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Abstract: The widespread diffusion of low-cost computing devices, along with
improvements of cloud computing platforms, is paving the way towards a whole new set
of opportunities for Internet of Things (IoT) applications and services. Varying degrees
of intelligence are required for supporting adaptation and self-management: yet, they
should be provided in a light-weight, easy to use and customise, highly-interoperable
way. In this paper we explore Logic Programming as a Service (LPaaS) as a novel
and promising re-interpretation of distributed logic programming in the IoT era. After
introducing the reference context and motivating scenarios of LPaaS as an effective
enabling technology for intelligent IoT, we define the LPaaS general architecture, and
discuss two different prototype implementations—as a web service and as an agent in
a multi-agent system (MAS), both built on top of the tuProlog system, which provides
the required interoperability and customisation. We finally showcase the LPaaS potential
through two case studies, designed as simple examples of the motivating scenarios.
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artificial intelligence, interoperability.

1 Introduction

The widespread adoption of the IoT perspective,
according to which sensor networks, actuator devices,
and computational resources seamlessly interact with
people, is going to transform urban environments into
smart environments – that is, physical environments
enriched with sensing, actuating, communication,
and computation skills – capable of acquiring and
exploiting contextual knowledge to adapt to inhabitants’
preferences, habits, and requirements [CFG+17].

People are thus continuously connected together and
with their surrounding entities, in a situation-aware
and socially-aware way: this is increasingly shaping
a dense ecosystem, where ICT devices and people

collaborate as they were a superorganism [Zam15]—in
particular, for complex urban services, such as intelligent
transportation systems, environmental sustainability,
and participatory governance [Zam15, BFMZ13].

Similarly to living organisms, which are based
on innervation as the fundamental “infrastructural”
support for delivering their functionalities, socio-
technical superorganisms require an adequate software
infrastructure to enable and support the notion
of smart environment. In particular, infrastructures
should (i) be easily customisable, both statically and
dynamically, so as to match the application needs; (ii)
be possibly self-managing; (iii) govern components and
applications interaction; (iv) encapsulate intelligence in
forms that are suitable for their exploitation by the
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applications. Here, connectivity and interoperability are
just the basic, yet fundamental, bricks [ACF+17]. An
essential infrastructural feature to build customised,
variously-situated services and applications is to provide
distributed situated intelligence on demand—that is,
the ability to spread light-weight, context-aware, and
effective intelligence chunks where and when needed,
to locally satisfy the specific reasoning needs of the
application at hand.

The aforementioned scenario opens up novel and
challenging opportunities for logic-based languages,
which are a natural choice as the intelligence providers
in the IoT area [OZ04]. However, traditional logic
programming (LP henceforth) techniques fall short
in IoT scenarios, where the mobility/cloud ecosystem
grounded upon the service-oriented computing paradigm
delivers infrastructure, platform, and software as a
service with the promise of ubiquitous information
access and on-demand computation. This is why in
this paper, as the natural evolution of distributed logic
programming under a fresh IoT perspective, we propose
Logic Programming as a Service (LPaaS) as an effective
way to cope with the increasing demand for distributed
situated intelligence coming from today’s pervasive
systems. In particular, with respect to [CDMO17],
we explore more in depth the benefits of combining
LPaaS and IoT, discuss a concrete architecture, and
present two prototype implementations—as a Prolog-
based RESTful web service and as a multi-agent system
(MAS henceforth).

Accordingly, after outlining the application scenarios
in the context of current research, Section 2 defines
the LPaaS architecture, focussing on the most relevant
features for the IoT domain. Then, Sections 3 and 4
present the two prototype implementations—namely,
LPaaS as a RESTful web service, to emphasise how
LPaaS can be effective in supporting one of the most
typical IoT paradigms, and LPaaS as an agent in an
agent society, to highlight its effectiveness in supporting
and promoting distributed situated intelligence. As a
concrete case, Section 5 shows how LPaaS can be
implemented in Jade [JAD]. Benefits and open issues
are discussed in Section 6, related work in Section 7,
while conclusions are drawn in Section 8.

1.1 Application Scenarios

LPaaS moves from the idea of providing an engine for
logic inference in the form of a service – library service,
middleware service, network service, etc. – leveraging
the power of LP resolution. Application scenarios are
not limited to the IoT landscape: for instance, a Prolog-
based web service with fuzzy search capabilities on a
collection of XML documents representing publications
is presented in [HLS05]—which could be easily built in
LPaaS.

Other more complex scenarios could be devised i.e.,
in the field of health-care infrastructure, whose purpose
is the continuous monitoring of patients affected by some

disease. In [BSS10], pregnant women with gestational
diabetes mellitus are assisted through an e-health
infrastructure: patients are equipped with a body-area
network to monitor blood pressure and glucose levels.
Sensors are connected to the patients’ smartphone,
working as a hub to collect the data. Abductive agents
perform reasoning on data to provide a diagnosis – a
task that could be well-suited for LPaaS using abductive
LP [KKT92] – contacting health-care professionals if
necessary.

Another intriguing application for LPaaS is on-
demand reasoning in sensor networks, which offers
the possibility to locally inject chunks of situated
intelligence. In fact, as discussed in [FGG+13],
implementing real-time, power-efficient, distributed
signal-processing algorithms on wireless nodes that are
severely resource-limited and have to meet stringent
requirements in terms of wearability (including battery
duration) is still extremely challenging and complex. In
such situations, LPaaS offers the possibility of exploiting
a light-weight inference engine to perform data reasoning
on demand in a light-weight, efficient, and decentralised
way.

Other research works aim at making the next
generation IoT smarter—among them, agent-oriented
and event-based frameworks for the development
of cooperating smart objects [LMMZ17, FGRS14,
FGL+13]: they all share the idea of moving from
connecting things to generating intelligence by linking
things in the real world with information in the digital
world.

2 The LPaaS Architecture

Moving from the above considerations, the LPaaS
architecture is designed so that LP can act as a source of
distributed intelligence for the IoT world, by providing
an abstract view of LP inference engines in terms of
service. This is because service-oriented architectures
(SOA) promote interoperability, encapsulation, and
situatedness, thus reducing the need for integration and
coupling while promoting context-awareness.

On the one hand, in this architectural re-
interpretation, LP can deal with local knowledge
within physical devices, taking into account the domain
specificity of each environment, and making it possible
to reason effectively on data that are local to situated
components. Furthermore, this allows in principle
diverse, specific computational models to be tailored to
the local needs of each situated component, by exploiting
LP extensions explicitly aimed at pervasive systems such
as labelled variables systems [CDDO16, CDO15].

On the other hand, since interoperability mandates
for standards, LPaaS defines a standard interface for
client applications and relies on standard representation
formats (i.e., JSON [JSO]) and interaction protocols
(i.e., REST over HTTP, or MQTT [MQT]), versatile
enough to fit a wide variety of application needs.
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Table 1 LPaaS Configurator Interface. ConfigList is
[IsStateful, IsStateless, IsDynamic].

setConfiguration(+ConfigList)

getConfiguration(-ConfigList)

resetConfiguration()

setTheory(+Theory)

getTheory(-Theory)

setGoals(+GoalList)

getGoals(-GoalList)

Along this line, each LP server node exposes its
services concurrently to multiple clients, via interfaces.
The inference engine is expected to implement the SLD
resolution [Rob65]: as in classical LP, it is configured
with a theory of axioms—its Knowledge Base (KB);
unlike classical LP, however, it is also configured with
a set of goals that the client can ask to be proven—
the admissible goals. This approach captures the idea
that intelligence is deployed to fit specific needs that
correspond to specific possible queries (in a specific
location), not to provide a general-purpose, non specific
LP inferential engine as in classical console-based LP
systems.

The LP service is initialised and configured on the
server at deployment-time: once started, it can be
used by any number of Client agents in its current
configuration—that is, a Client can ask the LP service
to prove any of the admissible goals based on the logic
theory constituting the current KB. Also, the LP service
can be dynamically re-configured at run-time whenever
needed by a privileged agent with adequate rights—
the Configurator agent. Overall, generally speaking,
applications can access the service as either Clients
or Configurators via the corresponding interfaces: the
Client Interface exposes methods for service observation
and usage, while the Configurator Interface provides for
service configuration.

2.1 Configurator Interface

A Configurator (agent) interacts with the server via
the Configurator Interface. Configurator methods are
detailed in Table 1, with the standard Prolog notation
for input/output arguments [DDC96]: they provide for
defining the service configuration, its KB, and the list of
admissible goals.

Moreover, two key features of the LP service are
the possibility of managing stateful and/or stateless
requests, and of choosing between dynamic or static
knowledge bases.

Stateful requests are needed to make it possible for
the service to mimic a classical logic programming engine
with SLD resolution [Rob65], where clients can ask for
any number of solutions, and – possibly, then – ask for
other solutions one by one, iteratively. To this end, the
server must keep track of the state of each individual
client request, i.e., of each client resolution process. Since

this might be not resource-effective, and given that some
application scenarios might even not require this – i.e., a
temperature sensor that always needs to deal with just
its latest measurement –, stateless requests are provided
as an alternative, to be used according to the specific
application needs. There, no session state is maintained
on the server side, so each request needs to contain all
the required information—see Subsection 2.2 below.

As far as the logic theory is concerned, a
static KB is immutable (from the Client viewpoint),
whereas a dynamic KB can evolve during the service
lifetime by means of assertion and retraction of logic
clauses: while the model is designed thinking about
assertion/retraction of facts, it technically works also for
clauses. This implies that clauses in a dynamic KB have
a lifetime, too, since they are asserted and retracted as
they represent mutable knowledge about the world—as
in the case, for instance, of a clause representing the
current temperature in a room.

It is worth noting that the LP service can be
simultaneously stateful and stateless, as it can manage
multiple kinds of request concurrently; the knowledge
base, instead, can only be either static or dynamic—
which is why ConfigList in Table 1 has just three
parameters.

2.2 Client Interface

In the LPaaS Client Service Architecture the server
provides clients with the inference service via the Client
Interface detailed in Table 2 on page 4.

The LP service offers observational methods to
provide configuration and contextual information about
the service, and usage methods to query the service
for logic computations and reasoning. Observational
methods make it possible to ask the service for
its configuration parameters (stateful/stateless,
static/dynamic), the state of the KB, and its admissible
goals. Usage predicates (i.e., logic predicates for usage
methods) allow the service to be asked for solutions—one
solution, n solutions, or all solutions. Usage predicates
are slightly different in the two cases of stateless /
stateful requests: in the former case, the solve operation
is conceptually atomic and self-contained – it always
has the Goal as argument – whereas in the latter case
self-containment is not necessary, since the server keeps
track of the client state and the goal can be set only
once before the first solve request is issued.

The reset primitive simply resets the resolution
process, with no need to reconfigure the service usage
(i.e., to re-select the goal); instead, the close primitive
actually ends the communication with the server, so the
goal must be re-set to restart querying the server.

More details on the methods of the Client Interface
are provided in Table 2 on page 4.
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Table 2 LPaaS Client Interface.

S
t
a
t
ic

K
B

Stateless Stateful

getServiceConfiguration(-ConfigList)
getTheory(-Theory)
getGoals(-GoalList)

isGoal(+Goal)

setGoal(template(+Template))
setGoal(index(+Index))

solve(+Goal, -Solution) solve(-Solution)
solveN(+Goal, +NSol, -SolutionList) solveN(+N, -SolutionList)

solveAll(+Goal, -SolutionList) solveAll(-SolutionList)

solve(+Goal, -Solution, within(+Timeout)) solve(-Solution, within(+Timeout))
solveN(+Goal, +NSol, -SolutionList, within(+Timeout)) solveN(+NSol, -SolutionList, within(+Timeout))

solveAll(+Goal, -SolutionList, within(+Timeout)) solveAll(-SolutionList, within(+Timeout))

solveAfter(+Goal, +AfterN, -Solution)
solveNAfter(+Goal, +AfterN, +NSol, -SolutionList)

solveAllAfter(+Goal, +AfterN, -SolutionList)

solve(-Solution, every(@Time))
solveN(+N, -SolutionList, every(@Time))
solveAll(-SolutionList, every(@Time))

reset()
close()

D
y
n
a
m

ic
K

B

Stateless Stateful

getServiceConfiguration(-ConfigList)
getTheory(-Theory, ?Timestamp)

getGoals(-GoalList)
isGoal(+Goal)

setGoal(template(+Template))
setGoal(index(+Index))

solve(+Goal, -Solution, ?Timestamp) solve(-Solution, ?Timestamp)
solveN(+Goal, +NSol, -SolutionList, ?Timestamp) solveN(+N, -SolutionList, ?Timestamp)

solveAll(+Goal, -SolutionList, ?Timestamp) solveAll(-SolutionList, ?Timestamp)

solve(+Goal, -Solution, within(+Timeout), ?Timestamp) solve(-Solution, within(+Timeout), ?Timestamp)
solveN(+Goal, +NSol, -SolutionList, within(+Timeout), ?Timestamp) solveN(+NSol, -SolutionList, within(+Timeout), ?Timestamp)
solveAll(+Goal, -SolutionList, within(+Timeout), ?Timestamp) solveAll(-SolutionList, within(+Timeout), ?Timestamp)

solveAfter(+Goal, +AfterN, -Solution, ?Timestamp)
solveNAfter(+Goal, +AfterN, +NSol, -SolutionList, ?Timestamp)

solveAllAfter(+Goal, +AfterN, -SolutionList, ?Timestamp)

solve(-Solution, every(@Time), ?Timestamp)
solveN(+N, -SolutionList, every(@Time), ?Timestamp)
solveAll(-SolutionList, every(@Time), ?Timestamp)

reset()
close()

The service returns its currently configured properties when method getServiceConfiguration(-ConfigList) is invoked, where ConfigList
is [IsStateful, IsStateless, IsDynamic]. Observational methods are getServiceConfiguration, getTheory, getGoals, isGoal, which
return, respectively, configuration parameters, the KB the service relies on, the admissible goals, and whether the given input term is an
admissible goal (true/false). Usage predicates vary depending on whether the service is stateless or stateful. In the former case, solve
operation always needs the Goal as input parameter, whereas in the latter case solve is replaced by two distinct methods to be chained
together: setGoal first, solve next—without specification of the goal. Furthermore, for stateful requests the returned solutions are always
sequential, whereas for stateless ones the resolution process always restarts from the beginning. Accordingly, solveAfter methods have
been introduced to enable fast-forwarding to the N+1 solution AfterN.
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2.3 Time Awareness

Being aimed at dealing with real-world application
environments, LPaaS requires the LP service to be time-
aware—that is, capable of dealing with the fact that
computation takes time, and that time flows regardless of
whether it is computing or idle: this is why time-sensitive
methods are included in LPaaS. Time-awareness of the
service enables time-situatedness on the clients’ side:
should they need to perform time-related computations
or inferences, they could just rely on the LP server.

Time may come into play at three levels: (a) through
a timeout argument in queries, to prevent blocking the
server; (b) in case of stateful requests, to ask for solutions
periodically, every n milliseconds; and (c) in dynamic
KBs, to capture the fact that information can expire
after some time. Accordingly, solve operations can
contain a Timeout parameter, specifying the maximum
time that resolution should take (on the server side):
if the resolution process does not complete within that
time, the request is cancelled, and a negative response is
returned.

In stateful requests, a client can ask to solve queries
every Time milliseconds (server time), actually creating
a stream of solutions: this is particularly useful in IoT
scenarios, i.e., exploiting sensor devices or monitoring
processes. Finally, all methods operating on a dynamic
KB take an additional Timestamp argument, expressing
the required time validity: only clauses valid at the
given Timestamp are taken into consideration during
SLD resolution process.

3 LPaaS as a RESTful Web Service

In order to test the effectiveness of the proposed
architecture, we implement a first prototype of LPaaS as
a RESTful web service (WS) [FT02]: we reuse and adapt
patterns commonly used for the REST architectural
style, and introduce a novel architecture supporting
embedding Prolog engines into WS. Figure 1 shows the
general architecture focussing on the server side and its
components (access interfaces, Prolog engine, and data
store), as well as some exemplary client applications
interacting via HTTP requests and JSON objects.

The server-side inner architecture (Figure 2) is
composed of three logical units: the interface layer,
the business logic layer, and the data store layer.
The interface layer encapsulates the Configurator and
Client Interfaces. The Business Logic wraps the Prolog
engine with the aim of managing incoming requests
consistently. The Data Layer is responsible for managing
the data store tracking, i.e., all the configuration
options necessary to restore the service in case of
unpredictable shutdown (i.e., operating parameters and
security metadata such as clients’ role, username,
password, etc.).

Since these data are expected to be limited in size
for most scenarios, we choose to keep them in the server

Figure 1 The LPaaS RESTful WS.

Figure 2 The LPaaS WS server architecture.

application to offer a light-weight, self-contained service:
however, they could be easily moved to a separate
persistence layer on, i.e., an external DB application, if
necessary.

The server implementation is built by exploiting a
number of technologies commonly available in the field:
in particular, the Business Logic is built using the J2EE
framework [J2E], exploiting EJB [EJB], whereas the
database interaction is implemented on top of JPA [Jav].

The Prolog engine is implemented on top of the
tuProlog system [DOR01], which provides not only
a light-weight engine, particularly well-suited for this
kind of applications, but also a multi-paradigm and
multi-language working environment, paving the way
towards further forms of interaction and expressiveness.
Since version 3.2, tuProlog also natively supports JSON
serialisation, ensuring the interoperability required by a
WS. The tuProlog engine, distributed as a Java JAR
(or, as Microsoft .NET DLL, or, as Android app), is
easily deployable and exploitable by applications as a
library service—that is, from a software engineering
standpoint, a suitably-encapsulated collection of related
functionalities.

The service interfaces exploit the EJB architecture,
but can also be accessed as a RESTful WS, realised
using JAX-RS Java Standard (Jersey) [Jer]. Security
is based on jose.4.j [jos], an open source (Apache 2.0)
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Figure 3 KB of two different LPaaS server: namely,
Personal Server and Toothbrush Server.

implementation of JWT and the JOSE specification
suite [jos]. The application is deployed using the Payara
Application Server [Pay], a Glassfish open source fork,
and its source code is freely available on Bitbucket [tuP].

3.1 Example Application

As a testbed scenario, let us consider a Smart Bathroom
to monitor physiological functions to deduce symptoms
and diseases, and properly alert the user. Sensors collect
data and undertake reasoning based on LPaaS provided
by tuProlog, to come up with solutions made available
to the user through a dedicated Android application.
The Smart Bathroom system is composed of three
different tuProlog-enabled LPaaS services processing
data collected by

Toilet Server toilet sensors analysing biological
products, such as temperature, volume or glucose
sensors: an example of such a circuit is reported in
[KM15], where a sensor node for sampling water
and checking for the presence of harmful bacteria
such as E. coli in water sources was developed

Toothbrush Server nano sensors integrated into the
toothbrush

Personal Server ultrasonic bathtubs, pressure sensing
toilet seats and other devices to monitor people’s
cardiovascular health

Collected data may trigger different alerts: urgent ones,
such as presence of Streptococcus infection, positive
Diabetes Tests, etc. and normal ones, such as the need
to drink more water, recharge batteries, and so on. An
excerpt of the knowledge base of the services is shown in
Figure 3.

The system is built on the following hardware
configuration:

• Toilet Server: Raspberry Pi 3 (Ubuntu Mate Arm)

• Toothbrush Server: Lubuntu laptop

• Personal Server: Windows 10 laptop (stand alone
machine)

Figure 4 The Android application exploiting LPaaS:
non-urgent messages are shown in green, urgent
ones in red. The left screenshot shows three non
urgent messages (drink more water, brush your
teeth, and toothbrush battery low), while the
right one shows two non-urgent (limit sodium
intake, high blood pressure) and two urgent
messages (the possibility of diabetes, and the
suggestion of a colon screening).

• Client 1: Lenovo A10 tablet with Android 5.0.1

• Client 2: Windows 10 laptop running a desktop
application.

Since tuProlog systems are Java-based, they can run
on different platforms (*nix, Windows, iOS, Android).
Windows 10 (on a stand-alone machine) is used for the
personal server whereas the client2 app just as a Java
host, in order to demonstrate the ability to inter-operate
among different platforms [CD16].

Currently, all the data collected by sensors are
simulated: Figure 4 shows some screenshots of the
Android application. Urgent messages are in red boxes,
minor warnings in green boxes.

Despite its simplicity, the case study is meant to
show the potential of the LPaaS approach: local sensors
can perform situated reasoning, applying their local
knowledge to aggregate the raw data and synthesise
higher-level information. Such higher-order data can
then enable the creation of new computing services
that autonomously respond to a user, and provide more
accurate predictions based on situatedness—in this case,
provided by the Android application.

4 LPaaS and Multi-Agent Systems

In this section we discuss how LPaaS can fit a multi-
agent system (MAS), with the twofold aim of showing
why merging LPaaS and MAS could be useful, especially
in the IoT landscape, and how LPaaS and MAS could
be successfully integrated.
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4.1 Motivation

MAS for IoT. Agent-oriented engineering and MAS
have been already recognised as a promising way
of developing IoT applications and Cyber-Physical
Systems (CPS), since they are well suited for supporting
decentralised, loosely-coupled and highly dynamic,
heterogeneous and open systems, in which components
should cooperate opportunistically [CMS+17, AK15,
ZO04]. They also offer a higher level of abstraction
to system designers and developers than, i.e., RESTful
approaches, as they replace low-level notions such
as HTTP requests / responses with messages and
interaction protocols [ON98].

Adopting the thing-oriented definition of IoT – that
is, the so-called Smart Object (SO) IoT vision in which
SOs are the basic IoT building blocks –, it is quite natural
to map the sensing and actuating capabilities of SOs onto
the perception and action capabilities of situated agents
[HBKR10]. Also, SOs are meant to be autonomous in
acting on behalf of their owner in the most common
everyday activities such as, for a smart home scenario,
adjusting temperature, tuning lights intensity, lock the
doors, and so on. Not by chance, autonomy is also the
core feature of agents [HCF03].

Another straightforward mapping may be drawn
between the need for cooperation amongst SOs in
complex IoT scenarios and the social dimension of
agency [Cas98]—and, consequently, of MAS. In fact, SOs
can be expected to interact with each other in order
to perform even simple tasks, such as those related to
situation recognition, and the usual means to do so in
current IoT practice is either (i) to let the Cloud handle
dependencies between tasks, for instance by monitoring
a given sensor perceptions to trigger a given actuator
when a threshold is met, or (ii) to exchange very simple
messages (i.e., JSON structures) in a peer-to-peer way.
Agents, instead, are naturally capable of diverse forms
of social interactions, by exchanging rich messages in
compliance with well-defined protocols having a clear
and well-understood semantics—i.e., FIPA protocols and
ACL messages [ON98].

Finally, featuring a goal-oriented/driven behaviour
[Cas12], agents can plan and act based on the specific
contingencies of the environment in which they operate.
This deeply contrasts the imperative way of commanding
SOs in current IoT practice, where actuator devices
are usually only able to react to precise and direct
instructions about what/how to do, not what to achieve,
as a more declarative approach would suggest.

In spite of the above benefits, a relevant issue may
hinder adoption of the agent abstraction, thus of MAS,
in the IoT landscape: the computational limitations of
SOs, which can be too severely resource-constrained to
embed a full-fledged software agent. Here is where LPaaS
comes into play, as explained in the next section.

LPaaS for MAS. Besides autonomy, situatedness, and
sociality, agents may have other features that could

map onto SOs: for instance, mobility – intended as
code mobility – can be easily implemented even on
resource-constrained devices, whereas intelligence – a
hot topic in current IoT research – is considerably a more
challenging issue. The fact is that providing a reasonable
perception of intelligence for a given SO (agent) requires
many different technologies, such as machine learning,
common-sense reasoning, natural language processing,
advanced situation recognition and context awareness—
which are all typically computationally expensive per se,
let alone in conjunction with the others. This is why
the concept of LPaaS may actually improve the state of
art in engineering intelligent IoT systems: with LPaaS,
just the “required amount” of situated intelligence can
be seamlessly spread where needed, and/or where the
available resources are able to bear the computational
effort, with no need to have a full-fledged intelligent
agent embedded in every SO.

In this new perspective, whenever local intelligence
cannot be available for any reason – i.e., memory
constraints hindering the opportunity to have a local KB,
CPU constraints limiting efficiency of reasoning, etc. – a
given agent (SO) may simply request to another, “more
intelligent” one, to perform some inferences on its behalf.
Moreover, the LPaaS functionality may also be charged
upon the infrastructure, instead of the agents. In this
scenario, agents are always computationally efficient and
responsive, since they delegate reasoning-related tasks
– such as situation recognition, planning, inference of
novel information, etc. – to dedicated infrastructural
services—either hosted in the Cloud, as it currently
happens for most IoT platforms, or spread amongst a
distributed set of devices working as gateways for SOs.

As a last remark, traditional LP has well proven
valid over the time both as a knowledge representation
(KR) language and as an inference platform for rational
agents. Logic agents may interact with an external
environment by means of a suitably defined observe–
think–act cycle. Significant attempts were made in the
last decade to integrate rationality with reactivity and
proactivity in logic programming [KS96, DST98, KS99]:
for KR purposes bottom-up approaches – based on the
stable model semantics – were successfully proposed; yet,
multi-agent reasoning in this area were also exploited—
e.g., for planning with action languages [Son17, DFP13,
DFP10]. The re-interpretation of LP under the LPaaS
approach in MAS could be seen as the evolution of these
research threads for modern pervasive and distributed
systems.

4.2 Fitting LPaaS in MAS

Engineering a MAS generally requires three orthogonal
yet complementary dimensions [ORV08] to be
considered: the agent dimension, where the internal
structure of agents is designed and their behaviour
programmed; the social dimension, where the focus is
on the space of interaction [OOR04], thus in designing
how agents interact; the environment dimension, where
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the representation of anything in the physical or
computational world relevant to the MAS itself lives.
Integrating LPaaS with MAS thus requires first of all
to carefully decide where the integration should take
place—that is, along which dimension, and involving
which abstractions.

agent Integrating along the agent dimension is probably
the most natural way to proceed, as it directly
injects intelligence more closely to the agents’
business logic, or even deeply in their inner
reasoning workflow—likewise for BDI agents
[Rao96]. Nevertheless, it may also be the least
suitable way for several IoT scenarios, where
devices are usually severely resource-constrained,
hence unable to host a software agent together with
a LP engine. LPaaS is conceived precisely to enable
such a sort of integration with no need to host the
LPaaS engine within the agent itself: the engine
can be hosted anywhere, and made accessible to
agents through a dedicated service layer—be it
implemented according to REST, as exemplified in
Section 3, or according to any other architectural
style / technology.

society Integrating LPaaS and MAS along the
social dimension amounts to embedding LP
functionalities in the coordination artefacts
devoted to manage the interaction space [ORV06].
This approach is similar to the one adopted in
TuCSoN [OZ99] with the ReSpecT coordination
language [Omi07], where coordination rules
enacted by enhanced tuple spaces [OD01] are
expressed in a Prolog-like language (actually
interpreted by a tuProlog engine, the same used
for LPaaS).

environment The last alternative is to consider LPaaS
services as part of the MAS environment. Usually
this means deploying LPaaS as a middleware
service, provided by the infrastructure hosting
agents and enabling them to access the network
and devices’ capabilities. This approach could
be implemented by exploiting LPaaS as a
RESTful WS, as described in Section 3, and is
complementary to the first one, in the case agents
do not embed an LP inference engine but exploit
LPaaS opportunistically.

It should be noticed that the three aforementioned
approaches are not to be taken as mutually exclusive: in
fact, our choice in the prototype system is to exploit the
first and last one together, leaving MAS designers free to
choose whether to embed intelligence within agents, or,
instead, have it provided as an infrastructural service.

Figure 5 illustrates the model of the LPaaS approach
depicting the whole picture in the hybrid case where
(1) some agents are kept more lightweight and rely
on infrastructural services (or other more “intelligent”
agents) to get LPaaS functionalities, (2) some agents

embed the LPaaS functionalities, and (3) some LP
functionalities are embedded in some services provided
by the middleware (namely by the containers).

The traditional MAS architecture is enriched with
the notion of LPaaS agent / service, which allows for
situated reasoning on locally-available data by design.
In this vision, agents can be split in two groups: local
agents and global agents. The former includes all the
agents embedded in sensor and actuator devices, and in
charge of generating the local knowledge: they represent
the local view of the IoT system. The latter group
includes agents with a higher-level view of the system,
not necessarily embedded in SO devices, which act
and coordinate their activities to properly pursue the
system’s goal. In the service layer, LPaaS and other
typical middleware / application services are supplied.
These services can be provided by the devices located in
the physical world, by the MAS agents, or by dedicated
infrastructural components.

Figure 6 (left) illustrates in detail the case where
SO agents embed the LPaaS service, and are therefore
able to both perform their own reasoning and offer
their capabilities to others. In this case, each SO has
a representative autonomous software agent, which is
capable of monitoring the state of the device, make
decisions on behalf of the device, and discover and
exploit external help if necessary.

4.3 Revisiting Agents’ Inner Architecture

Figure 6 (right) shows the inner architecture of a SO
modelled as an LPaaS agent:

• The Perception Handler takes care of
measurements coming from sensors. The new data
feed the knowledge base of the SO, may alter
existing knowledge, and contribute to the inference
of novel knowledge

• The KB Update component evaluates incoming
data, and updates the knowledge base accordingly.
A trivial implementation of the LPaaS agent
can simply insert novel information with no
modifications or restrictions (actually acting as
an information repository), whereas a more
sophisticated one can interact with the KB Query
component to perform consistent updates of the
KB (actually supporting the interpretation of the
KB as a logic theory of the local world)

• The KB Query component receives queries from
the agent specific behaviour implementation, from
the Perception Handler, and from the KB Update
component. In the first case, it supports the agent’s
internal decision-making; in the second, it helps the
KB to remain consistent while updating itself in
reaction to external stimuli. In the latter case, it
helps selecting which information will be inserted
in the KB
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Figure 5 Overview of a LPaaS multi-agent system. At the bottom layer, the physical / computational environment lives,
with boundary artefacts [ORV06] taking care of its representation and interactions with the rest of the MAS. Then,
typically, some middleware infrastructure provides common API and services to application-level software – i.e., the
containers where service components live – there including the coordination artefacts [ORV06] governing the
interaction space. Finally, on top of the middleware, the application / system as a whole lives, in LPaaS MAS view
as a mixture of services – possibly RESTful, as for LPaaS as a WS – and agents.

Figure 6 The Smart Object as an LPaaS Agent: typical SO conceptual architecture [FGRS17] enriched with LPaaS service
(left) and inner architecture (right).
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Figure 7 The LPaaS container in a MAS.

• The Knowledge Base is a logic theory, as described
in Section 2. In principle, any modification of the
surrounding environment perceived by sensors can
produce an update

• The LP Inference component performs deduction
from the existing KB. Its inputs is the current
KB, which is a mixture of background knowledge,
measured metrics, and deduced facts; its output is
the novel inferred knowledge.

4.4 On LPaaS Agents’ Lifecycle

In order to implement the LPaaS MAS architecture,
a container-component programming model can be
adopted: the LPaaS agent is a component living inside
a container that manages its life cycle. The container-
component model simplifies the configuration and usage
of the LPaaS inferential engine in a distributed system,
by separating concerns: on the one hand, the component
is responsible for the LPaaS inferential engine and its
business logic; on the other, the container is a portion of
the middleware that manages the number of instances,
configuration, and life cycle of the handled components.

Accordingly, an LPaaS agent is handled by an
LPaaS container which manages the service’s core.
The agent is characterised by a cyclic behaviour:
at each iteration, it receives a service request from
a client, synthesises the response, and communicates
the operation result. Figure 7 shows the operations
performed by the container for creating and configuring
an LPaaS component: the container, after loading
the component’s metadata, creates the component,
configures the inferential engine, and runs the automatic
methods (for self-configuration).

5 LPaaS MAS Prototype: LPaaS in Jade

The proposed approach has been implemented on top
of the Jade middleware [JAD], which facilitates the
development of interoperable, open, and heterogeneous
multi-agent systems by relying on the FIPA standard
[ON98], and exploiting tuProlog [DOR01, tuP] as the
LPaaS Prolog engine. We choose tuProlog because of its
peculiar blend of imperative, object-oriented, and logic
programming styles: apart from being Java-based, light-
weight, and easy deployable, it also enables and promotes
a multi-paradigm programming style, where the Prolog
code can invoke Java code and viceversa, yet keeping the
two computational models clearly separate [DOR05].

Following the Jade approach to openness, the LPaaS
agent must register with the Jade Directory Facilitator

Figure 8 The LPaaS Service-DF-Client interaction.

(DF) – Jade yellow pages for services offered by
agents in a MAS – by providing a logical identifier
and indicating the sort of service offered (i.e., LPaaS).
Thus, clients can dynamically perform a discovery
operation and identify which LPaaS agents live in the
system—since many may provide the LPaaS service
simultaneously, i.e., for resiliency and performance
reasons. In its turn, a client willing to use a LPaaS service
must, as a first action, perform a discovery via the DF,
requesting either the list of all agents offering LPaaS
services, or a specific service, given its logical identifier.

The communication between Jade agents occurs
via ACL (Agent Communication Language) messages
[Fou02], that is, well-structured messages with a clear
semantics and interoperable encoding. The request ACL
message for an LPaaS service is always a FIPA Request,
and should contain both the logical identifier of the
LPaaS agent and the identifier of the operation to be run
(a string that uniquely identifies a method). The request
message may also contain the goal to demonstrate,
possibly the number of solutions to be scanned, and
the maximum service running time (i.e., timeout),
depending on the nature of the LPaaS configuration
(i.e. stateless vs. stateful, dynamic vs. static). The
response ACL message is always a FIPA Inform [JAD],
notifying the customer of the service result: the response
message contains either the requested solutions or an
error message if the service could not be run.

The client agent, once obtained the Jade AID (Agent
IDentifier) of one or more agents from the DF as a
result of the discovery phase, sends an LPaaS Request
ACL message to the selected agent: in turn, the LPaaS
agent replies with an LPaaS response message, which
contains the service outcome (Figure 8). Interaction
always adheres to the request-response pattern: the
LPaaS agent is supposed to reply to the client in all
cases, possibly with a failure message in case of errors.

The reception of the message may be either blocking
or not blocking, both for the LPaaS agent and the client,
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depending on the configuration parameter: blocking
mode is the default for the LPaaS agent (so, with no
service requests the agent is suspended), while the client
fully depends on the application logic.

As far as security is concerned, two aspects
are currently supported: (i) authentication and
confidentiality of the communication; (ii) identification
of client’s permissions to access the service. The first
is ensured using Jade-S (Secure Jade) [PRT01]: each
LPaaS message is signed and encrypted. In particular,
when an LPaaS agent receives a service request message,
it first checks whether the message is signed by a known
agent (via Jade-S) and only in this case proceeds by
decrypting the message; otherwise, an error message is
returned. The second level implies that LPaaS agents
can distinguish privileged, configurator agents which
can start, stop, and reconfigure (admissible goals, KB,
etc.) the service.

5.1 Example Application

As a first testbed for LPaaS in Jade, a Smart Kitchen
IoT scenario is implemented. Four IoT devices – namely,
a fridge, a pantry, a mixer and an oven – supply
information to clients, exploiting the LPaaS approach,
about the food supply and users’ preferences.

The fridge and the pantry are capable of monitoring
the quantity of food, and of collecting historical data
on user’s habits, i.e., the most commonly eaten food
and preferred meals. The oven aims at supporting the
user’s cooking experience by relying on any available
technology to identify and cook food. The user profile
is supposed to include information about his/her
dietary requirements. The mixer manages the recipe
instructions, interacting with both the fridge – to check
that the ingredients for the selected recipe are actually
available – and with the oven—to check its ability to cook
that food, and potentially synthesise the proper control
instructions. Each device is supposed to have a limited
computational capability, such as a Raspberry Pi, or of
an Arduino board.

The application scenario requires that each device
does not merely provide raw data, but is instead capable
of producing higher-level knowledge and simultaneously
of coordinating and collaborating with other entities
in the system. In particular, each node (identified by
a device) must maintain local knowledge about its
status, be aware of the surrounding environment, and
be able to communicate with the control device to share
information about the kitchen state. Moreover, it should
be possible to migrate the software from a device to
another (i.e., if the device needs to be replaced) and to
add / remove IoT devices to the system without shutting
the system down first, i.e., in a “plug and play” fashion.

Assuming that all IoT and control devices are
connected to a single home subnet, we choose to adopt
a single Jade platform: the Jade Main Container is
located on the controller node and is in charge of
interacting / retrieving information from the smart

Figure 9 The Smart Kitchen Architecture in a LPaaS
tuProlog in Jade.

kitchen devices. Each IoT device is designed as an
LPaaS component, and is supposed to manage the node
knowledge base and expose the goals. In this case,
the available goals make it possible to query devices
about available food and the user’s habits—i.e., trace
the available products, quantities, expiration date for
perishables, purchase price and retailer, origin, users’
preferred products, etc.

Figure 9 gives an overview of the corresponding Jade

system, while Figure 10 shows a few key interactions.
The Smart Kitchen Agent is the global agent, in our
terminology, in charge of ensuring a coherent behaviour
of the overall system based on the overall knowledge
gathered. The interaction between the Smart Kitchen
Agent and the LPaaS local agents – that is, those
responsible of gathering local information and providing
situated reasoning – occurs via ACL messages: the Smart
Kitchen can thus obtain high-level information from the
devices, process it, and decide the action(s) to be taken.
For instance, if a given kind of food in the fridge is
running out, the Smart Kitchen Agent may place an
online order.

In its simplicity, the example scenario outlined here
showcases how easy it is to spread situated intelligence
in a IoT deployment by merging LPaaS with MAS. The
Smart Kitchen agent, for instance, needs not bother
tracking low-level data such as the amount and kind
of perishables, recipes requirements, etc. altogether, so
as to have all the system knowledge available and plan
action accordingly. This is what typically happens in
Cloud-based IoT deployments. In LPaaS MAS instead,
the Smart Kitchen agent may directly ask its peers the
higher-level information it needs for decision making –
with queries such as “May I start cooking a lasagna?”
or “Does Lisa like broccoli?” – expecting an informative
reply—instead of a raw measurement, such as “We are
missing besciamella for lasagna”.
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Figure 10 The Smart Kitchen Prototype: example of possible inferences.

6 Benefits & Open Issues

This section discusses the envisioned benefits of the
LPaaS approach, both per se and merged with MAS,
especially considering the IoT landscape, and along with
the open issues to be dealt with for fully realising LPaaS,
and LPaaS in MAS.

The first benefit, discussed throughout the paper,
is due to LPaaS alone: ubiquitous intelligence for
pervasive scenarios. LPaaS enables system designers to
distribute reasoning and inference capabilities amongst
the components they have, and let them balance the
computational requirements to best suit the deployment
scenario at hand—for instance, embedding LPaaS in
more powerful components and letting ask their services
by need. To the best of our knowledge, this is something
unprecedented in the current IoT landscape, where most
approaches either assume a fully-distributed network
of smart objects capable of performing general-purpose
computations, or resort to a Cloud-based setting where
the whole system intelligence resides on the Cloud side.

The second benefit naturally follows: situated
reasoning. LPaaS enables reasoning and inferential
processes to be context-aware w.r.t. the (possibly
ever-changing) environment where the process takes
place. For instance, a sensor augmented with LPaaS
capabilities – or, able to interact meaningfully with
an LPaaS service – can reason on the locally-gathered
data and provide to other system components not just
raw measures, but high-level, inferred information about
the sensed situation. In turn, this enables actuators
to carry out a situated decision-making process, where
the course of actions to undertake is the result of a
situated planning (inference) process. It is worth noting
that resorting mostly to locally available information
reduces both the bandwidth consumption and the need
for reliable communications between the distributed
components, which are especially desirable features in
IoT scenarios.

Furthermore, other benefits can be envisioned when
coupling LPaaS with MAS: first of all, goal-orientedness.
LPaaS agents may in fact exploit LPaaS to reason about

their own goals, the plans and actions needed to achieve
them, and the effects brought by—which is something
only rational agents – such as BDI ones [Rao96] –
usually do. Also, even non-LPaaS agents and non-agent
components may do so, by simply interacting with the
available LPaaS services. This is a simple and effective
way to inject goal-orientedness within components of
any kind, regardless of their inner architecture and
implementation logic.

Lastly, when compared with the RESTful WS
approach, the MAS-based one has some notable
advantages: (i) complex interaction protocols built upon
semantically rich messages (i.e., FIPA protocols on ACL
messages); (ii) an interaction model particularly suitable
for decentralised computations, based on the peer-to-
peer model, yet not imposing a strict separation between
client and server roles; and (iii) potential mobility of the
service through the agent’s own mobility.

In order to fully exploit the potential of the LPaaS
approach, a few open issues are yet to be addressed. First
of all, deploying LPaaS in a real IoT scenario is likely to
require integration with databases, possibly distributed,
which should work as the distributed knowledge base of
the system. Then, the issue arises of handling replication
and consistency of data scattered in connected devices, in
particular when a coherent, logical interpretation of the
data in LP terms is required—that is, as a logic theory
of the state of the world.

Strict integration with sensor devices is also desirable
to have LPaaS always working the most up-to-date
perception of the environment properties of interest for
the application at hand. In this respect, devising out
ways to automatically embed the process of gathering
sensors’ perceptions into the LPaaS working cycle could
prove to be extremely useful in facilitating adoption of
the LPaaS approach and embedding of LPaaS within
devices.

On the opposite side of the IoT spectrum – that
is, looking at actuator devices – deep integration
with their operation API is welcome, so as to have
the LPaaS distributed engine automatically command
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devices whenever some reasoning process results in the
need of interacting with the physical world.

Another open issue is how to deal with situatedness
in space, and mobility. Many modern applications would
in fact benefit from having logic theories and inference
processes somehow bound to spatial aspects of the
application domain—similarly, and complementarily, to
what LPaaS does with time. For instance, resolution of
a query may consider also logic theories and LP engines
in the neighbourhood of the queried one, and LPaaS
engines may be able to move from node to node in search
for better computational resources.

All the above issues are presently under consideration
and will be subject of future research.

7 Related Work

Related work can be roughly divided into three main
areas of interest: SOA in IoT, MAS in IoT, and
standard knowledge representation in IoT. In spite of
their differences, they all share the underlying idea that
intelligence in the IoT comes from a large population of
intelligent, small, networked, embedded devices at a high
level of granularity—unlike more traditional approach
where intelligence is typically concentrated in a smaller
number of larger, monolithic entities (and applications)
[HTM+14].

SOA in IoT. The SOA paradigm is widely used in
IoT scenarios [MMM17, KCB+12, CKT10, GTW10,
GTK+10]: moreover, communication via REST enables
the direct integration of SOA-ready devices (i.e., devices
hosting native web services).

MobIoT [HPI14] provides efficient service discovery,
composition, and access in heterogeneous, dynamic,
mobile IoT contexts, revisiting the standard SOA
approach by providing probabilistic registration, look-
up and thing-based composition based on comprehensive
ontologies. However, it does not support runtime
interaction with users to let them specify their goals,
and still needs proper validation from the scalability
viewpoint when the number of registered services is very
large.

SIA [SKG+09] is a SOA which supports abstracting
objects with embedded software as services. The
architecture supports heterogeneous hardware, software
and communication protocols among embedded systems.
On the other side, it does not support self-adaptation
due to runtime changes of the user’s requirements, nor
does it support runtime interaction with users to better
understand their goals and preferences.

A novel approach for engineering IoT systems is
proposed in [ASD17], where a set of things with their
functionalities and services is connected and led to
cooperate temporarily so as to achieve a given goal.
The IoT-A project [IoT] investigates an architectural
reference model based on a service-oriented approach
where devices, data, and interfaces are abstracted

and implemented as services: these services are then
composed into complex processes to support the business
needs. The composition is based on processes modelled
by experts, and enacted by execution engines.

The HYDRA project [ERA09] defines a unique
combination of SOA and a semantic-based Model Driven
Architecture that creates a middleware for networked
embedded systems enabling the development of generic
services based on open standards. Developers can then
create ambient intelligence applications based on wireless
devices and sensors.

Many aspects developed in these works constitute
source of inspiration for LPaaS, in particular in how the
model and the architecture is conceived and designed.
Following the SOA principles, we model ubiquitous
intelligence in a dynamic context promoting portability
and interoperable interaction over a network (gained
through standards) and emphasising the separation
of the service interface from its implementation. The
LPaaS goes beyond the state of the art especially
as concerns context-awareness: LPaaS facilitate the
ability of injecting intelligence in existing services/agents
exploiting the awareness of the context, thus promoting
their adaptivity.

MAS in IoT. In the wide area of mediated interaction,
MAS share with middleware-based approaches the idea
of moving intelligence and decision-making closer to the
actual infrastructure. Since agents are reactive, proactive
and exhibit an intelligent and autonomous behaviour,
MAS emerges as a natural approach to develop IoT
systems [SFG+18, VZ17, SC17, MPS+16, MAT13].

MAIoT [NAG17] is a MAS-based architecture to
coordinate IoT devices, based on the idea of enabling
dialogues between IoT devices: to do so, IoT devices
are wrapped into rational agents with reasoning and
dialogue capabilities. A MAS architecture for healthcare
AmI systems is presented in [RRLJ+17], where a MAS
able to control the performance of all the tasks that
a patient is doing during a rehabilitation therapy
is discussed, showing how agents can be effective in
reacting to humans based on information obtained from
sensors and their knowledge.

In [For17], a multi-agent recommendation system
for the IoT environment is proposed that exploits
a decentralised and self-organising strategy. The
recommendable things are described through metadata
obtained by exploiting of a locality preserving hash
function able to map similar things into similar
metadata. Cyber agents manage the thing descriptors
and autonomously decide to delivery/keep them by
exploiting of tailored probability functions.

However, the above approaches do not really focus
on the intelligence engineering and issues, nor do they
seem to consider different paradigms integration by
design. In fact, a fundamental principle of the LPaaS
approach is to enrich the traditional MAS architecture
with the notion of LPaaS agent / service, which allows
for situated reasoning on locally available data by design.
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In particular, orthogonal yet complementary dimensions
(see Subsection 4.2) are taken into account in the design
and implementation of LPaaS enabling the exploitation
of the paradigm embedded in an agent, as a middleware
service or as a boundary artefact.

Knowledge representation in IoT. Recent research
works, like [FOM+17], propose standardisation models
for sharing knowledge and reasoning across different IoT
contexts, highlighting how the IoT knowledge is strongly
related to the environment and how knowledge sharing is
a requirement in order to reach the system intelligence.
There, authors show how a multi-context knowledge base
can be structured on the basis of modular ontologies
and integrated with a distributed rule-based inference
engine in multiple smart-building environments, in order
to enable scalable contextual reasoning for intelligent
assistance.

The LPaaS approach moves from similar roots, by
proposing an LP approach for the standardisation and
formalisation of knowledge: the basic assumption is that
LP-based approaches are particularly suitable for data-
intensive retrieval tasks with rule-based inference and
promoting the automated reasoning and deduction on
data. Moreover, the LP approach has obvious advantages
like observability and understandability: developers
suddenly have insight concerning on how a system can
use its domain knowledge to achieve the task goals.

8 Conclusions

Pervasive and situated systems of any sort are
increasingly demanding intelligence to be scattered
throughout the computational devices populating the
physical environment, as clearly demonstrated by IoT
scenarios where varying degrees of intelligence are being
used to support adaptation and self-management. The
LPaaS architecture aims at fitting such a challenging
context by introducing a standard interface that is
general enough to account for both stateful and stateless
services, with both static and dynamic knowledge bases,
in a completely configurable and customisable way. Our
implementation is designed on the top of tuProlog, a
light-weight, multi-platform, and multi-language engine
that is well suited for the purpose. We discuss and
implement two different architectures: the first is based
on the usual SOA infrastructure—namely, RESTful web
services [FT02], while the second is based on multi-agent
system [Fer99]. In addition, we discuss the integration of
these different paradigm and solutions, highlighting the
advantages of such a hybrid approach.

Of course, this is not the end of the story: many
improvements can be devised in several direction,
starting from a specialised LP-oriented middleware,
dealing with heterogeneity of platforms as well as with
distribution, life-cycle, interoperability, and coordination
of multiple situated Prolog engines – possibly based
on the existing tuProlog technology and TuCSoN

middleware – so as to explore the full potential of logic-
based technologies in IoT scenarios and applications.
Moreover, the LPaaS interface can be extended with
specific space-awareness methods to take the space
around either the client or the server into account,
exploring the chance to opportunistically federate
LP engines by need as a form of dynamic service
composition. Space-awareness and situatedness will be
investigated, exploring the idea to opportunistically
federate LP engines by need as a form of dynamic service
composition.
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López-Jaquero, Elena Navarro, and Pascual
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