 

So what is then the standard model of a general program? There is no generally agreed upon 

answer to this question. With this section we begin a review of some of the plausible answers 

suggested in the literat.nre. 

6.1 Stratified Programs and the St.andard Model 

Let us first agree on the desired properties of the natural IllOdel. Clearly, for every fact in 

the model we would like to have sOIlle explanat.ion why it. is there. The following definition 

suggested by Apt, Blair and Walker [9] and Bidoit and Froidevaux [21] aHempts to formalize 

this requireIllent. 

Definition 6.1 (Supported interpretation) A Herbrand interpretation I is called supported 

if 

A E I=}:3 L (A <-- L E ground(P), 11= L). o 

Intuitively, L is an explanation for A. We clearly have 

LeUlma 6.2 I is a supported ·m.odel of P iff Tp(I) = I. o 

Thus in view of the observation on the behaviour of the Tp operator we see that for sonle 

prograll1S no supported Illodels exist.. QIle possible approach is to accept. that sOUle prograllls 

have no natural, supported lllOdel and t.o ident.ify classes of prograIlls for which a "natural" 

supported model exists. 

The following notion was first considered in the context of database queries by Chandra and 

Harel [35] and was introduced in the area of logic programming by Apt, Blair and Walker [9] 

and Van Gelder [170]. 

Definition 6.3 (Stratified program) A program is called stTa-tifted ifno cycle with a negative 

edge exists in its dependency graph. 0 
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In other words, a progranl is st.ratified if no negati ve recursion, that is recursion "through" 

negation is used in it. For exaruple, the progranl P = {p t---- -'q, q t---- r} is stratified, whereas 

P = {p <- .p} is not. Note that every stratified program is call-consistent, but not conversely. 

The following equivalent formulation shows (.hat in a stratified program the use of negation is 

restricted to already known (i.e. defined) relations. 

Definition 6.4 (Stratification) Consider a program P. P = P, u ... U P" is called a strati

fication of P if for i E [1, nJ Pi uses 

- positively only relations defined in U~~, Pj, 

- negatively only relations defined in Uj~i Pj . 

PI can be eUlpty. For cOIlvenience, when SOllle relations used in P are not defined, we assume 

that they are defined (by the empty set of clauses) in P,. 0 

Lemma 6.5 A progmm is stmtified iff it admits a stmtification. o 

Note that a program can admit several stratifications. Following the intuition on the use of 

negation the following model was defined for stratified programs. 

Definition 6.6 (Standard model) Consider a st.ratified program P. Assume a stratification 

P = P, U ... U Pn' Denot.e by I I R. - the rest.riction of t.he int.erpretation I t.o relations in R.. 

Each Pi defines a set of relations rcl;. Define a sequence of Herbrand interpretations as follows: 

M, = the least model of P" 

M, = the least model of P, such I.hat. M2 Ird, M" 

Mn = the least model of Pn such that M" Ire/" ... ,"_' = M,,_,. 

We call Mp = Mn the standard model of P. o 

For example, consider P = {p <- ''1; q ~ r} and it.s stratification P = {q <- r} U {p <- .q}. 

Then M, = 0 and M, = Mp = {pl. 

The following result of Apt., Blair, Walker [9J explains why t.he model Mp is of interest.. 

Theorem 6.7 (Standard lllodel) Consider a. stratified pmgruUt P. Then 

• M p does not depend on the stmtifica.tion of P, 

• Mp is a minimal model of P, 

• Mp is a s1tpported model of P. o 

Thus, by the Fixpoint Lemma 4.4 completion of a st.ratified program has a Herbrand model. 

6.2 Locally Stratified Programs and Perfect Models 

Still, the above theorelll does not. uniquely charact.erize t.he standard rna del Mp since for SaIne 

stratified prograllls IllDre than one supporteel nlOelel exist.s. Just take P = {p t---- -'q; q t---- q}. 

Then both {p} and {q} are supported. 

To provide a unique characterization of the model M p , Przymusinski [128J introduced the 

notion of preferable models. Fix a program P and a well-founded ordering < on Bp. If A < B, 

then we say that A has a higher priority I.hon B. 
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Definition 6.8 (Perfect model) Let. M, N be Herbrand int.erpret.at.ions of P. We call N 

preferable to M, and writ.e N -< M, if for every BEN - M t.here exist.s A E M - N such that 

A < B. We write N ::< M if N = Mar N -< M. We call a Herbrand model of P perfect if there 

are no Herbrand models of P preferable t.o it.. 0 

Thus a perfect. model of P is a -<-minimal Herbrand model of P. The intuition behind 

these definitions is the following. N is preferable t.o M if it. is obtained from M by possible 

adding/removing some atoms and an addition of an atom (B) to N is always compensated by 

the simultaneous removal from M of an at.om (A) of higher priority. This reflects the fact that 

we are deterluined to minitnize higher priority atml1S even at the cost of adding atmlls of lower 

priority. A model is then perfect if this form of minimir,ation of higher priorit.y atoms is achieved 

in it. 

The following lemma clarifies t.he st.at.us of perfect models. 

Lemma 6.9 Let P be a pmgmm and < a. well-founded ordering on Bp. 

• Every perfect model of P is minimo/. 

• The relation liN is prefera.ble to M" is a partial order. o 

The standard model Mp of a stratified program P is related t.o perfect models by t.he following 

theorem of Przymusinski [128J. 

Theorem 6.10 Let P be a stratified pmgmm and let for A, B E Bp: A < B iff the relation 

symbol of B depends negatively on the relation symbol of A. Then M p is a unique perfect model 

of P. 0 

In other words, Mp is t.he -<-smallest Herbrand model of P. This t.heorem provides an 

alternative proof of the first clailll of the Standard Model Theorenl 6.7. Thus the notion of a 

perfect model t.urns out. to be t.he key concept. in assessing the charact.er of Mp. 

The previous result. immediat.ely suggest.s a generalizat.ion of the concept of stratification 

which was, again, proposed by Przymusinski [128J. He observed that some programs that are 

not stratified st.ill have an intuit.ively clear meaning. The standard example is the program EVEN: 

even (0) f-

even(s(X)) ~ ,even(X) 

The program EVEN is clearly not. st.ratified, as t.he relation even depends negat.ively on itself. 

Yet, if we consider all ground instances of the clauses of EVEN, then we see that no ground atom 

depends negatively on itself. In other words, if we consider the ground atOIlls as proposition 

symbols, t.hen t.he instant.iat.ed program is st.rat.ified (albeit infinit.e). A program that has this 

property is locally stmtified. 

Definition 6.11 (Local stratification) 

• A local strat~fication for a progranl P 15 a function stm.tu1n frOll1 Bp to the countable 

ordinals. 

• Given a local stratification st.rahl,Tn, we ext.end it. to ground negative literals by putting 

stmtm,,{ ,A) = S 1.1"0 1.11"". ( ;\) + 1. 
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• A clause of P is called locally stratified with respect. to a. local stratification stratum, if for 

every ground instance A c- K, L, L of it 

stratum( A) 2' stratum( L). 

• A program P is called locally stratified with respect to a local stratification, if all its clauses 

are. P is called locally stratified if it. is locally st.rat.ified with respect t.o some local strati

fication. 0 

LeITlITla 6.12 

• A n acyclic program is locally stratified. 

• A stratified program is locally stratified. o 

Inst.ead of comparing ground at.oms by t.heir relation symbols, a local strat.ification of a 

program P immediately induces a well-founded ordering on Bp. The following theorem, due 

to Przymusinski [128], shows that perfect models unambiguously define a semantics for locally 

stratified programs. 

TheoreITl 6.13 (Unique perfect model) Let P be a locally stmtified program and let for 

A, BE Bp: A < B iff stmtuln(A) < stmtum(B). Then P has a unique perfect model. 0 

It was soon realised, that. some programs are not. locally st.ratified but. still have a clear 

meaning. For example, we could rewrit.e t.he program EVEN to EVEN': 

even(X) c- zero(X) 

even(Y) c- sllccessor(X, Y), ,even(X) 

zero(O) <-

sllccessor(X,s(X)) ;-

(In this prograru, we can change t.he representat.ion of numbers without changing the clauses 

defining the relation even.) This program is no longer locally st.rat.ified, as 

even(O) <- sllccessor(O,O) "even(O) 

is an instance of the second clause. 

Of course, t.he premise sllccessor(O,O) of t.his inst.ance is false, but. that. is part of the 

semantics of t.he program, while (local) st.ratificat.ion is a synt.actic propert.y. There are two pro

posals for adapting local st.ratification and perfect. model semant.ics t.o capt.ure this phenomenon: 

weak stratification by Przymusinska and Przymusinski [123, 124J and effective stratification by 

Bidoit and Froidevaux [22J. 

For weak strat.ification, it. is observed t.hat. for each it.eration in the const.ruction of t.he model, 

only the next. lowest strat.Ulll must. be identified. The trut.h values obt.ained for the at.oms in this 

stratuln can then be used to discard clauses with false preluises. This in turn ruay renlove some 

dependencies, thereby allowing identificat.ion of t.he next lowest stratum. We omit the formal 

definition. For the progralll EVEN), the lowest stratulll consist.s of the zero- and successor

atolllS. Discarding clauses wit.h false zero- and successor-prenlises yields t.he (already locally 

stratified) program 

even(O) c- zero(O) 

even(s(X)) c- successor(X,s(X)) .,even(X) 

zero(O) <-

successor(X,s(X)) ~ 
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Theorem 6.14 (Przymusinska and Przymusinski [123, 124]) A loca.lly stratified program zs 

weakly stratified. 0 

Bidoit and Froidevaux [22J define the notion of effective stratification, which takes this ap

proach even further. As it is closely related to the (still to be introduced) well-founded models, 

we discuss it in Section 7. 

6.3 Well-supported or Stable Models 

In Section 6.2, we noted that, for a program P = {p <- ,q; q <- q}, bot.h {p} and {q} are 

supported models. However, the support fOf q is unfounded, in the sense that q is the explanation 

why q is true. So we would like to rule out the second supported model. The following approach 

of Fages [59J makes this idea precise. 

Definition 6.15 (Well-supported interpretation) For a query L, denote by pos(L) the 

sequence of positive lit.erals of L. A Herbrand interpretation I is called well-supported if for 

some well-founded ordering < on Bp 

A E I implies 3L(A ;- L E gronnd(P), 11= L, and B < A for B E pos(L». o 

Intuitively, I is well-support.ed if every A E I has an explanat.ion which does not use A. 

For example, for P = {p <- ,q; q <- q}, t.he model {p} is well-supported, whereas {q} is not. 

I! should be not.ed that. some programs have no well-support.ed models. Take for example 

P = {p <- q; p <- ,q; q <- p; q <- ,p}. Its only Herbrand model, {p, q}, is not well-supported. 

By using t.he intuit.ion of "rational beliefs" from autoepistemic logic, Gelfond and Lifschitz 

[68J introduced an important. notion of a st.able model. We begin with the following auxiliary 

notions. 

Definition 6.16 (Gelfond-Lifschitz transformation) For a query L, denot.e by neg(L) the 

sequence of negative literals of L. Let P be a program and I an interpretation. Let 

H(P,I) = {H;- pos(L) 1 H;- L E grollnd(P), 11= neg(L).} 

Now define 

fp(l) = MH(P,/)' o 

Thus H(P, I) is the positive prograIll obtained fr01I1 P by rerIloving all clauses that contain 

one or more negative literals that are false in 1, and by deleting all negative literals that are 

true in1. In turn, fp(I) is a Herbrand model equal to the least Herbrand model of the positive 

program H(P,l). 

Definition 6.17 

if fp(I) = 1. 

(Stable model) A Herbrand interpretation 1 of a program P is called stable 

o 

Gelfond and Lifschitz [68J explain the intuition behind the definition of a stable model as 

follows. Consider a "rational agent." wit.h a set. of beliefs I and a set of preluises P. Then any 

clause that has a literal-,A with A E J in it.s hody is use]ess, so it can be rellloved. Moreover, any 

lit.eral ,A wit.h A Ii! 1 is t.rivial, so it. can be delet.ed. This yields t.he simplified program H(P, I). 

If now I happens t.o he precisely the set. of at.oms t.hat. follow logically from this simplified set 
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of premises, then the set of beliefs J is stable. Thus st.able models are "possible set.s of belief a 

rational agent might hold". 

The following theorem of Fages [59] shows that the concepts of well-supported and stable 

models coincide. It was independently est.ablished by Elkan [57] for the case of propositional 

progranls. 

Theorem 6.18 Suppose tha.t J is a. model of P. Then J is sta.ble iff it is well-supported. 0 

Thus, a fortiori stable models of a program P are supported models and consequently, by 

the Fixpoint Lemma 4.4 they are also models of comp(P). The converse is in general not true 

(see the beginning of this section), but for certain programs the Herbrand models of comp(P) 

and stable models coincide. Namely, we have t.he following corollary to the above theorem, due 

to Fages [60] and, independently, Ben-Eliyalm [19]. 

Corollary 6.19 Suppose that no cycle with only pMil;"e edges e"isls in the dependency graph 

of P. Then the He'rbmnd models of com.p(P) coincide with the slaNe models of P. 0 

The following results of Gelfand and Lifschit.z [68] clarify the relat.ion bet.ween st.able models 

and the notions introduced in Sections 6,1 and 6.2. 

Theorem 6.20 (Unique stable model) Consider a. progmm P. Then 

• any stable model of P is a minim.al model of P, 

• if P is locally stmtified, then i.t has a uniq1le stable model which coincides with its perfect 

model considered in the UI/:ique pe'lfeel m.odel Theorem 6.13. 0 

In particular, if P is stratified, then by Theorem 6.10 it has a unique stable model which 

coincides with its standard Illodel Alp. Thus, siluilarly to the not.ion of a perfect IHodel, the 

concept of a stable model allows us t.o characterize the notion of a standard model for stratified 

prograrlls in a unique way. 

The second result also shows t.hat a sufficient condition for t.he existence of a stable model of 

a program is that it is locally stratified. Dung [53] proves that. call-consist.ency is also sufficient. 

More results can be found in Dung [53] and Fages [60]. 

7 Three-valued Alternatives for the Least Herbrand Model 

Stable nlodel seinantics allows Illore thall one st.able !llodel , or none at all. This reflects SOine 

uncertainty about the conclusions that should be drawn frOlll a prograrn. In SOllIe cases, a 

'local' uncertainty can dest.roy too IllliCh iIlfofIllation. For exalnple, if P is a stratified progralll 

in which the relation symbol l' does not occur, t.hen P U {p ;- .p} has no stable models. Thus 

the information cont.ained in P is not reflected in the st.able model semantics, alt.hough it is not 

related to the uncertainty about the trut.h value of p. 

Well-fou.nded semantics (WFS) avoids this problem, by producing one 3-vaZued model, in

stead of mult.iple 2-valued ones. In contrast. to Section 4.3, 3-valued logic (that is, a 3-valued 

interpretation of the connectives) is not. needed t.o obt.ain these 3-valued models. There are 

nUluerous characterizations of the well-founded seIllantics; we present here a few of thein. Apart 

froill the infoTlllation ordering ~ 011 3-valued interpretat.ions, as defined in Section 4.3, we SOlll€

times use the tr7/.th ordering: J is t.rut.h-less than] iff 1+ C;; ]+ and J- -;> ]-. 
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7.1 Iterated Least Fixpoint Characterization of WFS 

Suppose that one prefers the least. Herbrand model/closed world assumpt.ion (rat.her than the 

completion or classical negat.ion) t.o decide whether a negative literal holds w.r.t. a positive 

program. Then, given a general progralll, one can observe that regardless of the semantics of 

negative literals in cla'use bodies 1 SOllle atmlls HUlst be true in its selnantics (e.g., facts in the 

program), and some must be false (e.g., at.oms t.hat. do not. unify wit.h the head of any clause). 

One of the weaknesses of the proposals in Section 6 is, that such information is lost if no model 

is produced. When 'guessing' an interpretation t.o see if it is a stable model, we know what 

guess to make for those atoms. We can also use those at.oms to simplify the program, as in 

the example on weak stratification. As a result. of this sinlplification l luore atcrllS Iuay become 

certainly true or certainly false. 

If the truth value of all atoms can be decided in t.his way, t.hen the program is called effectively 

stl'atifiable by Bidoit. and Froidevaux [22J. If SOlne at.OIlIS reluain undecided, then we Illight start 

guessing, in order to find stable lllOdels. But: another interesting option is to stop just there, 

and to return a 3-valued Illodel. This IHodel shows which atDIlls are true, respectively false, 

regardless of the selnantks of negation, and which atmlls cannot. be decided in this way. It is 

called the well-founded model. 

The original definit.ion of the well-founded semantics is usually attributed to Van Gelder, 

Ross and Schlipf [66J. Here, we loosely follow the somewhat more const.ructive definition of 

Bidoit and Froidevaux [22J. Two significant.ly different. charact.erizat.ions of the well-founded 

nlOclel are presented in the next. section::". 

The first st.ep of our definition is to derive from a program P which atoms are certainly 

true, respectively false, in its seluantics. An atmll is certainly true, if it can be derived without 

using clauses that contain negative literals. An atOlll is possibly true, if it cannot be derived, 

even when ignoring all negative prelllises. An atOlll is certainly false if it is not possibly true. 

We collect the 'cert.ain' atOIus in a :~-valued interpretation 13( P), leaving the 'uncertain' atolns 

unknown. 

Definition 7.1 Let P be. a program. By p+ we denote t.he program obtained from P by 

deleting all clauses t.hat cont.ain a negat.ive lit.eral. By P- we denot.e t.he program obtained from 

P by deleting all negative lit.erals. Let. 13 (P) = (Mp+, Mp-). 0 

Here M denot.es the cOlllpleluent. of M w.r.t.. t.he set. of ground at.mus in t.he considered universal 

language, which is larger t.han t.he language [,p defined by P. 

Bidoit and Froidevaux [22J call M p+ the set of defined atoms (Def(P)) and M p- the set of 

potentially defined at.oms (Pot.Def(P)). Van Gelder, Ross and Schlipf [66J call the atoms in M p+ 

well-founded and Mp_ an unfounded set (see below). 

In this section, we use a simplification of a program W.r. to, a set of certain literals that 

differs from the Gelfond-Lifschitz transformat.ion (Definit.ion 6.16) in a significant way: not only 

negative literals, but also positive literals are considered for simplification. A generalization of 

Definition 6.16 t.o 3-valued interpret.ations is considered in the next section. 

Definition 7.2 Let P be a progralll and I it 3-vallled int.erpretat.ion. By P\I, we denote the 

program that. is obtained irom 91·ound( P) by deleting all clauses that cont.ain one or more literals 

that are false in J 1 and by deleting alJ lit.ct'als t.hat are true in 1. Furt.henIlore, 

iJop(1) = h(P\I). o 
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Lemma 7.3 (Przymusinski [130]) The iI>p-opemtor is monotonic w.r.t. the information order

~. 0 

This lemma implies that the least fixpoint of iI>p exists, and that it can be reached by 

iterating the iI>p-operator from (0,0), taking the pairwise union at limit ordinals. 

Definition 7.4 (Well-Founded model) 

well-founded model of P, W F M(P). 

The information-least fixpoint of iI> p is called the 

o 

As «P p is in general not continuous, III ore than w iterations are usually needed to reach 

the least fixpoint. However, if the number of atoms in the language is finite, say n, then the 

computation of W F M( P) in this way takes O(n') iterations, as shown by Van Gelder, Ross and 

Schlipf [66]. 

The original definition oHhe well-founded model by Van Gelder, Ross and Schlipf [66] slightly 

differs from this one. Inst.ead of iI> p, they define and iterate the operat.or 

Vp(I) = (the set. offads in (P\I)+, M(p\I)-)' 

Thus, the derivation of positive facts using Vp goes much 'slower' than using iI>p. Moreover, they 

define M(p\I)- in another, non-const.ructive way, namely, as the largest unfounded set, where an 

unfounded set is a set of ground at.oms U such that for all atoms A E U, all instances of clauses 

that conclude A have a premise in U (thus, if we assume the atoms in U to be false, no clause 

that could derive thenl reIuains applicable, which justifies the assuI11ption). 

The well-founded model is related to st.able models, and hence to the other models in Sec

tion 6, in the following way. 

Theorem 7,5 (Extension) (Van Gelder, Ross and Schlipf [66]) All sta.ble m.odels of a progmm 

extend3 its well-founded model. 0 

Corollary 7.6 If the well-founded model of a progmm is tota.!, then it is its unique staNe model. 

o 

The converse of this implication is not t.rue: the program {I' <- 'I'; I' <- 'q; q <- 'I'} has 

{I'} as its unique stable model, but its well-founded model is (0,0). But Theorem 6.14 implies 

that the well-founded model of a locally (weakly) st.ratified program is total. 

Corollary 7.7 The well-fomuled 'model oj a loca.lly stratified progmm coincides with its unique 

perfect model. 0 

We can now define the generalization of the notion of weak stratification, already lllentioned 

in Section 6.2, due to Bidoit and Froidevaux [22J. 

Definition 7.8 (Effective stratificat.ion) A program P is effectively stratifiable if W F M(P) 

is tot.al. 0 

Theorem 7.9 (Bidoit and Froidevaux [22]) A weakly stratified Jlrogmm is effectillel.y stratifiable. 

o 

3I.e., the well-founded model is lower in t.he information ordering than any stable model. This notion of 

extension should not be confused with anot.her ont": 8- semantics 5 defined for a class of programs P is sometimes 

said to extend a semantics 5' defined for a smalier class p' ~ P if 5 and 5' coincide on P'. To avoid confusion, 

we shall not use the word 'ext.end' in this sense. 
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7.2 Stationary Models and Stationary Expansions 

In this section we present an alternat.ive characterization of the well-founded model, due to Przy

musinski [136], which relies somewhat more on 3-valued logic, but stays closer to the definition 

of stable models. Moreover, this characterization also suggests other interesting 3-valued models 

of the program, which ext.end t.he well-founded model. 

Definition 6.16 presents a function H(P,I) that simplifies a program P wit.h respect to a 2-

valued int.erpret.ation I. In fact, this funct.ion replaces each negat.ive literal in t.he program by the 

truth-value it has in the interpretation. The result. is a positive program, except that the logical 

constants true and false occur in it. When considering the S€lnantics of such a prograrrt, i.e., 

its least Herbrand model, the constants true can be ignored. A constant false in a clause body 

means, that this clause is never applicable, so the whole clause can be ignored. By syntactically 

removing the parts of the program that can be ignored, we bypassed the introduction of the 

logical constants, and defined t.he result of the function t.o be a positive program. 

It is straightforward to generalize this fundion so that it simplifies a prograrn with respect 

to a 3-valued int.erpret.ation. The result. is a positive program, in which t.he constants true, 

false and unknown occur. We can get. rid of the constants true and false again, but the 

constants unknown relllaill. This is not. a prohleIu: the tru.th-Ieast partial Herbralld Blodel of 

such programs is well-defined. 

Definition 7.10 (u-program) A "-program is a positive program in which the constants 

true, false and unknown may occur. M 3 (P) denotes the truth-least 3-valued Herbrand model 

of au-program P.' 

Let P be a program and I a :l-valllecl interpretation. The u-program H3 (P,I) is obtained 

from ground(P) by replacing every negative literal in P by the truth value it. has in I. 

o 

Analogously to the stable IlIOdcls of Sect.ion 6.3, the fixpoints of r3P are considered as possible 

'meanings' of the program P. PrzYlllUsinski called these models partial, extended or 3-valued 

stable models, or stationary models [133, 136, 135, 127, 1381. From now on, we shall refer to 

them as stationary models; by 'stable models' we shall always mean 2-valued ones. 

Definition 7.11 (Stationary model) Let P be a program. 

3-valued Herbrand int.erpret.at.ion I such t.hat. r3P(I) = I. 

A stationa.ry model of P is a 

o 

In contrast to stable rlloclels, each progrmll has at least one stat.ionary rHodel. Moreover, 

the set of stat.ionary nlOdels of a program has all inform.alion-least. elelllent., which happens to 

coincide wit.h t.he well-founded model. 

Theorem 7.12 (Least stationary model) (Przymllsinski [136]) Let P be a program. The 

information-least stationa.ry model of P exists and coincides with W F M (P). 0 

If I is a 2-vallled interpret.ation, t.hen r3P(I) obviously coincides with rp(I). Thus all stable 

models of a program are also (information-maximal) stationary models of it. This clarifies the 

Ext.ension Theorenl 7.5. 

4Note that MJ(P) coincides wit.h h(P), if we get. rid of occurrences of true and fal~e as before, and treat 

occurrences of unknown as negative lit.erals. 
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Instead of considering the infoflHation~ min1:mal stat.ionary lllodel, we can also consider 

infonnation-maximalones as plausible 'belief states' associated with the prograln. AlIlong these 

are the stable models of a program, if it has any. But, while the stable model semantics of 

a program is easily destroyed by local 'impossibilities', maximal stationary model semantics is 

lunch more robust. A local iInpossibility siInply Ineans that SOllle atolns relnain unknown in 

all models; it does not affect the (global) existence of the models. 

Neither the definition of a stable tHodel or of a stationary tuodel is constructive-it involves a 

"guess" of an interpretation which is then checked whether it is a stable, respectively, stationary 

model. Sacca and Zaniolo [150J characterized all stable models by means of fixpoints of a 

backtracking operator which generates all stable models of a program. This work was further 

extended and generalized by Teusink [168], who characterized all st.ationary IllOdels by IHeans 

of fixpoints of another nondetefluinistic, non-lllOnotonic operator. 

The following characterization of stationary models, proposed by Przymusinski [126], stays 

within 2-valued logic. First we identify a program with the program obtained by replacing every 

occurrence of a negative literal ,A by the new atom noLA. This gives a positive program, in 

which the atoms of the form noLA occur only in the bodies of clauses. A stationary expansion 

is obtained by adding to such a program a suitable set of noLA atoms: these fully determine a 

stationary model. 

Definition 7.13 (Stationary expansion) Let P be a positive program with noLA atoms in 

bodies of clauses. Let C be a set of noLA atoms. 

• A Herbralld interpretation for P is a set of atOllls (containing both ordinary atOlIls and 

noLA atoms, in general) . 

• 
• By the minimal models of PuC, we mean the Herbrand interpretations that are minimal 

w.r.t. set inclusion for the ordinary atoms (but not necessarily w.r.t. nOLA-atoms) among 

those interpretations I that satisfy: 

11= PuC (in the classical sense), and 

if PuC 1= A, then noLA r;. I. 

• For a negative literal ...,A, PuC I=min ...,A if ...,A is true in all IniniIualIIlodels of PuC. 

• A stationary expansion of P is a consistent. theory E(P) which satisfies 

E(P) = Pu {noLA 1 E(P) I=min ,A}. 

• The least stationary expansion of P is called its stationary completion. o 

Theorem 7.14 (Correspondence) (Przymtlsinski [126]) Let P be a program. There is the 

following one-to-one cO'1''1'espondencc between station.ary 'models and sta.tionary expansions of P. 

• If M is a stationary model of P, then P U {noLA 1 M 1=3 ,A} is a stationary expansion 

of P. 

• If E(P) is a sta.tionary e>'pansion of P, then {A 1 E(P) 1= A} u {,A 1 E(P) I==in ,A} ts 

a stationary model of P. 

In this way, the well-founded model of P corresponds with the stationary completion of P. 0 
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The information-least stationary model (i.e., the well-founded model) of a program can be 

computed by iterating f3P from (0,0). This corresponds to the following theorem. 

Theorem 7.15 (Przymusinski [126]) Let P be a program. 

Let Po = P. 

For a successor ordinal a + 1, let Pa+1 = Pa U {noLA I Pa I=min ,A}. 

For a limit ordinal {3, let P{3 = Ua<>l Pa. 

The sequence Po, P" ... , Pa , ... has a fixpoint which coincides with the stationa.ry completion of 

P. 0 

We shall discuss a generalization of stationary expansions to the class of general disjunctive 

programs in Section 10.3. 

7.3 The Alternating Fixpoillt Characterization of WFS 

Yet another characterization of the well-founded model is the one given by Van Celder [65J. It 

is based solely on 2-valued interpretat.ions, which only in t.he end are combined into a 3-valued 

model. 

As observed by Van Celder [65], fp is an antimonot.onic operat.or (on 2-valued interpreta

tions, thus w .r.t. the truth ordering). Thus r~, i.e., fp iterated twice, is Inonotonie and, on the 

lattice we work on, has a least. fixpoint., say Ip. Then fp(Ip) is t.he great.est fixpoint of f~. 

Theorem 7.16 (Alternating fixpoint I) (Van Celder [65]) Let P be a program. Then the 

least fixpoint I p of f~ exists and 

WFM(P) = (Ip,fp(Ip». o 

The Ext.ension Theorem 7.5 is also a corollary of this t.heorem. 

more general version of t.he Alternat.ing fixpoint. Theorem 7.16. 

The following theorem is a 

Theorem 7.17 (Alternating fixpoint II) (Przymusinska and Przymusinski [121]) Let P be 

a program and I a 2-lIalued interpretation. (I,fp(1) is a stationary model of P ifff~(I) = I c: 
fp(I). 0 

Note that, for P = {p;--- 'I'; q;--- ,q}, fp oscillat.es between {I'} and {q}, but that there 

is no corresponding stationary model, because the interpretations ( {p}, {q}) and ( {q}, {p}) are 

inconsistent.. 

Such pairs of interpret.ations are generalized to finite sets by Baral and Subrahmanian [16J. 

Definition 7.18 (Stable class) Let P be a program. A 

(2-valued) interpretations A such that A = {fp(1) I I E A}. 

stable class of P is a finite set of 

o 

If a program P has a stable model M, then {M} is a stable class of P. An interpretation I 

is a fixpoint of f~ iff {I, fp( 1)} is a stable class of P. 

This approach of Van Celder has been generalized in another direction by Fitting [62J, namely 

to the case of programs interpreted over 4-valued models, or more generally, bilattices. 
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7.4 Properties of the Well-Founded Semantics and its Extensions 

Well-founded semantics has as a drawback, that it does not infer all atoms that one would expect 

to be true. Consider for example the program P = {p <-- ,q; q <-- ,p; r <-- p; r <-- q}. It has two 

stable models: p is true in one and q in t.he ot.her. In bot.h p V q, and t.herefore r, is true. Yet r 

is unknown in the well-founded model. 

Numerous semantics have been proposed that. ext.end t.he well-founded semantics: WFS I
, 

WFS+ and EWFS by Dix [46], GWFS by Baral, Lobo and Minker [13], WFSc by Schlipf [154J 

(equivalent to WFS+), WFS E by Hu and Yuan [77], WFSs by Chen and Kundu [36J and finally 

the O-semantics by Pereira, Aparicio, and Alferes[118J. The properties of these semantics were 

investigated in Dix [48J and Dix [49J. 

Theorem 7.19 (Properties) Dix [48, 49J 

• The well-founded semantics, W F 51 and W F 5+ are rational. 

• EWFS and O-semantics aTe cautious, bu.t not rational. 

• EWF5, WF5E and WF5s do not sa.tisfy the cut-rule. 

• G WF5 is not cautious a.nd moreover does not satisfy the Principle of Partial Evaluation. 

o 

8 Program Completion Revisited 

In the previous two sections, we have defined s€Iuantics for negation by lueans of canonical 

models: stable models and well-founded models. The quest.ion arises whether these semantics 

can be characterized by SOllIe forIlI of cOIupletioll as well ~ the stationary cOlupletion (Defini

tion 7.13) is technically a logical theory, but, as all negat.ive conclusions are st.ated as facts, it. is 

still very close to a Illoclel. Wallace [172) answered this question affinllatively. In this section we 

summarize his results, which are obt.ained by defining t.wo simple program t.ransformations, and 

considering the cOlllplet.ion of the transforl11ed progranls. Then we discuss briefly recent results 

of Stark [164, 163J. 

8.1 Tightened Completion 

The standard program complet.ion, as discussed in Sect.ion 4 results in a "loose" int.erpretation 

of negation, corresponding to t.he negation as finite failure rule (the Soundness Theorenl 4.16 

and the Completeness Theorem 4.17). In order to obtain a "tight." int.erpret.at.ion of negation, 

Wallace encoded the it.erations of the 7'p-operat.or int.o the program. 

Definition 8.1 (Tightened program) Let P be a program. The tightened program PT is 

derived from P as follows, where N is a variable: 

• The language of PT consist.s of Lp augment.ed with a new relat.ion symbol p of arity n + 1 

for every relat.ion symbol p of arity n in Lp. A new unary function symbol s is also added. 

• In each clause of P, the head p(t) is replaced by p(t, s(N» and each positive literal p(t) 

in the body is replaced by p(t, N). 

• For each relat.ion symbol p in Lp, t.he clause p(x) <-- p(x, N) is added. o 
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The tightened completion of a program P is defined as the completion of PT. The following 

result clarifies the relation between the stable models of a program and its tightened completion. 

Theorem 8.2 (Tightened completion) (Wallace [172]) The stable models of a program P 

are precisely the restrictions of the Herbrand models of comp(PT) to Lp. 0 

8.2 Rounded Completion 

As a special case of the previous theorem, one can observe that the tightened COlllpletion of a 

program is inconsistent if and only if the program has no stable models. 

One of the lllotivations for considering 3-valued nlOdels of the cOlnpletion in Section 4.3 

and well·founded semantics in Section 7 was avoiding inconsistency. The following program 

transformation, suggested independently by Drabent and Martelli [52] and Wallace [172], results 

always in a call-consistent prograIl1, thus by TheoreIll 4.6 its cmupletion is consistent. 

Definition 8.3 (Doubled program) Let P be a program. The doubled progmm (called split 

progmm in [52]) PD is derived from P as follows . 

• The language of PD consists of L p augmented with a new relation symbol pi of arity n for 

every relation symbol p of arity n in Lp . 

• Each clause of P is replaced by two new clauses: 

in the first clause, each occurrence of a relation symbol p in a negative literal is 

replaced by p'. 

in the second clause, each occurrence of a relation sYlnbol P in a positive literal or 

the head of a clause is replaced by p'. 0 

The doubled completion (called strict compldion in [52]) of a program P is defined as the 

cOlupletion of PD. There is a close connection between the doubled cmllpletion of a progranl 

and the 3-valued interpretat.ion of it.s st.andard cOlnpletion. 

Theorem 8.4 (Doubled completion) (Drabent. and Mart.elli [52]) Let P be G. program and 

L and atom or G. ground negative literal. Then 

comp( PD) 1= L iff comp( P) 1=3 L. o 

The tightening and doubling program transformations are ort.hogonal: (PT)D = (PD)r is 

called the rounded program derived from P; it.s completion is called t.he rounded completion. 

The following result clarifies t.he relation between the well-founded model of a program and its 

rounded completion. 

Theorem 8.5 (Rounded completion) (Wallace [172]) The well-founded model of a program 

P consists exactly of those ground literals from Lp that G.re true in all Herbrand models of the 

rounded completion of P. 0 

Intuitively, one can explain t.his relation between the rounded completion of a program and its 

well-founded model through the alternating fixpoint characterization of the lat.ter. We can split 

a Herbrand model of t.he rounded completion int.o two sets, one cont.aining the dashed atoms, 
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the other the un dashed at.mus. By rernoving t.he dashes in the first. one, two int.erpretations are 

obtained. It can be easily seen that rp oscillates between them. 

Finally, Wallace describes yet another completion, the full completion of a program, which 

is obtained from the rounded completion by dropping the free equality axioms, and adding, for 

each relation p, the induction axioru 

,p(x, 0) /I V N( 'p(x, N) --> ,p(x, s( N))) --> V N ,p(x, N). 

The result is that the effect of the count.er in the t.ightened program is weakened: a loop 

still leads to failure, but an infinite descending chain does not.. For example, t.he full completion 

of the program {p(f("')) <-- p(,,)} ent.ails ,p(t.) for each ground term t, but. it does not entail 

Vz p(z), as there exists a 1110del wit.h infinit.ely Iuany individuals aI, az, ... such that., for all i, 

ai = f(ai+,). This semantics coincides wit.h the one presented by Van Gelder [170J. 

8.3 Other Approaches 

We conclude this section by mentioning t.wo other modifications of completion, proposed by 

Stark. The first one is called pa.'!'tial completion. As in the definition of a doubled program 

(Definition 8.3) for each relat.ion symbol l' a new relation symbol 1" of the same arity is intro

duced. The relat.ions 1" are used in a modified Step 6 of building the completion. Now instead 

of replacing" <-- " by " H " t.he formulas Vx( ~ p(x) <- ~ F) are added. Here ~ behaves like 

the classical negat.ion with the exception that. ~ p(t) is p'(t) and ~ p(t) is p'(t). 

The resulting theory is called pa'l'tcomp( P) for part.ial completion. The usual completion 

is obtained by adding the axiom Vx(p'(x) H ,p(x)) for each relation p. Stark [164J showed 

that the Completeness II Theorem 5.2 holds when comp(P) 1=3 is replaced by partcomp(P) 1=. 
This result generalizes Theorem 5.2 because Stark also showed that for all queries Q we have 

partcomp(P) 1= VQ iff comp(P) 1=3 VQ and partcomp(P) 1= V ~ Q iff comp(P) 1=3 V'Q. 
Then, in Stark [163] a nlOclification of this approach dealing with Prolog is proposed. To 

this end the SLDNF-resolution with the leftmost selection rule is related to a theory called 

lcomp(P). This theory is a modification of comp(P) obt.ained by introducing for each relation 

syrnhol p three new relat.ion sYlubols: pS, pi and pt., wit.h t.he intuitive rueaning up succeeds", 

"1' (finitely) fails" and "1' terminat.es". lcomp(P) is built in a similar way as partcomp(P), but. 

now the construction involves t.hree operat.ors, S, F and T, which t.ransforIll the queries of the 

original language into formulas of the enriched language which includes the relation symbols 1", 

pi ,pt A typical and crucial law is F( L, /I 1 2 ) = F 1, V (T L, /I F L 2 ), which intuitively expresses 

when the query L" L2 finitely fails w.r.t. the SLDNF-resolution wit.h the leftmost selection rule. 

The corresponding result connects this resolution method with (comp( P) in a way analogous to 

the Completeness II Theorem 5.2. This generalizes in an essent.ial way a completeness result of 

Stroetrllan [166], where only terIuinat.ing progranls are considered. 

9 Proof Theory III: SLS-resolution 

SLS-resolution is a modified version of SLD-resolution that can deal with st.ratified programs 

rather than just. definite (i.e., positive) programs (hence t.he second'S' replacing the 'D'). In 

fact., similar resolution met.hods for all general programs are also called SLS-resolution. First 

we present t.he definition for strat.ified programs clue t.o Przymusinski [125J (or more precisely a 

mild generalization to locally stratified programs adapted from Bol [24]). 

The main difference with SLDNF-resolut.ion is, that the computation-oriented negation as 

finite failure rule is replaced by the nlOre idealistic negation as (not necessarily finite) failure rule. 
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As a consequence, SLS-resolution is not effective: an implementation can only approximate it. 

In contrast, SLDNF-resolution can be implemented, but not in a straightforward way: the sets 

of SLDNF-successful and finitely failed queries are recursively enumerable, but. not by building 

SLDNF-trees via all (possibly infinitely many) selection rules. 

Example 9.1 (SLDNF versus SLS-resolution) Let. P = {p <- ,q; q <- ,I", ,S; I" <- 1"; 

S <-}. For the query p we have the following t.rees (where needed, selected literals are underlined; 

=- denotes the subs relation between nodes and trees). 

p 

I 
-,q ==? q 

I I 
o -,1', -'S ==? s 

fail 
.1" o 

I" 

SLS-tree 

unsuccessful SLDNF-tree successful SLDNF-tree 

p 

I 
,q =-q 

I I 
o -,1', -'8 ==> l' 

I" 

fail 

o I" 

SLS-tree 

We see (in the middle pict.ure) that. using t.he right.most. selection rule yields a finite and 

successful SLDNF-tree, which is also an SLS-tree. But. using t.he leftmost. selection rule yields 

an infinite and unsuccessful SLDNF-t.ree (left picture). Thus the value of the completeness 

results for SLDNF-resolution, stating the c"istence of a successful SLDNF-tree, is limited. The 

rightIllost picture shows that. the SLS-t.rec via t.he leftmost selection rule is successful, although 

infinite. 0 

9.1 SLS-resolution for Locally Stratified Programs 

We now provide a formal definition of SLS-resolution, for locally stratified programs using the 

concepts introduced in Section 3.2 when defining SLDNF-resolution. 

Definition 9.2 (Stratum) Let P be a program that is locally stratified w.r.t. stmtum. 

• For an at.OIll A, not. necessarily ground, we define 

stmtu.m( A) = Mlp{ st.,.".tum.( Ag) I Ag is a ground instance of A}, 

• For a negative literal ,A, not necessarily ground, we define 

stl"a.tum( ,A) = stmtllm(A) + 1, 

• We define stmtll.m( D) = 0 and for a query Q = £" ... , £" (n > 0), 

stratum.( Q) = ma,,{ stmtllm( £;) liE [1, n]}. o 

39 



Definition 9.3 (SLS-tree) An SLS-tl'ee is a forest. F, whose nodes are (possibly marked) 

queries of (possibly marked) lit.erals. (The markers are t.he same as in SLDNF-trees.) The 

function subs assigns to nodes containing a lllarked negat.ive grounclliteral ,A a tree in :F with 

root. A. 

A tree is successful if it. has a leaf marked as success. A tree is floundered if it has a leaf 

marked as floundered. Hence a tree may be both successful and floundered. A tree is failed if it 

is neither successful nor floundered. 

Let P be a locally stratified program and R a selection rule. For every query Q, we define 

the SLS-tree:F for P and Q via R by induction on stmtu17l(Q). The root of the main tree T of 

F is Q. For a.ny node N in T we have: 

• If N is the empty query, t.hen N is marked as Success and has no children. 

• If R selects a posit.ive literal L in N, t.hen N has as children the nodes that are obtained 

by extending Tat. N in the sense of Definition 3.5. If no children can be obtained in this 

way, then N is marked as failed. 

• If R selects a negative literal ,A in N, then 

If A is nonground, then N has no children and is marked as floundered. 

If A is ground, then stratmn( A) < stmtum( Q), thus the SLS-tree (F', T', subs') for 

P and A via R is already defined. Then set subs( N) t.o T', extend subs by subs' and 

extend F by F'. 

* If T' is successful, t.hen N has no children and is marked as failed. 

* Otherwise, ifT' is floundered, then N has no children and is marked as floundered. 

* Otherwise, T' is failed, and the resolvent (e, N - {,A}) is the only child of N. 

(Thus, in contrast to SLDNF-trees, finiteness of F' is not required here.) 0 

Definition 9.4 (Computed answer substitution) Let P be a locally stratified program 

and Q a query. Consider a branch in the main tree T of an SLS-tree for P and Q which ends 

with the enlpt.y query. I.et 01, .. ,,0' 11 be the consecut.ive substitutions along this branch. 

Then the restriction (01 ... 0'11) I Q of the com position ({1 ... 0:'1 to the variables of Q is called 

an SLS-computed answer subst.itwtion (Cl/.. s. for short) for Q in T. 0 

We saw in Section 4.4 that. SLDNF-resolut.ion is sound W.r.t. the program completion, 

comp{P). A natural question arises: w.r.t. which semantics is SLS-resolution sound? The an

swer was provided by Przymusinski [1251 - it turns out that SLS-resolution is a proof-theoretic 

counterpart of the perfect model semantics. More precisely, he established the following results. 

Theorem 9.5 (Soundness) Let P be a locally stmtified program, Q a query and R a selection 

rule. Let Mp be the unique perfect Herbrand model of P. Consider the main tree T of the 

SLS-tree for P and. Q via R. 

• If T is a c.a.s. fa'l' Q in T, then Mp 1= VQT, 

• if T is failed, then Mp 1= V'Q. 

Corollary 9.6 SLS-resolutian fa'l' locally stratified programs is also sound w. r. t. the 

stable model s€rnantics a.nd well-fou.n,ded senw,ntics. 
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Theorem 9.7 (Completeness) Let P be a locally stratified program, Q a query and Rase· 

lection rule. Let Mp be the unique perfect model of P. Consider the main tree T of the SLS-tree 

for P and Q via R. Suppose T doe, not flounder. 

• If Mp 1= '1QT, then there i, a c.a.s. a faT Q in T such tha.t Qu is more genera.l than QT, 

• if M p 1= '1 ,Q, then T is failed. o 

Corollary 9.8 SLS-resolution faT locally stratified programs is also complete in the absence of 

floundering w.r.t. the unique stable model semantics and well-founded semantics. 0 

9.2 SLS-resolution for General Programs 

Although its name suggests that. SLS-resolution can only be used for stratified programs, several 

proposals for top-down comput.ation of the well-founded semant.ics are also called SLS-resolution. 

The ones we found in the lit.erature, which we discuss in t.his section, all have the disadvantage 

of requiring a positivistl:C selection rule. This 11leanS that. a negative literal is selected only if no 

more positive lit.erals are available. 

Przymusinski [130J observed that. (a suit.able variant of) the iterated least fixpoint definition 

of the well-founded semantics suggests a dyna.mic stratification of the program: if a ground atom 

A is decided (becomes true or false) in it.erat.ion n, then n is the dynamic strat.um of A. An 

SLS·derivation for an atolll A in strat.Ulll 0: is defined by induction on 0: and consists now of two 

phases. 

In the first phase, positive lit.erals are selected, and t.he derivation proceeds like an SLD

derivation. This derivation fails if it. is finit.ely failed or diverges. If the derivat.ioll does not fail 

in this phase, then it ends in a query wit.h only negative literals (possibly none). 

In the second phase, ground negative lit.erals ,B for which the stratum of B is less than n 

are selected one by one. By induction 011 st.ratUIll, the SLS-tree T for B is already defined. This 

case is handled as in Definition 9.3: 

• if T is contains the empty query, then the derivation fails, 

• otherwise, if T cont.ains a floundering derivat.ion, t.hen t.he derivat.ion flounders, 

• otherwise, IE is rel11oved; t.he derivation continues with the rel11aining negat.ive literals. 

If the derivation corllpletes both phases, then there are t.hree possible outcornes: 

• if the derivation ends in t.he elupty query, then it is successful, 

• if the derivation ends in a query containing a nonground negative literal, then it flounders, 

• otherwise, t.he derivation ends in an lIndefined leaf. 

In addition to the ineffective negation as failure rule, here also the criteria for the selection 

rule seelll to be very ineffective: how can we COIIlpare the strata of atolllS without cornputing 

their truth value in the well-founded mode]? Przymusinski remarks ([130], Remark 9.1) that 

the requirelIlent translates into ~IlO negat,jve recursion is allowed in the derivation'. Thus an 

interpreter itl1plelIlenting this fortH of resolut.ion lllay select a 'wrong' negative literal, find that 

it leads to negative recursion and ~backtrack' over t.he selection. A problelIl with this approach is 

that in this way, part of t.he search of the interpreter is not represented in the resulting SLS-tree. 
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In later versions [122, 140], a sequence of 'SLS-trees of rank a' is created, in which negative 

literals are decided on the basis of an SLS-tree of a one lower rank, if possible, and skipped 

otherwise. Skipping here means t.hat. anot.her literal is selected. The selection rule is not explicitly 

required to be positivistic, but. in the SLS-t.ree of rank 1, all negative selected literals will be 

skipped, thus the effect is that of a positivistic select.ion rule. (An SLS-tree of rank a. + 1 extends 

the tree of rank a only at its nodes that. cont.ain exclusively skipped negative literals.) 

Another hidden propert.y of this select.ion mechanism is that negative literals are effectively 

selected in parallel: for each of t.hem it. is t.ried at. each rank if it. can be resolved (until one fails, 

or until they have all succeeded). A posit.ivist.ic selection rule that is negatively pamllel (selects 

all negative literals at. once) is explicit.ly used by Ross [1471; it is called p,·efe,·entia/. 

Ross defines SLP-trees (the 'P' st.ands for 'Positivist.ic') as the result of the first phase 

described above. Then he defines Global SLS-resolution by means of global SLS-t.rees as follows. 

Definition 9.9 (Global SLS-Tree) A global t.ree r for a query Q has three t.ypes of nodes: 

• tree nodes, which are labeled by SLP-t.rees for intermediat.e goals, 

• negation nodes, which are labeled by a query wit.h only negat.ive lit.erals (possibly none), 

and 

• nonground nodes, which have no label. o 

The root of r is t.he SLP-t.ree for Q. 

Each tree node T in r e has as it.s children negation nodes: if Q is a leaf of T that cont.ains 

only negative literals, then Q is a child of Tin re. 
Each negation node Q = ,AI, ... , ,An (n 2: 0) has n children: for i E [1, nl if Ai is ground, 

then the child is a tree node, namely the SLP-tree for Ai, otherwise the child is a nonground 

=&. 0 

Every node in a global tree has a status: successful, failed, indetefluinate or floundered. 

Definition 9.10 (Status of nodes) Consider a glohal tree. 

• A nonground node is always /foundered. 

• A negation node is failed if one of its children is successful, 

sllccessfv.! if all it.s children are failed, 

floundered if none of it.s children is successful, 

and at. least one is floundered. 

• A tree node is failed if all its children are failed, 

successful if one of it.s children is successful, 

floundered if one of its children is floundered. 

• Nodes that are not assigned a st.at.us according to t.hese rules are indeteT1ninate. 0 

A tree node can be bot.h sllccessful and floundered, but no other pair of stat.us is possible 

for a single node. 

Definition 9.11 Let Q be a query. Let T be t.he root node of a global SLS-tree r for Q (thus 

T is an SLP-tree for Q). A successful branch of T is a branch that ends in a leaf labeled 

N, such that the corresponding negation node labeled N is successful. The computed answer 

substitution of a successful branch is, again, the composition of the consecutive substitutions 

along the branch, rest.ricted to the variables of Q. 0 
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Ross [1471 proved the following results. 

Theorem 9.12 (Soundness) Let P be a pTOgmm and Q a. query. Let r be a global SLS-tree 

for Q. 

• If B IS a computed answe,' substitution in r, then W F M( P) 1= II( QO), 

• if the root of r is failed, then W F M(P) 1= II( ,Q). o 

Theorem 9.13 (Completeness) Let P be a program and Q a· query. Let r be a non-floundering 

global SLS-tree for Q. 

• If W F M (P) 1= 3Q, then the root of r is successful, 

• ifWFM(P) F II(,Q), then the root ofr is fa.iled, 

• if W F M (P) 1= V( Q8) I then there is a. computed a HSUler su.bstitut£on (T in r such that Gu 

is more geneml t.han GO. 0 

9.3 SLS-resolution for General Programs VIa all Selection Rules 

In this section we present a definit.ion of SLS-resolution that deals with all general programs 

and all select.ion rules; it is new to the best of our knowledge. As the first step, we define oracle 

SLS-trees; in these trees we resolve seleded positive literals against program clauses, as usual, 

but ground negative literals are resolved by using the well-founded model as an oracle. Thus 

we elinlinate all negative recursion. The oracle produces one of the answers true, false and 

unknown. In order to record the last. case properly, substitutions luay be annotated by u in 

the following definit.ions. 

Definition 9.14 (Oracle SLS-tree) Let. P be a program and R a selection rule. For a query 

Q, we define the oracle SLS-t.ree 7' for P and Q via R as follows. The root of 7' is Q. For any 

node N in 7' we have: 

• If N is the empty query, then N is marked as success and has no children. 

• If R seleds a positive literal L in N, then N has as children those nodes that can be 

obtained by extending 7' at N in the sense of Definit.ion 3.5. If no children can be obtained 

in this way, t.hen N is marked as failed. 

• If R selects a negative lit.eral .;1 in N, then 

- If A is nonground, then N has no children and is lllarked as floundered. 

If A is ground, t.hen 

* if A is true in WFM(P), t.hen N has no children and is marked as failed, 

* if A is false in WFM(P), t.hen the resolvent. (E,N - {,A}) is the only child of 

N, 

* if A is unknown in W F M (P), t.hen t.he resolvent « u, E), N - { ,A}) is the only 

child of N. 0 
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Definition 9.15 (Oracle answer substitution) Let. P be a program and Q a query. Consider 

a branch in an oracle SLS-tree T for P and Q which ends with the empty query. Let aI, ... , an 

be the consecutive substitutions along this branch. 

Then the restriction (a1 ... an )IQ of the composition a1 ... an to the variables of Q is called 

an oracle SLS-computed answer substitution (o.c. a.s. for short) for Q in T, if none of the substi

tutions Qi is annotated by u; otherwise it is called an oracle SLS-unknown answer substitution 

(o.u.a.s. for short) for Q in T. 

An oracle SLS-tree T for a query Q is 

• successful, if it gives all o.c.a.s. for Q, 

o floundered, if it contains a leaf marked as floundered, 

• indetenninate, if it is not successful and not floundered, and gives an D.ll.a.s. for Q, 

• failed, otherwise. o 

The following results relat.e oracle SLS-trees t.o t.he well-founded semantics. 

Lelllllla 9.16 (Soundness) Consider an oracle SLS-tree T for a program P and a query Q. 

o If r is a o.C.a.s. fa" Q in T, then W F M(P) 1=3 VQr, 

o ifr is a o.u.a.S. for Q in T, then W FM(P) 1F3 ,VQr, 

o ifT is failed, then W FM(P) hV'Q. o 

Lelllllla 9.17 (Completeness) Conside'" an oracle SLS-tree T for a program P and a query 

Q. Suppose T does not jlol1nde,·. 

o IfWFM(P) 1=3 VQr, then there is an o.c.a.s. u forQ inT s1lch tha.t Qu is more general 

tha.n Qr, 

o ifWFM(P) 1F3 ,VQr, then therc L, an o.c.a.s. or nn 0.1I.n.s. u for Q in T such that Qu 

is more general than Q T J 

o ifWFM(P) 1=3 V,Q, then T is failed. o 

Proving these lemmas is straightforward: negative literals are given their correct truth value 

. by definition; positive literals are treated as in SLD-resolution. 

These results allow the second step of the const.ruction of the SLS-tree. For all nodes N where 

a ground negative literal ,A is select.ed and the oracle is used, we can 'just.ify' the outcome of 

the oracle by a subsidiary oracle SLS-tree for A. Eit.her t.his tree produces the same answer as 

the oracle, or it flounders. In the latter case, the descendants of N are removed and N becomes 

a flounder leaf. By recursively adding subsidiary trees for all nodes where t.he oracle was used, 

no step involving a selected ground negative literal will reluain unjustified. 

Definition 9.18 (SLS-tree) Let. P be it program, Q a query and R a selection rule. An 

SLS-tree for P and Q via R is defined as t.he limit. of a sequence of omcle SLS-trees of depth 

n (n 2: 1). These are defined by induction. An oracle SLS-t.ree of depth 1 for P and Q via R 

consists of only one t.ree, which is the oracle SLS-t.ree for P and Q via R. For n > 1, an oracle 

SLS-tree of depth n for P and Q via R is a forest. (F, T, subs) obt.ained as follows. 
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The main tree T is the oracle SLS-tree for P and Q via R, of which some nodes can be 

removed. From the root, follow each branch and for every ground negative literal ,A selected 

in a node N in T: let (.1", T', s'/lbs') be the oracle SLS-t.ree of depth n - 1 for P and A via R, set 

subs(N) to T', extend subs by subs' and .1' by .1"; if T' is floundered and not successful, then 

mark N as floundered and remove the children of N, if any. 0 

The following results relate SLS-t.rees t.o the well-founded semantics. 

Theorem 9.19 (Soundness) Consider the main tree T of an SLS-tree for a program P and a 

query Q. 

• 1fT is a o.c.a.s. for Q in T, then WFM(P) 1=3 \jQT, 

• ifT is a o.u.a.s. for Q in T, I.hen W FM(P) [,'03 ,VQT, 

• ifT is failed, then WFM(P) 1=3 \j,Q. o 

Theorem 9.20 (Completeness) Consider the ma.in tree T of an oracle SLS-tree for a program 

P and a query Q. Suppose T does not flounder. 

• IfWFM(P) 1=3 \jQT, then the"e is an o.c.a.S." forQ inT such that Qu is more general 

than QT, 

• if W F M(P) [,'03 ,\jQT, then there is an o.c.a.s. or an o. u.a.s. " for Q in T such that Qu 

is more general tha.n QT, 

• ifWFM(P) 1=3 \j,Q, then T is failed. o 

Remark 9.21 Instead of the well-founded 1l1Oclel of the progralll, any stationary Illodel can be 

used as the oracle in the above definitions. The (oracle) SLS-trees, obtained using the stationary 

lnodel M as the oracle, will be sound and cOlnplete (in the above sense) w.r.t. M. 0 

Although we have defined SLS-trees in such a way that they are sound and complete w.r.t. 

the well-founded S€lllantics, it. is not. at aI1 clear how an interpreter could construct these trees 

in a top-down way. This brings us to the issue of inlplernentation. 

9.4 Implementation 

As mentioned before, SLS-resolution is not effective, thus it is not fully implementable. But it 

is possible to make a sound implementat.ion that. is complete for a limited class of programs, e.g. 

programs without function symbols. It. is then essential to capture those infinite derivations that 

have the form of a loop. This can be done by simple loop checking techniques, or by tabulation 

(also known as lllelllo-ization or leuuna resolution). 

For locally stratified programs, loop checking was studied by Bol [24J. Tabulation for strat

ified programs was studied by Kemp and Topor [81] for SLS-resolut.ion and Seki and Itoh [155] 

for SLDNF-resolut.ion. By definition, in this setting only positive loops have to be dealt with. 

So their approach can relnain close to tabulation for positive prograllls, by lllaintaining a table 

for each stratulll. 

Chen and Warren [37] added a tabulation mechanism to the form of SLS-resolution proposed 

by Przymusinski and Warren [1:1O, 140J in order to detect. positive loops. Negative loops are 

detected by lllaint.aining a negatilJc co-ntc;rJ: t.he set. of negative literals that Illay be assulned 
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undefined, because they are encountered in a loop. In this way the tables must be constructed for 

all relevant negative contexts. This gives luany redundant COluputations, and a rather complex 

result (the final construction is a forest of forests ... ). Bidoit and Legay [23J proposed a similar 

system, computing the defined atoms and the potentially defined atonlS separately. 

Recently, Bol and Degerstedt [25J proposed a simpler method that uses tabulation to detect 

both positive and negative loops. Only one table needs to be construct.ed, but their definition 

of failure is somewhat complicated. 

Finally, it should be mentioned that a t.op-down computation of the well-founded semantics 

for ground programs is described by Pereira, Aparicio and Alferes [117J; instead of tabulation, 

it uses both positive and negative context.s. Such use of positive contexts does not generalize to 

the nonground case (as was shown by Apt, Bol and Klop [10]). 

10 Disjunctive Programs 

In a disjunctive logic progf(Ull, the heads of clauses call be disjunctions of one or Illore atoms. 

Numerous semantics were proposed for such programs. They are classified in Dix [45J. 

Positive disjunctive prograuls allow the expression of indefinite (incoillplete) knowledge, 

which is iInpossible in definite prograllls. As exaIuples consider the following natural state

Inents: 
mother(X) V father(X) <- parent(X), 

red(X) V blue(X) V green(X) <- primary_colour(X). 

The addit.ion of negation allows us t.o express indefinite knowledge, as well, so one may 

wonder whether there is any use in allowing disjunctions in general logic programs. Indeed 

there is: as negation in logic progranuuing is not classical negation, the effect of a clause p f- -,q 

is quite different froIlI P V q. The pair {p ......... -'q; q f-- -,p} is a better approxirllation - at least it 

retains the synuuet.ry between p and q - but. it. is st.ill not adequat.e. It introduces a loop through 

negation, which renders SOllIe selllantics inapplicable and causes obvious problellls in the proof 

theory. FurtherIllOre, the \vell-founded nlOdel of t.he prograul {p.- -'q; q f-- -,p; r f-- p; r f-- q} 

does not contain T, as one lllight expect.. 

10.1 Positive Disjunctive Programs 

Lobo, Minker and Rajasekar [98J recently published a book about. t.he foundations of disjunctive 

logic programming, of which the larger part. deals wit.h positive programs. We shall briefly recall 

some semantics for positive disjunct.ive programs; for a more elaborat.e discussion, motivation 

and proof theory, we refer to this book. 

An important distinction, which can be l1lade already for positive disjunctive programs, is 

that between an inclusive and e:z:clu$ive interpretation of disjunctions. For exalllple, if we have 

the prograrll {p f--; P V q f--}, t.hen the exclusive reading concludes that q is false, whereas the 

inclusive reading does not conclude anything about. q. 

Recall that, for definite programs, t.he negation as (finit.e or infinite) failure rule can be 

viewed as t.he application of t.he Closed World Assumption (see Section l.2) 

p l=ewA ,A iff P Ii A. 

This rule must be rephrased for disjunctive programs, as in this form it. gives rise t.o inconsis

t.encies. Indeed we have p V q l=ewA ,p and p V q l=elV A ,q, so P U {,A I P l=elV A ,A} is 

inconsistent. 
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The Generalized Closed World Assumpt.ion (GCWA) of Minker [108J is such a rephrasing; it 

says: 

P !=GCW A ,A iff ,A is true in all minimal models of P. 

GCWA gives rise to an exclusive interpretation of disjunctions. 

The Weak Generalized Closed World Assumption (WGCWA) was developed independently 

by Lobo, Minker and Rajasekar [141J and by Ross and Topor [148J. It was originally defined 

as a computational simplification of GCWA, that infers less negative literals. Let P' be the 

program obtained from P by replacing V by II, i.e., a clause Al V ... An ;-. B in P yields the 

clauses Al +-- B ... An <- B in p •. Then 

P I=WGCIV A ,A iff P' l=clV A ,A 

WGCWA gives rise to an incl.usi"e int.erpretation of disjunctions. Notice that CWA, GCWA 

and WGCWA coincide on definite programs. 

Even less negative literals than from WGCWA can be inferred from the completion of a 

disjunctive program, which was defined by Lobo, Rajasekar and Minker [97, 98J. It consists of 

P, augmented with EQ and the only.if (i.e . .....,) part of the completion of p'. 

Theorem 10.1 (Dix [45]) WGCWA is ,."t.;onal, GCWA is cll.mulative, but not rational. 0 

The program P = {p V q ;-.; ,. ;-. p; s;-. q, ,.} is a counterexample against the rationality of 

GCWA. The minimal models of Pare {p, .,.} and {q}, thus P liGCW A ,r and P !=GCWA ,so 

But P U {T} has the minimal models {p,,.} and {q, r, s}, thus P U {T} liGCW A ,So Notice that 

P liWGCW A's. 

10.2 Locally Stratified Disjunctive Programs 

The definition of locally stratified programs can be generalized to disjunctive programs: if two 

at mIlS are disjuncts in the head of a ground instance of a prograIll clause, then these atoIllS lnust 

be in the same stratum. The definition of perfect models (Definit.ion 6.8) generalizes immediately 

to locally stratified disjunctive progralllS. Of course, a disjunctive progranl Iuay have Illore than 

one perfect model. 

Definition 10.2 (Perfect model semantics) Przymusinski [128J The perfect model seman· 

tics of a disjunctive program P is defined by putting for a ground at.0111 A: 

A is true (false), if A is true (false) in all perfect models of P. o 

Definition 10.3 (Weak perfect model semantics) (Dix [45]) The weah' perfect model se· 

mantics of a disjunctive program P is defined by putting for a ground atom A: 

A is t.rue (false), if A is true (false) in all perfect. models of P and in the perfect model of P' S 

o 

Again, perfect Illodel S€Iuantics interpret.s disjunctions exclusively) whereas weak perfect 

model semant.ics inclusively. Perfect model semantics extends GCWAS, the Generalized Closed 

World Assumption for Stratified programs, which was defined by Rajasekar and Minker [142J. 

A weak version of GCWAS, called WGCWAS, was defined by Dix [45]; weak perfect model 

S€luantics extends it. 

°Notice that p. is a locally stratified program, because P is a locally strat.ified disjunctive program. 
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Theorem 10.4 (Dix [45]) 

• Perfect model semantics and GCWAS coincide with GCWA on positive disjunctive pro· 

grams. 

• Weak perfect model semantics and WGCWAS coincide with WGCWA on positive disjune. 

tive programs. 

• Perfect model semantics a.nd GCWAS, Weak pe1fect model semantics and WGCWAS are 

cumulative. 

• Of these semantics, only WGCWAS is rational. o 

10.3 General Disjunctive Programs 

Semantics for all general disjunctive programs t.hat coincide with t.he well-founded semantics on 

general programs, and t.hat. also coincide with t.he perfect (or weak perfect) model semantics on 

locally stratified disjunctive programs, have heen proposed hy p'rzymusinski [126] and hy Dix 

[45]. 

PrzYlllusinski defines statiorwry ed.:pa.nsions of disjunctive prograills by generalizing Defini

tion 7.13 in the following ways. 

• Instead of a set. of noLA atoms, a set C of disjunctions of noLA atoms is added to the 

program P. 

• The second condition on interpretat.ions that are considered when detennining Iuinirnal 

1l1odels is generalized to the disjunctive £nfcrencc rule: 

if puC 1= A, V ... V A", t.hen J 1= noLA, II ... II noLAk -; Ak+' V ... V An, 

where 1 ::; k ::; n and the empty disjullction is interpreted as false. 

• For a negative disjunction F = ,AI V ... V ,An) PuC i=min F if F is true in all lninimal 

models of PuC (according t.o t.his part.icular not.ion of minimalit.y). 

• The fixpoint. equat.ion t.hat. defines st.ationary expansions hecomes 

E(P) = P U {noLA, V .. V noLAn 1 E(P) I=oo;n ,A, V ... V ,An}. 

In another version of t.he semant.ics, PrzYIllusinski used 

as the disjunctive inference rule (which inlplicit.ly Blakes the definition of I=min recursive). Dix 

[45] ref Of ululates and COlupares these t.wo versions, toget.her with a third version (using essentially 

the first disjunctive inference rule, rest.ricted to k = n). This third version is weaker than the 

perfect model semantics on locally st.ratified disjunctive programs. 

Dix also defines w€a.k~ sta.hoHn'l'Y se'mo:nt,ics: Co wea.k. sto.tionaTY extension satisfies t.he fixpoint 

equation 

E(P) = P U {noLA, V ... V noLAn 1 E(P)'I=oo;n ,A, V ... V ,An}. 

(The disjunctive inference rule is the t.hird one of those mentioned ahove.) Weak stationary 

selllantics interprets disjunctions inclusively. 
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Theorem 10.5 (Dix [45]) 

• Stationary semantics fo'r disjl1:nctilJ€ progrmns is not cU1H.:ulative, 

• Weak stationary s€11wntics is cumu.lative, but not rational. 

• For locally stratified disju.nctive programs, weal.: stationary sema.ntics decides more atoms 

than WGCWAS, bu.t less tlwn weak perfect semantics, 0 

Finally, Dix [45J defines a semant.ics, DWFS, which coincides with the well· founded semantics 

on general programs, and wit.h the perfect model semantics on locally st.ratified disjunctive 

progranlS. It is weaker t.han the st.ationary s€luantics, and cUlllulative. A weak version of it, 

WDWFS, also coincides with the well· founded semantics on general programs, and with the 

weak perfect. model semantics on locally stratified disjunctive programs, It is stronger than 

weak stationary senlantics, and clIlllulat.ive. 

A rather different approach is taken by Ross [146J: he defines a semantics for general dis· 

junctive programs t.hrough a top-down procednre generalizing Definition 9,9, He defines three 

versions: Strong well-founded seInanties, wit.h an exclusive interpretation of disjunctions; Weak 

well-founded selnanties, with an inclusive interpretation of disjunctions; and finally OptiInal 

well-founded seInanties, where the progrcun(Iller) defines the inclusive or exclusive nature sep· 

arately for each clause, On general programs, t.hese semantics coincide with the well-founded 

seIllantics. However, when restricted to locally stratified disjunctive prograllls, the strong ver· 

sion is weaker than perfect model semantics and the weak version is weaker than weak perfect 

Illodel senlantics. 

Two fixpoint semantics that. extend the st.ationary semantics are GDWFS and WF3 by 

Baral, Lobo and Minker [14, 98], respectively [15J, WF3 extends GDWFS; both coincide with 

GWFS on general programs (t.hus they are not cautious and do not sat,isfy PPE, the properties 

defined in Section 1.3). They are incomparable wHh perfect Inodel selnantics on locally stratified 

disjunctive programs. 

Sakama and Inoue [152J defined GCWA, and WGCWA" based on an ext.ension of stable 

models to disjunctive programs. These semantics coincide with perfect, respectively weak perfect 

Illodel seIllantics on locally st.ratified disjunctive prograIlls. 

Clearly, the issue of what is the right semantics for general disjunctive programs is far frorn 

being decided, Its seems that. t.he weaker semantics have some advantages: 

• they are cUlllulative and satisfy Dix's weak principles, 

• the c01nplexity of c01nput.ing thenl is sOluetiIlles lower (for eXaIllpie WGCWA has lower 

complexity than GCWA, but, the COIllplexiiy of perfect and weak perfect model semantics 

is the same, see also Miiller and Dix [112]), 

• uncertainty is safe, that is, if the seluantics draws lllOre conclusions frolll the program than 

the progranllller intended, t.hen the results are probably worse than when smIle intended 

conclusions are Inissed. 

11 Final Remarks 

We introduced in this paper two lines of research dealing with semantics of general programs, 

The first one was considered in Section 4 and focused on t.he complet.ion of a program. The 

second line was considered in Sections 6 aJlel 7 and foclIsed on various attenlpts of extending 
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the concept of a "special" Herbrand model t.o general programs. In each cat.egory we st.udied a 

number of proposals which result.ed in quit.e an array of possibilities. 

11.1 Reconciliation 

It. is useful to charact.erize a class of programs for which t.hese approaches coincide. This problem 

was considered by Apt and Bezem [4J who showed t.hat. for acyclic programs practically all 

approaches considered in this paper coincide. More specifically, they proved the following result.. 

Theorem 11.1 Let P be an acyclic program .. Then 

• the Tp operator has a unique Jixpoint , N P, 

• N p is a uniq1le jixpoint of the T3p opc.,.,,'/'o.,., 

• N p is a unique pe1fect model of P, 

• Np is a unique Herbrand model of comp(P), 

• SLDNF- and SLS-t.,.ees coincide for bounded queries. o 

Consequently, by the Fixpoint. Lemma 4.12 N p is also a unique 3-valued Herbrand model of 

comp(P). Additionally, as every acyclic program is locally stratified, by t.he Unique stable 

model Theorem 6.20 Np is also a unique stable model of P, and consequent.ly by Corollary 7.7 

it is the well-founded model of P, as well. 

These result.s were generalized by Apt. and Pedreschi [6J t.o a larger class of programs cor

responding with tenuination w.r.t. the leftlllost selection rule, as opposed to tennination w.r.t. 

all selection rules (in the sense of the Terminat.ing Program Definition 3.16). Recently, Fitting 

[63] provided an alternat.ive proof of these results by 1l1€anS of Inetrics and Banach Contraction 

Theorem. 

A number of interesting programs turn out t.o be acyclic. By the above theorem all ap

proaches to t.heir semantics coincide. For inst.ance, t.he program TWEETY of Section l.3, and the 

programs SINK, NUMBERS and EVEN of Sections 3.1, 5 and 6.2 are acyclic. Another example is 

a natural formalization of t.he so-called Yale shoot.ing problem of Hanks and McDermott [75J, 

which is an exalllple of teluporal reasoning, an instance of non·nlonotonic reasoning. This prob

leln was ext.ensively discussed in t.he lit.erature and its fonnalizatiolls in various fOrInalisms for 

nOll-Inollotollie reasoning were studied. In relat.ion to logic progranuuing we note three inde

pendent references - that of Apt. and Bezem [4], who proved t.hat t.he t.ranslat.ion of t.he Yale 

Shoot.ing Problem t.o a logic program result.s in an acyclic program, Elkan [56], who showed 

that this translat.ion result.s in a locally strat.ified program, and Evans [58], who observed that 

SLDNF -resolut.ion can be used t.o compute desired consequences of the original formulation of 

the problem in first.-order logic. 

In cont.rast, the program EVEN' of Section 6.2 is not. locally st.ratified, so a fortiori not 

acyclic. However, it. is possible t.o apply to it. a result. of Apt. and Pedreschi [6J and draw the 

saIne conclusions as for the above program'5. 

11.2 Topics not Treated 

The range of topics that. fall wit.hin 'Logic Programming and Negation' is so enormous, t.hat. 

inevitably we have to refrain from t.reating them all. Here follows a short list. of topics we left 

out. 
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Deductive databases form all extension of relational databases in which some of the relations 

are implicitly defined. Ignoring the built.-in relations, their syntax coincides with that of logic 

programs. In the area of deductive dat.abases, negation also formed an important research 

subject. Parts of this research (like stratificat.ion and the use of perfect model semantics) overlap 

with that of logic programming. Some other topics are more intrinsic for the field, in particular 

query processing (see e.g. Kemp and Topor [82] and Balbin et al. [12]), integrity constraint 

checking (see e.g. Lloyd, Sonenberg and Topor [96] and Sadri and Kowalski [151]), handling 

of updates (see e.g. Naqvi and R .. Krishnamurt.hy [115]) and comparison of expressive power 

between various query languages (see e.g. Chandra and Harel [35]). More recent research in this 

area is surveyed in Kanellakis [80] and Bidoit [20]. 

Classical Negation, also called explicit or stTOng negation, was introduced by Gelfond and 

Lifschitz [70, 71 J. It. involves a second kind of negation I.hat may occur both in the head and in 

the body of clauses. Their mot.ivat.ion was to capture in logic programming more complicated 

fonns of telnporal reasoning, than the one eX€lllplified in the usual fOrIllalization of the Yale 

shooting problem. 

When both kinds of negation are present., ' usually denotes classical negation; negation by 

failure is then denoted by ~. Semantically, classically negated atoms are usually treated as new 

atmns. However, in the process of selecting lintended' lllodels, the 'inconsistent' ones (that is, 

the ones containing an atOlll A and its cJassicalnegatioll -.A) are discarded. Overviews of this 

area can be found in Alferes and Pereira [1], Wagner [l71J and and Minker and Ruiz [110J. 

Abductive Logic Programming views, roughly speaking, the query as an observation, which 

must be explained by means of additional hypotheses. Explanations can be found by following 

the rules of the prograul 'backwards', as in SLD-resolution and its generalizations. A survey on 

abductive logic programming, by Kakas, Kowalski and Toni [79] appeared recently. 

Truth Maintenance Systel:l1s can be viewed as an extension of (propositional) general logic 

progratns, where SOIne clauses (called conslra.hlts) have t.he constant false as the head. Sernantics 

have been proposed for t.rut.h maint.enance systems by generalizing stable and well-founded 

semantics to deal with constraint.s. We mention here work by Elkan [55], Reinfrank [143]' 

Giordano and Mart.elli [73], Wit.t.eveen [174] and Jonker [78J. The area is related to classical 

negation and to abduction. 

Relations with Other Non-monotonic Formalisms are abundant (see e.g. Nerode et al. 

[116] and Przymusinski [131, 134]). As negat.ion as failure is a non-monotonic inference rule, there 

has been a cross-fertilizat.ion bet.ween semant.ics for non-monotonic logics and logic programming. 

In one direction, stable expansions of a.lIto-epistemic logic (Moore [111]) inspired Gelfond 

[67,68] to define the st.able semant.ics. A parallel work on connections between the default logic 

of Reiter [145] and stable model semantics was carried out by Marek and Truszczynski [105J 

and by Bidoit and Froidevaux [21]. Recently, Przymusinski [135, 127J explained the stationary 

semantics by means of auto-epist.emic logic (see also Bonat.t.i [26]). 

In the other direction, Przymusinski [139] int.roduced 3-valued versions of default logic and 

auto-episternic logic, based on the well-founded selnantics for logic prograrl1s. For default logic, 

this semantics was generalized further by naral and Subrahmanian [16], Li and You [90J and 

PrzYlnusinska and Przynltlsinski [121J. A unifying frarllework for the seIllantics of auto-epistelnic 

logic, based on stationary semant.ics for logic programs, was presented by Przymusinski [137]. 

The relation between logic programming and circumscription (McCarthy [107]) was studied 

by Lifschitz [91, 69] and Gelfand, PrzYlllll5inski and Przymusinska [72]. 
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Recursion Theoretic Analysis of the concepts disscussed here attracted a lot of interest. The 

complexity of the syntactic not.ions (like (local) stratifiability), of the proof theory (like SLS

resolution), and of semantics (like well-founded model) were studied bot.h in the propositional 

and first-order case. These result.s are surveyed in Cadoli en Schaerf [28J. 

Intensional Negation is an approach t.o negation that transforms a program P (without local 

variables) into a program P, defining a relat.ion p for every relation p in P, such that p( t) 

succeeds from P iff p( t) finit.ely fails from P, and vice versa. Intensional negation was mainly 

studied by Mancarella et al. [101, 102, 18J. 

Linear Logic is a lllodification of the classical Gentz€n sequent calculus which was developed 

by Girard [74J to capture reasoning about. resources. In particular linear logic is sensitive to 

how many t.imes a formula is used as hypot.hesis in a proof. Cerrito [32, 33J showed that linear 

logic can be used to reason about. logic programs by providing a translat.ion of logic programs 

and program completions to linear logic theories for which soundness and completeness of the 

SLDNF-resolution for allowed programs can be est.ablished and for which SLDNF-resolution 

with the leftmost. selection rule can be adequately interpret.ed. 
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