
Logic Synthesis Techniques for Reduced Area Implementation of
Multilevel Circuits with Concurrent Error Detection

Nur A. Touba and Edward J. McCluskey

Center for Reliable Computing
Departments of Electrical Engineering and Computer Science

Stanford University, Stanford, CA 94305-4055

Abstract

This paper presents new logic synthesis techniques for
generating multilevel circuits with concurrent error detection
based on a parity-check code scheme that can detect all
errors caused by single stuck-at faults. These synthesis
techniques fully automate the design process and allow for
a better quality result than previous methods thereby
reducing the cost of concurrent error detection. An
algorithm is described for selecting a good parity-check
code for encoding the outputs of a circuit. Once the code
has been chosen, a new procedure called structure-
constrained logic optimization is used to minimize the area
of the circuit as much as possible while still using a
circuit structure that ensures that single stuck-at faults
cannot produce undetected errors. The implementation that
is generated is path fault secure and when augmented by a
checker forms a self-checking circuit. Results indicate that
self-checking multilevel circuits can be generated which
require significantly less area than using duplication.

1 . Introduction
Concurrent error detection is an important requirement

in the design of systems in which reliability and data
integrity are important. Concurrent error detection
circuitry has the ability to detect both transient and
permanent faults as well as to enhance off-line testability
and reduce BIST overhead [5], [14].

One general approach for concurrent error detection is to
encode the outputs of a circuit with an error detecting code
and have a checker that monitors the outputs and gives an
error indication if a non-codeword occurs. A systematic
code is a code in which codewords are constructed by
augmenting the normal output bits with check bits. Using
a systematic code for concurrent error detection has the
advantage that no decoding is needed to get the normal
output bits. Figure 1 shows the general structure of a
circuit being checked with a systematic code. There are
three parts: function logic, check symbol generator, and
checker. The function logic generates the normal outputs,
the check symbol generator generates the check bits, and
the checker determines if they form a codeword. Two types
of systematic codes that are used for concurrent error
detection are Berger codes and parity-check codes.

The conventional approach for designing arbitrary
multilevel circuits with concurrent error detection has been

Function
Logic

Check
Sym. Gen.

Checker

outputs

inputs
error

indication

Fig. 1. Concurrent Error Detection using a Systematic Code

to use duplication. The circuit is simply duplicated and the
outputs are compared using an equality checker. While
this provides very high error detection capability, it has a
large area overhead. Recently, research has been done on
using automated logic synthesis techniques (such as those
used in MIS [1]) to design multilevel circuits with
concurrent error detection requiring less area overhead than
duplication while still detecting all errors due to internal
single stuck-at faults [3], [7]. Internal single stuck-at
faults are all single stuck-at faults except those at the
primary inputs (PI’s). Note that for any concurrent error
detection scheme (including duplication), detection of
stuck-at faults at the PI’s cannot be guaranteed unless
encoded inputs are used. However, if the inputs to the
circuit are outputs of another concurrently checked logic
block, then the only undetectable PI faults are break faults
after the checker [10].

Jha and Wang [7] described a method for synthesizing
self-checking circuits based on a unidirectional code (e.g., a
Berger code). De et al. [3] described the RSYN synthesis
system which can synthesize self-checking circuits based
on one of three schemes: Berger code, parity-check code,
or duplication. They gave results for some benchmark
circuits, and for almost all of the circuits, the parity-check
code scheme required the least area overhead. This paper
presents new logic synthesis techniques for generating
multilevel circuits with concurrent error detection based on
parity-check codes. These techniques allow for a significant
improvement in the quality of the result.

A parity-check code is a code in which each check bit is
a parity check for a group of output bits. Each group of
outputs that is checked by a parity check bit is called a
parity group. In single-bit parity, there is one parity group
which contains all of the outputs. In duplication of a
circuit with n outputs, there are n parity groups each
containing one of the outputs. The two basic steps in
synthesizing a circuit that uses a parity-check code for
concurrent error detection are: (1) determining which
parity-check code to use, and (2) performing logic
optimization under the constraint that the structure of the

Permission to copy without fee all or part of this material is granted,
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission. 1994 ACM 0-89791-690-5/94/0011/0651 $3.50

circuit is such that faults cause detectable errors (i.e., non-
codeword outputs). In this paper, a fully automated
parity-check code selection algorithm is presented. It is a
greedy algorithm that tries to find the optimal code for
minimizing the overall area of the circuit using a cost
function that considers the area of all three parts of the
circuit: function logic, parity predict logic (check symbol
generator), and checker. Once the code is selected, the next
step is to perform logic optimization under structural
constraints. In this paper, a new logic optimization
technique called structure-constrained logic optimization
(SCLO) is presented. By considering structural constraints
when factoring, SCLO optimizes the area of the circuit as
much as possible under the constraints.

2 . Terminology
A multilevel circuit can be represented by a Boolean

network which is a directed acyclic graph where each node
corresponds to a Boolean function and each inward arc
indicates an input to the function. If a directed path exists
from node i to node j, then node i is a transitive fan-in of
node j, and node j is a transitive fan-out of node i.

The totally self-checking (TSC) goal is to detect the
first error that occurs due to any fault in a specified fault
class. The concept of path fault secure (PFS) circuits was
introduced in [15] and is defined as follows.

Definition 1: A circuit is path fault secure (PFS) if
and only if for every fault in a specified fault class, error
propagation down any set of possible structural paths from
the fault site to the outputs will never produce an incorrect
codeword output.

It was shown in [15] that PFS circuits that are checked
by a TSC checker achieve the TSC goal regardless of
which input patterns occur during normal operation. The
techniques described in this paper generate self-checking
circuits that are PFS.

3 . Selecting Parity-Check Code
Given a combinational circuit for which concurrent error

detection is required, the first step is to select a parity-
check code for encoding the outputs. To make the circuit
PFS for all internal single stuck-at faults, logic cannot be
shared between two outputs in the same parity group
because then if a fault occurred in the shared logic, an error
could propagate to both outputs causing a two bit error
which would not be detected by the parity checker.
Therefore, a tradeoff exists between the number of parity
groups (i.e., check bits), and the constraints on logic sharing
between outputs. The more parity groups there are, the
more logic sharing is possible, however more parity
groups require more parity predict logic to generate the
check bits.

The goal is to select the code that will require the
least area to implement. The area of the circuit is equal to
the sum of the areas of the function logic, parity predict
logic, and checker. The area required by the function logic
depends on how much logic sharing is possible. The area
requ i red by the pa r i ty p red ic t log ic

 Table 1. Algorithm for Selecting Parity-Check Code

SELECT_PARITY_CHECK_CODE (funct_logic):
opt_funct_logic = unconstrained logic opt. of funct_logic
best_code = duplication code
/* one parity group for each output */
for i = 1 to NUM_PO(funct_logic)

parity_groupi = { i }
repeat {

for each codei, j formed by combining parity
 groups i and j in best_code

compute AREA_REDUCE(best_code, codei, j)
codep, q = code that maximizes AREA_REDUCE
if (AREA_REDUCE(best_code, codep, q) > 0) {

best_code = codep, q
/* combine parity groups p and q */
parity_groupp = parity_groupp ∪ parity_groupq
delete parity_groupq
improve = true

} else improve = false
} until (! improve | | best_code == single-bit parity code)
return (best_code)

AREA_REDUCE (best_code, codei, j):
 sharedi, j = LITS_SHARED(opt_funct_logic,

 parity_groupi , parity_groupj)
ci, j = SIMPLIFY(XOR(ci , cj))
parity_reducei, j = LITS(ci) + LITS(cj) - LITS(ci, j)
checker_reducei, j = 4
return (parity_reducei, j + checker_reducei, j - sharedi, j)

depends on the size of the parity functions that must be
implemented for each check bit. The area required by the
checker depends on how many parity groups there are.

The number of possible parity-check codes for a circuit
with n outputs is equal to Bn, the number of partitions of
a set of n objects. This number is exponential in n, so
heuristics are needed in searching for the minimal area
code. A greedy algorithm is given in Table 1 which uses
the heuristic of pairwise combining parity groups in
searching for a minimal area code. It begins with the
duplication code in which each output is in its own parity
group. It then estimates the reduction in the area for all
codes that can be formed by combining two of the parity
groups and chooses the code that offers the largest area
reduction. This process continues until no further reduction
in area is possible through combining parity groups.

The area reduction for using code B instead of code A,
where code B is formed by combining two parity groups in
code A, is estimated by considering the resulting change in
the area for each of the three parts of the circuit:

Function Logic: Area may increase because of added
constraints on logic sharing between outputs. This is
estimated by looking at the function logic optimized with
no constraints and computing the literal count of the logic
shared between the outputs that are combined into the same
parity group in code B since this logic can no longer be
shared if code B is used instead of code A. However, global
restructuring operations during SCLO may compensate for
some of this loss by factoring the circuit differently.

Parity Predict Logic: Area will decrease because there
will be one less parity function. Let c1 and c2 be the
parity functions for the parity groups in code A that are
combined to form code B. The number of literals that will
be saved is estimated by comparing the factored form literal
count of c 1 plus c 2 with that of (c 1 ⊕ c 2) after
simplifying:
p.p.l. area(A) - p.p.l. area(B) ≈ lits(c1) + lits(c2) - lits(c1 ⊕ c2)

Checker: Area will decrease because there is one fewer
check bit. The checker will have 4 fewer literals.

In the worst case, the code selection algorithm will

execute the AREA_REDUCE function C2
i

i=1

n

∑ times,

where n is the number of PO’s. Thus, a solution is
obtained using only O(n2log

2
n) operations, where each

operation requires computing the exclusive OR of two
functions and simplifying it.

4 . Structure-Constrained Logic
Optimization (SCLO)

Once the parity-check code has been selected, the next
step is to optimize the circuit under the constraints on
logic sharing that are needed to ensure that no internal
single stuck-at fault can cause an undetectable error. A
new synthesis technique that does this, called structure-
constrained logic optimization (SCLO), is described here.
Multilevel logic optimization improves circuit area by
using operations that restructure and minimize the logic
represented by a Boolean network. In SCLO, restrictions
are placed on the restructuring operations to ensure that the
resulting circuit will satisfy the structural constraints.

Given the initial multilevel logic equations and the
parity-check code, SCLO optimizes the logic under the
constraint that a non-PI node cannot be a transitive fan-in
of more than one PO in a parity group. SCLO is
accomplished by starting with an initial Boolean network
that satisfies the constraints, and then constraining the
restructuring operations so that they never cause nodes to
violate the constraints. The two restructuring operations
that can cause a node to violate the constraints are
resubstitution and extraction.

4.1 Constraints on Resubstitution
Resubstitution is an operation where some node a,

which is “divisible” by another node b, is rewritten as a
function of node b, thus creating an arc from node b to
node a [1]. This arc may create a path such that node b
(or some node that is a transitive fan-in of node b if
Boolean resubstitution is considered) becomes a transitive
fan-in of more than one PO in a parity group, thus
violating the constraints. Therefore, in SCLO,
resubstitution can be performed between two nodes only if
the resulting arc does not violate the constraints.

Various filters are generally used to reduce the number
of node pairs for which resubstitution is attempted [1]. So
this constraint can be simply added as an additional filter.

4.2 Constraints on Extraction
Extraction is an operation in which an intermediate node

is created by factoring out a common subexpression from a
set of nodes, S. The intermediate node will have an arc to
each node in S, and hence will be a transitive fan-in of
every PO that is a transitive fan-out of any node in S.
Therefore, in SCLO, common subexpressions can only be
extracted from a set of nodes if all the PO’s that are transitive
fan-out’s of the set of nodes are in different parity groups.

In order to implement constrained extraction, the
process of selecting common subexpressions to extract
needs to be modified. Two methods that are used for
selecting common subexpressions to extract are rectangle
covering [2] and the concurrent decomposition procedure
in [12]. In both methods, subexpressions are identified,
and each is assigned a value based on the number of literals
that will be reduced if it is extracted. In SCLO,
subexpressions cannot always be extracted from the full set
of possible nodes due to the structure constraints. Thus,
the value assigned to each subexpression must be adjusted
according to the maximum number of literals that can be
reduced without violating the constraints. Subexpressions
can then be selected based on the adjusted values and
extracted from the maximal set of nodes that the
constraints allow. Details on a procedure for extraction in
SCLO using rectangle covering can be found in [16].

4.3 Technology Mapping
After the Boolean network is optimized, a technology

mapping procedure that follows the structure of the
Boolean network, such as tree-mapping [4], [8], is used to
map the Boolean network to single-output library cells.
The resulting mapped circuit is PFS for internal single
stuck-at faults because each such fault affects only one cell
and can propagate to no more than one output in any
parity group using any set of possible structural paths.
Thus, it can never produce an incorrect codeword output.

For a self-checking circuit, a TSC checker needs to be
added to the PFS circuit generated by SCLO. TSC parity
checkers [9] can be used to check each parity group, and
then a TSC two-rail checker [6] can be used to combine
the error indication signals.

5 . Results
The synthesis method proposed in this paper has been

implemented by making modifications to SIS 1.1 (an
updated version of MIS). The code selection algorithm
was added, and the restructuring algorithms were extended
to handle structural constraints so that SCLO could be
performed. Self-checking circuits were generated for some
of the MCNC combinational benchmark circuits and then
placed and routed using the TimberwolfSC 4.2c standard
cell package [13]. The circuits were optimized using the
script file script.boolean included with the SIS source
code. Results are shown in Table 2 for some of the
circuits which were chosen to illustrate the variance in the
number of check bits for the parity-check code selected by
the code selection algorithm. Literal counts are given in

Table 2. Results for MCNC Benchmark Circuits

Circuit Duplication Method Synthesis Method
opt layout chk ckt chkr total layout ovrhd chk ckt chkr total layout ovrhd

Name PI PO lits area bits lits lits lits area % bits lits lits lits area %

5xpl 7 10 121 334 10 242 72 314 989 196 3 217 44 261 797 139
alu4 14 8 800 3298 8 1600 56 1656 6796 106 8 1600 56 1656 6796 106
b12 15 9 87 284 9 174 64 238 727 156 4 150 44 194 613 116
bw 5 28 217 752 28 434 216 650 2566 241 8 302 136 438 1066 42
cmb 16 4 52 153 8 104 24 128 414 171 2 64 16 80 206 35
cu 14 11 53 181 11 106 80 186 537 197 1 83 40 123 356 97
f51ml 8 8 130 385 8 260 56 314 923 140 2 218 32 250 677 76
misex1 8 7 54 154 7 108 48 156 403 162 3 96 32 128 355 131
misex2 25 18 104 372 18 208 136 344 1166 213 2 202 72 278 935 151
pcle 19 9 69 229 9 138 64 202 659 188 3 156 40 196 523 128
sao2 10 4 149 431 4 298 24 322 1076 150 1 268 12 280 785 82
term1 34 10 179 617 10 358 72 430 1542 150 7 326 60 386 1211 96
ttt2 24 21 191 630 21 382 160 542 1977 220 9 374 112 486 1707 171
x2 10 7 51 144 7 102 48 150 433 201 2 79 28 107 279 94

terms of factored form literals and layout areas are given in

units of 1000 λ2, where λ is the minimum size in a
technology. Under the first major heading, information
about each circuit is given: number of PI's, number of
PO's, literal count after normal unconstrained logic
optimization, and layout area for the optimized circuit
(with no concurrent error detection). Under the second and
third major headings, results for the duplication method and
the synthesis method proposed in this paper are given:
number of check bits, literal count for the circuit, literal
count for the checker, total literal count for the self-
checking circuit, layout area for the self-checking circuit,
and the percentage of area overhead required which is
computed as show below.

% Area Overhead = (self-checking layout area) - (normal layout area)
(normal layout area)

x 100

For the circuits where the number of check bits (i.e., parity
groups) that are used in the parity-check code chosen by the
synthesis method is equal to the number of PO’s, the
duplication code was selected. Where the number of check
bits is equal to one, single-bit parity prediction was selected.

6 . Conclusions
The logic synthesis techniques presented here produce

a better result than previous synthesis methods because the
parity-code selection algorithm uses a cost function based
on the area of the function logic, parity predict logic, and
checker, and the structure-constrained logic optimization
technique considers the structural constraints during each
step of logic optimization. Results were presented that
show that these techniques can significantly reduce the area
overhead required for concurrent error detection in
multilevel circuits. A possibility for future research is to
apply these techniques to synthesis of fault-tolerant finite
state machines where the states are encoded with a parity-
check code [11]. Also, the structure-constrained logic
optimization procedure described here can easily be
generalized for any types of structural constraints during
logic synthesis and may have other applications.

References
[1] Brayton, R.K., R. Rudell, A. Sangiovanni-Vincentelli, A.R. Wang,

“MIS: A Multiple-Level Logic Optimization System,” IEEE Trans.
Comp.-Aided Design, pp. 1062-1081, Nov. 1987.

[2] Brayton, R.K., R. Rudell, A. Sangiovanni-Vincentelli, A.R. Wang,
“Multi-Level Logic Optimization and The Rectangular Covering
Problem,” Proc. of ICCAD, pp. 66-69, 1987.

[3] De, K., C. Natarajan, D. Nair, and P. Banerjee, “RSYN: A System
for Automated Synthesis of Reliable Multilevel Circuits,” IEEE
Transactions on VLSI Systems, pp. 186-195, Jun. 1994.

[4] Detjens, E., G. Gannot, R. Rudell, A. Sangiovanni-Vincentelli, and
A. Wang, “Technology Mapping in MIS,” Proc. of Int. Conf. on
Computer-Aided Design (ICCAD), pp. 116-119, 1987.

[5] Gupta, S.K., and D.K. Pradhan, “Can Concurrent Checkers Help
BIST?,” Proc. of International Test Conf., pp. 140-150, 1992.

[6] Hughes, J.L.A., E.J. McCluskey, and D.J. Lu, “Design of Totally
Self-Checking Comparitors with an Arbitrary Number of Inputs,”
IEEE Transactions on Computers, pp. 546-550, Jun. 1984.

[7] Jha, N.K., and S.-J. Wang, “Design and Synthesis of Self-
Checking VLSI Circuits and Systems,” IEEE Transactions on
Computer-Aided Design, pp. 878-887, Jun. 1993.

[8] Keutzer, K., “Dagon: Technology Binding and Local
Optimization by DAG Matching,” Proc. of the 24th Design
Automation Conference, pp. 341-347, 1987.

[9] Khakbaz, J., “Self-Testing Embedded Parity Trees”, Proc. of
FTCS-12, pp. 109-116, 1982.

[10] Khodadad-Mostashiry B., “Break Faults in Circuits with Parity
Prediction,” Tech. Note No. 183, CRC, Stanford University,
Stanford, CA, Dec. 1980.

[11] Leveugle R., “Optimized State Assignment of Single Fault Tolerant
FSMs Based on SEC Codes”, Proc. of the 30th Design Automation
Conference, pp.-14-18, 1993.

[12] Rajski, J., and J. Vasudevamurthy, "The Testability-Preserving
Concurrent Decomposition and Factorization of Boolean
Expressions," IEEE Trans. on CAD, pp. 778-793, Jun. 1992.

[13] Sechen C., and A. Sangiovanni-Vincentelli, “TimberWolf3.2: A
New Standard Cell Placement and Global Routing Package”, Proc.
of the 30th Design Automation Conference, pp. 432-439, 1986.

[14] Sedmak, R.M., “Design for Self-Verification: An Approach for
Dealing with Testability Problems in VLSI-Based Designs”, Proc.
of International Test Conference, pp. 112-120, 1979.

[15] Smith, J.E., and G. Metze, “Strongly Fault Secure Logic
Networks,” IEEE Trans. on Computers, pp. 491-499, Jun. 1978.

[16] Touba, N.A., and E.J. McCluskey, "Logic Synthesis for Concurrent
Error Detection", Technical Report No. 93-6, CRC, Stanford
University, Stanford, CA, Nov. 1993.

