

12345efghi

UNIVERSITY OF WALES SWANSEA

REPORT SERIES

Logical Approaches to Computational Barriers
Second Conference on Computability in Europe, CiE 2006

Swansea, UK, June/July 2006

edited by

Arnold Beckmann, Ulrich Berger, Benedikt Löwe and John V. Tucker

Report # CSR 7-2006

Arnold Beckmann Ulrich Berger
Benedikt Löwe John V. Tucker (Eds.)

Logical Approaches
to Computational Barriers

Second Conference on Computability in Europe, CiE 2006
Swansea, UK, June 30-July 5, 2006
Proceedings

University of Wales Swansea
Report Series

Volume Editors

Arnold Beckmann
Ulrich Berger
John V. Tucker
University of Wales Swansea
Department of Computer Science
Singleton Park, Swansea SA2 8PP, UK
E-mail: {a.beckmann,u.berger,j.v.tucker}@swansea.ac.uk

Benedikt Löwe
Universiteit van Amsterdam
Institute for Logic, Language and Computation (ILLC)
Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands
E-mail: bloewe@science.uva.nl

University of Wales Swansea
Report # CSR 7-2006

Preface

CiE 2006: Logical Approaches to Computational Barriers
Swansea, Wales, June 30 - July 5, 2006

Computability in Europe (CiE) is an informal network of European scientists
working on computability theory, including its foundations, technical develop-
ment, and applications. Among the aims of the network is to advance our the-
oretical understanding of what can and cannot be computed, by any means
of computation. Its scientific vision is broad: computations may be performed
with discrete or continuous data by all kinds of algorithms, programs, and ma-
chines. Computations may be made by experimenting with any sort of physical
system obeying the laws of a physical theory such as Newtonian mechanics,
quantum theory or relativity. Computations may be very general, depending
upon the foundations of set theory; or very specific, using the combinatorics of
finite structures. CiE also works on subjects intimately related to computation,
especially theories of data and information, and methods for formal reasoning
about computations. The sources of new ideas and methods include practical
developments in areas such as neural networks, quantum computation, natural
computation, molecular computation, and computational learning. Applications
are everywhere, especially, in algebra, analysis and geometry, or data types and
programming.

This proceedings contains some of the talks given at the second CiE confer-
ence that was held at the Department of Computer Science, Swansea University,
30 June - 5 July, 2006. The conference was based on invited tutorials and lectures,
a set of special sessions on a range of subjects as well as contributed papers and
informal presentations. This volume contains 30 of the contributed talks, all of
which have been refereed, and 21 informal presentations. The other talks of the
conference appeared in the Springer Lecture Notes in Computer Science series,
Vol. 3988. There will be a number of post-proceedings publications, including
special issues of Theoretical Computer Science, Theory of Computing Systems,
and Journal of Logic and Computation.

The first meeting of CiE was at the University of Amsterdam, June 8 - 12,
2005. We are sure that all of the 200+ mathematicians and computer scientists
attending that conference had their view of computability theory enlarged and

IV

transformed: they discovered that its foundations were deeper and more myste-
rious, its technical development more vigorous, its applications wider and more
challenging than they had known. We believe the same is certainly true of the
Swansea meeting.

CiE 2005 and CiE 2006 are at the start of a new conference series Com-
putability in Europe. The series is coordinated by the CiE Steering Committee:

S. Barry Cooper (Leeds)
Benedikt Löwe (Amsterdam, Chair)
Elvira Mayordomo (Zaragoza)

Dag Normann (Oslo)
Andrea Sorbi (Siena)
Peter van Emde Boas (Amsterdam)

We will reconvene 2007 in Siena, 2008 in Athens, 2009 in Heidelberg, and 2010
in Lisbon.

Organisation and Acknowledgements

CiE 2006 was organised by the logicians and theoretical computer scientists at
Swansea: Arnold Beckmann, Ulrich Berger, Phil Grant, Oliver Kullmann, Faron
Moller, Monika Seisenberger, Anton Setzer, John V. Tucker; and with the help
of S. Barry Cooper (Leeds) and Benedikt Löwe (Amsterdam).

The Programme Committee was chaired by Arnold Beckmann and John
V. Tucker and consisted of:

Samson Abramsky (Oxford)
Klaus Ambos-Spies (Heidelberg)
Arnold Beckmann (Swansea, Co-chair)
Ulrich Berger (Swansea)
Olivier Bournez (Nancy)
S. Barry Cooper (Leeds)
Laura Crosilla (Firenze)
Costas Dimitracopoulos (Athens)
Abbas Edalat (London)
Fernando Ferreira (Lisbon)
Ricard Gavaldà (Barcelona)
Giuseppe Longo (Paris)

Benedikt Löwe (Amsterdam)
Yuri Matiyasevich (St.Petersburg)
Dag Normann (Oslo)
Giovanni Sambin (Padova)
Uwe Schöning (Ulm)
Andrea Sorbi (Siena)
Ivan N. Soskov (Sofia)
Leen Torenvliet (Amsterdam)
John V. Tucker (Swansea, Co-chair)
Peter van Emde Boas (Amsterdam)
Klaus Weihrauch (Hagen)

We are delighted to acknowledge and thank the following for their essential
financial support: the Department of Computer Science at Swansea, IT Wales,
the Welsh Development Agency, the UK’s Engineering and Physical Sciences Re-
search Council, the British Logic Colloquium, the London Mathematical Society,
and the Kurt Gödel Society of Vienna. Furthermore, we thank our sponsors the
Association for Symbolic Logic, the European Association for Theoretical Com-
puter Science, and the British Computer Society.

The high scientific quality of the conference was possible through the consci-
entious work of the Programme Committee, the special session organisers and
the referees. We are grateful to all members of the Programme Committee for

Preface V

their efficient evaluations and extensive debates, which established the final pro-
gramme. We also thank the following referees:

A.Pastor
Klaus Aehlig
Klaus Ambos-Spies
Jeremy Avigad
George Barmpalias
Andrej Bauer
N. K. Kosovsky
A. P. Beltiukov
Jens Blanck
Stefan Bold
Ana Bove
Vasco Brattka
Robert Brijder
Andrei Bulatov
Wesley Calvert
Véronique Cortier
K. Djemame
L. Crosilla
Victor Dalmau
Mário Jorge Edmundo
Ioannis Emiris
Juan L. Esteban
Graham Farr
T. Flaminio
Hervé Fournier
Torkel Franzén †
Nicola Galesi
Nicola Gambino

Bert Gerards
Sergey S. Goncharov
Emmanuel Hainry
Neal Harman
Takis Hartonas
Peter Hertling
Pascal Hitzler
Jan Johannsen
Reinhard Kahle
Ker-I Ko
Margarita Korovina
Sven Kosub
Oliver Kullmann
Simone Martini
Ugo Dal Lago
Antoni Lozano
Maria Emilia Maietti
Guillaume Malod
Klaus Meer
Wolfgang Merkle
Christian Michaux
Joseph Miller
Faron Moller
F. Montagna
Yiannis Moschovakis
Philippe Moser
Sara Negri
Stela Nikolova

Milad Niqui
Dirk Pattinson
Hervé Perdry
Bruno Poizat
Chris Pollett
Diane Proudfoot
Michael Rathjen
Jan Reimann
Robert Rettinger
Fred Richman
Piet Rodenburg
Panos Rondogiannis
Anton Setzer
Cosma Shalizi
Dieter Spreen
Umberto Straccia
Bas Terwijn
Neil Thapen
John Tucker
Sergey Verlan
Jouko Väänänen
Philip Welch
Damien Woods
Y. Yang
Xizhong Zheng
Ning Zhong
Martin Ziegler
Jeff Zucker

Of course, the conference was primarily an event, and a rather complicated
event at that. We are delighted to thank our colleagues on the Organising Com-
mittee for their many contributions and our research students for practical help
at the conference. We owe a special thanks to Beti Williams, director of IT Wales,
and her team for invaluable practical work. Finally, we thank Andrej Voronkov
for his Easy Chair system which facilitated the work of the Programme Com-
mittee and the editors considerably.

Swansea and Amsterdam, April 2006 Arnold Beckmann
Ulrich Berger

Benedikt Löwe
John V Tucker

VI

After completing this volume, we heard the sad news that our invited Special
Session speaker, Torkel Franzén, died on April 19, 2006. Torkel Franzén’s work on
the philosophy of logic and mathematics had gained more and more international
recognition in recent years. His death is a huge loss for the scientific community
and he will be very much missed at CiE 2006. Torkel Franzén did send us an
abstract of his planned contribution to this conference which is included in the
other part of the proceedings, LNCS, Vol. 3988.

We are grateful to Andrew Hodges for giving a Special Session talk at Torkel
Franzén’s place. The abstract of Andrew Hodges’ talk is included as the first
item in this volume.

The Editors

Table of Contents

Gödel’s Remarks on Turing’s Work (abstract of an invited special
session talk) . 1

Andrew Hodges

Contributed Talks

Integrating Functional Programming Into C++: Implementation and
Verification . 2

Rose Hafsah Abdul Rauf

Relativity Theory for Logicians and New Computing Paradigms 12
Hajnal Andréka

Generalized Tabular Reducibilities in Infinite Levels of Ershov Hierarchy . 15
Marat Arslanov

Note on Reducibility Between Domain Representations 24
Jens Blanck

Gödel, Turing, the Undecidability Results and the Nature of Human Mind 37
Riccardo Bruni

The Conjecture P �= NP Presented by Means of Some Classes of Real
Functions . 47

Jose Felix Costa, Jerzy Mycka

Decidability of Arithmetic Through Hypercomputation: Logical Objections 58
Paolo Cotogno

On Generalising Predicate Abstraction . 68
Birgit Elbl

Brownian Motion and Kolmogorov Complexity . 78
Willem L. Fouché

A Structure with P = NP . 85
Christine Gaßner

Expansions of Structures with P = NP . 95
Christine Gaßner

On Complexity of Ehrenfeucht Theories with Computable Model 105
Alexander Gavryushkin

VIII

Functional Interpretation and Modified Realizability Interpretation of
the Double-Negation Shift . 109

Philipp Gerhardy

Toward Combinatorial Proof of P < NP . Basic Approach 119
Lev Gordeev

Models of Timing Abstraction in Simultaneous Multithreaded and
Multi-Core Processors . 129

Neal A. Harman

Finite Prediction of Recursive Real-Valued Functions 140
Eiju Hirowatari, Kouichi Hirata, Tetsuhiro Miyahara

The Dyment Reducibility on the Algebraic Structures and on the
Families of Subsets of ω . 140

Iskander Kalimullin

Computing the Recursive Truth Predicate on Ordinal Register Machines . 160
Peter Koepke, Ryan Siders

Logic Programs with Uncertainty: Neural Computation and Automated
Reasoning . 170

Ekaterina Komendantskaya, Anthony Seda

Clocking Type-2 Computation in the Unit Cost Model 182
Chung-Chih Li

On the Calculating Power of Laplace’s Demon . 193
John Longley

Scaled Dimension of Individual Strings . 206
Maria Lopez-Valdes

Solving a PSPACE-Complete Problem by a Linear Interval-Valued
Computation . 216

Benedek Nagy, Sándor Vályi

Hypercomputing the Mandelbrot Set? . 226
Petrus Hendrik Potgieter

Definability of the Field of Reals in Admissible Sets 236
Vadim Puzarenko

The Algebra of Labeled Forests Modulo Homomorphic Equivalence 241
Victor Selivanov

Third-Order Computation and Bounded Arithmetic 251
Alan Skelley

Table of Contents IX

On Inner Constructivizability of Admissible Sets . 261
Alexey Stukachev

A Sharp Phase Transition Threshold for Elementary Descent Recursive
Functions . 268

Andreas Weiermann, Arnoud den Boer

Some Reflections on the Principle of Image Collection 282
Albert Ziegler

Abstracts of Informal Presentations

Information Content and Computability in the n-C.E. Hierarchy 289
Bahareh Afshari

Computing with Newtonian Machines . 290
Edwin Beggs, John V. Tucker

Infinite Time Turing Computation . 291
Barnaby Dawson

On a Problem of J. Paris . 292
Costas Dimitracopoulos, Alla Sirokofskich

Risk Management in Grid Computing . 293
Odej Kao, Karim Djemame

Some Mathematical Properties of Propositional Input Resolution
Refutations with Non-Tautological Resolvents . 294

Annelies Gerber

A Similarity Criterion for Proofs . 295
Mircea-Dan Hernest

On Real Primitive Recursive Functions and Differential Algebraicity 296
Stefan Hetzl

NdE - Normalization during Extraction . 297
Akitoshi Kawamura

Non-Unitary Quantum Walks: Exploring the Space Between Classical
and Quantum Computing . 298

Viv Kendon

Logical Characterization of the Counting Hierarchy 299
Juha Kontinen

Gödelian Foundations of Non-Computability and Heterogeneity In
Economic Forecasting and Strategic Innovation . 300

Sheri Markose

X

Sequent Calculi and the Identity of Proofs . 301
Richard McKinley

The Key to the Universe, Part 2 . 302
Robert K. Meyer

Questions Concerning the Usefulness of Small Universal Systems 303
Liesbeth De Mol

Basic Model Theory for Bounded Theories . 304
Morteza Moniri

The Method Of Approximation In Real Computation 305
Kerry Ojakian

Long Games with a Short Memory . 306
Alexander Rabinovich, Amit Shomrat

Extensions of the Semi-lattice of the Enumeration Degrees 307
Ivan N. Soskov

Genericity and Nonbounding . 309
Mariya Ivanova Soskova

1

Gödel’s Remarks on Turing’s Work

Andrew Hodges

Wadham College, Oxford, UK

Gödel originally endorsed Turing’s 1936 definition of computability, but then,
much later, questioned Turing’s assumptions about finitely many states of mind.
I will discuss this topic in the light of Turing’s mechanistic theory of mind as it
developed in the 1940s.

Integrating Functional Programming Into C++:
Implementation and Verification

Rose Hafsah Abdul Rauf ⋆

Department of Computer Science, University of Wales Swansea

Abstract. We describe a parser-translator program that translates typed
λ-terms to C++ classes so as to integrate functional programming. We
prove the correctness of the translation with respect to a denotational
semantics using Kripke-style logical relations.

1 Introduction

C++ is a general purpose language that supports object oriented programming
as well as procedural and generic programming, but unfortunately not functional
programming. We have developed a parser-translator program that translates a
simply typed λ-term to C++ statements so as to integrate functional progam-
ming. This translated code uses the C++ object oriented concept of classes and
inheritance in the definition of the λ-term. We build a mathematical model from
the formal semantics of the translated code to prove its correctness. First, we
give the denotational semantics of the typed λ-calculus. Then the correctness
of the implementation of the typed λ-calculus by C++ classes is proved with
respect to the denotational semantics. The correctness proof of the translated
code is based on a Kripke-style of logical relation between the C++ class and
the denotational model.

The parser-translator program that has been developed will parse a string
represention of simply typed λ-term and translate it to a sequence of C++
statements. The translation of this λ-term will be discussed in the next section.
How the translated code is executed will also be discussed along with the rep-
resentation of the memory allocation. The mathematical model was based on
the execution of the translated code. In building up this mathematical model,
we will first give the denotational semantics of the typed λ-calculus. Then we
will implement the C++ classes with the denotational semantics. These will be
discussed in section 3. Some related and future work on integrating functional
programing into C++ will be discussed at the end of this paper.

The approach of using denotational semantics and logical relation in prov-
ing the correctness of programs has been used before by researchers such as
Plotkin[7], and many others. The method of logical relation can be traced back

⋆ This paper is part of my PhD project and I would like to thank my supervisors
Dr. Ulrich Berger and Dr. Anton Setzer for their knowledge and guidance making it
possible for me to complete it.

Integrating Functional Programming Into C++ 3

at least to Tait[14] and has been used for a large variety of purposes (eg. Jung
and Tiuryn[2], Statman[11] and Plotkin[6]). To our knowledge the verification
of the implementation of λ-calculus in C++ using logical relation is new.

2 Translation

For the purpose of explaining how the λ-term is translated to its equivalent C++
statements and execution of the translated code, we will give an example of a
λ-term input to the parser-translator program where the term must follow a

syntax that has been determined. A λ-term λxint . t where t is of the type int

is written in our syntax as \int x.int t .
The statement shown below is the string that was entered to the parser-translator
program:

int k =(\(int->int) f.\int x.int f^^(f^^x))^^(\int x. int x+2)^^3;

and it is equivalent to k = (λf (int→int) · λxint · f(fx))(λxint · x + 2)3

First, the function type is defined as an abstract class with a virtual operator()
method that will be overloaded in the definition of the λ-term and the type
itself is the type pointers to an object of this abstract class. For the type class
names we make use of letters C and D to represent open and close brackets
respectively and an underscore for an arrow. For example, Cint_intD means
(int→int). The concept of inheritance are involved in the definition of a λ-term
where the function type abstract class will be the base class for the λ-term class.

The subterm \int x.int f^^(f^^x) in the statement above is translated as an
instance of the class Cint_intD_aux ;

class lambda1 : public Cint_intD_aux{

public :Cint_intD f;

lambda1(Cint_intD f) { this-> f = f;};

virtual int operator () (int x)

{ return (*(f))((*(f))(x)); };

};

The subterm \(int->int) f.int x.int f^^(f^^x) is translated as an instance
of CCint_intD_Cint_intDD_aux:

class lambda0 : public CCint_intD_Cint_intDD_aux{

public :

lambda0() { };

virtual Cint_intD operator () (Cint_intD f)

{ return new lambda1(f); }

};

and the λ-term \int x.int x+2 is translated as follows :

4 Rose Hafsah Abdul Rauf

class lambda2 : public Cint_intD_aux{

public :

lambda2() { };

virtual int operator () (int x)

{ return x + 2; };

};

The term k will be finally translated as the expression :

int k = (*((*(new lambda0()))(new lambda2())))(3);

The classes for the λ-terms are instantiated by statements new lambda0()
and new lambda2() where pointers will be created that point to the addresses of
the classes on the heap. The heap, which is also known as free store, is a dynamic
store in the memory. Classes are created for each λ-term objects and each class
has a pointer to its address on the heap. The evaluation for the expression above
follows the call-by-value evaluation strategy (which will result in the value of 7).
Note that the storage allocated for the instances of the classes are not deleted
afterwards. The deletion depends on the garbage collection version of C++. One
can also use smart pointers to enforce deletion.

3 Proof of correctness

Before we start building a mathematical model of the translated code, we list
some of the mathematical preliminaries that will be frequently used in this sec-
tion. The presentation of the proof follows the style of Winskel[15].

3.1 Mathematical preliminaries

Mappings

1. If X, Y are sets, then a list m = (x1 : y1), . . . , (xn : yn) ∈ list(X × Y) is
considered as a finite map from X to Y which is defined as follows : If x ∈
X, y ∈ Y, then m(x) := y where x = xi, y = yi and x �= xj for j > i.

2. We usually define dom(m) = the domain of m = x1, . . . , xn.
If x ∈ X ,y ∈ Y, then m[x �→ y] := m, (x,y), the extension of the list m by
(x,y). Note that dom(m[x �→ y]) = dom(m) ∪{x} and

m[x �→ y](x′) =

{
y if x′ = x
m(x′) if x′ ∈ dom(m)\{x} (x′ ∈ X)

3.2 Implementation of the typed λ-calculus

a) Types
The set Typ of types is inductively given by :

i) Int ∈ Typ

Integrating Functional Programming Into C++ 5

ii) if A,B ∈ Typ, then A→ B ∈ Typ

b)Terms
The Terms for the λ-calculus can be any of the following shown below.

i) n ∈ N (any number)
ii) x ∈ Var (where Var = String)
iii) r s (term r is applied to term s)
iv) λx : A.r (term is an abstraction)
v) f [r1 . . . rn] = f [r] (f ∈ F is a set of names for computable functions on

N).The function denoted by f is written as [[f]]

c) Typing
A ContextΓ is a map from variables to types i.e. a list of variables and their
type : Context=list(Var× Typ)
Context will be denoted as Γ = x1 : A1, . . . , xn : An

The Typing rules of the simply typed λ-calculus are :
i)

Γ, x : A ⊢ x : A

ii)

Γ ⊢ n : Int

iii)
Γ, x : A ⊢ r : B

Γ ⊢ λxr : A→ B

iv)
Γ ⊢ r : A→ B Γ ⊢ s : A

Γ ⊢ rs : B

v)
f : Int× . . .× Int→ Int Γ ⊢ r1 : Int . . . Γ ⊢ rn : Int

Γ ⊢ f [r1, . . . , rn] : Int

d) Denotational semantics
The sets of functionals of type A denoted as D(A) are defined as follows :

i) D(Int)= N
ii) D(A→ B) = {f |f : D(A) → D(B)}
iii) D :=

⊎
A∈Typ D(A) where

⊎
denotes disjoint union

A Functional Environment is a mapping of ξ : Var → D. We let FEnv :=
Var → D be the set of all functional environments. If Γ is a context, then ξ : Γ
means ∀x ∈ dom(Γ).ξ(x) ∈ D(Γ (x)).

For every typed λ-term Γ ⊢ r : A and every functional environment ξ : Γ
the denotational value [[r]]ξ ∈ D(A) is defined as follows :

i) [[n]]ξ = n
ii) [[x]]ξ = ξ(x)

6 Rose Hafsah Abdul Rauf

iii) [[r s]]ξ = [[r]]ξ([[s]]ξ)
iv) [[λx : A.r]]ξ(a) = [[r]]ξ[x �→ a]
v) [[f [r]]] = [[f]]([[r]]ξ)

By an implementation of the typed λ-calculus we mean an (implementation
of an) algorithm computing for every closed term r : Int the value [[r]] ∈ N.

3.3 Implementation by C++ classes

The classes that will be created depend on the λ-term that is being parsed, the
more complex the term is the more level of classes will be created. When the
class is instantiated, an address of the class will be stored on the heap, and
further instantiation of other classes will create a stack of addresses on the heap
with addresses of any variables which is bound to the classes (or λ-term).

Every class is instantiated by calling the constructor of the object i.e. the
name of the class with or without any arguments.The body of a λ-abstraction is
associated with an applicative term (∈App, below). The complete list of syntactic
sets associated with the C++ classes is as follows:

– Addr = Int
These are addresses of classes or variables on the heap.

– Constr = String
Constructors are names of classes.

– Val = Int + Addr
A value is either an integer or an address of a class or variables.

– App = Int + Var + F× list(App) + App × App + Constr ×
list(App)
Applicative terms representing bodies of λ-abstraction.

– Abst = Var × Typ × Context × App
Abstractions consist of the variables and the type bound to the abstrac-
tion, and the context which is the list of variables and their types and the
application.

– Env = list(Var × Val)
An environment is the list of variables and their values.

– Heap = list(Addr × Constr × list(Val))
The heap consists of list of addreses of constructors and their lists of values
of the variables.

– Class = list(Constr × Abst)
The class environment consists of list of constructors and their abstractions.

We assume that every f ∈ F is given by a side effect free C++ function

a) The evaluation of λ-terms in C++
When a λ-term is executed, a class address of the application of the λ-term is

created on the heap and, with respect to the environment, a λ-term is evaluated
to the value and an extended heap. This extended heap contains the address of

Integrating Functional Programming Into C++ 7

the value that has been evaluated for the λ-terms. Thus, the functionality of the
evaluation function (eval) is :

eval : Heap→ Env→ App→ Val×Heap

For a function application, where a λ-term is applied to another λ-term, the
heap, which contains the class address of the two terms with the two values
evaluated from the two terms, will evaluate to a value and an extended heap.
Thus, the functionality of the application function (apply) is :

apply : Heap→ Val→ Val→ Val×Heap

In the definition of the function eval and apply we fix some C:Class.
In presenting the evaluation rules we will follow the convention that :

– n ranges over numbers N
– x ranges over variables Var
– a, b range over application App
– v, w range over values Val
– k ranges over addresses Addr
– H ranges over Heap
– c ranges over constructors Constr
– C ranges over Class
– A,B range over Typ
– η ranges over Env

The metavariables we use to range over the syntactic categories can be primed
or subscripted. For example, H,H ′,H ′′,Hk stand for heaps, C,C ′, C ′′ stand for
classes and v1, v

′ stand for values.

The rules for the evaluation of the λ-terms are as follows:

i) Evaluation of a λ-term where application is a number:

evalH η n = (n,H)

ii) Evaluation of a λ-term where application is a variable:

evalH η x = (η(x),H)

iii) Evaluation of a λ-term where application is a function with a list
of arguments:

evalH η f [a] = ([[f]](n),Hk)

where a = a1, . . . , ak,n = n1, . . . , nk and eval*H η a = (n,Hk).
Here we define eval*H η a = (n,Hk) if eval Hη a1 = (n1,H1), . . . , eval
Hk−1 η ak = (nk,Hk). Hk is not changed by f because f ∈ F has no side
effect.

8 Rose Hafsah Abdul Rauf

iv) Evaluation of a λ-term where the application is the application of
one term to the other:

evalH η (a b) = applyH ′′v w = (v′,H ′′′)

where evalH η a = (v,H ′), evalH ′ η b = (w,H ′′).
The definition of apply in detail is shown as follows :

apply H k v = evalH [x,y �→ v,w]a

where H(k) = (c,w), C(c) = (x : A;y : B; a) (assuming c ∈ dom(C)).
v) Evaluation of a λ-term where the application is a constructor with

a list of arguments:

evalH η c[a] = (k,H ′[k �→ c[v]]) (k ∈ Addr, v ∈ Val)

where eval* H η a = (v,H ′) and k = new H ′ (new H ′ is an address not in
dom(H ′)).

In all other cases for the application, it is termed invalid and an error will be
returned.

Lemma 1. 1. eval H η a = (v,H ′) =⇒ H ⊆ H ′

2. apply H vw = (v′,H ′) =⇒ H ⊆ H ′

3. eval* H η a = (n,H ′) =⇒ H ⊆ H ′

The proof for Lemma 1 is by induction on the definition of eval and apply.

Note that, since eval and apply depend on C:Class, the true signatures of eval
and apply are as follows :

eval : Class→Heap→Env→App→Val×Heap
apply : Class→Heap→Val→Val→Val×Heap

We write evalC H η a and applyC H vw if the argument C:Class is to be made
explicit.

b) The Parsing of a λ Term
Traditionally, a λ-term that is input is parsed as a long string which will

undergo several steps of parsing to get the translated code. The parsing will
create classes for the λ-term where in the case of a complex λ-term it will create
several levels of classes where the class of an upper level is an extension of
the lower level class. In order to simplify things and to concentrate on the most
important aspects of the problem we assume that the input is given as an abstract
term rather than a string. The parsing from a string to a term is a traditional
parsing problem which is of no interest here. What is interesting here is the
process of creating a system of C++ classes that represents a λ-term.

In order to give a recursive description of this process, we must assume that
the term in question is not the first term being parsed, but other terms (or sub-
terms) have been parsed before having created a system of classes. Furthermore,

Integrating Functional Programming Into C++ 9

if the term has free variables, then the types of these variables must be fixed by
an appropriate context. Therefore, the parser P has the following functionality :

P : Class→Context→Term→ App×Class

The rules for the parsing are as follows :

i) Parsing when the term is a number: PCΓn = (n,C)
ii) Parsing when the term is a variable: PCΓx = (x,C)
iii) Parsing when the term is a function with a list of arguments:

PCΓf [r] = (f [a], C ′)

where P*CΓr = (a, C ′) and P* is defined in a smilar way as eval*.
iv) Parsing of an application: PCΓ (r s) = (a b, C ′′)

where PCΓr = (a,C ′), PC′Γs = (b, C ′′)
v) Parsing of a λ abstraction : PCΓ (λx : A.r) = (c[y], C ′[c �→ (x : A;Γ ; a)])

where y = dom(Γ),PCΓ [x �→ A]r = (a,C ′), and c = new C ′

meaning that c is a name of a class that is ”new” i.e. has not been used
before.

Remark: We only generate c[x] ∈ App with x ∈ list(Var) and not c[a] with
arbitary a ∈ list(App)

Lemma 2. i) PCΓr = (a,C ′) =⇒ C ⊆ C ′

ii) P*CΓr = (a, C ′) =⇒ C ⊆ C ′

The proof for Lemma 2 is by induction on r respectively r.

3.4 The correctness of the translated code

The correctness proof of the translated code is based on a Kripke-style relation
between the C++ representation of the term (∈ Val× Heap) and its denotational
value (∈ D(A)). The relation is indexed by the class environment C and the type
A of the term. Since in the case of an arrow type, A→ B, extensions of H and
C have to be taken into account, this definition has some similarity with Kripke
models. The relation

∼C
A⊆ (Val×Heap)×D(A) where A ∈ Typ , C ∈ Class

is defined by recursion on A as follows:

(v,H) ∼C
Int n : ⇐⇒ v = n

(v,H) ∼C
A→B f : ⇐⇒ ∀C ⊆ C ′,∀H ⊆ H ′,∀(w, d) ∈ Val×D(A) :

(w,H ′) ∼C′

A d =⇒ applyC′H ′vw ∼C′

B f(d)

We also set (η,H) ∼C
Γ ξ := ∀x ∈ dom Γ (η(x),H) ∼C

Γ (x) ξ(x) ∈ D(Γ (x)).

10 Rose Hafsah Abdul Rauf

Lemma 3.

(v,H) ∼C
A d,C ⊆ C ′,H ⊆ H ′ =⇒ (v,H ′) ∼C′

A d

The proof for Lemma 3 is by induction on A.

Our main theorem, which corresponds to the usual ”Fundamental Lemma” or
”Adequacy Theorem” for logical relations, reads as follows:

Theorem 1. If η : Env, ξ : FEnv, Γ ⊢ r : A, ξ : Γ,PCΓr = (a,C ′), C ′ ⊆
C ′′, (η,H) ∼C′′

Γ ξ, and H ⊆ H ′, then evalC′′H ′ηa ∼C′′

A [[r]]ξ.

The theorem can be proved by an induction on the typing judgement Γ ⊢ r : A
using the Lemma 1-3 above. Due to limited space we omit details.

For a closed term r , we define Pr = P∅∅r.

Corollary 1 ((Correctness of the implementation)). If ⊢ r : Int,Pr =
(a,C), C ⊆ C ′, then for any heap H, evalC′ H η a = ([[r]],H ′) for some H ′ ⊇ H.

4 Conclusion

The aim of this paper was to introduce a new approach of integrating functional
programming into C++ and to show a method of proving the correctness of the
translation code produced by denotational semantics and logical relation. In the
past, several researches [3],[4] discovered that C++ can be used for functional
programming by representing first class functions and higher order functions
using classes, and by this technique we produced the translated code. There are
other approaches that have made C++ a language that can be used for functional
programming such as FC++ library [5] (a very elaborate approach), FACT! [13]
(extensive use of templates and overloading) and [3] (creating macros that allow
creation of single macro-closure in C++). The advantages of our solution are
that it is very simple, it uses classes and inheritance in an essential way and,
most importantly, we have a formal correctness proof.

In addition to the mathematical proof given in this paper, the correctness of
the translated code produced by the parser-translator program has been verified
by testing it with several types of λ-term from simple to complex ones.

Future work. This work can be extended by integrating lazy constructors
(infinite structures) and lazy evaluation, having terms with side effect and inte-
grating recursive higher order functions [1].

References

1. Abdul Rauf R.H., Berger U., Setzer A.: Functional Concepts in C++, To appear in
Proceedings of TFP 2006, http://www.cs.nott.ac.uk/∼nhn/TFP2006.

Integrating Functional Programming Into C++ 11

2. Jung A., Tiuryn J.: A New Characterization of Lambda Definability. Typed Lambda
Calculus and Applications, 1993.

3. Kiselyov O.: Functional Style in C++ : Closures, Late Binding, and Lambda Ab-
straction. Poster presentation, Int. Conf. on Functional Programming, 1998.

4. Läufer K.: A Framework For Higher Order functions in C++. Proc. Conf. Object
Oriented Technologies(COOTS), Monterey, C.A., June 1995.

5. McNamara B., Smaragdakis Y.: Functional Programming in C++. ICFP ’00, Mon-
treal Canada,ACM Press, 2000.

6. Plotkin G. D.: Lambda Definability in the Full Type Hierarchy. To H.B. Curry;
Essays on Combinatoric Logic, Lambda Calculus and Formalism., J.P.Seldin , J.R.
Hindley, eds., 363-373, 1980.

7. Plotkin G. D.: LCF Considered As a Programming Language. Theoretical Computer
Science, 5:223-255, 1977.

8. Polak W.: Program Verification Based On Denotational Semantics. Proceedings of
the 8th ACM, SIGPLAN-SIGACT Symposium on Principles Of Programing Anal-
ysis. ACM Press, Jan. 1981.

9. Scott, D., Strachey, C.: Mathematical Semantics For Computer Language. Tech.
Monograph PRG-6, Programming Research Group, University Of Oxford, 1971.

10. Setzer A.: Java as a Functional Programming Language. Types for Proofs and Pro-
grams: International Workshop, Types 2002, Berg en Dal,April 24-28,2002. Selected
Papers, Geuver H., Wiedijk F., eds, 279-298, LNCS 2646, 2003.

11. Statman R.: Logical Relation and the Typed λ Calculus. Information and Control,
65:85-97, 1985.

12. Stoy, J: Denotational Semantics - The Scot-Strachey Approach To Language The-
ory. MIT Press, Cambride, 1977.

13. Striegnitz J. : FACT!-The Functional Side of C++.
http://www.fz-juelich.de/zam/FACT.

14. Tait W.: Intentional Intrepretation of Funtional of Finite Type I. Journal Of Sym-
bolic Logic, 32(2):198-212, 1967.

15. Winskel, G. : The Formal Semantics Of Programming Languages : an Introduction.
Massachusetts Institute Of Technology, 1993.

Relativity Theory for Logicians and New
Computing Paradigms

Hajnal Andréka

Rényi Institute of Mathematics, Budapest P.O.Box 127, H-1364 Hungary,
andreka@renyi.hu,

WWW home page: http://www.renyi.hu/ andreka/

Abstract. Physical foundation for hypercomputing is provided by gen-
eral relativity. In turn, here logical foundation for relativity is presented
making relativistic hypercomputation self-contained for logicians and
computer scientists. Further, new convergence phenomena between com-
puting, AI, foundations of science, emergence, new cosmology, black hole
physics are highlighted.

Because of hypercomputation and unconventional approaches to computa-
tion, new interconnections arose recently between computability theory, physics,
and mathematical logic. This seems to be a part of an even broader new con-
vergence phenomenon between branches of science. An example is the research
area of relativistic computers [6], [9], [14].

In this perspective, there are two ways of looking at the present paper.
(i) We intend to provide the relativity theoretic background for the invited

paper on relativistic approaches to hypercomputation by I. Németi in this volume
[13]. No familiarity with physics will be presupposed, we will rely solely on
mathematical logic. I.e. we present a logic based version of relativity theory
designed for a logically trained audience and we will aim for explaining those
theorems of relativity which serve as key ingredients in the design of relativistic
hypercomputation.

(ii) Using the experience gained through the success-story of foundation of
mathematics [7], we propose a logic-based foundation for the theory of spacetime
and via this for theories of relativity. The foundation of mathematics is built up
in mathematical logic, in particular, in first-order-logic (FOL), hence we build
up spacetime theory (and relativity) also in FOL via a small number of clearly
understandable and transparent axioms (formulated explicitly in FOL) [1], [11],
[12]. Besides working on unambiguous foundation, we also aim for insights into
the nature of relativity, and also for a conceptual analysis of the theory. In addi-
tion to the reasons coming from hypercomputation, motivation for building up
a conceptual analysis for relativity comes from the historical fact that nowadays
relativity, spacetime and cosmology are in the focus of attention and are go-
ing through revolutionary paradigm-shifts profoundly influencing our scientific
world-view. Hence these fields both need and are worthy of a substantial help
from the field of (mathematical) logic.

Relativisty Theory for Logicians 13

Besides the above, a further motivation for applying logic to relativity comes
from a recent trend of convergence between ideas in relativity+cosmology (cf. e.g.
Lee Smolin Life of Cosmos [15]), emergence, cybernetics, and life sciences, general
system theory, evolving and self organizing systems, AI, e.g. Barry Cooper [4],
Weidermann-Leeuwen [18]. Cf. also the homepage of Andrei Linde and [10].

References

1. Andréka, H., Madarász, J. X. and Németi, I., Logic of Spacetime. In: Logic of Space,
eds: M. Aiello, J. van Benthem, and I. Hartman-Pratt, Kluwer.

2. Andréka, H., Madarász, J. X. and Németi, I., Logical axiomatizations of spacetime.
In: Non-Euclidean Geometries, János Bolyai Memorial Volume. Ed. A. Prékopa and
E. Molnár, Mathematics and its Applications Vol. 581, Springer 2006. pp.155-185.

3. Andréka, H., Madarász, J. X. and Németi, I. with contributions from Andai, A.,
Sain, I., Sági, G., Tőke, Cs. and Vályi, S., On the logical structure of relativity
theories. Internet book, Budapest, 2000. http://www.math-inst.hu/pub/algebraic-
logic/olsort.html

4. Cooper, B., Computability and Emergence. In: Mathematical Problems from Ap-
plied Logics. New Logics for the XXIst Century. Ed: Gabbay, D., International
Mathematical Series Vol. 5, Springer, 2005. pp.194-233

5. Earman, J., Bangs, crunches, whimpers, and shrieks. Singularities and acausalities
in relativistic spacetimes. Oxford university Press, Oxford, 1995.

6. Etesi, G. and Németi, I., Turing computability and Malament-Hogarth spacetimes.
International Journal of Theoretical Physics 41,2 (2002), 342-370.

7. H. Friedman, On foundational thinking 1, Posting in FOM (Foundations of Math-
ematics) Archives www.cs.nyu.edu (January 20, 2004).

8. Gödel, K., Lecture on rotating universes. In: Kurt Gödel Collected Works, Vol. III.
Eds.: Feferman, S., Dawson, J. S., Goldfarb, W., Parson, C. and Solovay, R. N.,
Oxford University Press, New York Oxford 1995. pp. 261-289.

9. Hogarth. M. L., Deciding arithmetic using SAD computers. Brit. J. Phil. Sci. 55
(2004), 681-691.

10. Linde, A., Inflation, quantum cosmology and the Anthropic Principle. In: “Science
and Ultimate Reality: From Quantum to Cosmos”, honoring John Wheeler’s 90th
birthday. J. D. Barrow, P.C.W. Davies and C. L. Harper eds. Cambridge University
Press, 2003.

11. Madarász, J. X., Németi, I. and Székely, G., Twin Paradox and the logical foun-
dation of space-time. Foundation of Physics, to appear. arXiv:gr-qc/0504118.

12. Madarász, J. X., Németi, I. and Székely, G., First-order logic foundation of rela-
tivity theories. In: New Logics for the XXIst Century II, Mathematical Problems
from Applied Logics, International Mathematical Series Vol 5, Springer. To appear.
arXiv:gr-qc/0604041.

13. Németi, I. and Andréka, H., Can general relativistic computers break the Turing
barrier? In: CiE 2006, A. Beckmann et al. (eds.), LNCS 3988, Springer 2006. pp.398-
412.

14. Németi, I. and Dávid, Gy., Relativistic computers and the Turing barrier. Journal
of Applied Mathematics and Computation, to appear.

15. Smolin, L., The life of the Cosmos. Oxford University Press, Oxford, 1997.
16. Taylor, E. F. and Wheeler, J. A., Black Holes. Addison, Wesley, Longman, San

Francisco, 2000.

14 Hajnal Andréka

17. Tegmark, M., Parallel Universes. Scientific American May 2003, pp.41-51.
18. Wiedermann, J. and van Leeuwen, J., Relativistic computers and non-uniform

complexity theory. In: Calude et al (eds.) UMC 2002. Lecture Notes in Computer
Science Vol. 2509, Springer-Verlag, Berlin, 2002. pp.287-299.

Generalized Tabular Reducibilities in Infinite
Levels of the Ershov Difference Hierarchy

Marat M. Arslanov

Kazan State University, Kazan, Russia, ⋆

Marat.Arslanov@ksu.ru

Abstract. In this paper we consider a collection of reducibilities which
are intermediate between Turing and truth table reducibilities and study
properties of these reducibilities relatively to infinite levels of the Ershov
hierarchy which are defined by means of limit constructive ordinals.

1 Infinite Levels of the Difference Hierarchy

It is known that finite levels and the ω-level of the Ershov difference hierarchy
are connected with bounded truth table and truth table reducibilities accord-
ingly. In this paper I consider a collection of reducibilities which are intermediate
between Turing and truth table reducibilities and have similar properties rela-
tively to infinite levels of the Ershov hierarchy which are defined by means of
limit constructive ordinals.

First we give a brief survey of principal definitions and results on the hierar-
chy. The following theorem was a sourse of all successive considerations.

Theorem 1. (Shoenfield, Ershov) A set A is T -reducible to ∅′ if and only if
there exists a uniformly computable sequence of c.e. sets {Rx}x∈ω such that
R0 ⊇ R1 ⊇ ... ,

⋂∞
x=0 Rx = ∅, and

A =

∞⋃

x=0

(R2x −R2x+1).

Definition 1. A set A is n-computably enumerable (n-c.e. set), if either n = 0
and A = ∅, or n > 0 and there exist c.e. sets R0 ⊆ R1 ⊆ R2 ⊆ ... ⊆ Rn−1 such
that

A =

[
n−1

2

]
⋃

i=0

{(R2i+1 −R2i) ∪ (R2i −R2i+1)}.

(Here if n an odd number then Rn = ∅.)
Definition 2. A set A belong to level Σ−1

n of Ershov’s hierarchy (A is Σ−1
n -set),

if it is n-c.e. set. A set A belong to level Π−1
n of the hierarchy (A is Π−1

n -set), if
A ∈ Σ−1

n and A is Δ−1
n -set, if A and A both are Σ−1

n -sets, i.e. Δ−1
n = Σ−1

n ∩Π−1
n .

⋆ The author is supported by RFBR Grant 05-01-00830

16 Marat Arslanov

Theorem 2. (Ershov; Epstein, Haas, Kramer) a) A set A is n-c.e. set for some
n ≥ 0 iff there is a computable function g of two variables s and x such that for
all x A(x) = limsg(s, x), g(0, x) = 0, and |{s|g(s + 1, x) �= g(s, x)}| ≤ n.

b) A set A is Δ−1
n+1-set for some n, 1 ≤ n < ω, iff there is a partial-

computable function ψ such that for all x A(x) = ψ(μt≤n(ψ(t, x) ↓), x).

Definition 3. (Ershov; Epstein,Haas,Kramer) A set A ⊆ ω belong to level Σ−1
ω

of Ershov’s hierarchy (A is Σ−1
ω -set), if there exists a partial-computable function

ψ such that for all x,
x ∈ A→ ∃s(ψ(s, x) ↓ and A(x) = ψ(μs(ψ(s, x) ↓), x);
x /∈ A→ either ∀s(ψ(s, x)) ↑, or ∃s(ψ(s, x) ↓)&

A(x) = ψ(μs(ψ(s, x) ↓), x).

(In other words, A ⊆ dom(λx.ψ(μs(ψ(s, x) ↓), x), and for any
x ∈ dom(λx.ψ(μs(ψ(s, x) ↓), x)) we have A(x) = ψ(μs(ψ(s, x) ↓), x)).

A set A belong to level Π−1
ω of the hierarchy (A is Π−1

ω -set), if A ∈ Σ−1
ω . At

last, A is Δ−1
ω -set, if A and A both are Σ−1

ω -sets, i.e. Δ−1
ω = Σ−1

ω ∩Π−1
ω .

Definition 4. A set A is ω-c.e. set if and only if there are computable function
g of two variables s and x and a computable function f such that for all x
A(x) = limsg(s, x), g(0, x) = 0, and

|{s|g(s + 1, x) �= g(s, x)}| ≤ f(x).

Theorem 3. (Ershov;Epstein,Haas,Kramer) Let A ⊆ ω. The following are
equivalent:

a) A is ω-c.e.;
b) A is a Δ−1

ω -set;
c) there is a partial-computable function ψ such that for all x,

A(x) = ψ(μt(ψ(t, x) ↓), x);
d) there is a uniformly c.e. sequence of c.e. sets {Rx}x∈ω, such that

⋃
x∈ω Rx =

ω, R0 ⊆ R1 ⊆ . . ., and A =
⋃∞

n=0(R2n+1 −R2n).

Theorem 4. (Ershov) A ∈ Σ−1
ω iff there is a uniformly computable sequence of

c.e. sets {Rx}x∈ω such that R0 ⊆ R1 ⊆ ... (ω-sequence of c.e. sets), and
A =

⋃∞
x=0(R2x+1 −R2x)

Theorem 5. (Carstens) a) A set A is Δ−1
ω -set if and only if it is tt-reducible

to ∅′;
b) For any n ≥ 1 a set A is Δ−1

n+1-set if and only if it is btt-reducible to ∅′
with norm n.

Let P (x, y) be a computable predicate which on ω defines a partial ordering.
(If P (x, y) we write x ≤P y.) A uniformly c.e. sequence {Rx} of c.e. sets is
≤P -sequence, if for all x, y, x ≤P y implies Rx ⊆ Ry.

Hereinafter we will use the Kleene system of notation (O, <0). For a ∈ O we
denote by |a|0 ordinal α, which have O-notation a. Therefore |a|0 have the order

Generalized Tabular Reducibilities 17

type 〈{x|x <0 a}, <0〉, and words ”a-sequence of c.e. sets {Rx}” for a ∈ O have
usual sense. If α a constructive ordinal and a ∈ O its notation, i.e. |a|0 = α,
and λ < α, then knowing a we can effectively find a notation b for λ, |b|0 = λ.
Sometimes in this situation we will also write (λ)0, meaning under (λ)0 this
notation b for λ.

An ordinal is even, if it is either 0, or a limit ordinal, or a successor of an odd
ordinal. Otherwise the ordinal is odd. Therefore, if α is even, then α′ (successor
of α) is odd and vise versa.

For system of notation O the parity function e(x) is defined as follows: Let
n ∈ O. Then e(n) = 1, if ordinal |n|0 is odd, and e(n) = 0, if |n|0 is even.

The following definitions of infinite levels of the hierarchy and Theorems
7− 11 are from Ershov [1968,1970].

For any a ∈ O we first define operations Sa and Pa, which map a-sequences
{Rx}x<0a to subsets of ω, as follows:

Sa(R) = {z|∃x <0 a(e(x) �= e(a)&z ∈ Rx&∀y <0 x(z /∈ Ry))}.
Pa(R) = {z|∃x <0 a(e(x) = e(a)&z ∈ Rx&

&∀y <0 x(z /∈ Ry))} ∪ {ω −
⋃

x<0a

Rx}.

It follows from these definitions that Pa(R) = Sa(R) for all a ∈ O and all
a-sequences R.

Class Σ−1
a (Π−1

a) for a ∈ O is the class of all sets Sa(R) (accordingly all
sets Pa(R)), where R = {Rx}x<0a all a-sequences of c.e. sets, a ∈ O. Define
Δ−1

a = Σ−1
a ∩Π−1

a .

Theorem 6. (Epstein, Haas, Kramer; Selivanov) Let A ⊆ ω and α be a limit
ordinal which has a notation a in O. Following three statements are equivalent:

a) A ∈ Δ−1
a ;

b) For some partial-computable function Ψ and any x,
A(x) = Ψ((μλ < α)0(Ψ((λ)0, x) ↓, x);

c) There is an a-sequence R= {Rx}x<0a such that A = Sa(R) and⋃
x<0a

Rx = ω.

Theorem 7. Let a, b ∈ O and a <0 b.
Then Σ−1

a ∪Π−1
a ⊂ Σ−1

b ∩Π−1
b .

Corollary 1. For any a ∈ O, Σ−1
a ⊂ Δ0

2.

Theorem 8.
⋃

a∈O

Σ−1
a =

⋃

a∈O,|a|O=ω2

Σ−1
a = Δ0

2.

It follows from Theorem 9 that Theorem 8 cannot be strengthen:

Theorem 9.
⋃

a∈O,|a|0<ω2

Σ−1
a �= Δ0

2.

Theorem 10. a) For any a ∈ O there is a path T0 in O through a such that⋃

b∈T0

Σ−1
b = Δ0

2.

18 Marat Arslanov

b) There is a path T in O with the length ω3 and
⋃

a∈T

Σ−1
a = Δ0

2.

c) If a path T in O have the length less than ω3 then
⋃

a∈T

Σ−1
a �= Δ0

2.

2 Generalized Tabular Reducibilities

For convenience we will consider only constructive ordinals ≤ ωω but all our
definitions by an obvious way can be generalized to all constructive ordinals so
that Theorems 12 and 13 hold also in this general case.

It follows from the universality properties of (O, <0), that for α < ωω for
simplicity instead notations from O we may use ordinals meaning their repre-
sentation in normal form

α = ωm · n0 + ... + ω · nm−1 + nm.

We first define the following classes of generalized truth-table conditions
(gtt(α)-conditions) Bα, α ≤ ωω.

α = n > 1: Bα consists from all tt -conditions with norm < n;
α = ω: Bα consists from all tt-conditions;
α = ωm · n + β, β < ωm (n > 1; if n = 1 then β > 0):

Bα consists from all tt-conditions of the form

σ1&τ1 ∨ ... ∨ σn&τn ∨ ρ, or ¬[σ1&τ1 ∨ ... ∨ σn&τn ∨ ρ],

where σi ∈ Bω, τi ∈ Bωm , ρ ∈ Bβ ;
α = ωm+1: Bα =

⋃
n Bωm·n;

α = ωω: Bα =
⋃

n Bωn .
It follows from these definitions that for each α, ω ≤ α ≤ ωω, gtt-conditions

from Bα are usual tt-conditions with a fixed inner structure of these conditions.
Using this structure we now define by induction on α an enumeration {σα

n}n∈ω
of gtt(α)-formulas related to gtt-conditions from Bα.

We denote by σω
n the n-th tt-condition (which is a formula of propositional

logic constructed from atomic propositions 〈k ∈ X〉 for several k ∈ ω, and the
norm of the tt-condition is the number of its atomic propositions).

For α = ωm · n + β, m ≥ 1, n ≥ 1, β < ωm (n > 1; if n = 1 then β > 0) the
gtt(α)-formula σα

〈l,p,q,r〉 with index 〈l, p, q, r〉 is the formula

(¬)[σω
Φp(0)&σγ

Φq(0) ∨ . . . ∨ σω
Φp(n−1)&σγ

Φq(n−1) ∨ σβ
r],

where l = 1 (l = 0) means the presence (accordingly absence) of the negation in
the beginning of the formula, γ = ωm, Φp(i) is the partial-computable function
with index p, defined for all i ≤ n− 1, Φq(i) is the partial-computable function
with index q.

Therefore, a gtt(α)-formula σα
i with index i = 〈l, p, q, r〉 is a gtt-condition

σ ∈ Bα, α = ωm · n + δ, m ≥ 1, n ≥ 1, δ < ωm, if and only if l ≤ 1, Φp(x) ↓ for
all x ≤ n− 1 and r is an index for some gtt-condition from Bδ.

Generalized Tabular Reducibilities 19

For α = ωm+1 and α = ωω the enumeration of gtt(α)-formulas {σα} is
defined using a fixed effective enumeration of all gtt-formulas from

⋃
n,i σ

ωm·n
i

(accordingly from
⋃

n,i σ
ωn

i).
For the convenience we add to integers two additional objects true and false,

for which σα
true is a tt-condition which is identically truth and σα

false is an in-
consistent tt-condition.

From now on we identify the class Bα with the class of all gtt(α)-formulas.

Definition 5. We say that a gtt-formula σ from Bα converges on a set A ⊆ ω,
if

1. α ≤ ω, i.e. any tt-condition from Bα, α ≤ ω, converges on any set A ⊂ ω,
or

2. σ is equal to (¬)[(
∨

i�m

σω
Φp(i)&σγ

Φq(i))∨ σβ
j] , and for any i ≤ m if A satisfies

σω
Φp(i) (see the definition below), then Φq(i) ↓ and σγ

Φq(i) converges on A.

Definition 6. A gtt-formula σ from Bα is satisfied by a set A ⊆ ω (written as
A |= σ), if σ converges on A and

– If σ ∈ Bω, then A satisfies to the tt-condition σ,
– If σ is equal to (

∨
i�m

σi&τi)∨ ρ, then A |= ρ or there is an i ≤ m such that

A |= σi and A |= τi,
– If σ is equal to ¬[(

∨
i�m

σi&τi) ∨ ρ], then A �|= ρ and for all i ≤ m, if

A |= σi then A �|= τi.

A �|= σ means A |= ¬σ.

Definition 7. A set A is gtt(α)-reducible to a set B (written as A ≤gtt(α) B),
if there is a computable function f such that for any x

(i) gtt-formula σα
f(x) converges on B, and

(ii) x ∈ A↔ B |= σα
f(x).

Now it follows immediately from Theorem 5 the following

Corollary 2. (i) For α < ω A ∈ Δ−1
α+1 ↔ A ≤gtt(α) K.

(ii) A ∈ Δ−1
ω ↔ A ≤gtt(ω) K.

If the ordinal α is a successor then the reducibility ≤gtt(α) is not transitive.
By this reason the following theorem we formulate for limit ordinals only.

Theorem 11. For α = ω, ω2, ..., ωω reducibilities ≤gtt(α) are reducibilities which
are intermediate between tt- and T -reducibilities, and for different α all ≤gtt(α)

are different.

20 Marat Arslanov

Proof. By indexes i and j of σα
i , σα

j we can effectively compute an index k of the
gtt-formula σα

k , which is obtained by substitution of σα
i into σα

j , which means

that for α = ω, ω2, ..., ωω the set Bα effectively closed on substitutions, and the
relation �gtt(α) in this case transitive. It is easy to see that the relation �gtt(α)

is reflexive. To prove that A�gtt(α)B → A ≤T B for all A,B, suppose that

x ∈ A if and only if B |= σα
f(x) = (¬)[(

∨
i�m

σω
Φg(x)(i)

&σβ
Φq(x)(i)

) ∨ σγ
r(x)] for some

computable functions f, g, q and r. For each x using oracle of B we can list all
i ≤ m such that B |= σω

Φg(x)(i)
. For each such i we have Φq(x)(i) ↓, and we also

check whether B |= σβ
Φq(x)(i)

. Similarly for the gtt(γ)-formula σγ
r(x). Now x ∈ A

if and only if for some i ≤ m we have |= σω
Φg(x)(i)

and B |= σβ
Φq(x)(i)

, or there is

such i in gtt(γ)-formula σγ
r(x).

Therefore, gtt(α)-reducibilities are intermediate between Turing and truth-
table reducibilities.

It is known that for all a <0 b the set of T-degrees of Δ−1
a -sets is a proper

subset of the set Δ−1
b -sets and, therefore, it follows from Theorem 12 below that

at least degrees of creative sets for these reducibilities are different.

Theorem 12. Let a ∈ O, ω ≤ |a|0 ≤ ωω. Then

A ∈ Δ−1
a ⇔ A ≤gtt(α) K.

Proof. We will consider the case |a|0 = ω · 2. After that it will be clear how to
prove the theorem for arbitrary a ∈ O, ω ≤ |a|0 ≤ ωω.

Suppose that A ≤gtt(ω·2) K, i.e. there is a computable function f such that
x ∈ A iff K |= σω·2

f(x). It is easy to see that there are computable functions p and

q such that for all x, σω·2
f(x) = (¬)[σω

Φp(x)(0)
&σω

Φq(x)(0)
∨ σω

Φp(x)(1)
&σω

Φq(x)(1)
], and

for i ≤ 1, if K |= σω
Φp(x)(i)

then Φq(x)(i) ↓.
Since σω

Φp(x)(0)
is a usual truth-table condition, there are a Boolean function

αx and a finite set F = {u1, u2, . . . , un(x)} such that σω
Φp(x)(0)

= (F, αx) (here

n(x) and αx are computable functions on x). Similarly, if Φq(x)(0) ↓, then let
σω
Φq(x)(0)

= ({v1, v2, . . . , vm(x)}, βx) for some functions m(x) and βx. Let g(s, x)

be the following computable function:

g(s, x) =

⎧
⎨
⎩

1, if αx(Ks(u1),Ks(u2), . . . ,Ks(un(x))) = 1, and
Φq(x)(0) ↓ &βx(Ks(v1),Ks(v2), . . . ,Ks(vm(x))) = 1,

0, otherwise.

Now define a partial-computable function ψ as follows: for all x, ψ(n(x), x) =
g(0, x). Now suppose that ψ(n(x) − i, x) is defined as g(si + 1, x) for some i,
and there is a (least) si+1 > si such that g(si+1 + 1, x) �= g(si+1, x). Define
ψ(n(x)− (i + 1), x) = g(si+1, x).

And now we define a uniformly c.e. sequence of c.e. sets Ri, i ≥ 0:

Generalized Tabular Reducibilities 21

R0 = {x|ψ(0, x) ↓= 0},
R1 = R0 ∪ {x|ψ(0, x) ↓= 1},
.
R2m = R2m−1 ∪ {x|ψ(m,x) ↓= 0},
R2m+1 = R2m ∪ {x|ψ(m,x) ↓= 1}.
Exactly by the same way (using σω

Φp(x)(1)
and σω

Φq(x)(1)
instead σω

Φp(x)(0)
and

σω
Φq(x)(0)

) we define a uniformly c.e. sequence of c.e. sets Rω+i, i ≥ 0, but now

each Rω+i contains also
⋃{Ri : i < ω}. We have an ω · 2-sequence R0 ⊆ R1 ⊆

. . . ⊆ Rω ⊆ Rω+1 ⊆ It is easy to see that
⋃{Ri : i < ω · 2} = ω, and that

A = {
∞⋃

i=0

(R2i+1 − R2i)} ∪ {
∞⋃

i=0

(Rω+2i+1 − Rω+2i)}, which means (see Theorem

6) that A ∈ Δ−1
ω·2.

Now suppose that R0 ⊆ R1 ⊆ . . . ⊆ Rω ⊆ Rω+1 ⊆ . . . be a ω · 2-sequence

such that
⋃

i<ω·2 Ri = ω and A = {
∞⋃

i=0

(R2i+1−R2i)}∪{
∞⋃

i=0

(Rω+2i+1−Rω+2i)}.

The proof of A ≤gtt(ω·2) K is similar to the proof of Theorem 5 (that any
ω-c.e. set is tt-reducible to K).

Given x and using the condition
⋃

i<ω·2 Ri = ω, first find an i < ω such
that either x ∈ Ri or x ∈ Rω+i. In first case find (as in the proof of Theorem
5) a tt-condition σω

x0
such that x ∈ A if and only if K |= σω

x0
, similarly in the

second case find a tt-condition σω
x1

such that x ∈ A if and only if K |= σω
x1

. Now
σω
Φp(x)(0)

&σω
Φq(x)(0)

∨ σω
Φp(x)(1)

&σω
Φq(x)(1)

is the required gtt(ω · 2)-formula which

gtt(ω·2)-reduces A to K. Here σω
Φp(x)(0)

= x0, σ
ω
Φp(x)(1)

= x1, and Φq(x)(0) ↓=true,

if ∃i < ω(x ∈ Ri), Φq(x)(1) ↓=true, if ∃i < ω(x ∈ Rω+i).

Note that if A is a Δ−1
a -set for some a ∈ O such that |a|0 is not a limit

ordinal, then we don’t have the property
⋃

i<0α
Ri = ω. In this case we proceed

as follows: let A = Sa(R0) and ω−A = Pa(R1) for some a-sequences R0 and R1.
Given x ∈ ω we first enumerate {R0,i}i<0a and {R1,i}i<0a until either x ∈ R0,i

or x ∈ R1,i for some i <0 a. After that we proceed as above with the following
difference: in case x ∈ R1,i the required gtt(α)-formula contains the negation in
the beginning of the formula.

The following theorem shows that the Turing reducibility is not exhausted
by any collection of gtt(α)-reducibilities.

Theorem 13. There is a set A ≤T ∅′′ such that for all α A �≤gtt(α) ∅′′.

The proof of the theorem is based on the following

Lemma 1. If B�gtt(α)C for some α, then there exists a ∅′-computable function

Φ∅′

e such that

(∀x)[x ∈ B ↔ C |= σω
Φ∅′

e (x)
].

Proof (of lemma). Let B�gtt(α)C by a computable function f , i.e. for any x,

22 Marat Arslanov

x ∈ B ↔ C |= σα
f(x).

By α and an index of f we can effectively find the following presentation

σα
f(x) = (¬)[(

∨
i�m

σω
g(i,x)&σβ

ψ(i,x)) ∨ σγ
k(x)]

If β > ω then we find such a presentation also for σβ
h(i,x) via new β′ and γ′

and similarly for σγ
k(x) etc. Finally, we obtain an extended presentation

σα
f(x) = (¬)[

∨
i�m

((
∧

ji�ni

σω
pi,ji

(x))&σω
qi(x))],

where all pi,ji
(x), 0 ≤ i ≤ m, 0 ≤ ji ≤ ni, are defined, but some qi(x), 0 ≤

i ≤ m, for some i can be undefined. Now let for 0 ≤ i ≤ m,

τs(x) =

{
(
∧

ji�ni

σω
pi,ji

(x))&σω
qi(x), if qi(x) ↓;

σω
false, if qi(x) ↑.

We have σα
f(x) = (¬)(τ0(x)∨τ1(x) . . .∨τk(x)). This is obviously a tt-condition

which index in the enumeration of all tt-conditions can be computed using oracle
of ∅′.

Proof (of theorem). Let B = {x|(∃y)[ϕ∅′

x (x) = y&∅′′ |= σω
y]} and let A = ω−B.

The reducibility A ≤T ∅′′ is obvious. If A�gtt(α)∅′′ for some α, then there

exists Φ∅′

e (x) from the lemma. Then

e ∈ A ↔ ∅′′ |= σω
Φ∅′

e (x)
↔ e ∈ B ↔ e �∈ A

From other side, the weak truth-table reducibility is a special case of the
gtt(ω2)-reducibility.

Definition 8. A ≤wtt B, if A = ΦB
e for some e and for all x ϕB

e (x) ≤ f(x) for
some computable function f .

Theorem 14. If A ≤wtt B, then A ≤gtt(ω2) B.

Proof. Let A = ΦB and g a computable function such that ϕB(x) < g(x) for all
x. There are 2g(x) subsets Xi ⊆ {0, 1, ..., g(x)−1}. For each of them we compose
a tt-formula σω

p(i), i ≤ 2g(x), as follows:

X |= σω
p(i) ↔ X⌈g(x) = Xi.

Now consider the formula

σω2

h(x) ⇌ σω
p(1)&σω

q(1) ∨ ... ∨ σω
p(2g(x))

&σω
q(2g(x))

,

Generalized Tabular Reducibilities 23

where σω
p(i) from above and q(x) is defined as follows:

q(x) =

⎧
⎨
⎩

true, if ΦXi(x) ↓= 1;
false, if ΦXi(x) ↓= 0;
↑ . if ΦXi(x) ↑

By a given x we can effectively compute an index f(x) of the gtt-formula

σω2

h(x). Now ΦB(x) = 1↔ B |= σω2

f(x), i.e. A �gtt(ω2) B by function f(x).

Note that the converse of this theorem is not true 1. Indeed, let A ∈ Δ−1
ω2 −

Δ−1
ω . Then A ≤gtt(ω2) K but A �≤wtt K, since A ≤wtt K if and only if A ≤tt K

(see, for example, Rogers [1967, exercise 9.45, p.159]) if and only if A ∈ Δ−1
ω .

References

1. Carstens, H.G.: Δ0
2-mengen. Arch.Math. Log. Grundlag. 18 (1978) 55–65

2. Epstein, R. L., Haas, R., Kramer, R. L.: Hierarchies of sets and degrees below 0′.
Lecture Notes in Math. 859 (1981) 32–48

3. Ershov, Y.L.: On a hierarchy of sets I. Algebra i Logika 7, No.1 (1968) 47–73
4. Ershov, Y.L.: On a hierarchy of sets II. Algebra i Logika 7, No.4 (1968) 15–47
5. Ershov, Y.L.: On a hierarchy of sets III. Algebra i Logika 9, No.1 (1968) 34–51
6. Gold, E.M.: Limiting recursion. J. Symb. Logic 30 (1965) 28–48
7. Putnam, H.: Trial and error predicates and the solution to a problem of Mostowski.

J. Symb. Logic 30 (1965) 49–57
8. Rogers H.,Jr.: Theory of Recursive Functions and Effective Computability, McGraw-

Hill, New York, 1967
9. Selivanov, V.L.: On Ershov’s hierarchy. Siberian Math. J. 26 (1985) 134-150
10. Soare, R. I.: Recursively Enumerable Sets and Degrees. Springer-Verlag, Berlin,

1987

1 I thank an anonymous referee for simplifying this proof

Note on Reducibility Between Domain
Representations

Jens Blanck

Swansea University, Singleton Park, Swansea, SA2 8PP, UK

Abstract. A notion of (continuous) reducibility of representations of
topological spaces is introduced and basic properties of this notion are
studied for domain representations.
A representation reduces to another if the representing map factors
through it. Reductions form a pre-order on representations. A spectrum
is a class of representations divided by the equivalence relation induced
by reductions. The spectrum of dense domain representations has a top
element and representations within this equivalence class are said to be
admissible. The notion of admissibility generalises the notion of admissi-
bility in Weihrauch’s TTE, and is stronger than the notion of admissibil-
ity used by Hamrin. Admissible representations are of particular interest
since any continuous operation on the represented space can be repre-
sented.
To illustrate the framework, some domain representations of real num-
bers are considered and it is shown that the usual interval domain rep-
resentation, which is admissible, does not reduce to a binary expansion
domain representation. However, a substructure of the interval domain
more suitable for efficient computation of operations are on the other
hand shown to be equivalent to the usual interval domain with respect
to reducibility.

1 Introduction

A standard method of computing on a set X of data is to make a representation
R of the data and to compute on R. Such methods have been called concrete
computability theories [26, 27]. The question arises immediately; to what extent
does computability on X depend on the choice of R? For any concrete com-
putability there is the problem of clarifying the representations.

A general procedure to extend computability from the natural numbers N (or
some other structure with a computability theory) to some countable structure
X is to represent the objects of X via a map from N to X. This is known as a
numbering of X.

The class of all possible numberings is huge and not all numberings of a
particular space are useful for computations so some tools of classifying number-
ings is needed. Extensive studies of numberings and their properties have been
carried out, see [18, 13–15, 23, 24].

Our aim is to study computability on uncountable structures (usually topo-
logical spaces). A simple numbering is not possible of an uncountable structure.

Note on Reducibility Between Domain Representations 25

We therefor have to rely on computations on some numbered set of approxima-
tions. For example, real computations can be performed using the countable set
of rational intervals as approximations. A general method of giving computabil-
ity theory to a large class of topological spaces is to use domain representations.

Representations of topological spaces by domains or embeddings of topologi-
cal spaces into domains have been studied by several people [31, 22, 23, 10, 9, 11,
8, 12, 20, 4, 2, 3, 19, 28]. Domain representations are also closely related to Type-2
Theory of Effectivity (TTE) introduced by Weihrauch [29, 25, 30].

Reductions between numberings (when a numbering factors through another)
is one of the basic tools in studying numberings. We generalise reducibility to
a very general class of representations of topological spaces and study basic
properties of reducibility, in particular for domain representations.

Any T0 space can be given domain representations. Some of these have nice
properties such as density and an embedding property. These facilitate lifting
of functions to the domain representations. Thereby opening up for a study of
topological algebras.

The reducibility notion introduces a pre-order on domain representations and
thereby an equivalence relation. A spectrum is a class of representations divided
by the equivalence relation. We give examples showing that the structure of the
spectrum of all representations is non-trivial.

The representations that have the embedding property is known as retract
representations. Retract representations are invariant under our reducibility no-
tion.

The importance of density has an information theoretic explanation in that
non-dense representations contain non-consistent information or “garbage”. When
restricting our attention to dense representations, there is a top element in the
spectrum, namely the equivalence class of dense retract representations. We call
representations belonging to this equivalence class admissible. Our notion of
admissibility is a stronger than the admissibility of domain representations con-
sidered by Hamrin [16]. Our notion also extends the notion of admissibility used
in TTE.

Given an admissible representation of a set X, any continuous operation on
X can be lifted to the representation.

To illustrate the framework, we conclude by studying some representations
of real numbers. The usual interval domain representation of the reals is known
to be admissible. We show that a particular substructure of the interval do-
main, where operations on exact reals can be more efficiently computed, also is
admissible, although its domain properties are weaker (it is a bifinite domain,
rather than a consistently complete domain). Finally, we show that a represen-
tation corresponding to binary expansions is not an admissible representation
of the reals. This is highlighted by the example showing that addition is not a
computable operation on the binary expansions of reals.

We thank John V. Tucker for many invaluable discussions on this paper.

26 Jens Blanck

2 Preliminaries

We give some background on representations of spaces. We give a more general
setting than the domain representations considered in [6], but we still aim for
representations using some type of domain. The terminology is adjusted to cope
with a more general framework. For background on domains we refer to [1, 21].

Definition 1. (i) A weak representation of a topological space X is a triple
(D,DR, ρ), where D is a topological space, DR ⊆ D with the subspace
topology, and ρ : DR → X is continuous and onto.

(ii) A quotient representation is a weak representation where ρ is a quotient
map.

The word representation will be used without qualification to mean a weak
representation.

In [6] this notion of representation is studied where D is required to be a
domain. We will always have domain representations in mind, but define the
notion as general as possible.

When needed, we write continuous cpo representation, domain representa-
tion, etc., to specify the kind of space that D is. We will primarily focus on
Scott–Eršov domains and algebraic cpos, since by Proposition 1 any continu-
ous cpo representation can be used to construct an algebraic cpo representation
without losing any property considered herein.

The introduced notion of representations above covers all naming systems
used in TTE, i.e., both notations and representations. In fact, they are all domain
representations since Cantor space together with finite sequences constitute an
algebraic domain.

The set DR above will be called the set of representing elements. For a
domain-like structure D the set DR is also known as a totality on D. If D is a
domain then the ordering of the domain can be interpreted as an information
ordering. With this interpretation the domain contains both proper approxima-
tions and total or complete representations of elements of X, the latter consti-
tuting the set DR. Intuitively, DR consists of those domain elements that contain
sufficient information to completely determine an element in X via ρ.

Beyond the type of domain D used in a representation, we make use of the
following important characteristics of representations.

Definition 2. (i) A representation (D,DR, ρ) is dense if DR is dense in D.
(ii) A retract representation of X is a quadruple (D,DR, ρ, η) where (D,DR, ρ)

is a representation, and η : X → DR is a continuous function such that
ρη = idX .

For a retract representation (D,DR, ρ, η) we have that ρ is a quotient, and
that ηρ is a retraction on DR. In fact, X will be homeomorphic to the retract
of DR. In a retract representation a canonical representative can be found con-
tinuously from any representation of an element of X.

Note on Reducibility Between Domain Representations 27

Definition 3. Let (D,DR, ρD) and (E,ER, ρE) be representations of X and Y
respectively. A continuous function f : X → Y is represented by a continuous
function f̄ : D → E if ρE f̄(x) = fρD(x), for all x ∈ DR (in particular, f̄ [DR] ⊆
ER).

D E

DR ER

X Y

f̄

f̄

ρD ρE
f

The functions between the subsets of representing elements are restrictions of
functions. To avoid clumsy explicit restriction notation, as in f̄ |DR : DR → ER,
we write f̄ : DR → ER and trust the reader to understand this as the restriction
to the indicated domain of the function.

Let (D,DR, ρD) and (E,ER, ρE) be representations of X and Y respectively,
and let f̄ : D → E be continuous such that f̄ [DR] ⊆ ER. If f̄ respects the
equivalence relations induced by ρD and ρE , then f̄ represents a well-defined
function f : X → Y . Furthermore, if ρD is a quotient map, then f is continuous,
since then the topology of X is fine enough.

We repeat some of the results from [6]. The following proposition sums up
the results in Section 4 of [6] and shows why we may restrict our attention to
representations from algebraic cpos.

Proposition 1. Let (D,DR, ρE) be a continuous cpo representation of X. Then
there is a canonical algebraic cpo representation (E,ER, ρE) retaining the prop-
erties of quotient, retract, and density if present in the original representation.

For proofs of the following theorems, see Theorems 5.4, 5.6, and 9.3 of [6]
respectively.

Theorem 1. Any T0 space has a dense retract domain representation.

Theorem 2. A space with a retract cpo representation is a T0 space.

Theorem 3. Let (D,DR, ρD) be a dense algebraic cpo representation of X, and
let (E,ER, ρE , ηE) be a retract domain representation of Y . Then every continu-
ous function f : X → Y is represented by some continuous function f̄ : D → E.

3 Reducibility

In order to study representations and their applicability to various tasks we give
here a notion of reduction between representations of a fixed space. We start
with the topological version and postpone the effective version.

Definition 4. Let (D,DR, ρD) and (E,ER, ρE) be representations of a topolog-
ical space X.

28 Jens Blanck

(i) Then D (continuously) reduces to E, written D ≤ E, if there exists a
continuous function φ : D → E such that φ[DR] ⊆ ER, and ρD(d) =
ρEφ(d) for any d ∈ DR.

(ii) The representations are (continuously) equivalent, D ≡ E, if D ≤ E and
E ≤ D.

Rephrasing the definition we have that D reduces to E if ρD factors through
ρE .

Lemma 1. The relation ≤ is a pre-order, and ≡ is an equivalence relation.

Proof. The relation is reflexive since the identity is a continuous function reduc-
ing a representation to itself. Transitivity follows by composition.

That ≡ is an equivalence relation follows from the definition by ≡ in terms
of the pre-order ≤. ⊓⊔
Lemma 2. For representations D and E of X we have that D reduces to E if,
and only if, the identity function on X is represented by some function from D
to E.

Proof. Any reduction function represents the identity function on X, and the
identity is continuous on any topological space X. Any function representing the
identity on X is a reduction function. ⊓⊔
Theorem 4. Let D be a dense algebraic cpo representation of X, and E be a
retract domain representation of X. Then D reduces to E.

Proof. By Theorem 3 the identity function can be lifted to a continuous domain
function. By Lemma 2 D reduces to E. ⊓⊔
Corollary 1. Dense retract domain representations are unique up to ≡.

Proof. Immediate. ⊓⊔
Lemma 3. Let DX , DY , EX and EY be representations of X and Y respec-
tively. Assume that EX reduces to DX and that DY reduces to EY . If f̄ : DX →
DY represents f : X → Y then there exists f̂ : EX → EY also representing f .

Proof. Assume that φX reduces EX to DX and that φY reduces DY to EY .

EY

DX DY

EX ER
Y

DR
X DR

Y

ER
X

X Y

ι ι

ι

ιφX

φY

φX

φY

ρDX

ρEX

ρDY

ρEY

f̄

f̄

f

Let f̂ = φY f̄φX . ⊓⊔

Note on Reducibility Between Domain Representations 29

The non-symmetric property of the above lemma makes it less valuable. As
an example, consider a space X with representations D and E, where D reduces
to E, and let f be an operation on X. Given that f is representable by an
operation on D, is it also representable by some operation on E? Or vice versa?
Unfortunately, the above lemma implies neither direction.

The following lemma shows that the property of retract is invariant under
reductions.

Lemma 4. Let D ≤ E be representations of X. If D is a retract representation,
then so is E.

Proof. Let (D,DR, ρD, ηD), and (E,ER, ρE) be the representations. By reducibil-
ity there exists a continuous φ : D → E such that ρD = ρE φ.

D E

DR ER

X

ρD

ρE

ι ι

φ

φ

ηD

ηE

Let ηE = φ ηD, then

ρE ηE = ρE φ ηD = ρD ηD = idX

showing that (E,ER, ρE , ηE) is a retract representation. ⊓⊔
Definition 5. Let Rep be a class of representations of a space X. The spectrum
of Rep is the class of all representations in Rep quoted by ≡.

Let Rep be the class of all domain representations of a space X. Ordering
the spectrum Rep/≡ with ≤ we have the following diagram.

retract
representations

dense
representations

(equivalence class of)

dense retract

representations

�

We give examples showing that the diagram in general is non-trivial.

30 Jens Blanck

Example 1. Let Σ denote the Sierpinski space. That is, Σ = {⊥,⊤} and the
topology is {∅, {⊤}, Σ}. Clearly, (Σ,Σ, id) is a dense retract representation of
Σ.

Create the domain DΣ as:

�

�

�

�

�

�

�

�

�

�

⊤
⊤

⊤ ⊥

where DR
Σ consists of all maximal elements. The representation function ρ :

DΣ → Σ is defined as indicated in the figure. The representation (DΣ , DR
Σ , ρ)

is dense.
By Theorem 4 DΣ reduces to Σ. However, Σ does not reduce to DΣ as any

monotone map from Σ = ΣR to DR
Σ is constant.

Example 2. Consider the following two retract representations of the booleans
B where the representing elements are the ones indicated by t and f .

B⊥ : tf �

�

� B⊥,⊤ : tf �

�

�

�

Note that B⊥ is a dense representation, but that B⊥,⊤ is not. Clearly, B⊥ reduces
to B⊥,⊤ via the inclusion map.

However, B⊥,⊤ does not reduce to B⊥ since there does not exist even a
monotone function φ : B⊥,⊤ → B⊥ mapping the representing elements of B⊥,⊤

to the corresponding representing elements of B⊥.

As a contrast to the previous example where a non-dense retract representa-
tion need not reduce to a retract representation we give the following example
showing that the equivalence class of dense retract domain representations can
contain non-dense representations.

Example 3. Let 3⊥ be the domain

tf � � �

�

where 3R
⊥ are the labelled elements. This is a non-dense retract representation

of B. This representation reduces to B⊥ by mapping the compact witness of
non-density to bottom in B⊥.

Recall that a common interpretation of the ordering relation of a domain rep-
resentation is that it corresponds to information. High up in the domain means
much information about an object of the space. So a non-dense representation
can be viewed as a representation that contains non-consistent information or

Note on Reducibility Between Domain Representations 31

“garbage”. In practise it is sometimes desirable to cut away this non-consistent
information (see, for example, Lemma 2.28 in [5]). This can be done in gen-
eral for representations by taking the ideal completion over all approximations
of representing elements, see [16]. Thus, we have a case to restrict ourselves to
dense representations.

Theorem 5. The spectrum of dense domain representations of a T0 space has
a top element, namely the equivalence class of dense retract domain representa-
tions.

Proof. By Theorem 1 there exists a dense retract domain representation of the
space and by Theorem 4 any dense representation can be reduced to it. ⊓⊔

4 Admissible representations

We will define a notion of admissible representations similar to the one used by
Kreitz and Weihrauch [17].

Definition 6. A representation is admissible if it is equivalent to a dense retract
domain representation.

By Example 3 an admissible representation need not be dense. However, any
admissible representation is itself a retract representation.

Lemma 5. Any admissible representation D is a retract representation.

Proof. As the D is equivalent to a retract representation, say E, we have in
particular that E reduces to D and by Lemma 4 D is itself a retract represen-
tation. ⊓⊔

The following shows that among dense representations admissibility is pre-
served by reductions.

Lemma 6. If D is an admissible representation reducing to a dense represen-
tation E then E is admissible.

Proof. Since E is a dense representation and since D is a retract representation
the result follows by Theorem 4. ⊓⊔

The following lemma shows that admissible representations have a universal-
ity property.

Lemma 7. Any dense representation of a space reduces to any admissible rep-
resentation of the same space.

Proof. By Lemma 5 and Theorem 4. ⊓⊔
The lemma also shows that our notion of admissibility implies the notion of

admissibility introduced by Hamrin [16], where a representation is admissible
exactly if the above universality property holds. Our notion is stronger in that
representations such as B⊥,⊤ in Example 2 are not admissible.

32 Jens Blanck

Theorem 6. The class of spaces with admissible representations coincides with
the class of T0 spaces.

Proof. By Theorem 1 there exist dense retract domain representations of all T0

spaces, and these representations are by definition admissible. Since any admissi-
ble representation is a retract representation by Lemma 5 it follows by Theorem 2
that the represented space is T0. ⊓⊔

The following immediate result shows why admissible representations are
important.

Theorem 7. Let (D,DR, ρD, ηD) and E,ER, ρE , ηE) be admissible representa-
tions of X and Y respectively. Then any continuous function f : X → Y has a
representation f̄ : D → E.

Proof. By Theorem 3. ⊓⊔

5 Representations of the reals

Here we will look at three different representations of real numbers. The first
is the customary interval domain, the second is a substructure of the interval
domain that allow for more efficient computations, and the third corresponds to
binary expansion of the reals.

Let R be the ideal completion of all closed rational intervals together with
the real line ordered by reverse inclusion. The representing elements RR of this
domain are all ideals that have singleton intersections; a representing ideal is
mapped by ρR to the single element of its intersection. Define ηR by

ηR(x) = {[a, b] : a < x < b, a, b ∈ Q} .
Lemma 8. (R,RR, ρR, ηR) is an admissible representation of the reals.

Proof. A standard proof shows that the representation is a dense retract domain
representation. ⊓⊔

In [7] centred dyadic approximations are considered for efficient implemen-
tations of exact real arithmetic. These form an interesting substructure of the
interval domain.

Definition 7. A centred dyadic interval is represented by a triple (m, e, s) of
the form

a = (m± e)2−s ,

where the mantissa m and the exponent s are integers, and the error term e is
a natural number. A real x is approximated by a if

|x−m2−s| ≤ e2−s ,

or equivalently,
x ∈ [(m− e)2−s, (m + e)2−s] .

Fix j > 0. A centred dyadic j-approximation is a centred dyadic interval where
the error term is strictly bounded by 2j.

Note on Reducibility Between Domain Representations 33

We will assume that j is fixed throughout and we will simply write centred
dyadic approximation.

Let Rcda be the ideal completion of all centred dyadic approximations to-
gether with the real line ordered by reverse inclusion. Representing elements
RR

cda are again ideals with singleton intersection and the representing function
ρRcda

is defined as before.
It is shown in [7, Lemma 3.7] that Rcda is not a domain, but that it is a

bifinite domain (or SFP-domain). Nevertheless we will show that with respect
to reducibility Rcda is equivalent to the interval domain. The following lemma
shows that even though finite suprema does not exist in general in Rcda there is
a sufficiently rich substructure of Rcda where finite suprema exist.

Lemma 9. Within the substructure of all centred dyadic 1-approximations finite
suprema exist.

Proof. It is sufficient to show that the supremum of a = (m ± 1)2−s and b =
(n±1)2−t is a centred dyadic 1-approximation. Assume without loss of generality
that t ≥ s.

If the distance between the centre points a and b, that is m2−s and n2−t, is
less than the radius of a, that is 2−s, then the centre of b must be at least 2−t

away from boundary of a, meaning that b is contained in a, so b is the supremum.
The remaining case is that the centre of b is on the boundary of a. Assume

that the centre of b is the upper end-point of a, i.e., n2−t = (m + 1)2−s. The
supremum of a and b is ((2n− 1)± 1)2−t−1. ⊓⊔

Theorem 8. The representations R and Rcda are equivalent.

Proof. The inclusion map from Rcda to R represents the identity on the real
line so Rcda reduces to R.

For the other direction let φ be defined on compacts by

φ([a, b]) =
⊔

1

{(m± 1)2−s : [a, b] ⊆ (m± 1)2−s, 2−s ≤ |b− a|} ,

where
⊔

1 gives finite suprema in the substructure of centred dyadic 1-approxi-
mations. Note that the supremum is taken over a finite set because there can
only be finitely many 1-approximations containing the interval when the radius
of the 1-approximations are bounded.

Extend φ to a continuous function. Then φ represents the identity on the
real line. Thus, R reduces to Rcda. ⊓⊔

Restricting the interval domain R to the unit interval gives an admissible
representation of the unit interval which we denote by R[0,1].

We will construct a representation corresponding to binary expansion. For
simplicity we restrict ourselves to the unit interval. Let the compact elements be
finite binary expansions, and let D[0,1] be the ideal completion over the prefix
ordering of finite binary expansions. A maximal element of the domain corre-
sponds to an infinite binary expansion. Let ρD : D[0,1] → R be the mapping of

34 Jens Blanck

an infinite binary expansion into the corresponding real number. Note that any
interior dyadic point will have two representations in the domain, for example,
1
2 is represented by both .0111 . . . and .1000 The domain D[0,1] is a dense
representation of the unit interval.

Construct a monotone map φ from compact elements of D[0,1] (that is, finite
binary expansions) to R[0,1] by mapping .b1 . . . bn to the interval

[
a

2n
,
a + 1

2n

]
,

where a is the integer number b1 . . . bn. Extend φ to a continuous function φ :
D[0,1] → R[0,1]. The function φ induces the identity on the unit interval so D[0,1]

reduces to R[0,1].

Lemma 10. The representation D[0,1] is not admissible.

Proof. Assume that R[0,1] reduces to D[0,1]. Then by Lemma 4 D[0,1] would be

a retract representation. Consider where the embedding would send 1
2 . If the

embedding of 1
2 is to .0111 . . . then the preimage of the basic open set ↑.0 is the

non-open interval [0, 1
2]. If 1

2 instead is embedded into .1000 . . . then the pre-
image of ↑.1 is the non-open interval [12 , 1]. This contradicts the existence of a
continuous embedding, and hence, that D[0,1] is a retract representation. Thus,
R[0,1] does not reduce to D[0,1]. ⊓⊔

We know that representing the reals by binary expansions is not an appro-
priate choice when considering computability of operations on the domain. It
is well-known that neither addition nor multiplication is computable on binary
expansions of real numbers.

Example 4. Consider computing addition on infinite binary expansions. The sum
of 1

3 = 0.010101 . . . and 1
6 = 0.0010101 . . . is 1

2 . However, for whatever finite
amount of the inputs that is inspected even the first bit after the binary point
of the output is not determined. Thus, we cannot effectively compute addition.

References

1. S. Abramsky and A. Jung. Domain theory. In S. Abramsky et al., editors, Handbook
of Logic in Computer Science, volume III, pages 1–168. Oxford University Press,
1994.

2. U. Berger. Density theorems for the domains-with-totality semantics of depen-
dent types. In J. Adamek, J. Koslowski, V. Pollara, and W. Struckmann, editors,
Proceedings of the Workshop Domains II. Technische Universität Braunschweig,
1996.

3. U. Berger. Density theorems for the domains-with-totality semantics of dependent
types. Applied Categorical Structures, 7:3–30, 1999.

4. L. Birkedal, A. Carboni, G. Rosolini, and D. S. Scott. Type theory via exact
categories. In Proceedings of the 13th Annual IEEE Symposium on Logic in Com-
puter Science, pages 188–198, Indianapolis, Indiana, 1998. IEEE Computer Society
Press.

Note on Reducibility Between Domain Representations 35

5. J. Blanck. Domain representability of metric spaces. Annals of Pure and Applied
Logic, 83:225–247, 1997.

6. J. Blanck. Domain representations of topological spaces. Theoretical Computer
Science, 247:229–255, 2000.

7. J. Blanck. Exact real arithmetic using centred intervals and bounded error terms.
Journal of Logic and Algebraic Programming, 66:50–67, 2006.

8. P. di Gianantonio. Real number computability and domain theory. Information
and Computation, 127:11–25, 1996.

9. A. Edalat. Domain theory and integration. Theoretical Computer Science, 151:163–
193, 1995.

10. A. Edalat. Dynamical systems, measures, and fractals via domain theory. Infor-
mation and Computation, 120:32–48, 1995.

11. A. Edalat and R. Heckmann. A computational model for metric spaces. Theoretical
Computer Science, 193:53–73, 1998.

12. Y. L. Ershov. Model c of partial continuous functionals. In R. O. Gandy and
J. M. E. Hyland, editors, Logic Colloquium 76, volume 87 of Studies in Logic and
Foundations in Mathematics, pages 455–467. North-Holland, 1977.

13. Y. Eršov. Theorie der Numerierungen. Zeitschrift für Math. Log., 19(4):289–388,
1973.

14. Y. Eršov. Theorie der Numerierungen II. Zeitschrift für Math. Log., 21(6):473–584,
1975.

15. Y. Eršov. Theorie der Numerierungen III. Zeitschrift für Math. Log., 23(4):289–
371, 1977.

16. G. Hamrin. Effective Domains and Admissible Domain Representations. PhD
thesis, Department of Mathematics, Uppsala University, 2005.

17. C. Kreitz and K. Weihrauch. Theory of representations. Theoretical Computer
Science, 38:35–53, 1985.

18. A. I. Mal′cev. Constructive algebras. I. Uspehi Mat. Nauk, 16(3 (99)):3–60, 1961.
19. D. Normann. A hierarchy of domains with totality, but without density. In S. B.

Cooper, T. A. Slaman, and S. S. Wainer, editors, Computability, Enumerability,
Unsolvability, volume 224 of London Mathematical Society Lecture Notes Series,
pages 233–257. Cambridge University Press, 1996.

20. D. S. Scott. A new category? Domains, spaces and equivalence relations.
Manuscript, 1996.

21. V. Stoltenberg-Hansen, I. Lindström, and E. R. Griffor. Mathematical Theory of
Domains. Cambridge University Press, 1994.

22. V. Stoltenberg-Hansen and J. V. Tucker. Complete local rings as domains. Journal
of Symbolic Logic, 53:603–624, 1988.

23. V. Stoltenberg-Hansen and J. V. Tucker. Effective algebra. In S. Abramsky et al.,
editors, Handbook of Logic in Computer Science, volume IV, pages 357–526. Oxford
University Press, 1995.

24. V. Stoltenberg-Hansen and J. V. Tucker. Computable rings and fields. In Handbook
of computability theory, volume 140 of Stud. Logic Found. Math., pages 363–447.
North-Holland, Amsterdam, 1999.

25. V. Stoltenberg-Hansen and J. V. Tucker. Concrete models of computation for
topological algebras. Theoretical Computer Science, 219:347–378, 1999.

26. J. V. Tucker and J. I. Zucker. Computable functions and semicomputable sets
on many sorted algebras. In S. Abramsky et al., editors, Handbook of Logic in
Computer Science, volume V, pages 317–523. Oxford University Press, 2000.

27. J. V. Tucker and J. I. Zucker. Abstract versus concrete computation on metric
partial algebras. ACM Transactions on Computational Logic, 5(4):611–668, 2004.

36 Jens Blanck

28. G. A. Waagbø. Domains-with-totality semantics for Intuitionistic Type Theory.
PhD thesis, University of Oslo, 1997.

29. K. Weihrauch. Computability. Number 9 in EATCS Monographs on Theoretical
Computer Science. Springer-Verlag, Berlin, 1987.

30. K. Weihrauch. An Introduction to Computable Analysis. Springer, 2000.
31. K. Weihrauch and U. Schreiber. Embedding metric spaces into cpo’s. Theoretical

Computer Science, 16:5–24, 1981.

Gödel, Turing, the Undecidability Results and
the Nature of Human Mind

Riccardo Bruni

Università degli Studi di Firenze, Dipartimento di Filosofia
via Bolognese 52, Firenze 50139, Italy

Abstract. In this paper Turing and Gödel’s standpoints toward the
implications of the undecidability results are addressed. In the case of
Turing, we show how his account on the issue was deeply connected to
his project of actually building a computing machine showing an intelli-
gent behaviour. Furthermore, we argue that his claim that the argument
based on the halting problem offers no objection to that very project,
is strenghtened by a general view on mathematical resoning and intel-
ligence which has an anti-mechanistic flavour. As to Gödel’s position,
we reformulate, by enhancing its modal character, an argument that is
contained in an unublished paper belonging to the early 1950’s which
ends in an open conclusion on minds and machines. We finally present
Gödel’s interpretation of the solution of the famous P = NP problem
contained in a letter to von Neumann as a further contribuition in this
direction of working out the philosophical significance of certain mathe-
matical achievements.

1 Introduction

Many years have passed since the first attempts to consider the very basic un-
decidability theorems in computability theory and metamathematics as directly
estabilishing a bridge between mathematics and philosophy have appeared in
literature. Roughly speaking, these results have been regarded as providing the
means for a proof of the non-mechanical nature of human mind. The technical
content of the argument and its relation to the mathematical theory are not very
deep, and this makes even more striking that it may still be appealing despite all
efforts that have been spent to show where the devised inferences break down.

The latest formulation of such an argument is due to Roger Penrose in his
[12, 13]. As to this particular version, we have now come to what seems like
a disproof of it, due to different although relatable analyses made by Pavel
Pudlák [14], Stuart Shapiro [15] and Per Lindström [8, 9]. It turned out that
Penrose’s argument is either essentially relying on ambiguous notions (that is,
the concept of ‘unassailable mathematical truth’ and that of ‘a formal system
which encapsulates all mathematical means of proofs accessible to human mind’),
or it is wrong under a plausible definition of them. The failure of Penrose’s
gödelian argument seriously affects his project of a scientific investigation on

38 Riccardo Bruni

the true nature of human consciousness as based on mathematical, physical and
philosophical considerations.

Since in our opinion these analyses have so far settled the matter, time seems
right to us for a survey covering a more historical aspect of the issue which has
somewhat been left unnoticed.

An inspection of the available sources reveals in fact that both Turing and
Gödel had already considered similar implications of the undecidability results.
The motivations that moved Turing and Gödel to direct their attention to them
were different and in some sense opposed on to the other. Turing aimed at in-
vestigating intelligent behaviour as applied to the action of mechanical devices,
while Gödel was in search for a rigorous argument that could confirm his beliefs
concerning the status of mathematical concepts and the nature of mathemati-
cal reasoning. In both these cases, their analyses turned out to be surprisingly
meaningful to Turing and Gödel’s ‘programs’ in the fields of early Artificial In-
telligence projects and in the philosophy of mathematics respectively.

Reconsidering the whole issue from their perspective may in turn help to do
justice to it, and it may even give useful suggestions for some second thought
concerning its implications.1

2 Turing and the “Mathematical Objection”

In a famous paper published on Mind in 1950, Turing discussed an argument
based on the undecidability results as providing a “mathematical objection” to
the idea of a machine that may successfully partecipate to what he called the
Imitation Game, which is currently known as Turing’s Test. It was not the first
time that Turing was trying to tackle such an objection, but in this case he gave
a particularly clear formulation of it.

The argument2 applies to any (universal) machine M(x, y) which is supposed
to answer questions concerning the behaviour of all (unary) machines (in a given
enumeration) in such a way that M(m,n) = YES iff Mm(n) = YES, and M(m,n) =
NO otherwise. By bringing to contradiction the existence of such an M in the
expected way,3 one would be led to the conclusion that either such an M is unable
to give always the correct answer to all questions, or that it may sometimes fail to
give any answer. But this in turn would make it quite easy for an interrogator to
distinguish between a machine and a human player, which would not be subject
to the same constraints and could go freely in search for an appropriate method

1 It seems unnecessary instead to spend some words about the up-to-date character
of the problem in question. Despite all disproofs in fact, new attempts to restate
the argument, even though with a critical attitude toward Penrose’s, quickly arose
(see [1]). Even in this case, the (brief) reconstruction of Gödel and Turing’s views
in particular seems questionable however, if not misleading.

2 See [17, pp. 444–445].
3 As usual, it would suffices to define a diagonal machine DM(x) such that DM(n) = NO

in case M(n, n) = YES and DM(n) = YES otherwise, and then try to compute the
values of M(d, d) for a description d of DM.

Gödel, Turing, the Undecidability Results and the Nature of Human Mind 39

and hopefully solve the problem in question. Thus, if Turing’s Test is recognized
as a suitable way to measure intelligence, machines cannot show an intelligent
behaviour.

Turing’s way out had been developed since 1947, when the british mathe-
matician had directed his attention to this objection for the first time.4 The first
half of Turing’s answer is not refined philosophically speaking, since it rests, as
it may be expected, on the crucial requirement for the whole argument to apply,
namely that the logical systems or the machine involved be consistent. The con-
clusion is then rejected by simply stressing that consistency is not an essential
feature of intelligence.

As to its second half, Turing’s analysis becomes more interesting. In fact, he
points out that this kind of argument always applies to machines which have not
been suitably trained, where, on the contrary, the abilities of a human mathe-
matician can be viewed as the result of a continuous and stimulating interaction
with other members of the community to which he belongs, including proper
education.

So, while dropping the requirement of consistency may be sufficient by itself
to escape the argument, Turing thought it necessary to do more in order to
pursue the ambitious purpose of actually developing intelligent machineries, as
he strenghtfully aimed at since the second half of the 1940’s. The key idea was
the possibility for a machine to act on its own istructions. This action had to
be refined according to a specific training which needed to be directed from the
outside on the basis of the application of suitably modified educational methods.
As part of this project, Turing described, for example, an experiment in training
an “unorganized” machine, that is a machinery built with no specific purpose,
by means of external stimula of rewards and punishments.5

Since Turing never revealed a particular inclination to purely philosophical
issues, it may come as a surprise that these pioneristic researches could be viewed
as based on an analysis of mathematical reasoning and intelligence in general.
It’s even more surprising, since it contrasts with what is usually acknowledged to
Turing,6 that this analysis entails a non-mechanistic approach to human mind.

Turing’s analysis of mathematical reasoning is contained in a section of his
work on ordinal logics [16], and it is thought as providing a conceptual framework
within which the results obtained by his logical investigation could be usefully
discussed.

Mathematical reasoning is the result of two different faculties, namely intu-
ition (which allows us to produce judgements on the truth/falsity of mathemat-
ical statements without any conscious train of thoughts), and ingenuity (which
is responsible for the construction of proofs for intuitive judgements). With the

4 See [18, pp. 87–88].
5 See [19, pp. 122-125]. Even though he considered the result unsatisfactory since

the whole process was not sufficiently close to the one which applies in the case
of a child, Turing reported to have succeded in “organizing” such a device into a
universal machine.

6 See, e.g., [7, 1].

40 Riccardo Bruni

development of formal logic it became clear that no one of these two faculties
could be dispensed with. In particular, it follows from Gödel’s theorems that it
is not possible to reduce intuition to ingenuity, that is to reduce mathematical
activity to the choice within a given formal system of axioms of those steps
which are the most efficient ones to build the proof of a given statement. On the
contrary, it can be expected for a logical investigation only to give a more pre-
cise shape to the intuitive (that is, the non-mechanical) steps, without possibly
eliminate them entirely.7 It follows that mathematical knowledge is the result of
a combination of mechanical and non-mechanical forms of reasoning.

In his later papers, where the case of intelligence in general is concerned, a
similar scheme seems to apply.

In this case Turing speaks8 of a need of both discipline, which is the ability of
obeying orders and which is at best exemplified by the behaviour of an ordinary
machine, and initiative. Even with respect to these two features, a purely me-
chanical approach would not allow an exaustive analysis. If the investigation is
confined to the most general case, that is to those strategies which are applied to
seek for a solution of existential problems,9 it is true that it could be possible to
account for a certain amount of cases by starting from a suitable logical system,
and by relying our search on the results concerning the problem known as the
extraction of programs from formal proofs.

In order to deal with all problems of this sort, however, it is necessary to
think to more complicated processes, which are not trivially reducible to purely
formal methods.10 This makes it necessary a more radical turn: to change the
kind of machines to be used for this task, and to build new ones on the basis of
an appropriate analysis of those processes which are responsible for the turning
of the child mind into the adult one.

3 Gödel’s Modal Argument

While Turing addressed the “mathematical objection” as it actually has been
used since then11 (namely, as an argument showing that the human mind has

7 In the case of Turing’s investigation on ordinal logics for example, given a complete
logic Λ (that is, in the terminology of [16], a function such that the collection (Λ)o,
for any ordinal notation o, contains all true Π0

2 statements), intuition is needed only
to verify that a given expression is a notation for a constructive ordinal.

8 See [19, pp. 125].
9 Turing’opinion concerning statements of existential form as providing the most com-

prehensive collection of problems, was based (see [19, p. 126]) on a claim concerning
the possibility of reducing all other forms of problem to this one via arithmetization.

10 In particular, Turing indicated two additional searches for a solution, namely a
genetical search, which consists in a process of genetical recombination so to obtain a
new one which may result to be more suitable for the solution of the given problem,
and an intellectual search, which is the one that results from the combined action of
all the members of the community.

11 In his retrospective article [11], the English philosopher J. R. Lucas, who is often
wrongly credited as the first who provided the objection in question, stated that his

Gödel, Turing, the Undecidability Results and the Nature of Human Mind 41

not a mechanical nature and that there can be no machine equivalent to it),
Gödel arrived to it from a completely independent direction. In particular, he
thought his version of the inference to help emphasizing the phenomenon of the
“inexaustibility of mathematics”, as he referred to it.

As he said in a lecture he delivered in 1951, the theorem on the undecidability
of the sentence expressing consistency in formal mathematical systems “makes
it impossible that someone should set up a well-defined system of axioms and
rules and consistently make the following assertion about it: All of these axioms
and rules I perceive (with mathematical certitude) to be correct, and moreover I
believe that they contain all of mathematics”.12

Recently, Bringsjord and Arkoudas in their [1] have presented a modal argu-
ment to show that computationalism (according to which, the human mind ‘is’ a
Turing machine) is false. Further, even in the case of Penrose’s latest formulation
of the inference it is natural to give a modal reading of the informal notions used
therein.13 Then, in order to make a comparison more fruitful, it might be useful
to present also Gödel’s analysis of the basic inference by enhancing its modal
flavour. Provided that, Gödel’s argument goes as follows.

Assume KMα to mean that α is known with mathematical certitude. Then,
it seems natural to assume that

⊢ α⇒ KMα

holds (where the provability symbol should be understood in a broad and
informal sense).

It follows that, for any given formal system F , KM (CorrF → ConF) where
CorrF and ConF are the statements representing correctness and consistency
of F respectively.14 Assume KM to be closed under modus ponens.15 By the
undecidability of ConF , we can conclude that if KMCorrF then there exists
a certain formula β such that (KMβ ∧ ¬TeorFβ) holds (where TeorFα has an
obvious meaning). This finally yields KM¬(KMα → TeorFα) for a generic α,
from which it follows the desired conclusion ¬KM (KMα→ TeorFα) provided we
have assumed ¬(KMα ∧ KM¬α).16

original writing [10] had been conceived as a reply to Turing’s position on machine
and intelligence as formulated in [17]. It seems thus natural to infer that Lucas didn’t
realize that the paper he argued against, already contained a formulation of the very
same argument (even clearer than Lucas’ own), and Turing’s response to it.

12 See [5, p. 309].
13 See in particular Lindström [8, 9] and Shapiro [15] on this.
14 As it is customary, CorrF must be understood as some form or another of a reflection

principle. Then, the implication of the system consistency would be provable (even
in a formal framework) and then knowable according to the assumption above.

15 In symbols, KM (α → β) → (KMα → KMβ) holds.
16 Our conclusion seems different than Gödel’s since, under the assumption that we

know with mathematical certainity that a system F is correct, it shows that we
cannot know with the same certainity that this system contains all of mathematics.
Gödel’s conclusion instead dealt with two modalities, knowledge (with mathematical

42 Riccardo Bruni

Suppose now that for a certain formal system F∗, we have

KMα := TeorF∗α (∗)

which provides a definition for KM as based on two assumptions, namely (i)
that to know a mathematical proposition with certitude means to have a proof
of it, and (ii) that there exists a certain formal system which comprises all the
commonly acceptable means of proof that are accessible to human reasoning.

Then ¬KMCorrF∗ must hold. In Gödel’s own words, it would follow that “the
human mind (in the realm of pure mathematics) is equivalent to a finite machine
that, however, is unable to understand completely its own functioning”.17 This
conclusion has an immediate philosophical significance for the view entailed by
(i) and (ii) above which would turn out to be, so to say, not self-contained
since, under these assumptions, there would be no mathematically grounded
justification for our belief in the validity of the commonly accepted inferences of
deductive reasoning.

Furthermore, consider the collection M of all mathematical propositions
which hold in an absolute sense. Let instead K be the class of all statements α
such that KMα holds, and let us assume moreover K ⊆ M. Then, if (∗) holds
for a given formal system, it follows that this inclusion is proper, namely there
are mathematical truths which are ‘inaccessible’ to all the mathematical means
of proof that the human mind can conceive. If on the contrary (∗) fails for all F ,
it would follow for both K and M that these collections cannot be recursively
enumerated where it remains possible for the above inclusion to be proper. This
leads to Gödel’s disjunctive conclusion18 that either mathematics cannot be
comprised in any finite rule, or there exist absolutely unsolvable mathematical
problems, or both these alternatives are the case.19

Gödel’s own solution of this disjunction is known. On the one hand, he
thought that “Hilbert was right” in rejecting the existence of absolutely un-
solvable mathematical problems among number-theoretic ones.20 On the other,

certitude) and belief, the latter of which we’ve ommited for the sake of simplicity. We
would have obtained a literal translation of Gödel’s ending by introducing another
modal operator B, and equivalently assuming that

¬(KMα ∧ B¬α)

holds (which simply says that belief cannot contrast mathematical knowledge,
since the latter has a stronger epistemic force).

17 [5, pp. 309–310].
18 See [5, p. 310].
19 Due to an unpublished refinement of Gödel’s theorem on arithmetical equivalents of

the formally undecidable sentences (see [4]), the unsolvable problems would moreover
have the form of diophantine statements of the type ∀�x∃�yP (�x, �y) = 0, where P is a
polynomial with integer coefficients.

20 See [20, p. 325]. Gödel’s reference to Hilbert was motivated by the rationalistic
attitude of the latter, as condensed in his famous slogan “In mathematics there’s no
ignorabimus”.

Gödel, Turing, the Undecidability Results and the Nature of Human Mind 43

Gödel was a supporter of an anti-mechanistic view of human reason. In a late
and obscure remark,21 he presented his position as based on the idea that (i)
the human mind may be capable of thinking to infinitely many things and pos-
sibly even non-denumerably many, and that (ii) the way in which the abstract
concepts enter human understanding seems of a procedural character (more and
more abstract concept become accessible in the course of the mind develop-
ment), but of a non-mechanical nature (a systematic method to actualize this
development would result in a non-recursive arithmetic function).

Interestingly, in his Gibbs lecture Gödel argued that the conclusion of his ar-
gument could turn out to support some form or another of a Platonistic approach
to mathematics: the existence of absolutely unsolvable problems to the human
mind would go against the idea that mathematical concepts are our own con-
struction since a creator knows all the properties of what he has created. Thus,
it would be required to admit that these concepts, or at least some part of them,
have an existence which is independent from our definitions and constructions.22

4 From Computability to Complexity

Obviously one may object that nothing like the disclosing of the true nature of
human reasoning is really the purpose of the argument we’ve just surveyed. The
crucial thesis one is dealing with is in fact comprised by statement (∗) above,
which should be read as expressing the existence of a machine replicating the ac-
tivity of human reason in the domain of mathematics when the latter is regarded
extensionally. If compared to more recent attempts, the importance of Gödel’s
argument is primarily due to the refined analysis of the, so to say, linguistic side
of the problem. Namely, it shows that there’re reasonable interpretations for
the concepts involved that lead to a meaningful and rigorously drawn conclusion
which connects the mathematical investigation of the foundations to certain con-
ceptual issues. But significantly, the conclusion provide no solution in the latter
direction.

Indeed, the typical feature of this sort of arguments is their abstract char-
acter: they are concerned with an idealized human mathematician, whose ac-
tions are compared with a mathematical model of mechanical computation. This
brings to an unsatisfactory ending which can be expressed philosophically by
saying that the whole discussion is indifferent to how refined the assumed stand-
point concerning the human mind might be. In this sense, the conclusion that
can be drawn by Turing’s analysis of the inference, which we would summarize
by saying that the goals of a scientific research in the field of Artificial Intelli-
gence turns out to be independent from the solution to the problem concerning
the nature of human reasoning, is not surprising.

21 See [3, p. 306] and [20, pp. 325–326].
22 This argument is not that conclusive. One may argue against it, for example, by

emphasizing that, due to Gödel’s own theorems, the identification of mathematical
concepts with their symbolic representation in a formal language does not lead to
omniscience.

44 Riccardo Bruni

Then, one may try to refine the investingation by introducing some very basic
restriction.

An attempt could be the one which starts from a view of human reasoning
as the sum of actual processes which, like all kind of processes, are subject to
certain practical constraints. One would consequently assume that only those
processes which are feasible matter. Then, it is natural on the mathematical
side to shift from computability to complexity issues.

Gödel is known to be among the firsts who adopted a related perspective. He
did that in a letter to von Neumann dated 20 March 1956, which became known
for containing one of the first formulation of the P = NP problem.23

Indeed, Gödel questioned his correspondent about the following problem: to
consider a Turing machine M that allows to decide, for every n ∈ IN and every
formula F of first order predicate logic, whether F has a proof of lenght n (n
being the number of its symbols); then, if by ψ(n, F) we indicate the number of
steps required by the machine to reach a decision, Gödel’s question was whether
it is possible for

ϕ(n) := max{ψ(n, F) | F formula}
to grow linearly or quadraticly in the input n.
Today we know that it is possible to reduce the set of all satisfiable proposi-

tional formulas, which is NP -complete, to Gödel’s problem.24 This could make it
surprising that Gödel was inclined to view such a solution as being “quite within
the realm of possibilities” since (i) ϕ(n) ≥ k · n is “the only estimate obtainable
by generalizing the proof of the unsolvability of the Entscheidungsproblem”, and
(ii) ϕ(n) ∼ k · n (or ϕ(n) ∼ k · n2) “just means that the number of steps when
compared to pure trial and error can be reduced from N to logN (or logN2)”.

Furthermore, Gödel gave an interesting interpretation of the implications of
this solution. If Gödel’s question could be answered in the positive, then there
would be a feasible algorithm yielding, among the formulas of first order logic,
those which are provable in a reasonable sense of the word. Gödel thought this
outcome to mean that the thinking of a human mathematician dealing with
questions with a yes-or-no answer could be replaced, with just the exception of
the formulation of the axioms for mathematics, by a machine. He thought this
conclusion to refine what one can conclude under the unsolvability of the general
decision problem, which would allow to consider any Turing machine as unfit to
substitute the activity of a human mathematician. This conclusion would not in
fact apply for a suitable choice of the input of the machine solving the problem
above.

In fact, under the kind of pragmatic approach to human reasoning we’ve
roughly described before, it is unreasonable to look for unbounded proofs. Then,

23 See [6, pp. 373–376].
24 Such a reduction, as perfomed by Stephen A. Cook (see [2, p. v]), goes as follows:

given a propositional formula A with atoms p1, . . . , pn, and given a new monadic
predicate symbol Q and individual variables x1, . . . , xn, let A′ ≡ A[pi := Q(xi)]
(1 ≤ i ≤ n) and B ≡ ∃x∃y(Q(x) ∧ ¬Q(y)) → ∃x1 . . . ∃xnA′. Then A ∈ SAT iff B is
provable and it has a polinomially bounded proof.

Gödel, Turing, the Undecidability Results and the Nature of Human Mind 45

if n is chosen sufficiently large, the activity of a human mathematician is in this
sense reducible to that of a machine, provided Gödel’s problem is solvable. In
other words, although the human mind may be intensionally different from a
Turing machine, it would be in fact equivalent to it for any practically feasible
purpose.

5 Some General Comments

As a moral of our survey, one could naturally be brought to draw a balance of
the interaction between a philosophically motivated problem and a mathematical
treatement of it.

It could in fact be argued that the conclusion that follows from the complexity
argument we’ve just accounted for, is basically the same of the one that was
obtained by means of the modal argument. However, there is something in the
approach to the problem of the previous section which is worth emphasizing as
a distinguishing feature.

Gödel in fact thought the argument based on the unprovability of consistency
and its disjunctive conclusion, to be the best possible result for a mathematical
account of the situation concerning mind and machines. By that he plausibly
meant that any further clarification, and even a solution of that disjunction
should be sought by means of conceptual analysis. This would cause the whole
problem to be subject to the unrigorous state of the philosophical investiga-
tion. The P = NP argument may then represent, so to say, a mathematical
way to such a solution which makes it unnecessary any further speculation of a
philosophical nature.

This may have an unexpected consequence as to a comparison between Gödel
and Turing’s analysis. While in fact it seems natural to oppose the philosophical
committment of the one to the neutrality of the other, Gödel’s approach would
end up with a conclusion which is even more radical than the one which can be
attached to Turing’s efforts. Indeed, one may find it justified to conclude that not
only pure philosophy can be dispensed with in case of certain philosophically-
committed scientific goals, but that it can be entirely substituted by making
an appropriate use of certain results belonging to the most rigorous forms of a
rational investigation. This claim would be further supported by the fact that
the basic conceptual problem admits a straightforward and clear formulation (as
attested by statement (∗) above), so that it can be subject to a mathematical
treatement.25 However, this general view is contrasted by the difficulty in reach-
ing a definitive solution by treating the corresponding problem mathematically.

25 Notice that this conclusion is only apparently opposed to the independent meaning
of the philosophical investigation. Indeed, it could be suitably reformulated in such a
way that it would recall some classical approaches to philosophy (the best and most
obvious example of which would be Leibniz’s view), which were based on the belief
that its behaving according to the canons of deductive reasoning should be one of
its required features.

46 Riccardo Bruni

In the case of Gödel’s former argument, this difficulty is attested by the
disjunctive conclusion that was obtained under a plausible definition of the con-
cepts involved. As to Gödel’s complexity argument instead, the weak aspect of
it coincides with its depending on the solution of the P = NP problem which,
contrary to Gödel’s expectations, would be nowadays recognized as unlikely.

References

1. Bringsjord, S., Arkoudas, K.: The modal argument for hypercomputing minds. The-
oretical Computer Science 317 (2004) 167–190

2. Clote, P., Kraj́ıček, J.: Arithmetic, Proof Theory, and Computational Complexity.
Oxford University Press (1993)

3. Gödel, K.: Some Remarks on the Undecidability Results. Collected Works vol. II:
Publications 1938-1974. Oxford University Press (1990) 305–306

4. Gödel, K.: Undecidable Diophantine Propositions. Collected Works vol. III: Unpub-
lished Essays and Lectures. Oxford University Press (1995) 157–175

5. Gödel, K.: Some Basic Theorems on the Foundations of Mathematics and Their
Implications. Collected Works vol. III: Unpublished Essays and Lectures. Oxford
University Press (1995) 304–323

6. Gödel, K.: Collected Works vol. V: Correspondence H-Z. Oxford University Press
(2003)

7. Hodges, A.: Alan Turing: The Enigma. Burnett Books, Simon and Schuster (1983)
8. Lindstöm, P.: Penrose’s New Argument. Journal of Philosophical Logic 30 (2001)

241–250
9. Lindstöm, P.: Remarks on Penrose’s “New Argument”. To appear in the Journal of

Philosophical Logic (online version already available at web page of this Journal)
10. Lucas, J. R.: Minds, Machines and Gödel. Philosophy 36 (1961) 112–127
11. Lucas, J. R.: Minds, Machines and Gödel: A Retrospect. P. Millican and A. Clark

(eds) Machines and Thought: The Legacy of Alan Turing. Mind Association Occa-
sional Series, Clarendon Press (1996) 103–124

12. Penrose, R.: Shadows of the Mind. Oxford University Press (1994)
13. Penrose, R.: Commentaries on ‘Shadows of the Mind’. Psyche 2 (1995)
14. Pudlák, P.: A Note on the Applicability of the Incompleteness Theorems to Human

Mind. Annals of Pure and Applied Logic 96 (1999) 335–342
15. Shapiro, S.: Mechanism, Truth, and Penrose’s new argument. Journal of Philo-

sophical Logic 32 (2003) 19–42
16. Turing, A. M.: Systems of Logic Based on Ordinals. Proc. of the London Math.

Soc. 45 (1939) 161–228
17. Turing, A. M.: Computing Machinery and Intelligence. Mind 59 (1950) 433–460
18. Turing, A. M.: Lecture to the London Mathematical Society on 20 February 1947.

D. C. Ince (ed.) The Collected Works of A. M. Turing, vol. II. North Holland (1992)
87–105

19. Turing, A. M.: Intelligent Machinery. D. C. Ince (ed.) The Collected Works of A.
M. Turing, vol. II. North Holland (1992) 107–127

20. Wang, H.: From Mathematics to Philosophy. Routledge and Kegan Paul (1974)

The Conjecture P �= NP Presented by Means of
Some Classes of Real Functions

José Félix Costa1 and Jerzy Mycka2⋆

1 Department of Mathematics, I.S.T.
Universidade Técnica de Lisboa

Lisboa, Portugal
fgc@math.ist.utl.pt

2 Institute of Mathematics,
University of Maria Curie-Sklodowska

Lublin, Poland
Jerzy.Mycka@umcs.lublin.pl

Abstract. In this paper, we prove that there exists some condition,
involving real functions, which implies P
= NP .

Keywords: computation over the reals, computational complexity,
open problems in computational complexity

1 Introduction and motivation

The theory of analog computation (see [1] for an introduction), where the in-
ternal states of a computer are continuous rather than discrete, has enjoyed a
recent resurgence of interest. The first presentation of a theory, which transforms
analog computation into the form similar to Kleene’s classical theory of recur-
sive functions over N, was attempted by Cristopher Moore [5]. We present in this
paper the concept of (restricted) real recursive function and the corresponding
class RECR(R), which is based on the real recursive scalars 0, 1,−1, and the real
recursive projections with the following operators: composition and the solution
of a Cauchy problem (or a initial value problem in mathematical analysis).

With these notions and the additional operator of bounded quantification (to
define the concept of nondeterministic computation) we are able to introduce
some important subclasses of real recursive functions. They are obtained by an
imposition of restrictions on the growth of functions from RECR(R). Because
the growth of values of functions is somehow restricted by time of computation
such kind of restrictions is connected with complexity of real functions. But let
us stress the fact that it is not our purpose to build such classes, which strictly
inherit the properties of the classical complexity classes — rather, it is important
for us to have classes with robust analytical definitions.

A real recursive function is said to be of exponential order if in any step of
its construction, its components are bounded by the exponential function. By

⋆ Corresponding author

48 José Félix Costa and Jerzy Mycka

using of weak exponential restrictions (e(logx)k

) we obtain the classes DAnalog
and NAnalog. We can also use a notion of admissible restrictions to transform
real functions into natural ones not exceeding barriers of polynomial complexity.

Then we can prove that the condition P = NP implies the identity of the
above mentioned restrictions of DAnalog and NAnalog. By contraposition we
obtain an analytical test for the conjecture P �= NP .

This paper is an attempt to use the above approach for the conjecture
P �= NP . With respect to [7], Section 2 introduces a more clear formulation
of a (discrete) condition equivalent to P = NP , clarifying aspects that were
obscure in [7], Section 3 is completely new and considers a generalized solution
to the differential recursion scheme, Section 4 indeed intersects [7], but contains
different definitions and modified concepts, capitalizing in some results from the
precedent paper, and the new Section 5 motivates strongly our analog classes,
relates them with linear systems, and with solutions of a feasible physics. In this
Section, the conjecture P ⊂ NP is lifted to the realm of Analysis.

With quantifier elimination (using techniques from the sixties, namely the
concept of Richardson’s map in [9]) in the non-deterministic class NAnalog,
hopefully, we will succeed in the near future to present a quantifier free (full)
analytic condition for the conjecture P ⊂ NP .

2 Polynomial time computable functions

The main model of computation, a Turing machine, has an obvious correspon-
dence with the class of recursive functions.

A partial function f is said to be computable by a deterministic Turing ma-
chine M if (a) M accepts the domain of f and (b) if 〈x1, . . . , xn〉 ∈ dom(f), then
the accepting computation writes in the output tape the value f(x1, . . . , xn).
PF is the class of partial functions that can be computed in polynomial time
by deterministic Turing machines, i.e., by deterministic Turing machines clocked
with polynomials.

We adopted the definition of computable function given in [2]. Note that
for functions in PF the halting problem is decidable. We have an inductive
definition of the total functions in PF , provided by Buss in 1986 (see, e.g., [8],
Vol. II, p. 172):

Proposition 2.1. The class of recursive functions computable in deterministic
polynomial time is inductively defined from the basic functions Z = λn. 0 and
S = λn. n + 1, the projections, basic functions λn. 2n, λn. 2n + 1, λn. ⌊n2 ⌋,
the characteristic function δ of “equality to 0”, by the operations of composition,
definition by cases, and polynomially bounded primitive recursion. �

The intuition behind this characterization of the total functions in PF is
the following: a Turing machine clocked in polynomial time p can write at most
p(|x|) bits in the output tape for the input x (|x| is the length of x). This number

is bounded by 2⌊log(x+1)⌋k

, for some k.

The Conjecture P
= NP Presented by Some Classes of Real Functions 49

We define now, for our purpose, a nondeterministic Turing machine in a way
similar to which it is used in the probabilistic computational model (compare
[2]). We impose the following conditions on the nondeterministic machines: (a)
every step of a computation can be made in exactly two possible ways, which are
considered different even if there is no difference in the corresponding actions
(this distinction corresponds to two different bit guesses), (b) the machine is
clocked by some time-constructible function and the number of steps in each
computation is exactly the number of steps allowed by the clock; if a final state
is reached before this number of steps, then the computation is continued, doing
nothing up to this number of steps, (c) every computation ends in a final state,
which can be either accept or reject, (d) if the machine computes a function,
then all accepting computations write down to the output tape the value of the
function (see [2], Chapter 2 for a comparison). It is irrelevant what the machine
writes in the output tape if it reaches a rejecting state.

A partial function f is said to be computable by a nondeterministic Tur-
ing machine M if (a) M accepts the domain of f and (b) if 〈x1, . . . , xn〉 ∈
dom(f), then any accepting computation writes in the output tape the value
f(x1, . . . , xn). NPF is the class of partial functions that can be computed in
polynomial time by nondeterministic Turing machines, i.e., by nondeterministic
Turing machines clocked with polynomials.

Now, we have the the following fact: NPF is the class of functions of the form
λx1 . . . xn. if 〈x1, . . . , xn〉 ∈ A then F (x1 . . . xn), where A ∈ NP and F ∈ PF .

Let us use a different idea to think about nondeterminism.

Definition 2.1. We define the class ∃PF as follows: a function f : Nn → N is
in ∃PF if there exists a function F : Nn+1 → N in PF and a polynomial p :
Nn → N such that (a) 〈x1, . . . , xn〉 ∈ dom(f) if and only if there exists a number k
such that |k| ≤ p(

∑n
i=1 |xi|) and 〈x1, . . . , xn, k〉 ∈ dom(F) and (b) f(x1, . . . , xn)

is defined and f(x1, . . . , xn) = y if and only if for the number k such that |k| ≤
p(
∑n

i=1 |xi|) and F (x1, . . . , xn, k) is defined we have F (x1, . . . , xn, k) = y, and,
moreover for all such |k| ≤ p(

∑n
i=1 |xi|) that 〈x1, . . . , xn, k〉 ∈ dom(F), we have

F (x1, . . . , xn, k) = y.

With the last definition we can present the following two obvious statements:
the class NPF coincides with ∃PF ; and NP ⊂ P if and only if ∃PF ⊂ PF .

For the purpose of this paper we adopt the following convention: if f is
undefined at x, then we take f(x) = 0 (adding 1 to a function allows coding for
zeros without ambiguity). Then we can create the appropriate classes of total
functions.

Definition 2.2. Let PF = {f̃ : f ∈ PF}, where f̃ , for a n-ary function f , is
given by cases

f̃(x1, . . . , xn) =

{
f(x1, . . . , xn) + 1 if 〈x1, . . . , xn〉 ∈ dom(f)
0 otherwise

50 José Félix Costa and Jerzy Mycka

and let NPF = {f̃ : f ∈ NPF}, where f̃ , for a n-ary function f , is given by
cases

f̃(x1, . . . , xn) =

{
f(x1, . . . , xn) + 1 if 〈x1, . . . , xn〉 ∈ dom(f)
0 otherwise

A function from NPF can be proved to be of the form: λ〈x1, . . . , xn〉. if 〈x1,
. . . , xn〉 ∈ A then F (x1, . . . , xn) else 0, for some set A ∈ NP and some F ∈ PF .
Then we have the desired result to work with functions rather than sets.

Proposition 2.2. NP ⊂ P if and only if NPF ⊂ PF .

Proof. Assume that NP ⊂ P and let f ∈ NPF . Then f is of the form
λ〈x1, . . . , xn〉. if 〈x1, . . . , xn〉 ∈ A then F (x1, . . . , xn) else 0, with A ∈ NP and
F ∈ PF . We conclude that A ∈ P and, consequently, f ∈ PF . Conversely,
assume that NPF ⊂ PF and let A ∈ NP . Then the function f defined by
λx. if x ∈ A then 1 else 0 is in NPF . We conclude that f ∈ PF and, conse-
quently, A ∈ P . �

3 Recursive functions over R

We will use the the concept of a vector function to denote a real function from
Rk to Rn, of a scalar function to denote a real function from Rk to R.

We use in this paper the following idea of a solution for differential equation
that differs from that one given, e.g., [4].3 A solution to a system of equations
(for 1 ≤ i ≤ n) given by the following differential recursion

∂yhi(x1, . . . , xk, y) = gi(x1, . . . , xk, y, h1(x1, . . . , xk, y), . . . , hn(x1, . . . , xk, y)),

satisfying the initial conditions hi(x1, . . . , xk, 0) = fi(x1, . . . , xk) is a vector func-

tion ĥ from Rk+1 to Rn such that: a unique solution h to the system of differ-
ential equations exists in some open interval I containing 0; the vector function
ĥ satisfies the equations in a set J ⊇ I, such that J is an open interval up to
a countable number of non-Zeno discontinuities,4 in the sense that, for every
y ∈ J , ĥi(x1, . . . , xk, y), gi(x1, . . . , xk, y, ĥ1(x1, . . . , xk, y), . . . , ĥn(x1, . . . , xk, y)),

and ∂yĥi(x1, . . . , xk, y) are defined, for all 1 ≤ i ≤ n, and it holds that

∂yĥi(x1, . . . , xk, y) = gi(x1, . . . , xk, y, ĥ1(x1, . . . , xk, y), . . . , ĥn(x1, . . . , xk, y));

the vector functions h and ĥ coincide on I; the vector function ĥ is the unique
C1 extension of h; and J is the largest such set.

3 A solution... is a function of the independent variable that, when substituted into
the equation as the dependent variable, satisfies the equation for all values of the
independent variable. That is, a function h(y) is a solution if it satisfies ∂yh(y) =
g(y, h(y)), for all y in R.

4 It means that for each finite open interval there exist only a finite number of discon-
tinuities.

The Conjecture P
= NP Presented by Some Classes of Real Functions 51

The vector function ĥ is called the generalized solution of the system if it is the
maximal solution according with the previous items. With this operator we can
present the concept of (restricted) real recursive function and the corresponding
class RECR(R) (based on the similar definition from [6]).

Definition 3.1. The class RECR(R) of real recursive vector functions is gen-
erated from the real recursive scalars 0, 1, −1, the real recursive projections
Iin(x1, . . . , xn) = xi, 1 ≤ i ≤ n, n > 0, and the real recursive functions
θk(x) = xkΘ(x),5 k ≥ 0, by the following operators:

Composition: if f is a real recursive vector function with n k-ary components
and g is a real recursive vector function with k m-ary components, then the vector
function with n m-ary components, 1 ≤ i ≤ n,

λx1 . . . λxm. fi(g1(x1, . . . , xm), . . . , gk(x1, . . . , xm))

is real recursive.
Differential recursion: if f is a real recursive vector function with n k-ary

components and g is a real recursive vector function with n (k + n + 1)-ary
components, then the vector function h of n (k+1)-ary components which is the
solution of the Cauchy problem, 1 ≤ i ≤ n,

hi(x1, . . . , xk, 0) = fi(x1, . . . , xk),

∂yhi(x1, . . . , xk, y) = gi(x1, . . . , xk, y, h1(x1, . . . , xk, y), . . . , hn(x1, . . . , xk, y))

is real recursive whenever h is a solution to the differential equation in the sense
of the above explanation.

Assembling and designating components: (a) arbitrary real recursive vector
functions can be defined by assembling scalar real recursive function components
into a vector function; (b) if f is a real recursive vector function, than each of
its components is a real recursive scalar function.

Let us give some examples of functions generated with the above definition.
The scalar functions +, ×, −, exp, sin, cos, λx. 1

x , /, log, λxy. xy are real
recursive functions. See also [6], where many other examples and results can be
found. To finish the current section let us observe that a simple modification of
results from [7] gives us the inclusion of real extensions of classical computational
classes like PF and NPF in the class of restricted recursive functions.

4 DAnalog, NAnalog, fAP and admissible restrictions

We know that, in computability theory, the growth of functions is an important
factor of its complexity. We use this approach to define two subclasses of real
recursive functions. A real recursive function is said to be of exponential order if
in any step of its construction, its components are bounded by the exponential
function.

5 Θ(x) = 0 for x < 0 and Θ(x) = 1 for x ≥ 0, it is the Heaviside function.

52 José Félix Costa and Jerzy Mycka

Concepts such as linear growth or sub-linear growth, exponential growth or
subexponential growth can also be applied to some arbitrary function disregard-
ing their component functions, i.e., their inductive construction. Thus, in what
follows, we distinguish between order and growth.

The formulas

F (s) =

∫ ∞

0

f(ξ) e−sξ dξ, f(ξ) =
1

2πi

∫ c+i∞

c−i∞

F (s) esξ ds

present the Laplace transform F = L[f] and the inverse Laplace transform
f = L−1[F], respectively. The second integral is generally carried out by contour
integration.

With the above notions, we have a precise boundary for the exponential
order. Exponentially bounded functions are described by the following condition:
for every total function f , L[f](s) is defined for values of the complex variable s
such that ℜ s > xf , where xf depends on f . Subexponentially bounded functions
can be introduced by the following condition: for every total function f , L[f](s)
is defined along the whole positive real axis ℜ s > 0 We will also use weak
exponential bounds on functions: in this case for given function f there exists

some k such that f(x) < e(logx)k

.

Consider a real recursive function f on the positive real axis such that: (i) f is
continuous on [0,∞) except possibly for a finite number of jump discontinuities
in every finite sub-interval; (ii) there is a positive number M such that |f(ξ)| ≤
Mekξ, for all ξ ≥ 0. Then we say that f belongs to the class Lk. Then, if f ∈ Lk

is a real recursive function, then the Laplace transform L[f](x + iy) exists for
x > k. Proof of the above statement can be found in [7]. If the Laplace transform
of f exists, L[f](s), then f is said to be of exponential order: it exists for x = ℜ s
greater than some real number k.

We proposed in [7] the definition of the classes DAnalog and NAnalog,
which can be interpreted as classes of real recursive functions computed with
weak exponential restrictions on their values.

Definition 4.1. The class DAnalog of real recursive vector functions is induc-
tively defined as follows:

Primitives: Constants 0, 1, and −1, the projections Iin(x1, . . . , xn) = xi, 1 ≤
i ≤ n, and the functions θk(x) = xkΘ(x), k ≥ 0, are in DAnalog:

Composition: if f is a real recursive vector function with n k-ary compo-
nents and g is a real recursive vector function with k m-ary components, all in
DAnalog, then the vector function with n m-ary components, 1 ≤ i ≤ n,

λx1 . . . λxm. fi(g1(x1, . . . , xm), . . . , gk(x1, . . . , xm))

is in DAnalog only if all its components grow less than a weak exponential.6

6 This condition in this clause is not needed, since weak exponential bounded functions
are closed for composition.

The Conjecture P
= NP Presented by Some Classes of Real Functions 53

Differential recursion: if f is a real recursive vector function with n k-ary
components and g is a real recursive vector function with n (k+n+1)-ary com-
ponents, both in DAnalog, then the vector function h of n (k+1)-ary components
which is the solution of the Cauchy problem, 1 ≤ i ≤ n,

hi(x1, . . . , xk, 0) = fi(x1, . . . , xk),

∂yhi(x1, . . . , xk, y) = gi(x1, . . . , xk, y, h1(x1, . . . , xk, y), . . . , hn(x1, . . . , xk, y))

is in DAnalog only if all its components grow less than a weak exponential.
Assembling and designating components: (a) arbitrary real recursive vector

functions in DAnalog can be defined by assembling scalar real recursive function
components in DAnalog into a vector function; (b) if f is a real recursive vector
function in DAnalog, than each of its components is a real recursive scalar
function in DAnalog.

Functions in DAnalog are said to be deterministic weak exponential.

Definition 4.2. The class NAnalog of real recursive vector functions is ob-
tained from real recursive vector functions in DAnalog:

Admissible bounded quantification: if F : Rn+1 → R is a scalar function
in DAnalog, φ : Nn → N is a polynomial, and f : Rn → R is a function,
such that (a) f(x1, . . . , xn) �= 0 if and only if there exists a positive inte-
ger k such that |k| ≤ φ(|⌊x1⌋|, . . . , |⌊xn⌋|) and F (x1, . . . , xn, k) �= 0 and (b)
f(x1, . . . , xn) = y �= 0 if and only if there exists a positive integer k such
that |k| ≤ φ(|⌊x1⌋|, . . . , |⌊xn⌋|), F (x1, . . . , xn, k) = y, and, for all such posi-
tive integer |k| ≤ φ(|⌊x1⌋|, . . . , |⌊x1⌋|) such that F (x1, . . . , xn, k) �= 0, we have
F (x1, . . . , xn, k) = y, then f is a scalar function in NAnalog.

We write NAnalog = ∃DAnalog. Functions in NAnalog are said to be non-
deterministic weak exponential.

We get the immediate result that DAnalog ⊂ NAnalog.
The functions x + y, xy, x − y, 1

x+ǫ , for all ǫ ∈ R+, and x
y+ǫ , for all ǫ ∈ R,

belong to DAnalog. The reference functions elog(x+1)k

, for all k ∈ N, is also in
DAnalog. The function exp is not in the class DAnalog. Remember that func-
tions in DAnalog are, strictly speaking, functions of the form Θ(x)f(. . . , x, . . .),
according to Laplace transform conventions and notation, defined everywhere.

To consider some functions as subexponential, sometimes we have to make a
small shift on the real variable to avoid a discontinuity at the origin. For example,
the function λx. 1

x+ǫ is subexponential and its transform is λs. eǫsE1(ǫs), where
E1 is the exponential integral of degree one, for positive ǫ as small as we want.

Notice that, if the function of expression f(x, y) is obtained in DAnalog, then
it can not grow faster than a weak exponential in one or in both variables. Now,
if we take a univariable polynomial ψ and values of y such that |⌊y⌋| ≤ ψ(|⌊x⌋|),
then y grows less than a weak exponential of x and the combination of both
growths, of f and y (now seen as function of x) can not grow faster than a weak
exponential too. This simple explanation allows us to conclude that functions in
NAnalog grow as fast as functions in DAnalog.

54 José Félix Costa and Jerzy Mycka

In [7] we proved that, for every function f ∈ PF , the Laplace transform L[f̂]

of its canonical extension f̂ is in DAnalog. Let us add that it can be proved
that the classes DAnalog and NAnalog are closed for integration. Moreover,
DAnalog is closed for differentiation (in the sense that if a function of one of
these classes is differentiable then its derivative is also in the class).

Now we turn the direction of our consideration. We start from real functions
and then we restrict them to the set of non negative integers.

Definition 4.3. An indexed ordered set of real numbers φ = {φi}i∈N is said
to be admissible for a function F : R → R if φ is a real recursive function in
DAnalog and F (φi) ∈ N, for all i ∈ N. A function f : N → N is said to be
an admissible restriction of F if there exists an admissible set {φi}i∈N such that
f(i) = F (φi), for all i ∈ N.

We can consider functions with many variables.

Definition 4.4. A tuple of indexed ordered sets of real numbers {φ1
i }i∈N, . . . ,

{φk
i }i∈N is said to be admissible for a function F : Rk → R, of arity k, if

F (φ1
i1
, . . . , φk

ik
) ∈ N, for all i1, . . . , ik ∈ N, and every sequence {φi

j}j∈N, for
i = 1, . . . , k, is an admissible set. Mutatis mutandis we get the definition of an
admissible restriction of F .

Not all functions have admissible restrictions, like λx. e−x, or just like a
constant 1

2 . Real recursive functions that extend functions over the integers have
an infinite number of admissible restrictions.

Let us add the definition of the two following classes:

Definition 4.5. Let DAnalogr and NAnalogr be the restrictions of the classes
DAnalog and NAnalog to functions that in any step of their construction have
admissible restrictions in PF and NPF , respectively.

Now we propose the definition of the class fAP (the f stands for feasible),
which can be interpreted a the class of real recursive functions computed with
quasi-polynomial restrictions on their values and times of computation. Of course
fAP — analog quasi-polynomial time in this context is just rhetoric, but as we
will see these subclasses of real recursive functions arise in such natural way that
they are not superseded by their classical counterparts.

Definition 4.6. The class of real recursive functions designated by fAP is de-
fined as DAnalog, but substituting the weak exponential order by subexponential
order.

Functions in fAP are said to be deterministic subexponential.

We see that our fAP indeed captures the meaning of Odifreddi words from
Section VIII of [8] including all stepwise subexponential functions, providing a
quite meaningful computational class. In classical terms, this class is not easy to
capture or characterize, since there exists not a operational method to define it.
We can only characterize the subexponential functions in the classical framework
by means of quantifiers: for every total function f , f is subexponential if, for
all ǫ > 0, there exists a positive integer M , such that f(x) < Meǫx. Let us add
that, of course, DAnalog ⊂ fAP .

The Conjecture P
= NP Presented by Some Classes of Real Functions 55

5 Main results

We want to strongly motivate our concept of feasible functions, computable over
the real numbers, i.e. the functions of fAP (and also of DAnalog). We define
first a proper subclass LIN(R) of REC(R), by restricting differential recursion
to linear differential recursion (see [3]).

Definition 5.1. LIN(R) The class LIN(R) of real recursive vectors is gener-
ated from the real recursive scalars 0, 1, −1, π, primitive functions θk(x) =
xkΘ(x), for k ≥ 0, and projections Iin(x1, . . . , xn) = xi, 1 ≤ i ≤ n, n > 0,
by the following operators: composition, assembling and designating components
and

Linear differential recursion: if f is a real recursive vector with n m-ary
components and g is a real recursive matrix with m×m (n+1)-ary components,
then the vector h of n m-ary components which is the solution of the Cauchy
problem, 1 ≤ i ≤ n, hi(x1, . . . , xm, 0) = fi(x1, . . . , xm), ∂yhi(x1, . . . , xm, y) =∑m

j=1 gij(x1, . . . , xm, y) hj(x1, . . . , xm, y) is real recursive.

In [3] the following results can be found: LIN(R) contains, e.g., sin, cos,
λx. ex, the rational numbers, and real recursive extensions of successor, addition,
and cut-off subtraction; moreover all functions in LIN(R) are continuous and
total. All functions in LIN(R) can be approximated (in the sense of Grzegorczyk,
e.g., like in [11]) by elementary functions, and all real recursive extensions of
elementary functions are contained in LIN(R). Proofs of these statements can
be found in [3]. Then as a consequence we have the fact about LIN(R) that it
contains extensions of functions from PF and NPF .

Especially important for us is the connection between linear differential
equations and the Laplace transform. Using in this context the Laplace trans-
form, operations of differentiation and integration can be replaced with algebra.
We consider in what follows the integral form of linear differential recursion:
h(x1, . . . , xm, y) = h(x1, . . . , xm, 0) +

∫ y

0
g(x1, . . . , xm, t) h(x1, . . . , xm, t) dt +∫ y

0
b(x1, . . . , xm, t) dt. Let γ be such that γ(x1, . . . , xm, t−y) = g(x1, . . . , xm, y).

Such function is in LIN(R) because γ(x1, . . . , xm, y) = g(x1, . . . , xm, t− y).
The integral form becomes now

h(x1, . . . , xm, y) = h(x1, . . . , xm, 0) +

+

∫ y

0

γ(x1, . . . , xm, y − t) h(x1, . . . , xm, t) dt +

∫ y

0

b(x1, . . . , xm, t) dt.

We can prove the following theorem:

Proposition 5.1. fAP (
⋂

LIN(R)) consists of the functions which in any step
of construction satisfy L[γ] ≤ 1 in the whole positive real axis.

Proof. Applying the Laplace transform to the integral form, we get

H(x1, . . . , xm, s) =

56 José Félix Costa and Jerzy Mycka

=
h(x1, . . . , xm, 0)

s
+H(x1, . . . , xm, s) L[γ(x1, . . . , xm, y)](s)+

B(x1, . . . , xm, s)

s
,

from where it follows that H(x1, . . . , xm, s) =
h(x1,...,xm,0)+

B(x1,...,xm,s)
s

s(1−L[γ(x1,...,xm,y)](s)) .

We conclude that the solution is in fAP if and only if L[γ(x1, . . . , xm, y)](s) ≤
1, for all ℜ s > 0, since from the inductive point a view, functions γ and b are
already subexponential. �

The integral version of the linear differential recursion scheme is a generalized
form of the Volterra integral equation that can be written in the standard form

y(t) = f(t) +

∫ t

0

y(τ) K(t− τ) dτ,

for t > 0. The function K is called the kernel of the equation (cf. [4]). This result
is quite interesting because an ordinary differential equation may be transformed
into an integral equation. By linear differential equation (see, e.g., [12]) we mean a
differential equation where the dependent variable appears only with exponent 0
or 1. All differential equations in the sense of this definition are in LIN(R).Then
we can state the following fact.

Proposition 5.2. A linear differential equation has a solution in the class fAP
(
⋂

LIN(R)) whenever φ is subexponential and the kernel k satisfy the Laplacian
conditioning of Proposition 5.1.

Proof. Proposition 5.1 offers all ingredients of the proof, applying the Laplace
transform to the Volterra integral equation u(x) = φ(x) +

∫ x

a
k(x, t) u(t) dt.

Since u(x) = y(n)(x), to obtain the Laplace transform of y we have to solve the
algebraic equation U(s) = sn Y (s)− sn−1 f(0)− sn−2 y′(0)− ...− y(n−1)(0). �

One good idea seems to be defining the matrix of the linear differential re-
cursion scheme in order to, with the help of the Laplace transform, characterize
the subexponential world, and, within it, different classes, possibly including
P , NP , and lower complexity classes. From the physical point a view, the last
example is an example of a dissipative system, with a dumping term. A class
of Hamiltonian systems and a class of dissipative systems is captured by our
subexponential world containing extensions of DAnalog and fAP .

With the above knowledge let us return to the main theme of the paper.
We know from [7], that all functions in PF or in NPF have extensions in
DAnalogr and NAnalogr, respectively. In [7] we proved that (let us recall here
that NPF ⊆ PF iff NP ⊆ P):

Proposition 5.3. If a function has an admissible restriction in any step of its
construction, then it belongs to DAnalog.

Proof. Suppose that a function f of arity one in these conditions is not in
DAnalog. Then we can find, in some step of the construction a component g such

that, for all k ∈ N, g(x) ≥ 2log(x)k

. The function g has an admissible restriction
which is not quasi-polynomially bounded, contrarily to our hypothesis. Thus f
is in DAnalog. �

The Conjecture P
= NP Presented by Some Classes of Real Functions 57

The following statement although similar with final result in our previous
paper [7], is more strongly based in a clear mathematical formulation (avoiding
Proposition 31 of [7] that, it seems, it is not well-founded 7).

Proposition 5.4. If NPF ⊆ PF , then NAnalogr ⊆ DAnalogr.

Proof. If f is a function in NAnalog, then all their admissible restrictions along
its construction are nondeterministic quasi-polynomially bounded (i.e., they are
in NPF), and then, by hypothesis, they are deterministic quasi-polynomially
bounded (i.e., they are in PF). We end the proof applying Proposition 5.3. �

Since all functions in DAnalogr are built from components f satisfying (a)
a differential equation that can be seen as linear and (b) a growing condition,
then the differential equation itself can be solved by Laplace transforms. The
above considerations justify the following interpretation of Proposition 5.4. The
problem whether P is a proper subclass of NP can be transformed
into the problem of a proof DAnalogr �= NAnalogr, which will be based
on some sets of real functions with Laplace transforms.

Acknowledgment.
We thank to Kerry Ojakian for point us a few potential problems in the

formalization of [7]. These problems were avoided in the formulation of this
paper.

References

1. J. R. Ashley. Introduction to Analog Computation, John Wiley and Sons, 1963.
2. J. L. Balcázar, J. Dı́az, J. Gabarró. Structural Complexity I, Springer-Verlag, 1995.
3. M. L. Campagnolo, C. Moore, and J. F. Costa. An analog characterization of the

Grzegorczyk hierarchy. Journal of Complexity, 18(4):977–1000, 2002.
4. A. C. King, J. Billingham, and S. R. Otto. Differential Equations, Linear, Nonlin-

ear, Ordinary, Partial, Cambridge University Press, 2003.
5. C. Moore. Recursion theory on the reals and continuous-time computation. Theo-

retical Computer Science, 162: 23-44, 1996.
6. J. Mycka and J. F. Costa. Real recursive functions and their hierarchy. Journal of

Complexity, 20(6): 835-857, 2004.
7. J. Mycka and J. F. Costa. The P
= NP conjecture in the context of real and

complex analysis. Journal of Complexity, 22 (2): 287-303, 2006.
8. P. Odifreddi. Classical Recursion Theory, Elsevier, 1992.
9. D. Richardson. Some undecidable problems involving elementary functions of a

real variable. Journal of Symbolic Logic, 33 (4):514-520, 1968.
10. C. Shannon. Mathematical theory of the differential analyzer. J. Math. Phys. MIT,

20:337-354, 1941.
11. K. Weihrauch. Computable Analysis, An Introduction, Springer-Verlag, 2000.
12. D. Zwillinger. Handbook of Differential Equations, Academic Press, Third Edition,

1989, 1998.

7 Although it is not obvious, and more work has to be done with regard to cleaner
and simpler formulation of such an analytic conditon — indeed, intended to shed
new light on P ⊂ NP conjecture.

Decidability of Arithmetic Through
Hypercomputation: Logical Objections

Paolo Cotogno

paolo.cotogno@istruzione.it

Abstract. The theory of hypercomputation aims to extend effective
computability beyond Turing reducibility, in particular by means of su-
pertasks; physical models are considered in Newtonian, relativistic and
quantum contexts. Apart from implementation differences, all approaches
hold that supertask computations would decide arithmetic; in logical
terms, this amounts to assume that the undecidability of Peano Arith-
metic can be bypassed by the ω-rule. We argue that the assumption is
not granted, as long as the system is consistent: this conclusion follows
from alternative versions of Gödel’s incompleteness, such as Rosser’s and
Yablo’s, which are essentially indifferent to infinite deductions.

1 Introduction

In this note we deal with hypercomputation, the hypothetical extension of effec-
tive computability beyond Turing reducibility; as chief hypercomputing instru-
ment we consider the supertask, an infinite succession of operations concluded
in a finite span of time. We focus on the theoretical core of hypercomputation,
rather than on the plausibility of physical models; in particular, we discuss the
claim that supertask computations can decide arithmetic. Since this feat would
apparently overcome classical undecidability results, we shall briefly rehearse the
original arguments; we shall then interpret hypercomputation decidability in log-
ical terms, as the claim that Peano Arithmetic becomes decidable through the
effective ω-rule. Contrary to the assumption, this is not the case, since Rosser’s
sentence remains unsolvable even if the system allows infinite deductions, as long
as it remains consistent. The same conclusion obtains also by proving undecid-
ability through Yablo’s paradox, an infinite form of the Liar.

2 Hypercomputation and physical supertasks

Effective computability concerns the computation processes that transform in-
puts into definite outputs, in principle. The theory of general recursion estab-
lishes the upper bound of effective computability as the degree 0’, defined by
Turing reducibility: apart from matters of efficiency and concrete implementa-
tion, all systems for expressing effectively computable functions – the univer-
sal programming systems – are reducible to the formalism of Turing Machines.

Decidability of Arithmetic Through Hypercomputation: Logical Objections 59

Above the Turing degree, computability could be just relative, depending on
values produced by others sources.

The hypothesis of hypercomputation, or super-Turing computation, aims to
extend the domain of effective computability beyond the ‘barrier’ of Turing re-
ducibility. The basic idea consists in gaining more computing power by renounc-
ing the finiteness of ordinary recursive algorithms: this should be achieved either
by infinite extensions of discrete computation on integers, or by analogic com-
putation, with real-valued operations as primitives. In Cotogno (2003) we point
out some reasons for viewing the latter approach as essentially dependent on the
former, so we do not consider analogic models here.

A rigorous treatment of infinite discrete computation is supplied by infinite
time Turing Machines (Hamkins 2000, 2002). These are defined by finite tran-
sition tables, like ordinary Turing Machines, but may receive infinite strings as
input, and their process may go on toward ω and beyond, along constructive
ordinals. Configurations have a distinguished limit state, where cell tape values
can be either passed unchanged from earlier computation steps, or set to the lim
sup of the cell values before the limit.

Computations with infinitely many steps would be unable to produce outputs
per se, but one can think of regaining effectivity by making the additional as-
sumption that processing speed increases, so that total operation time converges
to a finite value – what we may call a supertask. The notion, loosely related to
Zeno’s ancient paradoxes, is present in modern philosophical literature (e.g. Chi-
hara 1965, Bringsjord and Zenzen 2002), and also in abstract computation theory
(e.g., Boolos and Jeffrey 1989, Stewart 1991, Copeland 1998).
In recent years the topic took a new turn and received a remarkable boost, as
some started investigating the possibility that supertasks are physically realiz-
able, and not just theoretical fictions. For instance, Tipler (1994, Appendix G)
speculates that non-collision singularities arising from Newton’s n-body problem
(Saari and Xia 1995) could be implemented by a ballistic computer, and realize
effective infinite computations. In relativistic physics, one can conceive geome-
tries where time contraction would allow an observer to access infinitely long
geodesics in finite time (Malament-Hogarth spacetimes). Hogarth (1994), 2004)
uses these spacetimes as basis for his theory of SAD computers (for S trings of
Arithmetic Decision; ω-computers in Wischik (1997), capable likewise of infi-
nite processing sequences leading to finite results. Relativistic computation has
been thoroughly criticized by Earman and Norton (1993), but Etesi and Németi
(2002) revamp the topic, bringing it to higher levels of physical realism: they
expect hypercomputational processes to occur as a by-product of spacetime dy-
namics within a Kerr black hole – say like the one that should be found in the
centre of our galaxy.

If gravitational machines are to realize sequential supertasks, other models
foresee the realization of parallel supertasks, through the infinite dimension-
ality present in the standard formalism of quantum mechanics. For instance,
Kieu (2001, 2003) develops his approach on quantum field theory, and consid-
ers energy fluctuations of the void with creation-annihilation of particle systems

60 Paolo Cotogno

as hypercomputing operations. Sicard et al. (2003) consider hypercomputation
through a different model, based on particles in an infinite square well. Calude
and Pavlov (2002), Adamyan et al. (2003) propose instead a quantum scattering
method for solving the infinite form of the merchant problem – a classical puzzle
where n piles of m coins can contain false pieces of different weight, and only
one weighting operation is allowed for checking coins, for n,m ≥ 0.

3 Hypercomputation and decidability of arithmetic

The current discussion on hypercomputation focuses on the plausibility of the
proposed physical models, and takes for granted the fundamental principle, su-
periority of supertasks over ordinary Turing-reducible algorithms; the typical
claim is that hypercomputation would have the power of deciding formalized
arithmetic – the first and foremost instance of universal programming system.
For instance: ‘Arithmetic is decidable by the multi-string computer’ (Hogarth
1994, p. 136); likewise, ‘SAD1 can decide 1-quantifier arithmetic’ (Hogarth 2004,
p. 685). The demonstration of these claims consists just in explaining the involved
definitions: a gravitational computer SAD1 should be able to check instances of
any recursive predicate R(x, z) for any chosen z and all x ≥ 0, .
Another instance: ‘Arithmetic truth is infinite time decidable’ (Hamkins 2002,
p. 9). Again, the proof is an immediate consequence of the definitions: given any
Σ1-sentence ∃nφ(n), a suitable infinite-time machine should ‘simply try out all
the possible values of n in turn’, and test the truth of each φ(n).

The quantum approach of Kieu (2001, 2003) is instead aimed at deciding
Hilbert’s Tenth Problem, and promises to find solutions to any Diophantine
equation – an ‘equation with an arbitrary number of unknowns and with rational
integer coefficients’. Since all recursively enumerable sets can be represented in
Diophantine form, a general answer to the problem would go beyond Turing
reducibility, and amount to decide arithmetic1.

4 Peano Arithmetic and Gödel’s Theorems

We shall now see in some more detail what such claims mean from the logical
viewpoint. Let us refer to Peano Arithmetic (PA), the formal system based on
classical first-order logic and Peano’s non-logical axioms axPA, including the in-
duction schema. An extensive treatment of the metamathematics of PA can be
found in Kleene (1952), Háyek and Pudlák (1993).
Assume T is any consistent extension of PA and let x be the only free variable in
the formula φ(x). T is Σ1-sound when the denumerable succession of sentences

1 As regards the approach of Calude and Pavlov (2002), we should observe that the
’infinite merchant’ setting, unlike Diophantine equations, does not amount to a uni-
versal programming system; its decidability would not be sufficient to cover Peano
Arithmetic.

Decidability of Arithmetic Through Hypercomputation: Logical Objections 61

¬φ(0), ¬φ(1),... , ¬φ(n),... , for all n ≥ 0, and the Σ1 sentence ∃xφ(x) are not
jointly provable in T. Σ1-soundness evidently subsumes consistency; in a slightly
more general form, it was named ω-consistency in Gödel (1931).
T is complete (in the sense of Post, or syntactic) when either ⊢T ¬φ or ⊢T φ
hold in principle, for all T-sentences φ. T is decidable when there is an effective
method for establishing syntactic completeness; any T-sentence φ is decidable
in T when there is an effective method to decide whether ⊢T ¬φ or ⊢T φ.

As regards the opposite notion of undecidability, we follow Goodstein (1971),
and distinguish two different senses: (i) practical, when one just happens to be
unable to assess provability of φ, by lack of resources or skill, or by some other
unspecified reason; (ii) logical, when one does prove that φ cannot be decided,
typically – but not exclusively – by applying the diagonal method and making
a reduction to absurd.
Logical undecidability of arithmetic was first established by Gödel’s Incomplete-
ness Theorems. Gödel (1931), predating Turing’s step-by-step analysis of effec-
tive computability, introduced the formalism of recursive functions, and used it
to arithmetize the syntax of a ‘system P’, based on Russell-Whitehead’s type
theory; shortly after, he adapted the method to standard first-order systems like
PA – see Davis (1982), Sieg (2006) for careful reconstructions of Gödel’s stand
from the computation-theoretic viewpoint.
The arithmetization process culminates in the proof predicate ProvPA(x, y),
where x is the Gödel number of any PA-formula φ, and y is the Gödel number
of a formal proof φ1 ... φm, with φm = φ. We shall also need the refutation
predicate RefPA(x, y), where y is the Gödel number of a formal proof of the
negation of the PA -formula of Gödel number x.
Following Kleene, let A(x, y) = ProvPA(sub(x, �x�, x), y), a self-referencing proof
predicate, where sub arithmetizes the rule of free-variable substitution, and x
ranges on Gödel numbers of open formulae with x as free variable; B(x, y) =
RefPA(sub(x, �x�, x), y) is the dual for refutation. Then, let k = �∀y¬A(x, y)�;
so, by substituting x with k, one obtains Gödel’s sentence: G = ∀y¬A(k, y).
This Π1 formula is a negative fixed point for the proof predicate; in a way, it
formalizes the Liar paradox, as it asserts its own unprovability in PA via the
numeral k.

Proposition 1. (Gödel). If PA is Σ1-sound then G is logically undecidable in
PA.

This is the syntactic content of Theorem VI in Gödel (1931), the famous
First Incompleteness Theorem; the semantic aspects do not concern us here. An
argument per absurdum shows �PA G, if PA is consistent. Hence, no integer n
is the Gödel number of a proof of G, so one can enumerate all sentences
(*) ⊢PA ¬A(k, 0), ⊢PA ¬A(k, 1), ..., ⊢PA ¬A(k, n), ...
as theorems of PA, for each n ≥ 0. Σ1-soundness then yields �PA ∃yA(k, y), and
this shows �PA ¬G.

Proposition 2. (Gödel). If PA is consistent then �PA ConPA.

62 Paolo Cotogno

This is Theorem XI of Gödel (1931), or Second Incompleteness Theorem. As
usual, ConPA is any sentence formalizing the consistency of PA. The full proof
requires a detailed definition of the provability predicate, and is concluded by a
reduction to absurd, depending on the First Theorem.

5 Hypercomputation and the ω-rule

The arguments of decidability through supertasks are based, more or less explic-
itly, on the hypothesis that the undecidability of PA depends on the finite nature
of recursive processes; infinitary deductions would be immune to such limitation,
as full exhaustion would ensure syntactic completeness of PA. This is reasonable,
if we think of any case of practical undecidability: e.g., Pitowsky (1990, p.83)
speculates about discovering the truth about Fermat’s Last Theorem, by hav-
ing a relativistic hypercomputer test all quadruples of integers x, y, z, n ≥ 3 for
condition xn + yn = zn. We should observe, however, that nothing prevents
other methods from delivering the same result: by definition, whatever decision
strategy can be more efficient than the ‘brute-force’ search realized by infinitary
processing2. The genuine breach in Turing’s barrier, extending effective compu-
tation beyond 0’, would open only if supertasks could do something absolutely
impossible by recursive means – that is, solving logical undecidability as well as
practical cases.
In terms of formal systems theory, we may reduce this perspective to the claim
that arithmetic becomes decidable in PAω, the extension of PA where the in-
duction schema is subsumed by the ω-rule:
φ(0), φ(1),... , φ(n),... ⊢ ∀xφ(x)
This schema describes a primitive operation, which draws a universal conclu-
sion from denumerably many individual premisses, dispensing with the passage
through the induction step3; it was introduced by Hilbert, and belongs to logical
folklore also under other names – as infinite induction in Tarski (1933), as Car-
nap’s rule in Rosser (1937). If each φ(n) is an effectively provable sentence, for
any n ≥ 0, the ω-rule is called effective: assuming it is applied only a finite num-
ber of times, its non-constructive content lies just in the infinity of premisses.
Shoenfield (1959) showed that such restriction is immaterial for restoring com-
pleteness in PA, so we shall just mean ω-rule in effective sense.
PAω can generate its own Gödelian sentence Gω, and therefore is still subject

2 As history goes, Wiles succeeded in demonstrating Fermat’s Theorem by means
of the Taniyama-Shimura conjecture – a proof obtained through hard theoretical
work, at the intersection of different areas of mathematics. Aczel (1996) has a lively
account.

3 See Lopez-Escobar (1977) for an introduction. The main reason for considering for-
mal systems endowed with this rule was semantic: in Orey (1956), infinitely long
deductions are presented as counterparts of the non-constructive elements inherent
in algebraic completeness arguments.

Decidability of Arithmetic Through Hypercomputation: Logical Objections 63

to the argument of Proposition 1; however, since Gω is based on a different
proof-predicate, arithmetizing the ω-rule instead of induction, PAω seems to be
a definitely more powerful system, capable of vanquishing the undecidability of
PA. Rosser (1937, Theorem 3) took a straightforward stand, claiming that the
ω-rule can prove ConPA, notwithstanding Proposition 2, by deducing it from the
infinitely many premisses ¬RefPA(�axPA�, n), for any n ≥ 0. In a less explicit
way, Gödel had already endorsed the same idea:

(. . .) it can be shown that the undecidable propositions constructed here
become decidable whenever appropriate higher types are added (for ex-
ample, the type ω to the system P). (Gödel (1931), footnote 48)

Unlike contemporary hypercomputation theorists, he was not laying plans for
infinitary computers; he was rather illustrating his notoriously anti-mechanistic
philosophy of mind:

Either mathematics is incompletable in this sense, that its evident axioms
can never be comprised in a finite rule, that is to say, the human mind
(even within the realm of pure mathematics) infinitely surpasses the
powers of any finite machine, or else there exist absolutely unsolvable
diophantine problems (Gödel (1951), p.310)

He observed that G, since it asserts its own unprovability and is indeed
unprovable, should be a true sentence; as it seems, he could not help explaining
this semantic insight as a proper inference from the denumerable premisses (*)
to the universal conclusion ∀y ¬A(k, y)4. Tarski (1933) was somewhat more
prudent; he admitted that G is true in the same structures as the theorems
(*), yet is not a formal consequence thereof, and concluded that ‘the formalized
concept of consequence will, in extension, never coincide with the ordinary one’.

6 Undecidability through Rosser’s sentence

Now, the problem with the ‘infinite surpass’ is that it depends essentially on the
specific sentence used to establish Proposition 1: one is entitled hold that the ω-
rule proves G just because, and as long as, infinitely many premisses are at hand.
In Gödel’s proof these are a by-product of Σ1-soundness, but the assumption
is, in fact, unnecessary: Rosser (1936) proved the logical undecidability of PA
through a different sentence, requiring just consistency and the well-order of
natural numbers. A brief reminder: one should start from the open formula
∀y(A(x, y) → ∃z(z ≤ y ∧B(x, z)), of Gödel number h, where A and B are again
Kleene’s self-referential predicates. Then, replacing the free variable x with the
numeral h produces Rosser’s fixed point:

4 For this interpretation see Bringsjord and Arkoudas (2004). The original context of
Gödel’s stand was chiefly set-theoretic: for a discussion, see Feferman (1999).

64 Paolo Cotogno

R = ∀y(A(h, y) → ∃z(z ≤ y ∧B(h, z))).
This paradoxical sentence states that a proof of itself entails a shorter refutation;
the role of Σ1-soundness is played by the well-order of natural numbers, implicit
in the clause z ≤ y.

Proposition 3. (Rosser). If PA is consistent then R is logically undecidable in
PA.

For the argument’s sake, let us assume ⊢PAR; therefore, for some v > 0,
⊢PA A(h, v). Consistency then ensures provability of v non-refutation theorems:
(**) ⊢PA ¬B(h, 0), ..., ⊢PA ¬B(h, v)
These in turn yield ⊢PA ∀c(c ≤ k → ¬B(h, c)); by the hypothesis, then, we have:
⊢PA ∃b(A(h, b) ∧ ¬∃c(c ≤ b ∧ B(h, c)). Next, logical transformations yield ⊢PA

∃b¬(¬A(h, b) ∨ ∃c(c ≤ b ∧B(h, c)), and ⊢PA ¬∀b(¬A(h, b) ∨ ∃c(c ≤ b ∧B(h, c)).
The last theorem actually amounts to �PA ¬R, against the hypothesis; hence,
�PAR. An analogous argument shows �PA ¬R; for details see Kleene (1952,
Theorem 29).

The interesting fact here is the difference between the successions (*) and (**):
the ω-rule may deduce an otherwise unreachable conclusion from the former,
but has no leverage on the latter, which contains but v + 1 sentences. If one
tries to generalize on A(h, y), the conclusion is vanified by the second clause
∃z(z ≤ y ∧ B(h, z)), which is in any case bounded, and thus indifferent to the
ω-rule; the consequence is that R remains undecidable in PAω.

7 Undecidability through Yablo’s paradox

Another reason for being skeptical about the ω-rule as silver bullet for undecid-
ability stems from the paradox introduced by Yablo (1985, p. 340); the argument
consists of a denumerable succession of sentences, each asserting that its succes-
sors are all untrue, a sort of infinite-descent Liar. This was originally intended as
a semantic device, but Priest (1997, footnote 4) remarks that it may be turned
into a proof of the First Incompleteness Theorem; by the way, Gödel himself
(1931, footnote 14) had already observed that his proof could be established
through any other ‘epistemological antinomy’.
Let us sketch the argument by means of the refutation predicate RefPA, instead
of the ‘untruth’ predicate adopted in the original version:

Proposition 4. If PA is Σ1-sound then some denumerable succession of PA-
sentences is logically undecidable.

Let us stat from the infinite succession
(***) φ0, φ1, ..., φi,... ,
where each generic instance φi, for any i ≥ 0, is a ∀∃ sentence stating that all
its successors are refutable:
φi = ∀j(j > i→ ∃zRefPA(�φj�, z)

Decidability of Arithmetic Through Hypercomputation: Logical Objections 65

For the argument’s sake, let us assume ⊢PA φi for an arbitrary i ≥ 0: by Σ1-
soundness, each existential clause ∃zRefPA(�φj�, z) should be satisfied by some
integer, so we may assert ⊢PA ¬φj for all j > i. Then, let us consider the
subsequent sentence φi+1: all its successors are refutable, therefore we should
have ⊢PA φi+1, a contradiction. Vice versa, let us assume ⊢PA ¬φi: again, Σ1-
soundness yields that for some z > i we may assert ⊢PA φz, so a contradiction
obtains again for φz+1, by repeating the first part of the argument.

It is interesting to note that no sentence in (***) does ever refer to itself,
unlike the fixed points G and R; as Hardy (1995) points out, Yablo’s paradoxical
engine is powered by the infinity inherent in Σ1-soundness, rather than by self-
reference.

Proposition 5. PAω is consistent if and only if it is Σ1-sound.

Given a denumerable collection of premisses ¬φ(0), ¬φ(1),... , ¬φ(n),..., for
all n ≥ 0, the ω-rule yields ⊢PAω ∀x¬φ(x). Then let us assume, for the argu-
ment’s sake, that PAω is not Σ1-sound: so, the same premisses would yield ⊢PAω

∃x φ(x), and this is prevented by the consistency of PAω. The other direction is
immediate.

This yields that Proposition 4 extends to PAω, on the assumption of simple
consistency: even if one could sweep the whole succession (***) in a single pass
and reach a universal conclusion like ∀φi, that would make no difference for
deciding each φi. Unsolvability of Yablo-style sentences is a built-in feature of the
whole infinite succession, and is not affected by the way one scans the elements,
be it one at the time, or in batch.

8 Conclusion

The alternative arguments for Gödel’s theorem just outlined are another way
of observing that the logical undecidability of arithmetic is essentially different
from the practical cases, and cannot be bypassed through the ω-rule. Therefore,
even admitting that gravitational or quantum hypercomputers could somehow
realize supertasks, one would still remain unable to reach a syntactic decision on
arbitrary PA-formulae, as long as the system remains classical and consistent.
Since all universal programming systems are Turing reducible to PA, the con-
clusion holds irrespective of any particular deduction or computation strategy.
Common wisdom may view undecidability as a limitation, as if it was some fault
of formal systems; that cliché is evidently derived from the early interpretation
of Gödel’s Theorems as negative, unpleasant results, as if they were but imped-
iments to Hilbert’s Programme. There is, however, a plain way (Cotogno 2006)
of taking Gödel’s proof from a more positive viewpoint: the First Incompleteness
Theorem shows that the consistency of PA implies unprovability of some fixed-
point sentence, so as unprovability of at least one formula implies consistency.
In other words, logical undecidability is consistency, is just making sure that

66 Paolo Cotogno

formalized arithmetic is free of contradiction; hence, the bound established by
Turing reducibility is no barrier to be overtaken, but just a side-effect of consis-
tency.

References

Aczel, A.D.: Fermat’s Last Theorem, Delta, New York, 1996.

Adamyan, V.A., Calude, C.S., Pavlov, B.S.: Transcending the Limits of Turing Com-
putability, arXiv:quant-ph/0304128, 2003.

Bringsjord, S., Arkoudas, K.: ‘The modal argument for hypercomputing minds’, The-
oretical Computer Science 317, 2004, 167-190.

Bringsjord, S., Zenzen, M.: ‘Toward a Formal Philosophy of Hypercomputation’, Mind
and Machines 2, 2002, 241-258.

Calude, C.S., Pavlov, B.: ‘Coins, Quantum Measurements, and Turing’s Barrier’, Quan-
tum Information Processing 1, 2002, 107-127.

Chihara, C.S.: ‘On the Possibility of Completing an Infinite Process’, The Philosophical
Review 84, 1965, 74-87.

Copeland, B.J.: ‘Super Turing-Machines’, Complexity 4, 1998, 30-2.

Cotogno, P.: ‘Hypercomputation and the Physical Church-Turing Thesis’, British Jour-
nal for the Philosophy of Science 54, 2003, 181-223.

Cotogno, P.: ’A Note on Gödel’s Theorem and the Rejection of Hilbert’s Programme’,
Gödel Centenary Symposium, Vienna 2006, forthcoming.

Davis, M.: ‘Why Gödel did not have Church’s Thesis’, Information and Control 54,
1982, 3-24.

Earman, J., Norton, J.D.: ‘Forever is a Day: Supertasks in Pitowsky and Malament-
Hogarth Spacetimes’, Philosophy of Science 60, 1993, 22-42.

Etesi, G., Németi, I.: ‘Non-Turing computations via Malament-Hogarth space-times’,
International Journal of Theoretical Physics 41, 2002, pp. 341-70.

Feferman, S.: ‘Does mathematics needs new axioms?’, American Mathematical Monthly
106, 1999, 99-111.

Gödel, K. (1931): ‘On formally undecidable propositions of Principia Mathematica and
related systems I’, in: S.G. Shanker [ed.], Gödel’s Theorem in Focus, Routledge,
London 1988, 17-47.

Gödel, K. (1951): ‘Some Basic Theorems on the Foundations of Mathematics and their
Implications’, in S. Feferman et al. [eds.] Collected Works III, Oxford University
Press, Oxford 1995, 304-323.

Goodstein, R.: The Development of Mathematical Logic, Logos Press, Glasgow 1971.

Hardy, J.: ‘Is Yablo’s paradox Liar-like?’, Analysis 55, 1995 197-198.

Háyek, P., Pudlák, P.: Metamathematics of First-Order Arithmetic, Springer Verlag,
Berlin 1993.

Hogarth, M.: ‘Non-Turing Computers and Non-Turing Computability’, PSA 1994, Phi-
losophy of Science Association, East Lansing, 1994, 126-138.

Hogarth, M.: ‘Deciding Arithmetic Using SAD Computers’, British Journal for the
Philosophy of Science 55, 2004, 681-691.

Kieu, T.D.: Quantum Algorithm for the Hilbert’s Tenth Problem, arXiv:quant-
ph/0110136, 2001.

Kieu, T.D.: ‘Computing the Noncomputable’, Contemporary Physics 44, 2003, 51-71.

Decidability of Arithmetic Through Hypercomputation: Logical Objections 67

Kleene, S.C. (1952): Introduction to Metamathematics, North-Holland, Amsterdam
19747.

Lopez-Escobar, E.G.K.: ‘Infinite rules in finite systems’, in: A.I. Arruda, N.C.A. Da
Costa, R. Chuaqui [eds.], Non-classical Logics, Model Theory and Computability,
North-Holland, Amsterdam, 75-97.

Orey, S.: ‘On ω-consistency and related properties’, Journal of Symbolic Logic 21, 1956,
246-252.

Pitowsky, I.: ‘The Physical Church’s Thesis and Physical Computational Complexity’,
Iyyun 39, 1990, 81-99.

Priest, G.: ‘Yablo’s Paradox’, Analysis 57, 1997, 236-242.
Rosser, J.B.: ‘Extensions of some theorems of Gödel and Church’, Journal of Symbolic

Logic 1, 1936, 87-91.
Rosser, B.: ‘Gödel Theorems for Non-constructive Logics’, Journal of Symbolic Logic

2, 1937, 129-137.
Saari, D.G., Xia, Z.J. [1995]: ‘Off to Infinity in Finite Time’, Notices of the American

Mathematical Society 42, 538-546.
Shoenfield, J.R.: ‘On a Restricted ω-Rule’, Bulletin de L’Academie Polonaise de Sci-

ences 7, 1959, 405-407.
Sicard, A., Vélez, M, Ospina, J.: Computing a Turing-Incomputable Problem from

Quantum Computing, arXiv:quant-ph/0309198, 2003.
Sieg, W.: ‘Gödel on computability’, Philosophia Mathematica, 2006, forthcoming.
Stewart, I.: ‘The Dynamics of Impossible Devices’, Nonlinear Science Today 1, 1991,

pp. 8-9.
Tarski, A. (1933): ‘Some Observations on the Concept of ω-Consistency and ω-

Completeness’, in: Logics, Semantics, Metamathematics, Clarendon Press, Oxford
1956, 279-295.

Tipler, F.: The Physics of Immortality, Doubleday, New York, 1994.
Wischik, L.: A Formalization of Non-Finite Computation, dissertation, University of

Cambridge, 1997.
Yablo, S.: ‘Truth and Reflection’, Journal of Philosophical Logic 14, 1985, 297-349.

On Generalising Predicate Abstraction

Birgit Elbl

Institut für Theoretische Informatik und Mathematik, Fakultät für Informatik,
UniBw München, 85577 Neubiberg, Germany; Birgit.Elbl@unibw.de

Abstract. Starting from a simple term system, in which pure Prolog can
be naturally embedded, the mechanism for building predicate terms is
generalised. The resulting system has two forms of predicate abstraction
which differ in semantics and are different from functional abstraction. It
is more expressive than the original system, hence more expressive than
pure Prolog. This is exemplified by defining some meta-logical predicates.

Keywords: predicate abstraction, term calculi, expressiveness, denota-
tional semantics, logic programming

1 Introduction

Logic programs can be used to compute arithmetical functions. With respect to
this task, even pure Prolog is complete: for every partial recursive function there
is a pure Prolog program to compute it. Numbers, however, are not the standard
data structure in logic programs. Predicates take terms as arguments and in case
of a successful evaluation substitutions for their variables are returned. Terms,
also terms with variables, are used to represent data. Typical programming tech-
niques use open lists or open trees. To manipulate these terms, predicates which
refer to the structure of terms are useful. One basic ingredient is, for example,
the test whether a term is a variable using a predicate var. This predicate can
not be explained by reference to the usual Herbrand models: var(t) fails for all
ground terms but it can not be interpreted as the empty set, as var(x) suc-
ceeds. In a full Prolog system, a predicate for this test and similar operations
are usually available as further built-ins. They can also be implemented using
cut,assert,retract. Here we consider a completely different way to strengthen pure
Prolog.

A pure logic program can be considered as a set of recursive predicate def-
initions, w.r.t. which a goal expression is evaluated. Similar to the theory of
functional programs, we can use term systems as abstract modelling languages
for them. The natural choice for a term system for pure Prolog would contain
propositional constants, equality, connectives and quantifiers, recursion, and a
form of predicate abstraction which corresponds to a definition p(x̄) ⇔ Def
where Def is a formula with variables in x̄. We consider a predicational language
with a restricted abstraction like this and call it PL-(abs)-r. It is straightforward
how to embed pure Prolog (i.e. without negation) in that system. As for the
denotational semantics, there are several ways to define the meaning for predi-
cate abstraction. We consider two variants. Although, for that small system, it

On Generalising Predicate Abstraction 69

makes no difference which one we choose, we discuss both versions and introduce
syntactic counterparts for them in a system PL-(2 abs)-r. It turns out that for
one of them there is a natural way to generalise predicate formation to a version
where some variables are not subject to the abstraction involved. The resulting
system is called PL-(2 abs).

In the sequel we investigate the effect of varying the form of predicate ab-
straction and the system PL-(2 abs). First we show that in this system, the two
versions of predicate abstractions are no longer equivalent. Furthermore, none of
them is functional abstraction. In particular, β-reduction would not be a sound
conversion for them. In the restricted systems the situation is different: both
versions of abstraction are semantically equivalent. In PL-(2 abs), some meta-
logical predicates can be defined, in contrast to the restricted systems. Hence
the generalisation of predicate abstraction leads indeed to more expressiveness.

2 Syntax and Semantics of PL-(2 abs)

The syntactic components of PL-(2 abs) are constructor terms, formulas, and
predicate terms of arity n, for which we use type ι, o and πn respectively. We
presuppose fixed sets lpv of (logic programming) variables, consn of n-ary
function or constructor symbols, and predn of n-ary predicate symbols (or vari-
ables). The constructor terms are built from variables and constructor symbols
as usual. We assume |cons0| ≥ 2. Formulas are built from atomic formulas using
propositional connectives and the quantifier E as usual. In the sequel we use the
propositional constants 1,F, 0 and the binary connectives ⊗, ∗. The goal F fails,
evaluation of 1 is successful, yielding a single answer ‘yes’, and 0 does not termi-
nate error-free. The symbols ⊗, ∗,E for conjunction, disjunction and quantifica-
tion are chosen as in [4] where the logical background is discussed. The standard
notation for classical logic is avoided, as the connectives differ significantly from
the classical ones. In particular, the classical weakening and contraction rules are
unsound for ⊗ and ∗, and these connectives are not commutative. Two different
operations to build predicate terms explicitly are considered.

Definition 1. The terms of the system PL-(2 abs) are defined inductively by:

– 1,F, 0 and t = s where t, s are constructor terms are formulas,
– p(t̄) is a formula if p is an n-ary predicate term and t̄ = t1, . . . , tn are

constructor terms,
– G1⊗G2, G1 ∗G2, and ExG, where x is a variable, are formulas if G1, G2 : o,
– predicate variables are predicate terms,
– (x̄.G) : πn if G : o and x̄ = x1, . . . , xn are pairwise distinct lp-variables,
– (x̄ | G) : πn if G : o and x̄ = x1, . . . , xn are pairwise distinct lp-variables so

that lpv(G) ⊆ {x̄},
– (rec p̄.(P̄))i is an ni-ary predicate term if P̄ = P1, . . . , Pm are predicate

terms of arity n̄ = n1, . . . , nm respectively, p̄ = p1, . . . , pn are predicate vari-
ables of arity n̄ = n1, . . . , nm respectively, and i ∈ {1, . . . ,m}

70 Birgit Elbl

Here and in the sequel lpv(·) is used to refer to the set of free lp-variables.
The quantification Ex, (x̄.), and (x̄ |) bind the mentioned variable(s). Terms
that are equal up to bound renaming are identified. The rec-construction cor-
responds to a combination of tupling, abstraction of predicate variables, fixed
point operator, and projection. Goals are formulas that contain no free predicate
names. Note that application of (x̄.) — in contrast to (x̄ |) — is not subject
to a condition on the occurrence of free lp-variables. In the restricted system
PL-(2 abs)-r we change this. Furthermore we consider also a version with only
one form of abstraction.

Definition 2. The terms of the system PL-(2 abs)-r are those terms of PL-
(2 abs) where lpv(G) ⊆ {x̄} holds for every subterm of the form (x̄.G). The
terms of the system PL-(abs)-r are those terms of PL-(2 abs)-r which contain
no subterm of the form (x̄ | G). The systems PL-(2 abs)-(let), PL-(2 abs)-r-(let),
and PL-(abs)-r-(let) are obtained from PL-(2 abs), PL-(2 abs)-r, and PL-(abs)-r
respectively by the following additional rule:

If G is a formula, x̄ = x1, . . . , xn are pairwise distinct lp-variables and
t̄ = t1, . . . , tn are constructor terms, then let x̄ = t̄ inG is a formula.

In let x̄ = t̄ inG, the occurrences of x̄ in G are bound but let has no effect
on the variables in t̄. In particular, we can apply bound renaming to ensure x̄
not in t̄. The term let x̄ = t̄ inG is semantically equivalent to G{t̄/x̄}. As a
consequence, every term is equivalent to a let-free term. It would be justified to
write (λx̄.G)(t̄) (or (λx̄.G)t̄ if no xi occurs in t̄) instead of let x̄ = t̄ inG. Hence
the comparison of (x̄.G)(t̄), (x̄ | G)(t̄) and let x̄ = t̄ inG can serve to compare
the predicate abstractions with functional abstraction. However, λ-abstraction
is not introduced as a means to build predicate terms.

The language Lp in [5] is obtained from PL-(abs)-r by the restriction that
(rec)i and (x̄.) are used in the combination (rec p̄.((x̄(1).G1), . . . , (x̄

(m).Gm)))i
only. In Lp the expression (x̄.G) is strictly speaking no term but it could be intro-
duced as a shorthand for a (rec)-expression which does not bind any predicate
variable. The embedding of pure Prolog programs with goals in Lp now yields
an embedding in PL-(abs)-r: assume that the program P has already been trans-
formed according to Clark’s completion [2] into a set of m predicate definitions
pi(x̄

(i)) ⇐ Defi where we use ⊗, ∗,E as conjunction, disjunction, and existential
quantification. Then Defi contains only lp-variables in x̄(i) free, and it is a dis-
junction of formulas of the form Eū(x̄(i) = t̄⊗A1 ⊗ . . .⊗Ak) where the Aν are
atoms with a predicate symbol in p̄ := p1, . . . , pm and all lp-variables in t̄ or
Aν are bound by the quantifier. As a consequence, Defi is a term in PL-(abs)-r
satisfying lpv(Defi) ⊆ {x̄(i)}. So Pi :≡ (rec p̄.((x̄(1).Def1), . . . , (x̄

(m).Defm)))i,
i = 1, . . . ,m, are predicate terms in PL-(abs)-r. The formula in PL-(abs)-r that
corresponds to program P with goal ?− pi1(s̄

(1)), . . . , pik(s̄(k)) is Pi1(s̄
(1))⊗ . . .⊗

Pik(s̄(k)). This embedding could easily extended to include programs with nega-
tion, if a “not”-operator is added to PL-(abs)-r. As we consider pure Prolog,
however, this “not”-operator would also correspond to Prolog’s negation “fail-
if”, where non-ground goals are not delayed.

On Generalising Predicate Abstraction 71

As for the semantics, we extend the denotational semantics based on stream
functions which has been used for Lp to PL-(2 abs). For similar fixed point
semantics for Prolog see [6, 3, 1]. The denotational semantics of Lp has been
presented in [5] and builds on notions already introduced in [4]. There they
serve to define a standard model which is used in the proof of the completeness
of pure Prolog’s evaluation w.r.t. a declarative semantics, namely biquantale
semantics. So here we just recapitulate the main ingredients briefly, and refer
for details and more discussion to [5, 4].

Finite substitutions and answers: A finite set {t1/x1, . . . , tn/xn} of bind-
ings, where x1, . . . , xn are distinct variables and t1, . . . , tn are terms, is called
finite substitution. Similar to [3], this notion of finite substitution takes into ac-
count the domain: substitutions may contain identical bindings x/x, and θ is
usually different from θ∪{x/x}. The set of finite substitutions is denoted by fs.
The domain of a finite substitution and the set of variables in its range are given
by dom({t̄/x̄}) = {x̄} and rg({t̄/x̄}) = lpv(t1)∪ . . .∪ lpv(tn), fsd := {θ ∈ fs |
dom(θ) = d}. A finite substitution δ = {ȳ/x̄} where ȳ = y1, . . . , yn are pairwise
distinct variables is called finite renaming. For finite renamings δ = {ȳ/x̄} we
let δ−1 := {x̄/ȳ}. Furthermore id{x̄} stands for {x̄/x̄}. If dom(θ) ∩ dom(σ) = ∅
and also rg(θ)∩rg(σ) = ∅, we call θ and σ disjoint and use the notation θ ∪· σ
for θ ∪ σ. We use the following notations for operations on fs:

θ ↓ d := {t/x | (t/x) ∈ θ and x ∈ d} (d ⊆ lpv)
D(θ) :=

⋂{d ⊆ dom(θ) | (θ ↓ d) ∪· δ = θ for some finite renaming δ}
θ − x := θ ↓ (dom(θ) \ {x}) for variables x
θ · σ := {tσ/x | (t/x) ∈ θ}
θ ◦ σ = (θ · σ) ∪ (σ ↓ (dom(σ) \ dom(θ)))

Finite substitutions that describe the “same” result when considered as output of
the evaluation should be identified in the semantics. To this end, the relation ∼ is
introduced. Consider for example a goal with variables x, y and the substitutions
θ1 = {x/x, f(x)/y}, θ2 = {u/x, f(u)/y}. The auxiliary variables in the terms are
different but θ1, θ2 describe the same result. In contrast to this, the substitution
θ3 = {f(u)/y} describes no restriction for x. Hence it is not equivalent to θ1, θ2,
but it is equivalent to θ4 = {f(u)/y, v/x} where there is also no restriction for the
variable x, x ∈ dom(θ4) \D(θ), which is just renamed. Finite substitutions θ, σ
are equivalent, θ ∼ σ, if and only if there is a finite renaming δ with dom(δ) =
rg(θ ↓ D(θ)) so that σ ↓ D(σ) = (θ ↓ D(θ)) · δ. Equivalence classes θ∼ w.r.t.
∼ are called answers, as denotes the set of answers and asd := {θ∼ | θ ∈
fs and dom(θ) = d}. For every θ ∈ fs, α ∈ asrg(θ), d ⊆ lpv, let θ · α := θ · σ∼

for some σ ∈ α that satisfies dom(σ) = rg(θ), and α ↓ d := σ ↓ d∼ for some
σ ∈ α. (Note that θ · α and α ↓ d are independent of the choice of σ.)

Streams: The set of streams over a set M consists of the infinite sequences
(mi)i∈ω, the finite total streams [m1, . . . ,mn], and the finite partial streams
[m1, . . . ,mn,⊥] of elements mi ∈ M . Stream concatenation is denoted by ∗.
Operations on answers are extended to operations on streams of answers in
the straightforward way. Let F : M −→ Stream(M ′) for some sets M,M ′. For
S ∈ Stream(M) we define ∗m∈S F (m) by

72 Birgit Elbl

∗m∈S F (m) :=

⎧
⎨
⎩

F (m1) ∗ . . . ∗ F (mn) if S = [m1, . . . ,mn]
F (m1) ∗ . . . ∗ F (mn) ∗ [⊥] if S = [m1, . . . ,mn,⊥]

supn∈ω(F (m1) ∗ . . . ∗ F (mn) ∗ [⊥]) if S = (mi)i∈ω

Functions fs −→ Stream(as): Evaluation of goals yields streams of answers.
The denotational value of a (sub-)goal contains also information concerning the
result of evaluating it when some bindings θ are already computed. So we arrive
at considering functions fs −→ Stream(as). For these functions we define F ↓ d
by (F ↓ d)(θ) := F (θ ↓ d) and D(F) :=

⋂{d ⊆ lpv | F = F ↓ d}. Obviously, for
every interpretation of a goal, there will be a finite set d, so that only bindings
for elements of d are relevant, hence D(F) will be finite.

Interpretation of types: The set of constructor terms is denoted by T, and
Pn is the set of functions f : Tn −→ Stream(as) satisfying:

1. f(t̄) ∈ Stream(aslpv(t̄)) for every (t̄) ∈ Tn

2. f(t̄δ) = δ−1 · f(t̄) for every finite renaming δ ∈ fslpv(t̄)

Predicates of arity n are interpreted as elements of Pn. The set G which is used
as the interpretation of type o is the set of functions F : fs −→ Stream(as)
where D(F) is finite and for all θ ∈ fs:

1. F (θ) ∈ Stream(asrg(θ))
2. F (θ · δ) = δ−1 · F (θ) for all renamings δ ∈ fsRg(θ)

3. F (θ ∪· δ) ↓ rg(θ) = F (θ) for all renamings δ so that δ,θ disjoint.

Furthermore G(d) := {F ∈ G | D(F) ⊆ d} for finite d ⊆ lpv. Every G(d)
with the usual ordering is a cpo. Condition 1 above reflects the fact that we get
restrictions only for variables in rg(θ). The functions F in G do not return the
same result for equivalent substitutions: if the argument is {f(x)/y}, we get a
binding for x, in case of success some {t/x}∼; if the argument is {f(u)/y}, we get
a binding for u instead — but it has to be {t/u}∼. Condition 2 is a generalisation
of this observation to arbitrary substitutions. Condition 3 and the fact that the
full set fs is the domain of functions in G are helpful in defining operations on
G. For example, we obtain a simple interpretation of E.

If A[θ] is an expression which has a value f(θ) in Stream(asrg(θ)) for all
θ ∈ fsd and f(θ · δ) = δ−1 · f(θ) holds for all θ ∈ fsd and finite renamings
δ ∈ fsrg(θ), then there is a uniquely determined element F in G(d) coinciding
with f on fsd. In this situation we use λθ : d.A[θ] for this element of G.

Unification : Let mgu(t̄; s̄) stand for the finite substitution {xθ/x | x ∈ lpv(t̄, s̄)}
where θ is the most general unifier of t̄ and s̄ as computed by Robinson’s algo-
rithm [7], and mgu(t̄; s̄) := [θ∼] if (t̄) and (s̄) are unifiable with mgu(t̄; s̄) = θ,
mgu(t̄; s̄) = [] if (t̄) and (s̄) are not unifiable. The function mt̄;s̄ is defined by
mt̄;s̄ := λθ : lpv(t̄, s̄).mgu(t̄θ; s̄θ). It is used as the interpretation of t = s.

Operations on G: Let F,G ∈ G. The functions F − x and F ∗ G are defined
by F − x := F ↓ (D(F) \ {x}) for all variables x and (F ∗G)(θ) = F (θ) ∗G(θ)
for all θ ∈ fs. These operations on G serve as interpretation of quantification E

and disjunction ∗ respectively. The definition of ⊗ on G takes two steps: Given

On Generalising Predicate Abstraction 73

F,G ∈ G, we let (F × G)(θ) := ∗σ∈Sθ
(σ · G(θ · σ)) where Sθ is a stream in

Stream(fsrg(θ)) satisfying S∼
θ = F (θ). For F,G ∈ G, the function F × G is

well-defined but not necessarily in G. As interpretation of ⊗, we use F ⊗ G :=
λθ : D(F)∪D(G).(F ×G)(θ) which is in G. These operations are continuous on
every G(d) (d ⊆ lpv finite).

Having presented those parts of the semantics in [5, 4] that will be used in
the sequel, we now turn to the semantics for PL-(2 abs)-(let). To this end, let
env denote the set of functions ϕ :

⋃
n∈N

predn −→
⋃

n∈N
Pn so that ϕ(p) ∈ Pn

for p ∈ predn. As a notation for the environment obtained from ϕ by assigning
the value ℘̄ to p̄ leaving the remaining assignments unchanged we use ϕ[p̄← ℘̄].

Definition 3. The function �·� which maps formulas to elements of env ×
fs −→ G and n-ary predicates to elements of env× fs −→ Pn is defined by:

– �F�ϕ,σ := λθ : ∅.[] �1�ϕ,σ := λθ : ∅.[∅∼]
�0�ϕ,σ := λθ : ∅.[⊥] �t = s�ϕ,σ := mtσ;sσ

– �G1 op G2�ϕ,σ := �G1�ϕ,σ op �G2�ϕ,σ for op ∈ {⊗, ∗}
�ExG�ϕ,σ := �G�ϕ,σ − x where x �∈ dom(σ) ∪ rg(σ)

– �P (t̄)�ϕ,σ = λθ : lpv(t̄σ).�P �ϕ,σ(t̄σθ)
– �p�ϕ,σ = ϕ(p) for p ∈ predn

– �(rec p̄.(P1, . . . , Pm))i�ϕ,σ := (fix (λ℘̄.(�P1�ϕ[p̄←℘̄],σ, . . . �Pm�ϕ[p̄←℘̄],σ)))i
where fix denotes the least fixed point and (·)i stands for the projection to
the ith component.

– �(x̄.G)�ϕ,σ = λt̄.�G�ϕ,σ({t̄/x̄}) where x̄ �∈ dom(σ) ∪ rg(σ)
�(x̄ | G)�ϕ,σ = λt̄.�G�ϕ,{t̄/x̄}(idlpv(t̄)) where x̄ �∈ dom(σ) ∪ rg(σ)

– �let x̄ = t̄ in G�ϕ,σ = �G�ϕ,{t̄/x̄}◦σ where x̄ �∈ dom(σ) ∪ rg(σ)

For every term M we define �M�ϕ := �M�ϕ,∅, and �M� := �M�ϕ if M con-
tains no predicate name free. Furthermore, [�G�]ϕ := �G�ϕ(idlpv(G)) and [�G�] :=
�G�(idlpv(G)) for goals G.

As the dependency on ϕ is continuous — remember that the operations
on G used here are continuous on every G(d) where d ⊆ lpv is finite — the
semantic function is well-defined. If G is a goal, then evaluation of G is the task
of determining the stream [�G�]. Its elements are the answers for G.

Example 1. G :≡ (y.y = c)(x) ∗ (y.y = d)(x) Then:
�G�({x/x})= �(y.y = c)(x)�({x/x}) ∗ �(y.y = d)(x)�({x/x})

= �(y.y = c)�(x) ∗ �(y.y = d)�(x)
= �y = c�({x/y}) ∗ �y = d�({x/y}) = [{c/x}∼, {d/x}∼]

Example 2. Let G :≡ (x | (y.y = x)(c))(u). Then:
�G�({d/u})= �(y.y = x)(c)�ϕ,{d/x}(∅) = �(y.y = x)�ϕ,{d/x}(c)

= �y = x�ϕ,{d/x}({c/y}) = my;d({c/y}) = []

Lemma 1. Let G be a formula in PL-(2 abs), θ ∈ fs, x̄ = x1, . . . , xn pairwise
distinct variables, and t̄ = t1, . . . , tn constructor terms.

74 Birgit Elbl

1. �G�ϕ,θ = �Gθ�ϕ
2. �let x̄ = t̄ in G�ϕ = �G{t̄/x̄}�ϕ
3. �(x̄.G)(t̄)�ϕ(θ) = �G�ϕ({t̄θ/x̄}) if dom(θ) ⊇ lpv(t̄)
4. �(x̄ | G)(t̄)�ϕ(θ) = �G{t̄θ/x̄}�ϕ(idlpv(t̄θ)) if dom(θ) ⊇ lpv(t̄)

Proof. The first equation can be shown by a straightforward induction on G.
The remaining equations are immediate from the definition and the first fact.

3 Predicate abstraction in PL-(2 abs)

First we show that the predicate abstractions are different from each other and
different from functional abstraction.

Lemma 2. There are constructor terms t, s and a goal G in PL-(2 abs) so that

1. �letx = t inG� �= �(x | G)(t)� �= �(x.G)(t)�
2. �letx = s inG� �= �(x.G)(s)� �= �(x | G)(s)�

Proof. Let G :≡ (y.y = x)(c), t :≡ u, s :≡ d. Then, using Lemma 1, we obtain:

�(x | G)(t)�({d/u}) = [] (see Example 2)
�letx = t inG�({d/u}) = �(y.y = u)(c)�({d/u}) = �y = u�({c/y}) = [∅∼]
�(x.G)(t)�({d/u}) = �(y.y = x)(c)�({d/x}) = �y = x�({c/y}) = [∅∼]

�(x.G)(s)�(∅) = �(y.y = x)(c)�({d/x}) = �y = x�({c/y}) = [∅∼]
�letx = s inG�(∅) = �(y.y = d)(c)�(∅) = �y = d�({c/y}) = []
�(x | G)(d)�(∅) = �(y.y = d)(c)�(∅) = �y = d�({c/y}) = []

This implies that the equation �(x̄ | G)(t̄)�ϕ
?
= �G{t̄/x̄}�ϕ does not hold, but

note that we have:
[�(x̄ | G)(t̄)�]ϕ=[�G{t̄/x̄}�]ϕ

Furthermore, Lemma 2 implies that �G�ϕ({t̄/x̄} · θ) ?
= �G{t̄/x̄}�ϕ(θ) does not

hold. However, we can infer a similar property if we replace {·/·} by a restricted
substitution.

Definition 4. Let G be a PL-(2 abs)-formula, t̄ consist of n constructor terms
and x̄ of n pairwise distinct variables. Then G[t̄/x̄] is the result of substituting
simultaneously every free occurrence of xi which is not in a predicate term by ti.

Lemma 3. Let G be a PL-(2 abs)-formula, θ ∈ fs, t̄ constructor terms and x̄
pairwise distinct variables so that lpv(G) ⊆ {x̄} and lpv(t̄) ⊆ dom(θ). Then:

�G�ϕ({t̄/x̄} · θ) = �G[t̄/x̄]�ϕ(θ)

Proof. Observe first that �P (s̄)�ϕ({t̄/x̄} ·θ) = �P �(s̄{t̄/x̄}θ) = �P (s̄{t̄/x̄})�(θ) =
�(P (s̄))[t̄/x̄]�(θ) if lpv(P (s̄)) ⊆ {x̄}. Now the claim can be proved by a straight-
forward induction on G.

Combining this with Lemma 1 we obtain:

On Generalising Predicate Abstraction 75

Corollary 1. �(x̄.G)(t̄)�ϕ(θ) = �G[t̄/x̄]�ϕ(θ) if lpv(G) ⊆ {x̄}, lpv(t̄) ⊆ dom(θ).

As a consequence we obtain [�(x̄.G)(t̄)�] = [�(Eȳ G)[t̄/x̄]�] where ȳ is a listing of
lpv(G) \ {x̄}. For every predicate abstraction, we have now shown a property
which can be turned into a simplification rule as part of an operational semantics.
Note, however, that the context in which these rules can be applied has to be
restricted in a sound system.

Our next aim is to show that some meta-logical predicates can be defined in
PL-(2 abs). To this end we consider the predicates var ∈ P1 and copy ∈ P2:

var(t) =

{
[∅∼] if t is a variable
[] otherwise

copy(t, s) = mgu(s; tδ) ↓ lpv(s)
where δ is any finite renaming so that
dom(δ) = lpv(t) and rg(δ) ∩ lpv(s) = ∅

The first predicate “var” is a test for the property “variable”. Evaluating
copy(t, s) is achieved by unifying s with a fresh variant of t and returning the
bindings for variables in s only. If s is a variable, a fresh copy of t is returned.

Lemma 4. The predicates var and copy are definable in PL-(2 abs).

Proof. Let P :≡ (x, y | (z.z = x)(y)) and Q :≡ (x | (.x = c)()⊗ (.x = d)()). For
arbitrary constructor terms t, s we have:

�P �(t, s) = �(z′.z′ = t)(s)�(idlpv(t,s)) where z′ is fresh
= �z′ = t�({s/z′})
= (mz′;t({s/z′} ∪· δ)) ↓ lpv(s) where δ is a finite renaming so that

dom(δ) = lpv(t),rg(δ) ∩ lpv(s) = ∅
= mgu(s; tδ) ↓ lpv(s) = copy(t, s)

�Q�(t) = �(.t = c)()⊗ (.t = d)()�(idlpv(t))

=

{
[∅∼] if t is unifiable with c and d
[] otherwise

}
= var(t)

4 The restricted versions

Now we study the restricted systems PL-(2 abs)-r and PL-(abs)-r.

Lemma 5. Let G be a formula in PL-(2 abs)-r with lpv(G) ⊆ {x̄} where x̄ are
n pairwise distinct variables, and let t̄ be n constructor terms.

1. If θ is a finite substitution so that lpv(t̄) ⊆ dom(θ) then

�G�ϕ({t̄/x̄} · θ) = �G{t̄/x̄}�ϕ(θ)

2. �(x̄.G)(t̄)�ϕ = �let x̄ = t̄ in G�ϕ = �(x̄ | G)(t̄)�ϕ

Proof. The first fact is a consequence of Lemma 3, as predicate terms in PL-
(2 abs)-r do not contain free lp-variables. Combining this with Lemma 1, we
obtain the second part.

76 Birgit Elbl

Theorem 1. (Equivalence of PL-(2 abs)-r and PL-(abs)-r) For every formula
or predicate term M in PL-(2 abs)-r there is a formula or predicate term M ′ in
PL-(abs)-r respectively so that lpv(M ′) = lpv(M) and �M�ϕ,θ = �M ′�ϕ,θ for
all environments ϕ and finite substitutions θ.

Proof. Using Lemma 5, we can obtain the term M ′ by replacing every occurrence
of (x̄ | G) with the corresponding (x̄.G).

As the two versions of predicate abstraction are semantically equivalent in the
restricted system, the system PL-(2 abs) can not be equivalent to PL-(2 abs)-r.
Here we use the strict notion of equivalence as stated in the last theorem for the
two restricted systems. This argument applies to every extension of PL which
satisfies �G�ϕ({t̄/x̄} · θ) = �G[t̄/x̄]�ϕ(θ) if lpv(G) ⊆ {x̄} and lpv(t̄) ⊆ dom(θ),
including an extension by a not-operator or by the var- and the copy-predicate
described above: the corresponding system with unrestricted abstraction is not
equivalent to restricted the version. However, this implies only that there is a
non-ground term without a denotationally equivalent in the restricted system.
In the last section we defined some meta-logical predicates by predicate terms
without free variables. Given the fact that these predicates are not definable in
pure Prolog, PL-(2 abs) is expected to be more expressive than PL-(2 abs)-r also
w.r.t. definability by predicate terms without free variables. In the sequel we
present a proof of this fact which makes no assumption concerning the relation
to pure Prolog.

Theorem 2. The system PL-(2 abs) is more expressive than PL-(2 abs)-r w.r.t.
definability by predicate terms without free lp-variables.

Proof. In the last section we saw that the predicates var and copy are definable in
PL-(2 abs). It remains to show that this is not the case for PL-(abs). To this end
we consider PL-(abs)-formulas of the form Eū(1)(x̄(1) = t̄(1)) ∗ . . . ∗ Eū(n)(x̄(1) =
t̄(n)) or Eū(1)(x̄(1) = t̄(1)) ∗ . . . ∗ Eū(n)(x̄(1) = t̄(n)) ∗ 0 where the lists x̄(i) consist
of pairwise distinct variables that do not occur in ū(i) and all variables in t̄(i)

are in ū(i). These formulas are called “solved”, as the corresponding stream
of answers [{t̄(1)/x̄(1)}∼, . . . , {t̄(n)/x̄(n)}∼] or [{t̄(1)/x̄(1)}∼, . . . , {t̄(n)/x̄(n)}∼,⊥]
respectively is immediate. Now we observe:

If G is a PL-(abs)-formula that contains no rec and no predicate variables,
then there is a solved PL-(abs)-formula S so that lpv(S) ⊆ lpv(G) and
�G�ϕ,θ = �S�ϕ,θ for all ϕ, θ

This can be proved by induction on G.
As a next step we consider, for every formula G, the approximating formulas,

which are obtained by applying some unfolding steps to rec-expressions and
replacing then every occurrence of the form (rec p̄.(P1, . . . , Pn))i(t̄) by 0. Using
the fact that all operations that interpret constructions for building terms are
monotone and continuous, we can show that the value �G�ϕ is the least upper
bound of the set of values �G′�ϕ of approximating formulas G′.

On Generalising Predicate Abstraction 77

Now let G be a goal in PL-(abs) so that [∅∼] ⊑ [�G�]. Then there is some
approximating formula G′ for G so that [∅∼] ⊑ [�G′�]. As G′ contains no oc-
currence of rec, there is a solved goal S satisfying �S� = �G′�, in particu-
lar [∅∼] ⊑ [�G′�] = [�S�]. As S is solved, it must be semantically equivalent
to 1, which in turn implies �1� = �S� = �G′� ⊑ �G�. As a consequence,
[∅∼] = �1�(θ) ⊑ �G�(θ) for every θ ∈ fs.

Now we assume that there is a PL-(abs)-term P without free predicate vari-
ables so that �P � = var. Then [∅∼] ⊑ [�P (x)�]. As shown above, this implies
[∅∼] ⊑ �P (x)�({c/x}) = �P �(c) = [], contradicting our assumption. A similar
argument applies to the predicate copy.

5 Conclusion

Guided by semantical considerations, we introduced a predicational term calcu-
lus with two predicate abstractions, and presented a denotational semantics. The
meaning of predicate abstractions is explained without refering to operational
details.

Compared to a term calculus which corresponds to pure Prolog, the new
system is more expressive. That strengthening is exemplified by defining some
meta-logical predicates in the full system. However, the effect of generalising
predicate abstraction is not equivalent to adding these predicates. Furthermore,
generalised predicate abstraction differs from functional abstraction.

Remarkably, the new system is not obtained by adding new built-in-predicates
or imperative elements but essentially by removing a restriction on variables in
predicate formation.

References

1. M. Baudinet. Proving termination properties of Prolog programs: A semantic
approach. Journal of Logic Programming, 14(1 and 2):1–29, October 1992.

2. K. L. Clark. Negation as failure. In J. M. H. Gallaire, editor, Logic and Databases,
pages 293–322. Plenum Press, New York, 1978.

3. S. K. Debray and P. Mishra. Denotational and operational semantics for Prolog.
Journal of Logic Programming, 5(1):61–91, March 1988.

4. B. Elbl. A declarative semantics for depth-first logic programs. Journal of Logic
Programming, 41(1):27–66, 1999.

5. B. Elbl. A non-definability result for a predicational language with the usual
control. International Journal of Foundations of Computer Science, 12(3):385–
396, 2001.

6. N. D. Jones and A. Mycroft. Stepwise development of operational and denotational
semantics for Prolog. In Proceedings of the 1984 International Symposium on Logic
Programming, pages 281 – 288. IEEE, 1984.

7. J. A. Robinson. A machine-oriented logic based on the resolution principle. Journal
of the ACM, 12(1):23–41, 1965.

Brownian Motion and Kolmogorov Complexity

Willem L. Fouché

Department of Decision Sciences,
University of South Africa, PO Box 392, 0003 Pretoria, South Africa

fouchwl@unisa.ac.za

Abstract. We give a survey of the properties of Brownian motions
which are represented by infinite binary strings which are random in
the sense of Kolmogorov-Chaitin. We describe how the sensitive dynam-
ics of such a Brownian motion depends on the recursive properties of the
real where the dynamics is considered.
2000 Mathematics Subject Classification:68Q30 03D80, 60J65

1 Introduction

The results of this paper are based on [5, 6], where it was shown that each
binary string α which is complex (random) in the sense of Kolmogorov-Chaitin
(a KC-string) can be algorithmically transformed into a “generic” Brownian
motion xα. It is generic in the sense that every probabilistic event which holds
almost surely with respect to the Wiener measure, is reflected in xα, provided
the probabilistic event has a suitably effective description. The class of generic
Brownian motions coincides with a class C of functions which were introduced
by Asarin and Prokovskiy in [1]. Each function in the latter class is a uniform
limit of a sequence (xn) of piecewise linear functions; moreover, every xn can be
encoded by a binary string sn of length n such that, for some positive constant
d, the Kolmogorov complexity of sn is at least n − d, for all large values of n.
For this reason we referred in [5, 6] to the elements of C as complex oscillations.

The complex oscillations have interesting recursion-theoretic properties. For
example, it is shown in [5] that, if x is a complex oscillsation and r is a nonzero
recursive real number in the unit interval, then x(r) will not be a real number.

In [6] we showed that, for each x ∈ C, one can compute from the values of
x at the rational numbers a unique KC-string α such that x = xα. In this way
one can identify interesting implicit structure in a generic Brownian motion.
For example, the codes of many countable homogeneous relational structures
can be computed from the values of a generic Brownian motion at the rationals
in the unit interval. Recall that a relational structure X is homogeneous if any
isomorphism f : A→ B between finite substructures of X can be extended to an
automorphism of X. The universal procedure which computes from the values of
a complex oscillation x the KC-string α such that x = xα, also yields a code of
a very interesting homogeneous structure, the so-called Rado graph [18]. Indeed,
if α is a KC-string and e1, e2, . . . is a recursive enumeration, without repetition,

Brownian Motion and Kolmogorov Complexity 79

of the 2-element subsets of ω, let Rα = (ω,Eα) be the graph defined by:

ei ∈ Eα ↔ αi = 1.

Then the graph Rα is isomorphic to Rado’s graph [4]. In this sense one could
say that a Rado graph is “enfolded” in every complex oscillation.

In this paper, we take a closer look at the reverse process, namely the un-
folding of KC-strings, not only to a generic Brownian motion as in [6], but also
to the dynamical aspects of Brownian motion, as reflected in every complex os-
cillation. Our focus will be on the structure of the so-called rapid points of a
complex oscillation. The fractal geometry of a complex oscillation will be studied
in a sequel [7] to this paper.

Call a point t ∈ (0, 1) a rapid point of a continuous function X on the unit
interval when

lim
h→0

|X(t + h)−X(t)|√
|h| log(1/|h|)

> 0.

Denote the set of rapid points of X by R(X). It was shown in [17] that Brownian
motion has almost surely a set of rapid points of Hausdorff dimension 1. When
X is one-dimensional Brownian motion, the set R(X) has an extremely inter-
esting structure. For example, Kaufmann [11] showed that, almost surely, R(X)
contains, for each 0 < β < 1, a Salem set of Hausdorff dimension β. (Recall that
a compact subset E of Rd of Hausdorff dimension β > 0 is said to be a Salem
set, if β is the supremum of the reals 0 ≤ α < d for which there is some positive
nonzero Radon measure μ with support contained in E, such that the Fourier
transform μ̂ of μ satisfies |μ̂(ξ)|2 ≪ |ξ|−α, for all large values of |ξ|. In this case,
E will generate Rd as an abelian group!)

The rapid points of a complex oscillation have a specific recursive structure.
If x is a complex oscillation, then x has a dense set of rapid points. If x is
the complex oscillation xα associated with the KC-string α, a dense set of rapid
points can be effectively retrieved from α. Indeed, there is a universal algorithmic
procedure which, upon having access to an oracle for a KC-string α, will yield,
for any closed dyadic interval I, a sequence (tk) of rational numbers in I such
that |tk+1 − tk| < 2−k for all k ≥ 1 and ,moreover, such that the limit t of the
sequence (tk) is a rapid point of the complex oscillation xα associated with α.
Furthermore, each rapid point of a complex oscillation is not a recursive real
number. In fact, if t ∈ (0, 1) is a recursive real number, then t is an “ordinary”
point of x. This means that Khintchine’s law of the iterated logarithm [14] is
reflected in x at every recursive t, i.e., if t is recursive, then

lim
h→0

|x(t + h)− x(t)|√
2|h| log log(1/|h|)

= 1.

In developing the analytical arguments which underly the proof of this result,
the author benefited greatly from reading the papers [13, 12] of Kahane. The
details of the proof will appear in [7].

80 Willem L. Fouché

2 Generic Brownian motions

The set of non-negative integers is denoted by ω and we write N for the product
space {0, 1}ω. The set of words over the alphabet {0, 1} is denoted by {0, 1}∗.
If a ∈ {0, 1}∗, we write |a| for the length of a. If α = α0α1 . . . is in N , we write
α(n) for the word

∏
j<n αj . We use the usual recursion-theoretic terminology Σ0

r

and Π0
r for the arithmetical subsets of ωk ×N l, k, l ≥ 0. (See, for example [10]

for the recursion-theoretic background.) We follow [10] by referring to a Σ0
1 set

of reals as a semi-recursive set instead of a recursively enumerable set. We write
λ for the Lebesgue probability measure on N . For a binary word s of length
n, say, we write [s] for the “interval” {α ∈ N : α(n) = s}. A sequence (an)
of real numbers converges effectively to 0 as n → ∞ if for some total recursive
f : ω → ω, it is the case that |an| ≤ (m + 1)−1 when n ≥ f(m). A subset A
of N is of constructive measure 0, if there is a total recursive φ : ω2 → {0, 1}∗
such that A ⊂ ∩n ∪m [φ(n,m)], where λ(∪m[φ(n,m)]) converges effectively to 0
as n→∞.

For any binary word a we denote its Kolmogorov complexity by K(a). One
can think of K(a) as the shortest self-delimiting program for a universal Turing
machine U which will output a from an empty input. We assume that U accepts
self-delimiting programs only. It is well-known that if K1,K2 corresponds to
universal Turing machines U1, U2, then K1(a) = K2(a)+O(1) for all a. (See, for
example, [21] for a discussion.) In the sequel, we shall regard our choice of K as
fixed. An infinite binary string α is Kolmogorov-Chaitin complex if

∃d∀n K(α(n)) ≥ n− d.

In the sequel, we shall denote this set by KC and refer to its elements as KC-
strings.

A Brownian motion on the unit interval is a real-valued function (ω, t) �→
Xω(t) on Ω × [0, 1], where Ω is the underlying space of some probability space,
such that Xω(0) = 0 a.s. and for t1 < . . . < tn in the unit interval, the
random variables Xω(t1), Xω(t2) − Xω(t1), · · · , Xω(tn) − Xω(tn−1) are statis-
tically independent and normally distributed with means all 0 and variances
t1, t2− t1, · · · , tn− tn−1, respectively. We say in this case that the Brownian mo-
tion is parametrised by Ω. Alternatively, the map X defines a Brownian motion
iff for t1 < . . . < tn in the unit interval, the random vector (Xω(t1), · · · , Xω(tn))
is Gaussian with correlation matrix (min(ti, tj) : 1 ≤ i, j ≤ n).

It is a fundamental fact that any Brownian motion has a “continuous ver-
sion”. This means the following: Write Σ for the σ-algebra of Borel sets of C[0, 1]
where the latter is topologised by the uniform norm topology. There is a prob-
ability measure W on Σ such that for 0 ≤ t1 < . . . < tn ≤ 1 and for a Borel
subset B of Rn, we have

P ({ω ∈ Ω : (Xω(t1), · · · , Xω(tn)) ∈ B}) = W (A),

where
A = {x ∈ C[0, 1] : (x(t1), · · · , x(tn)) ∈ B}).

Brownian Motion and Kolmogorov Complexity 81

(See, for example, pp46-50 of [9] or [8].) The measure W is known as the Wiener
measure. We shall usually write X(t) instead of Xω(t).

We give a brief survey of the results from [1], [5] and [6]. The key idea in
these papers is that of a so-called complex oscillation, which is a limit of a
sequence of finitary random walks of growing Kolmogorov complexity, which
is in a definite sense also a generic Brownian motion. We first introduce some
notation. For n ≥ 1, we write Cn for the class of continuous functions on the
unit interval that vanish at 0 and are linear with slopes ±√n on the intervals
[(i − 1)/n, i/n] , i = 1, · · · , n. With every x ∈ Cn, one can associate a binary
string of length n by setting ai = 1 or ai = 0 according to whether x increases
or decreases on the interval [(i − 1)/n, i/n]. We call the sequence a1 · · · an the
code of x and denote it by c(x). The following notion was introduced by Asarin
and Prokovskiy in [1].

Definition 1. A sequence (xn) in C[0, 1] is complex if xn ∈ Cn for each n and
there is a constant d > 0 such that K(c(xn)) ≥ n − d for all n. A function
x ∈ C[0, 1] is a complex oscillation if there is a complex sequence (xn) such that
‖x− xn‖ converges effectively to 0 as n→∞.

The class of complex oscillations is denoted by C. It was shown by Asarin
and Prokovskiy [1] that the class C has Wiener measure 1.

For the results in this paper, we shall require a recursive characterisation of
the almost sure events, with respect to Wiener measure, which are reflected in
each complex oscillation. In order to describe this characterisation, we use, as
in [5], an analogue of a Π0

2 subset of C[0, 1] which is of constructive measure
0. We introduce some notation. If F is a subset of C[0, 1], we denote by F
the topological closure of F in C[0, 1]. For ǫ > 0, we let Oǫ(F) be the set
{f ∈ C[0, 1] : ∃g∈F ‖f − g‖ < ǫ}. For convenience sake, we write F 0 for the
complement of F and F 1 for F .

Definition 2. A sequence F0 = (Fi : i < ω) in Σ is an effective generating
sequence if

1. for F ∈ F0, for ǫ > 0 and δ ∈ {0, 1}, we have, for G = Oǫ(F
δ) or for

G = F δ, that W (G) = W (G),
2. there is an effective procedure that yields, for each sequence 0 ≤ i1 < . . . <

in < ω and k < ω a binary rational number βk such that

|W (Fi1 ∩ . . . ∩ Fin)− βk| < 2−k,

3. for n, i < ω, a strictly positive rational number ǫ and for x ∈ Cn, both the
relations x ∈ Oǫ(Fi) and x ∈ Oǫ(F

0
i) are recursive in x, ǫ, i and n.

If F0 = (Fi : i < ω) is an effective generating sequence and F is the algebra
generated by F0, then there is an enumeration (Ti : i < ω) of the elements of F
(with possible repetition) in such a way, for a given i, one can effectively describe
Ti as a finite union of sets of the form

F = F δ1
i1
∩ . . . ∩ F δn

in

82 Willem L. Fouché

where 0 ≤ i1 < . . . < in and δi ∈ {0, 1} for each i ≤ n. We call any such
sequence (Ti : i < ω) a recursive enumeration of F . We say in this case that F
is effectively generated by F0 and refer to F as an effectively generated algebra
of sets. A sequence (An) of sets in F is said to be F-semi-recursive if it is
of the form (Tφ(n)) for some total recursive function φ : ω → ω and some
effective enumeration (Ti) of F . (Note that the sequence (Ac

n), where Ac
n is the

complement of An, is also an F-semirecursive sequence.) In this case, we call
the union ∪nAn a Σ0

1(F) set. A set is a Π0
1 (F) set if it is the complement of

a Σ0
1(F) set. It is of the form ∩nAn for some F-semirecursive sequence (An).

A sequence (Bn) in F is a uniform sequence of Σ0
1(F) sets if, for some total

recursive function φ : ω2 → ω and some effective enumeration (Ti) of F , each
Bn is of the form

Bn =
⋃

m

Tφ(n,m).

In this case, we call the intersection ∩nBn a Π0
2 (F) set. If, moreover, the W -

measure of Bn converges effectively to 0 as n→∞, we say that the set given by
∩nBn is a Π0

2 (F) set of constructive measure 0.
The following theorem explains in what sense a complex oscillation is a

generic Brownian motion. The proof of this theorem appears in [5].

Theorem 1. Let F be an effectively generated algebra of sets. If x is a com-
plex oscillation, then x is in the complement of every Π0

2 (F) set of constructive
measure 0.

The following theorem of [5] is a very useful practical tool for reflecting almost
sure properties of Brownian motion in every complex oscillation. This result is
repeatedly used in [6, 7].

Theorem 2. If B is a Σ0
1(F) set and W (B) = 1, then C, the set of complex

oscillations, is contained in B.

It follows that if a Π0
1 (F) set A contains at least one complex oscillation, then

W (A) > 0. For otherwise, the complement of A is a Σ0
1(F) set of measure 1

which fails to contain all the complex oscillations. An analogue for KC-strings
of Theorem 2 appears in [4]. The following is an effective version of the Borel-
Cantelli lemma restricted to Wiener processes.

Theorem 3. If (Ak) is a uniform sequence of Σ0
1(F) sets with

∑
k W (Ak) <∞,

then, for each complex oscillation x, it is the case that x �∈ Ak for all large values
of k.

An analogue for KC-strings of this theorem appears in [19].

3 Rapid points of generic Brownian motion

The proofs of the theorems in this section will appear in a forthcoming paper
[7]. Let x be a continuous function on the unit interval. We call t ∈ (0, 1) an

Brownian Motion and Kolmogorov Complexity 83

ordinary point of x when

lim
h→0

|x(t + h)− x(t)|√
2|h| log log(1/|h|)

= 1.

We call t ∈ (0, 1) a rapid point of x if

lim
h→0

|x(t + h)− x(t)|√
|h| log(1/|h|)

> 0.

Theorem 4. If x is a complex oscillation, then the set of rapid points of x is
dense in the unit interval. Each recursive real in the unit interval is an ordinary
point of x. Consequently, the rapid points of x are all non-recursive real numbers.

We now discuss an effective version of Theorem 4. We first recall a few results
from [6]. Let g : (0, 1) → R be the function defined by

α =

∫ g(α)

−∞

e−t2/2

√
2π

dt, α ∈ (0, 1).

Note that g is a recursive function, i.e., there is a uniform procedure that outputs
g(α) up to arbitrary accuracy using only a finite number of bits of α. We fix a
recursive bijection <,> from ω2 to ω. To any α ∈ N , we associate a sequence B =
(β0, β1, βjn : j ≥ 1, 0 ≤ n < 2j), where the sequence (βjn) is lexicographically
ordered with respect to the double indices jn, in such a way that the kth term
of the sequence B is given by

αk0αk1 · · · .

Here, we have written kl instead of < k, l >. For 1 ≤ j < ω, 0 ≤ n < 2j , set
ξjn = g(βjn); in addition, set ξk = g(βk), for k = 0, 1. It follows that there is a
uniform procedure that computes from α ∈ KC, for each j, n, the number ξjn
up to arbitrary accuracy. For α ∈ N and t ∈ [0, 1] set

xα(t) = ξ0Δ0(t) + ξ1Δ1(t) +
∑

j<ω

∑

n<2j

ξjnΔjn(t).

It is shown in [6] that, if α ∈ KC, then the series converges and that the function
xα is in fact a complex oscillation. Conversely, for every complex oscillation x,
there is a unique KC-string α such that x = xα.

Theorem 5. There is an oracle computation, that yields, upon having access to
an oracle for a given α ∈ KC, for every dyadic interval I contained in the unit
interval, a sequence (sk) of rationals in I which converges effectively to a rapid
point of the complex oscillation xα.

84 Willem L. Fouché

References

1. Asarin, E.A. and Prokovskiy, A.V.: Primeenenie kolmogorovskoi slozhnosti k anlizu
dinamiki upravlemykh sistem, Automatika i Telemekhanika 1 (1986), 25-33.

2. Chaitin, G.J.: On the length of programs for computing binary sequences, J. Assoc.
Comput. Mach. 13 (1966), 547-569.

3. Chaitin, G.A.: Algorithmic information theory, Cambridge University Press, 1987.
4. Fouché, W.L.: Descriptive complexity and reflective properties of combinatorial

configurations, J. Lond. Math. Soc. 54 (1996), 199-208.
5. Fouché, W.L.: Arithmetical representations of Brownian motion I, J. Symb. Logic

65 (2000), 421-442.
6. Fouché, W.L. : The descriptive complexity of Brownian motion, Advances in Math-

ematics 155 (2000), 3177-343.
7. Fouché, W.L. : Fractal geometry of Brownian motions of high Kolmogorov com-

plexity, in preparation.
8. Freedman, D.: Brownian motion and diffusion, Holden-Day, 1971.
9. Hida, T.: Brownian motion, Springer-Verlag, New York, 1980.

10. Hinman, P.G.: Recursion-theoretic hierarchies, Springer-Verlag, New York,1978.
11. Kaufman, R.: Large increments of Brownian motion, Nagoya Math. J. 56 (1974),

139-145.
12. Kahane, J.-P.: Sur l’irrégularité locale du mouvement brownien, C. r. hebd. séanc.

Acad. Sci., Paris 278 (1974), 331-333.
13. Kahane, J.-P.: Some random series of functions (second edition), Cambridge Uni-

versity Press, 1993.
14. Khinchine, A.Y.: Asymptotische Gesetze der Wahrscheinlichkeitsrechnung. Ergebn.

Math. 2, Berlin, 1933.
15. Kolmogorov, A.N.: Three approaches to the quantitative definition of randomness,

Probl. Inform. Transmission 1 (1965), 1-7.
16. Martin-Löf, P.: The definition of random sequences, Information and Control 9

(1966), 602-619.
17. Orey, S. and Taylor, S.J.: How often on a Brownian path does the law of iterated

logarithm fail?, Proc. Lond. Math. Soc 28 (1974), 174-192.
18. Rado, R.: Universal graphs and universal functions, Acta Arith. 9 (1964), 393-407.
19. Shen, A.Kh.: Connections between different algorithmic definitions of randomness,

Soviet Math. Dokl. 38 (1989), 316-319.
20. van Lambalgen, M.: Von Mises’ definition of random sequences reconsidered, J.

Symb. Logic 52 (1987), 725-755.
21. Vitányi, P. and Li, M.: An introduction to Kolmogorov complexity and its applica-

tions, Springer-Verlag, New York, 1993.
22. Vov’k, V.G.: The law of the iterated logarithm for Kolmogorov random or chaotic

sequences, Theory Probal. Appl. 32 (1987)), 413-425.

A Structure with P = NP

Christine Gaßner⋆

Institut für Mathematik und Informatik, Ernst-Moritz-Arndt-Universität,
F.-L.-Jahn-Straße 15 a, 17487 Greifswald, Germany

gassnerc@uni-greifswald.de

Abstract. Several NP-complete problems for the BSS model are known
which correspond to classical NP-complete problems. By analogy with
the BSS model one can define a Satisfiability Problem for each structure
of finite signature. Here, we supplement a structure of strings by some
new relation by means of which it is possible to decide a unary variant
of the Satisfiability Problem with respect to the uniform model of com-
putation in constant time. The corresponding Satisfiability Problem is
decidable in polynomial time such that we obtain P = NP for the new
structure. Thus, a solution of a problem posed by Bruno Poizat in his
book ”Les petits cailloux” is presented.

1 Introduction

The uniform model of computation over an arbitrary structure Σ is a generaliza-
tion of the Blum-Shub-Smale (abbreviated BSS) model over the real numbers.
The Σ-machines are the natural format for a structure Σ. We shall use the
concepts explained in [8] in more details.

In this paper we construct some structure ΣR over strings together with a
relation R by means of which the corresponding Satisfiability Problem SATΣR

is decidable with respect to the uniform model in polynomial time. The idea
to construct a new structure Σ with PΣ = NPΣ by introducing a new relation
stems from Bruno Poizat. We define a unary variant of SATΣR

and some R
such that only the elements of this problem satisfy R. The operations of ΣR

allow us to encode the tuples by single elements and to pad the single elements,
where padding means adding a fixed character many times. In this way we
obtain some NP-complete satisfiability problem defined by formulae for which
the quantifier domain is restricted to mainly small elements such that R can be
defined essentially recursively on the padded elements. The recursive definition of
R implies the decidability of SATΣR

step by step. Moreover, the polynomial time
reducibility of SATΣR

to the unary variant of SATΣR
follows from the definition

of R since we can replace the parameters in the formulae by small elements

⋆ I thank Gerald van den Boogaart, Petra Gummelt, Volkmar Liebscher, Mihai
Prunescu, Rainer Schimming, and Michael Schürmann for discussions. Moreover,
I also thank Günter Asser, Johann A. Makowsky, Kenneth Regan, and several refer-
ees for helpful hints, and I thank an anonymous referee for informing me about the
forthcoming paper [15].

86 Christine Gaßner

without changing the truth value of the formulae. The method to construct a
relation on padded elements of an NP-complete problem was introduced in [5]
in order to generate structures Σ with PΣ = NPΣ . In [5], [6], and [7] several
structures Σ over trees or strings without identity relation and with identity
relation were constructed by means of this method such that PΣ = NPΣ . The
small elements are trees of small depth or short strings. For trees, padding means
adding edges of one sort. Here, we present the proofs for the simplest structure
of this kind.

The idea to define a relation on padded strings was also used in [10] and
[15] in order to construct other structures Σ with PΣ = NPΣ . In [10] a new
relation was formed from a known classical oracleO with PO = NPO by encoding
and padding the elements of O. This construction works without knowing the
elements of the oracle. The construction allows to shorten all inputs and guesses
of the new machines working with the new relation in polynomial time such
that these machines can be simulated by classical oracle machines in polynomial
time. There, shortening also means replacing strings such that the equations
and inequalities which determine the computation paths remain true. To this
aim, for each element of the oracle, infinitely many padded versions satisfying
R are given. In [15] a structure together with a relation was recursively defined
by means of ∀∃-formulae. The result is an infinite disjoint union of copies of a
structure which is similar to the structure considered here. For the definition the
existence of enough small strings is necessary since some parts of the ∀∃-formulae
contain a characterization which has to be also satisfied by small strings. The
existence of enough small strings is guaranteed by the existence of an infinite
number of copies of each string. The possible replacements are not given.

Our main goal is to give a construction and the proofs in detail for a general
class of structures Σ with PΣ = NPΣ over strings or trees. To this aim, we char-
acterize all tuples of strings explicitly by logical terms with weighted variables,
and we show the existence of enough small strings satisfying these characteri-
zations by considering enough different small prefixes of strings. The structures
are derived from a structure of trees which are used for the arrangement of data
in computer science. The ideas of the method considered here go back to the
investigations of computation paths and small guesses by Felipe Cucker, Pascal
Koiran, M. Matamala, and Klaus Meer (see [3, 4, 11, 12]). The elements which
satisfy the relation R correspond to the paths of some infinite tree which resem-
bles the trees of the computation paths of machines which are traversed by the
inputs step by step. For more details see [8].

2 The Structure ΣR and Some Satisfiability Problems

We build ΣR as follows.

Definition 1. Let A = {a, b}∗ be the set of strings over the alphabet {a, b} where
a and b are fixed symbols and let ε denote the empty string. The concatenation
of two strings s and r is denoted by sr, and for any r ∈ A and any set S ⊆ A,
we write rS for {rs | s ∈ S}. For every s ∈ A, let |s| be the length of s. For

A Structure with P = NP 87

S ⊆ A, let S(≤k) = {r ∈ S | |r| ≤ k}, and the like. For every unary relation Rel,
let ΣRel be the structure (A; ε; adda, addb, suba, subb;Rel,=) where the functions
on strings s ∈ A are defined for the characters x ∈ {a, b} by addx(s) = sx,
subx(ε) = ε, subx(sx) = s, suba(sb) = sb, and subb(sa) = sa.

We shall explicitly construct some relation R such that we obtain the following

Theorem 1. There is some unary relation R such that PΣR
= NPΣR

holds.

To this aim let us define the Satisfiability Problem for formulae of first order
logic with respect to ΣRel.

Definition 2. Let F be the set of quantifier-free (¬,∧,∨)-formulae of first order
logic corresponding to the structures ΣRel with literals of the form Z = ε, Z1 =
Z2, Z1 �= Z2, Rel(Z), ¬Rel(Z), subx(Z1) = Z2, and addx(Z1) = Z2 where
x ∈ {a, b} and Z,Z1, Z2 stand for the variables X1, X2, . . . , Y1, Y2,

Lemma 1. There is an injective mapping of F into A(>0) which can be com-
puted step by step by translating the single characters c ∈ {∧,∨, X, s, u, b, . . .}
occurring in the formulae into strings sc ∈ A(=n0), where n0 is some positive
integer, and by translating every index i into the string ai. ⊓⊔

Definition 3. Let code be a mapping as in Lemma 1. For each formula ψ, let
codepad(ψ) = (code(ψ), ε, . . . , ε) ∈ A1+|code(ψ)|. For any positive integers l0, l1,
let Fl0,l1 be the set of all formulae ψ ∈ F for which l1 = |code(ψ)| holds and which
only contain components of X = (X1, . . . , Xl0) and Y = (Y1, . . . , Yl1) as vari-
ables. For every formula ψ containing only variables in {X1, . . . , Xl0 , Y1, . . . , Yl1},
we also write ψ(X,Y) instead of ψ.

Note that we use the vector notation in a tuple (. . . ,z, . . .) for a finite number
of components z1, . . . , zl (l > 0). We do not consider tuples of tuples of strings.
Thus (x,y) stands for (x1, . . . , xl0 , y1, . . . , yl1), and the like.

Definition 4. Let the Satisfiability Problem SATΣRel
with respect to ΣRel be

SATΣRel
= {(x, codepad(ψ)) | (∃l0, l1 ∈ IN+)(ψ ∈ Fl0,l1 & x ∈ Al0

& ΣRel |= ∃Y ψ(x,Y))} .

Clearly SATΣRel
⊆ A∞ =def

⋃∞
n=1An. In analogy with the classical Satifiability

Problem we can show that SATΣRel
is NP-complete. We also define a unary

variant of SATΣRel
by encoding tuples of strings in terms of 〈·, . . . , ·〉 and using

a special form of padding defined by (·)dbl.

Definition 5. For every string s ∈ A, let the value 〈s〉 be recursively defined
by 〈ε〉 = a, 〈ra〉 = 〈r〉a2, and 〈rb〉 = 〈r〉ba for all r ∈ A. For every integer
n > 1 and every tuple s = (s1, . . . , sn) ∈ An, let 〈s1, . . . , sn〉 be the string
〈s1〉b2 · · · 〈sn〉b2b. Moreover, we write 〈s, r〉 for 〈s1, . . . , sn, r〉. Let (·)dbl be the
function which doubles the lengths of the strings such that, for every string s ∈ A,
the value sdbl is defined by sdbl = sa|s|.

88 Christine Gaßner

Now, we are able to partially fix the wished relations Rel. Later, we define R
step by step on {〈x, code(ψ)〉dbl | (∃l0, l1 ∈ IN+)(x ∈ Al0 &ψ ∈ Fl0,l1)}.
Definition 6. Let c1 = code(X1 = X1), B = {〈x, c1〉r | x ∈ A & r ∈ A},
B1 = {〈x, c1〉dbl | x ∈ A}, and

REL = {Rel : A �→ {true, false} | (∀s ∈ B)(Rel(s) ↔ s ∈ B1)
& (∀s ∈ A)(Rel(s) → (∃r ∈ A)(s = (rb)dbl))} .

For every Rel ∈ REL, we introduce some satisfiability problem RES-SATΣRel

and the unary variant RES-SAT
(1)
ΣRel

where the quantifier domain is restricted
for each formula. Then we define some R ∈ REL on the remaining domain A\B
recursively such that RES-SAT

(1)
ΣR

is decidable by means of R in constant time.

The reduction of SATΣR
to RES-SAT

(1)
ΣR

is possible in polynomial time since
we can restrict the quantifier domains as well as the domains of parameters to
short strings without changing the truth values of formulae. The idea for the
restrictions relies on the following lemma.

Lemma 2. (1) Each (ψ ∧ subx(Z1) = Z2) ∈ F in which the variable Z does
not occur is equivalent to (ψ ∧ addx(Z2)=Z1) ∨ ∃Z(ψ ∧ addx(Z2)=Z ∧ Z1 �=
Z ∧ Z1 =Z2).

(2) For any ψ ∈ F with |code(ψ)| = l, there are conjunctions ψ1, . . . , ψv ∈ F
containing at most l variables and only literals in which suba and subb do not
occur such that ψ is equivalent to ∃Zψ1 ∨ · · · ∨ ∃Zψv.

(3) For each Rel ∈ REL and any conjunction ψ ∈ F which contains at most
l variables and in which suba and subb do not occur, there is some system of
conditions whose solutions are exactly the strings which satisfy ψ over ΣRel.
The conditions have the form Zi = ε, Zi1 �= Zi2x1 · · ·xv1

, Zj = Zix1 · · ·xv2
,

[¬]Rel(Zia
v1), and [¬]Rel(Zix1 · · ·xw1

baw2) where j ∈ J and i, i1, i2 �∈ J for
some J = {j1, . . . , jk}, v1, v2, w1 + w2 + 1 < l, and x1, x2, . . . ,∈ {a, b}. If ψ is
satisfiable over ΣRel, then ψ is also satisfied by strings in A(<2l) ∪ B. ⊓⊔
Definition 7. Let

SUB-SATΣRel
= {(x, codepad(ψ)) | (∃l0, l1 ∈ IN+)(ψ ∈ Fl0,l1

& x ∈ (A(≤m0+m̄0) ∪ B(≤max0))l0 & ΣRel |= ∃Y ψ(x,Y))} ,

RES-SATΣRel
= {(x, codepad(ψ)) | (∃l0, l1 ∈ IN+)(ψ ∈ Fl0,l1

& x ∈ Al0 & ΣRel |= (∃Y ∈ (A(≤m1+m̄1) ∪ B)l1)ψ(x,Y))}

where for each combination l0, l1 > 0 and for each x ∈ Al0 ,

m0 = m
(l0,l1)
0 = (l0 + 1)(l1 + 1)− 2, m̄0 = m̄

(l0,l1)
0 = l0(l1 + 1)− 1,

m1 = m
(l1,0)
1,x = max{|x1|, . . . , |xl0 |}+ l1, m̄1 = m̄

(l1,0)
1 = l1 − 1 ,

and max0 = max
(l0,l1)
0 = 4m0 + 5m̄0 + 4|c1|+ 15. Since we use these notations

in a fixed context, we shall omit the indices (l0, l1), (l1, 0), and x. Moreover, let

RES-SAT
(1)
ΣRel

={〈x, c〉dbl | c∈A(>0) &∃e((x, c,e)∈RES-SATΣRel
&e∈{ε}|c|)}.

A Structure with P = NP 89

Definition 8. Let Â = {〈x, code(ψ)〉dbl | (∃l0, l1 ∈ IN+)(x ∈ Al0 & ψ ∈ Fl0,l1)}
and let R be the relation in

⋂
k∈IN RELk where

REL0 = {Rel ∈ REL | (∀s ∈ A \ (Â ∪ B))(Rel(s) = false)} ,

RELk = {Rel ∈ RELk−1 | (∀l0, l1 ∈ IN+)(∀x ∈ Al0)(∀ψ ∈ Fl0,l1)
(|〈x, code(ψ)〉dbl| = k → (Rel(〈x, code(ψ)〉dbl) ↔
(∃y ∈ (A(≤m1+m̄1) ∪ B)l1)(∀Rel′ ∈ RELk−1)(ΣRel′ |= ψ(x,y))))} .

Because of B1 ⊂ Â the unary relation R satisfies (∀s ∈ A)(R(s) → s ∈ Â) and

Proposition 1. (1) For any s ∈ A there is at most one i ∈ IN such that R(sai)
holds.

(2) For any s ∈ A there is some r ∈ A such that R(s) implies s = ra|r|. ⊓⊔

Proposition 2. For all s ∈ A, R(s) is true iff s ∈ RES-SAT
(1)
ΣR

holds. ⊓⊔

3 Characterization and Replacement of the Tuples

For the reduction of SATΣR
to RES-SAT

(1)
ΣR

we need some propositions and
corollaries. These result from the possibility to restrict the domain of parameters
and the quantifier domain for the variables in each formula ψ(X,Y), to a domain
of short strings without changing the truth value of this formula. Let us prepare
some technical details. We want to consider some common prefixes of strings
of low levels which are relevant for the satisfiability of the formulae in SATΣR

.
These prefixes correspond to the valuations of the variables Zi, i �∈ J in (3)
of Lemma 2 which are prefixes of levels k of variables Zj = Zix1 · · ·xk with
j ∈ J , and so on. For this purpose, we first define the prefixes of several levels
in Definition 9. The relevant levels depend on the number and the kind of the
variables in such a formula. The relations .(M,n) defined below will give even
more information for the evaluation of formulae. They describe, for instance,
connections between strings zj = zix1 · · ·xk and zj′ = zix

′
1 · · ·x′

k′ (xv, x
′
v ∈

{a, b}) with a common prefix zi of low levels k, k′ ≤ n, respectively. For each
finite set Mz =def {z1, . . . , zl} and all non-negative integers n and m, we define
some decomposition

Mz = S
(z,n,m)
0 ∪p

(z,n,m)
1 S

(z,n,m)
1 ∪· · ·∪p

(z,n,m)

w(z,n,m)S
(z,n,m)

w(z,n,m) (∗)

by means of .(Mz,n) where p
(z,n,m)
1 , p

(z,n,m)
2 , . . . are common prefixes of low

levels of the elements of Mz such that (∗) can be used in order to describe
the strings in Mz by logical terms containing variables for these prefixes and
to evaluate equations and inequalities. We are also interested in the behaviour
of these prefixes with respect to the relation R. Therefore, we introduce basic
characters for these prefixes. For the complete characterization of the tuples y

corresponding to the free variables Y1, . . . , Yl1 in a formula ψ(X,Y), we consider
the integers l = l1, n = 0, m = m1, and m̄ = m̄1. We need (l, n,m, m̄) =

90 Christine Gaßner

(l0, l1,m0, m̄0) if we consider the parameters in x associated with the variables
X1, . . . , Xl0 .

Definition 9. For every s ∈ A and k ∈ IN, let the prefix s[k] of the level k of s
be recursively defined by r[0] = r, ε[i+1] = ε, (ra)[i+1] = r[i], and (rb)[i+1] = r[i]

for all r ∈ A and all i ∈ IN. Let M ⊂ A be finite and let n be a non-negative
integer. For any r, s ∈M , let r .(M,n) s iff r[n+1] = s or r[n] ∈ {s, s[1], . . . , s[n]}.
For any r1, r2, r3 ∈M , let r3 .(M,n) r2 and r2 .(M,n) r1 imply r3 .(M,n) r1.

Lemma 3. For each finite M ⊂ A and n ∈ IN, r2 .(M,n) r1 implies |r2| ≥ |r1|
and then there is a string s ∈ A(≤|M |(n+1)−1) such that r2 = r

[n]
1 s. ⊓⊔

Definition 10. For every set Mz = {z1, . . . , zl} ⊂ A and all n,m ≥ 0, let

the decomposition (∗) into the equivalence classes M
(z,n,m)
v = p

(z,n,m)
v S

(z,n,m)
v

be inductively defined. Let p
(z,n,m)
0 = ε and S

(z,n,m)
0 = {z | ∃z′((z′)[n] ∈

A(≤m) & z .(Mz,n) z′)}. If, for v > 0, Nv =def Mz \
⋃v−1

i=0 M
(z,n,m)
i �= ∅,

then we set iv = min{i | zi ∈ Nv & ¬(∃z ∈ Nv)(zi .(Mz,n) z & z
[n]
i �= z[n])},

p
(z,n,m)
v = z

[n]
iv

, and S
(z,n,m)
v = {r | (∃z ∈ Nv)(z .(Mz,n) ziv & z = pvr)}. In

case of Nv = ∅, we set w(z,n,m) = v − 1.

Let us state properties of these equivalence classes. Note that (1) follows also
from Lemma 3.

Proposition 3. Let the set Mz be decomposed as (∗) according to Definition

10. Then, for all 1 ≤ v ≤ w(z,n,m), 0 ≤ v1, v2 ≤ w(z,n,m), ri ∈ S
(z,n,m)
vi , and

(k1, k2) ∈ {0, . . . , n}2 ∪ {(0, n + 1)} there hold

(1) p
(z,n,m)
v ∈ A(>m), S

(z,n,m)
v ⊆ A(≤m̄), and S

(z,n,m)
0 ⊆ A(≤m+m̄),

(2) (p
(z,n,m)
v1 r1)

[k1] = (p
(z,n,m)
v2 r2)

[k2] iff (v1 = v2 and r
[k1]
1 = r

[k2]
2). ⊓⊔

For all n and m, we want to describe all elements of Mz with (∗) by log-
ical terms Pvri where P1, P2, . . . are the variables for the common prefixes

p
(z,n,m)
1 , p

(z,n,m)
2 , For the term Pvri we select the index v and the string

ri. Moreover, each Pv will be weighted by a basic character basic(v) such that

basic(v) ≥ 0 implies R(p
(z,n,m)
v abasic(v)) = true.

Definition 11. Set m′′ = (l + 1)(n + 1) − 2. Let the set Mz be decomposed as
(∗) according to Definition 10. Let then charml,n(z) = (term, basic) where, for

i ∈ {1, . . . , l} and v ∈ {0, . . . , w(z,n,m)},

term(i) =

{
(0, zi) if zi ∈ S

(z,n,m)
0

(v, r) if r ∈ S
(z,n,m)
v , zi = p

(z,n,m)
v r, and v �= 0 ,

basic(v) =

{
k if R(p

(z,n,m)
v ak) and k ≤ m′′

−1 if ¬R(p
(z,n,m)
v ak) for all k ∈ {0, . . . ,m′′} .

We also use the functions term1 and term2 with term(i) = (term1(i), term2(i))
for all i ≤ l.

A Structure with P = NP 91

Now, we introduce functions which are used in order to reduce SATΣR
to RES-

SAT
(1)
ΣR

.

Definition 12. For each z ∈ Al, let smallml,n(z) = z′ ∈ (A(≤m+m̄) ∪ B(≤max))l

with max = 4m + 5m̄ + 4|c1|+ 15 and

z′i =

{
term2(i) if term1(i) = 0

〈avbm+m̄−v, c1〉a|〈a
vbm+m̄−v,c1〉|−basic(v)term2(i) if term1(i) = v �= 0

for all i ∈ {1, . . . , l} where (term, basic) = charml,n(z).

Proposition 4. For every z ∈ Al, charml,n(smallml,n(z)) = charml,n(z) holds. ⊓⊔

4 Preparation of the Reduction of SATΣR
to RES-SAT

(1)
ΣR

Now we want to prove that in evaluating the formulae in F we need only short
strings for the free variables. A consequence is the decidability of SATΣR

. Be-
cause of (2) in Lemma 2 we have to consider only conjunctions in this proof.

Proposition 5. Let l0, l1 ∈ IN+ and x ∈ Al0 . Let ψ(X1, . . . , Xl0 , Y1, . . . , Yl1)
be a conjunction in F . For all l1-tuples y(1) and y(2) with charm1

l1,0
(y(1)) =

charm1

l1,0
(y(2)) there holds

ΣR |= ψ(x,y(1)) ↔ ψ(x,y(2)) .

Proof. Let y(1),y(2) ∈ Al1 with charm1

l1,0
(y(1)) = charm1

l1,0
(y(2)) = (term, basic).

Then, for some w, there are strings p
(1)
0 , . . . , p

(1)
w and p

(2)
0 , . . . , p

(2)
w such that

we can describe the components of y(1) and y(2) by the terms in Mterm =def

{Pterm1(1)term2(1), . . . , Pterm1(l1)term2(l1)} where Pv stands for p
(1)
v or p

(2)
v .

Property (1) in Proposition 3 means that, for v �= 0, |Pv| > m1 and, consequently,

the inequalities xj �= Pvr, x
[1]
j �= Pvr, and xj �= (Pvr)

[1] hold for all r ∈ A and
for all j ∈ {1, . . . , l0}. Because of (2) in Proposition 3, for k ∈ {0, 1} and for all
i, j ∈ {1, . . . , l1}, the equation Pterm1(i)term2(i)

[k] = Pterm1(j)term2(j) implies

that term1(i) = term1(j) and term2(i)
[k] = term2(j). Therefore, in evaluating

all equations and inequalities in ψ(x,Y) for Y ∈ {y(1),y(2)}, evaluation of the
terms in Mterm are sufficient.

Let us now assume that R(p
(1)
term1(i)

term2(i)) and ¬R(p
(2)
term1(i)

term2(i)) hold

for some i ∈ {1, . . . , l1} with term1(i) �= 0. In case of basic(term1(i)) ≥ 0,

R(s1a
basic(term1(i))) and R(s2a

basic(term1(i))) are true for the strings s1 = p
(1)
term1(i)

and s2 = p
(2)
term1(i)

. By (1) in Proposition 3 we have |term2(i)| ≤ l1−1, |s1| > l1,

and |s2| > l1. From (2) in Proposition 1 and the assumption of R(s1term2(i)) =
true it follows that a string r ∈ A exists such that s1term2(i) = ra|r| holds. If
we compare the lengths of the strings, then we get |s1| > 1

2 |s1term2(i)| = |r|.
Thus, the string r is a prefix of s1 and consequently we have term2(i) = ak for

92 Christine Gaßner

some k ≤ l1−1 with 0 ≤ k < |r|. Therefore, because of R(s1term2(i)) = true we
get basic(term1(i)) = k = |term2(i)| and term2(i) = abasic(term1(i)). But, in this

case R(s2term2(i)) is true. Hence we have R(p
(2)
term1(i)

term2(i)). This contradicts
our assumption.

Hence, the equivalence ψ(x,y(1)) ↔ ψ(x,y(2)) holds in ΣR. ⊓⊔

Since each smallm1

l1,0
is a map into (A(≤m1+m̄1) ∪ B)l1 , by the definition of RES-

SATΣR
we see that Lemma 1, Proposition 4, and Proposition 5 imply

Corollary 1. SATΣR
= RES-SATΣR

.

Therefore, the polynomial time reduction of SATΣR
to SUB-SATΣR

and of SUB-

SATΣR
⊆ RES-SATΣR

to RES-SAT
(1)
ΣR

is sufficient for SATΣR
∈ PΣR

. The first
reduction follows from the next proposition in proof of which we also use

Definition 13. For every strings r, s ∈ A, let r ⊂1 s be true iff r = s[1]. For
each tuple h = (h1, . . . , hw) ∈ Aw, let Mh be the set {h1, . . . , hw}. The set
M ⊆Mz is called a maximal chain of Mz if there is some g = (g1, . . . , gv) such
that M = Mg, gi−1 ⊂1 gi for all i ∈ {2, . . . , v}, and ¬(∃g ∈ Mz \ {ε})(g ⊂1

g1 ∨ gv ⊂1 g). For each z = (z1, . . . , zl) ∈ Al and for any z ∈ Mz, let minz (z)
be the smallest prefix r of z for which there is some maximal chain M of Mz

with r ∈M and z ∈M .

Proposition 6. Let l0, l1 ∈ IN+ and ψ(X1, . . . , Xl0 , Y1, . . . , Yl1) be a conjunc-
tion in F . For every x(1) and x(2) in Al0 with charm0

l0,l1
(x(1)) = charm0

l0,l1
(x(2)),

there holds
ΣR |= ∃Y ψ(x(1),Y) ↔ ∃Y ψ(x(2),Y) .

Proof. Let x(1),x(2) ∈ Al0 and (term, basic) = charm0

l0,l1
(x(1)) = charm0

l0,l1
(x(2)).

Consider p
(1)
0 = p

(2)
0 = ε and (p

(1)
1 , . . . , p

(1)
w) and (p

(2)
1 , . . . , p

(2)
w) in (A(>m0))w

such that x
(1)
i = p

(1)
term1(i)

term2(i) and x
(2)
i = p

(2)
term1(i)

term2(i) for all i ∈
{1, . . . , l0}. It is enough to consider the case w > 0. Moreover, we assume that
there is a tuple y(1) ∈ Al1 such that ψ(x(1),y(1)) is true in ΣR.

Let z = (z1, . . . , zl0+l1) = (x(1),y(1)). Let V be the set of all maximal chains
of Mz and, for all h with Mh ⊆Mz, let Minh be the set {minz (z) | z ∈Mh}.
Moreover, for all g ∈Minz, let Vg be the set of all sets M ∈ V containing g.

Let us make the following replacements for all g ∈ Minz. If there is an

i ≤ l0 with x
(1)
i ∈ ⋃

M∈Vg
M , then we replace all remainders p

(1)
term1(i)

in all

elements of
⋃

M∈Vg
M by p

(2)
term1(i)

. Thus, we get a new set Mz′ containing all

x
(2)
i and new strings y

(2)
j in

⋃l0
i=1 p

(2)
term1(i)

A(≤m0) derived from the elements

y
(1)
j ∈My(1) ∩

⋃
g∈Min

x
(1)

⋃
M∈Vg

M . All equations and inequalities in ψ remain

true for the new strings in Mz′ because from zi = zj there follows minz (zi) =
minz (zj) for all zi, zj ∈ Mz. If we have made all these replacements and the
elements of the chains in some Vg′ were not replaced and one of these elements

is equal to an element of Mz′ , then we replace the corresponding remainders p
(2)
v0

A Structure with P = NP 93

in all elements of
⋃

M∈Vg′
M by p

(3)
v0 = 〈av0bmax, c1〉a|〈a

v0bmax,c1〉|−basic(v0) ∈ B
where max = max{|s| | s ∈ Mz′ ∪ {z ∈ My(1) | z was not replaced}}. By taking

y
(2)
i = y

(1)
i in the remaining cases we obtain the complete tuple y(2) from y(1).

If we assume that R(x
(1)
i) and ¬R(x

(2)
i) or R(y

(1)
j) and ¬R(y

(2)
j) hold for

some i or j, then we get a contradiction analogous to the last proof.
Hence it follows that ψ(x(2),y(2)) is also true in ΣR. ⊓⊔

Now, by Lemma 1, Proposition 4, and Proposition 6 there follows

Corollary 2. Let ψ(X,Y) be a formula in Fl0,l1 . For any l0-tuple x we have

ΣR |= ∃Y ψ(x,Y) ↔ ∃Y ψ(smallm0

l0,l1
(x),Y) .

5 P = NP for the Structure ΣR

Proposition 7. (1) The problem RES-SAT
(1)
ΣR

is decidable by means of R in
constant time.

(2) Every problem in NPΣR
can be reduced to SATΣR

in polynomial time.

Proof. (1) follows from Proposition 2. The proof of (2) can be done analogous
to the proof of the NP-completeness for the classical problem SAT. ⊓⊔

Definition 14. Let f1 be the function of A∞ into A∞ defined by

f1(s) =

{
(smallm0

l0,l1
(x), c,e) if s = (x, c,e),x ∈Al0 , c ∈ A(>0), and e ∈ {ε}l1

ε otherwise .

The first part of the next proposition follows from Corollary 2.

Proposition 8. The function f1 reduces SATΣR
to SUB-SATΣR

. The function
f1 can be computed by some ΣR-machine in polynomial time. ⊓⊔

Definition 15. Let the function f2 of A∞ into A be defined by

f2(s) =

{
〈x, c〉dbl if s = (x, c,e), c ∈ A(>0), and e ∈ {ε}|c|
ε otherwise .

By the definition of RES-SAT
(1)
ΣR

and by Corollary 1 we obtain

Proposition 9. The function f2 reduces SATΣR
to RES-SAT

(1)
ΣR

. ⊓⊔
In order to show that a further polynomial time reduction of SUB-SATΣR

to

RES-SAT
(1)
ΣR

by means of f2 is possible, we use the following proposition.

Proposition 10. There is some deterministic ΣR-machine which computes the
strings 〈s1, . . . , sn〉 from (s1, . . . , sn) ∈ A∞ in a time which depends on the sum
of the lengths of the strings s1, . . . , sn linearly. ⊓⊔
This allows us to show

94 Christine Gaßner

Proposition 11. The function f2 can be computed on the domain

{(x, c,e) | (∃l0, l1∈ IN+)(x∈(A(≤m0+m̄0) ∪ B(≤max0))l0 & c∈A(>0) & e∈{ε}l1)}

by some ΣR-machine in polynomial time. ⊓⊔
We arrive at the main result which mainly follows from the proposition 5 and 6.

Theorem 2. PΣR
= NPΣR

holds.

Proof. By the propositions 8, 9, and 11, f2 ◦ f1 reduces the problem SATΣR
to

RES-SAT
(1)
ΣR

in polynomial time. Therefore, by (1) in Proposition 7 the problem
SATΣR

is decidable in polynomial time. Consequently, by (2) in Proposition 7
each problem in NPΣR

is decidable in polynomial time. ⊓⊔

References

1. Blum, L., F. Cucker, M. Shub, and S. Smale, Complexity and Real Computa-
tion. Springer-Verlag (1998).

2. Blum, L., M. Shub and S. Smale, On a theory of computation and complexity
over the real numbers: NP-completeness, recursive functions and universal ma-
chines. Bulletin of the Amer. Math. Soc., 21 (1989), 1–46.

3. Cucker, F. and M. Matamala, On digital nondeterminism. Math. Systems The-
ory 29 (1996), 635–647.

4. Cucker, F., M. Shub, and S. Smale, Separation of complexity classes in Koiran’s
weak model. Theoretical Computer Science 133 (1994), 3–14.

5. Gassner, C., Über die Konstruktion von Strukturen endlicher Signatur mit P =
NP. Preprint 1 (2004).1

6. Gassner, C., NP ⊂ DEC und P = NP für Expansionen von Erweiterungen von
Strukturen endlicher Signatur mit Identitätsrelation. Preprint 13 (2004).1

7. Gassner, C., Eine Struktur endlicher Signatur mit Identitätsrelation und mit P
= NP. Preprint 14 (2004).1

8. Gassner, C., Expansions of structures with P = NP (to appear in Computer
Science Report Series of the University of Wales Swansea).

9. Hemmerling, A., Computability and complexity over structures of finite type.
Preprint 2 (1995).1

10. Hemmerling, A., P = NP for some structures over the binary words. Journal of
Complexity 21 (2005), 557-578.

11. Koiran, P., Computing over the reals with addition and order. Theoretical Com-
puter Science 133 (1994), 35–47.

12. Meer, K., A note on a P
= NP result for a restricted class of real machines.
Journal of Complexity 8 (1992), 451–453.

13. Meer, K., Real number models under various sets of operations. Journal of Com-
plexity 9 (1993), 366–372.

14. Poizat, B., Les Petits Cailloux. Aléa (1995).
15. Prunescu, M., Structure with fast elimination of quantifiers. Journal of Symbolic

Logic 71 (2006), 321–328.

1 Preprint-Reihe Mathematik, E.-M.-Arndt-Universität Greifswald

Expansions of Structures with P = NP

Christine Gaßner⋆

Institut für Mathematik und Informatik, Ernst-Moritz-Arndt-Universität,
F.-L.-Jahn-Straße 15 a, 17487 Greifswald, Germany

gassnerc@uni-greifswald.de

Abstract. We consider an arbitrary structure of finite signature. For
an extension of this structure, an additional relation is constructed such
that a unary variant of the corresponding Satisfiablility Problem is de-
cidable by means of this relation with respect to the uniform model of
computation in constant time. This implies P = NP for the new struc-
ture.

1 Introduction

In 1989, Lenore Blum, Michael Shub, and Steve Smale (BSS) developed a uni-
form model of computation in order to instigate the complexity of the computa-
tion over structures containing the real or other numbers. By analogy with this
uniform model and similar to the model of computation over groups given in
[5] we introduce register machines over any structures of finite signature which
have the form

Σ = (A; d1, . . . , dt; f1, . . . , fu; r1, . . . , rv,=), t ≥ 2

where d1, . . . , dt ∈ A are the constants of this structure, f1, . . . , fu are operations
of the arities nf1

, . . . , nfu
, and r1, . . . , rv are relations of the arities nr1 , . . . , nrv

.
Each Σ-machine M is provided with registers Z1, Z2, . . . for elements of

A and with a fixed number of registers I1, I2, . . . , IkM for indices in IN+ =
IN \ {0}. Every input from the input space I =

⋃∞
n=1 An is processed by the

machine by means of LM instructions labelled by 1, . . . , LM. The instructions
are executed according to the order of their labels. There are branch and non-
branch instructions. The successor of a non-branch instruction labelled by l ∈
{1, . . . , LM − 1} is the instruction labelled by l + 1. The two successors of a
branch instruction are fixed by the instruction itself. The output can be a tuple.
Each instruction must be of one of the following types.

The input instruction is labelled by 1. Every input (x1, . . . , xn) ∈ I is assigned
to the registers Z1, . . . , Zn. To simplify matters, the registers Zn+1, Zn+2, . . .
obtain the constant d1 as value. The index register I1 gets the content n and
the other index registers get the content 1. Moreover, in the nondeterministic

⋆ I thank Volkmar Liebscher, Rainer Schimming, and several referees for helpful com-
ments to [7] and to this paper. Moreover, I thank Gerald van den Boogaart and
Michael Schürmann for discussions.

96 Christine Gaßner

case it is possible that the input instruction includes a guess instruction. By
means of this instruction a nonderministic machine can redefine the content of a
finite number of registers Zn+1, . . . , Zn+m by guessing the number m and some
finite sequence (y1, . . . , ym) ∈ Am and putting it into Zn+1, . . . , Zn+m before the
second instruction is executed. The computation, branch, and copy instructions
have the form

l : Zj := fk(Zj1 , . . . , Zjnfk

); l : Zj := dk;

l : Ij := Ij + 1; l : Ij := 1;
l : IF cond THEN GOTO l1 ELSE GOTO l2; l : ZIj

:= ZIk
;

where l ∈ {2, . . . , LM − 1} and cond can have the form Zj = Zk, Ij = Ik,
and rk(Zj1 , . . . , Zjnrk

), respectively. Indirect addresses are permitted only in the

copy instructions. The output instruction is labelled by LM. If this instruction
is reached, then (Z1, . . . , ZI1) is the output and the machine halts.

Whereas the nondeterministic machines can guess, the deterministic ma-
chines work without guessing. Note that by definition the class of nondetermin-
istic machines contains the deterministic machines.

A nondeterministic Σ-machine M accepts an input (x1, . . . , xn) ∈ I nonde-
terministically if there is some finite sequence (y1, . . . , ym) such that M guesses
exactly the elements y1, . . . , ym in one step and if M outputs d1 for the input
(x1, . . . , xn) and these guesses (y1, . . . , ym). A deterministic Σ-machine accepts
or rejects, respectively, an input (x1, . . . , xn) ∈ I if the machine outputs d1 or
d2, respectively, without guessing.

The execution of one instruction is one step of the computation. Each step can
be executed in one fixed time unit. A Σ-machine works in polynomially bounded
time if there is a polynomial p such that the machine produces an output for
every input (x1, . . . , xn) ∈ I within at most p(n) time units. A problem P ⊆⋃∞

n=1 An is nondeterministically recognizable in polynomial time if there is some
nondeterministic Σ-machine which works in polynomially bounded time and
accepts an input (x1, . . . , xn) ∈ I iff it belongs to P. A problem P ⊆ ⋃∞

n=1 An

is decidable [in polynomial time] if there is a deterministic Σ-machine which
accepts all inputs in I ∩P and which rejects all inputs in I \P [in polynomially
bounded time].

PΣ and NPΣ are the usual complexity classes of all problems which are de-
cidable and nondeterministically recognizable, respectively, in polynomial time.
DECΣ is the class of all decidable problems. There holds PΣ ⊆ DECΣ and PΣ ⊆
NPΣ whereas NPΣ �⊆ DECΣ is possible. Analogous to the classical model and
to the BSS model, for every structure of finite signature with two constants we
can define NP-complete satisfiability problems, several kinds of universal ma-
chines, the halting problems, and so on. For each Σ-machine M, a universal
Σ-machine can simulate one step of M for an input of M in polynomial time
if the universal machine gets a suitable code of this machine as an additional
part of its input. Sometimes the number of steps to be simulated is also given as
a unary code. Then, the corresponding universal nondeterministic machine rec-
ognizes an NP-complete problem. As in the classical case, the halting problems
are not decidable over the considered structures.

Expansions of Structures with P = NP 97

A computation path is a sequence of configurations where the kth configura-
tion describes the state of a machine after k steps. The state of a machine M is
given by the label of the instruction executed last, and the content of the reg-
isters I1, I2, . . . , IkM , Z1, Z2, To simplify matters, we sometimes identify the
computation paths with the corresponding sequences of the covered labels, the
latter are also called nodes of the path. All possible paths can be composed to a
rooted tree where the root corresponds to the input and the nodes corresponding
to the branching instructions have two successors whereas the other nodes have
at most one successor. The leaves stand for the outputs.

In [7], a method for the construction of structures of finite signature with
P = NP is presented for a simple case. This construction was found while we
searched for structures which contain the real numbers and for which P = NP is
valid with respect to the uniform model of computation (cf. also [6]). The idea
to expand a structure of real numbers (to extent the signature of this structure)
in order to obtain results for the problem ”P versus NP” goes back to a paper of
Klaus Meer [11]. He shows how the ring of real numbers can be expanded such
that P �= NP holds for the new structures. Of course, the alternative question how
one obtains P = NP by expanding the real numbers is interesting, too. One idea
is to choose an NP-complete problem UNIR recognized non-deterministically
by a universal machine and to introduce an additional relation R by means of
which this problem can be decided deterministically in polynomial time. Another
possibility is to use the corresponding Satisfiablility Problem defined by first
order formulae and parameters as NP-complete problem (see [7]). The values of
the reduction functions which reduce arbitrary problems in NP to some usual
NP-complete problem P are tuples of any arity. They play an important role in
such a construction. If all tuples can be encoded by tuples of a fixed arity or by
single elements of the universe, then, maybe, it is possible to decide which values
of a reduction function belong to P by means of a suitable relation R satisfied
by the codes of the tuples in P. For the tuples of real numbers, possibilities
of encoding in polynomial time are given in extensions like structures of trees
whose leaves are labelled by real numbers, structures of paths whose nodes are
labelled by real numbers or structures of strings over the real numbers, and so
on.

In defining R, we have to be careful as the following example shows. Let

UNI
(3)
R be the ternary problem which contains exactly the triples consisting of

the code of an input (x1, . . . , xn), the code of a nondeterministic machine M,
and the code of a number n if and only if M accepts (x1, . . . , xn) within n steps.

If we could reduce UNIR to UNI
(3)
R in polynomial time and if we could decide

UNI
(3)
R by means of the relation R in constant time, then we would have P =

NP for the corresponding classes P and NP. But, let us assume that UNI
(3)
R

is decidable by a machine M0 in polynomial time. Moreover, let us consider
the machine which accepts the code of any input (x1, . . . , xn) and the code of
any machine M by guessing the code of some number of steps n and by check-
ing whether M accepts (x1, . . . , xn) within n steps by analogy with M0. This
machine recognizes exactly the set of the pairs of the first two components of

98 Christine Gaßner

all tuples in UNI
(3)
R non-deterministically. However, this set includes the known

halting problem with respect to the considered structure. Therefore, the halting

problem would belong to NP. Thus, UNI
(3)
R ∈ P implies that NP contains unde-

cidable problems and consequently P �= NP for the considered structure. Hence,

the decision of UNI
(3)
R by means of the relation R is not possible in constant

time. The main reason could be that the guesses of non-deterministic machines
can not be replaced by small guesses. On the other side we know results as in [9]
which imply the decidability of the problems in NP for a structure over the real
numbers. There, the decidability follows from the possibility to replace the large
real numbers which could be the guesses by ”small” numerators and denomina-
tors of coefficients of linear combinations of the inputs. Therefore, we want to
define a structure which allows to replace arbitrary guesses by small guesses in
each case.

A great problem is also that the codes of machines and the formulae which
are relevant for the definition of the values of R(x) for the codes x can contain
the code of R or the symbol R. Therefore, we shall define R inductively, or
essentially inductively, for instance, on the length of strings. It is possible to
solve this problem without great difficulties if we give a relation R which can be
described by an infinite tree T (for details see [7] and Fig. 1). The paths of T
remind of the computation paths of machines which are traversed by the inputs
step by step (see [1, 3, 4, 9, 10]).

Here, the elements of the new structure are strings. The single characters
of these strings, for instance the real numbers, correspond to the labels of the
nodes of paths, and the strings which have to satisfy R correspond to the paths
of T starting with the root and ending with leaves, in reverse order. We consider
only three string operations. We permit to add one character to a string, to
read the last character of a string, and to delete the last character. Thus, we
can modify the strings only slowly, step by step by changing the last character.
Moreover, we extend the operations and the relations of the basic structure in
a trivial way such that the new structure reminds of a structure of two sorts of
elements. The strings with a length greater than 1 do not satisfy the extended
relations. Moreover, the extended functions assign the empty string to the tuples
whose components are not from the basic structure. These definitions make it
possible that there is an analogy between the large strings satisfying R and
large computation paths. We shall see that most prefixes of the large strings
are not important for the evaluation of the free variables in the formulae. It is
possible to consider small prefixes instead of the large prefixes without changing
the truth value of a considered formula. Thus, we can restrict the domain of the
free variables to a domain of mainly small strings. The necessary length of the
small strings is only dependent on the length of the considered formula and on
the length of the considered parameters. Similar restrictions of the domains of
the parameters in the tuples of the Satisfiability Problem enable the decision of
the Satisfiability Problem by means of R in polynomial time.

Because this kind of construction is possible with any structure of finite sig-
nature as starting point, we shall give expansions of extensions for arbitrary

Expansions of Structures with P = NP 99

structures of finite signatures. The new structures contain strings whose char-
acters are the elements of the basic structures. Moreover, to simplify matters,
we shall also use two additional constants a and b for the encoding of the for-
mulae such that the characters of the considered strings can also be the new
constants. Then, the structure over {a, b}∗ considered in [7] is the result of ex-
panding of an extension of the empty structure. Strictly speaking, the additional
constants are not necessary if the basic structure has two constants. In this case
we could construct the new structure without new characters. The structure
considered in [7] would be the result of expanding of an extension of the struc-
ture Σ0 = ({a, b}; a, b; ; =) where the computation over Σ0 corresponds to the
classical computation. However, in this case the two constants a and b have a
special purpose, too.

2 The Structure ΣR and Four Satisfiability Problems

For an arbitrary structure Σ, let the elements of Σ and two new characters be
the symbols of an alphabet. We remark that this alphabet may be infinite. We
extend Σ to a structure over the strings over this alphabet.

Definition 1. Let Σ be an arbitrary structure of finite signature of the form
(A; d1, . . . , dt; f1, . . . , fu; r1, . . . , rv,=) where each fi is an nfi

-ary function, ri is
an nri

-ary relation, and A = ∅, t = 0, u = 0, and/or v = 0 are possible. Let
a and b be two new constants with a, b �∈ A, let A = (A ∪ {a, b})∗ be the set of
the strings over the alphabet A ∪ {a, b}, and let ε be the symbol for the empty
string. The concatenation of two strings s1 and s2 is denoted by s1s2 as usual.
For every s ∈ A, let |s| be the length (the number of the characters) of s. For any
non-negative integer k and S ⊆ A, let S(≤k) = {r ∈ S | |r| ≤ k}, S(=k) = {r ∈
S | |r| = k}, and so on. For any unary relation Rel, let ΣRel = Exp(Σ,Rel) be
the structure

(A; d1, . . . , dt, a, b, ε; f
′
1, . . . , f

′
u, add, subr, subl; r

′
1, . . . , r

′
v, Rel,=) .

d1, . . . , dt, a, b, and ε are the only constants. add is a binary function for adding
a character to a string. subr and subl are unary functions for computing the
last character and the remainder of a string, respectively. That means that these
functions are defined for the strings s ∈ A, r ∈ A\(A∪{a, b}), and x ∈ A∪{a, b}
by add(s, x) = sx, subr(sx) = s, subl(sx) = x, add(s, r) = ε, subr(ε) = ε, and
subl(ε) = ε.

For each i ≤ u, let f ′
i be an nfi

-ary function of Anfi into A ∪ {ε} ⊂ A. For
all i ≤ u and for all (s1, . . . , snfi

) ∈ Anfi , let

f ′
i(s1, . . . , snfi

) =

{
fi(s1, . . . , snfi

) if (s1, . . . , snfi
) ∈ Anfi

ε otherwise

be given. For all i ≤ v, let r′i be an nri
-ary relation on A. Let r′i(s1, . . . , snri

) be
true in ΣRel if and only if (s1, . . . , snri

) ∈ Anri and ri(s1, . . . , snri
) is true in

Σ.

100 Christine Gaßner

Note that, if one of the relations of the structure Σ, for instance, r1 is a unary
relation satisfied by all elements of the universe A, then any formula of first order
logic with respect to Σ which has the form ∃Z(r1(Z) ∧ . . .) or ∀Z(r1(Z) → . . .)
where all quantifiers are bounded by r1 is valid in the constructed expansion if
and only if it is valid in Σ.1

The satifiability problems can be defined by means of the following formulae
analogous to [7].

Definition 2. Let F be the set of quantifier-free (¬,∧,∨)-formulae of first order
logic corresponding to the structures ΣRel such that d1, . . . , dt, a, b, ε, f ′

1, . . . , f
′
u,

add, subr, subl, r′1, . . . , r
′
v, and Rel are the symbols for the corresponding con-

stants, functions, and relations and the formulae only contain literals of the
form add(Z1, Z2) = Z3, subr(Z1) = Z2, subl(Z1) = Z2, f ′

i(Z1, . . . , Znfi
) = Z,

Z = C, Z1 = Z2, Z1 �= Z2, r′i(Z1, . . . , Znri
), ¬r′i(Z1, . . . , Znri

), Rel(Z), and
¬Rel(Z) where Z,Z1, Z2, . . . stand for X1, X2, . . . , Y1, Y2, . . . and C stands for
d1, . . . , dt, a, b or ε.

Definition 3. Let code be an injective mapping of F into {a, b}+ where every
index i is represented by the string ai and every other character of the strings
ψ ∈ F is represented by other suitable strings in {a, b}(=n0) for one fixed in-
teger n0. Moreover, for each formula ψ, let codepad(ψ) = (code(ψ), ε, . . . , ε) ∈
A1+|code(ψ)|. For any positive integers l0, l1, let Fl0,l1 be the set of all formu-
lae ψ ∈ F which only contain components of X = (X1, . . . , Xl0) and Y =
(Y1, . . . , Yl1) as variables and for which l1 = |code(ψ)| holds. For every formula
ψ containing only variables in {X1, . . . , Xl0 , Y1, . . . , Yl1}, we also write ψ(X,Y)
instead of ψ.

Let us sketch the definitions using the notations of [7].

Definition 4. For every string s ∈ A, let the value 〈s〉 be recursively defined
by 〈ε〉 = a, 〈ra〉 = 〈r〉a2, and 〈rb〉 = 〈r〉ba for all r ∈ A. For each integer
n > 1 and each tuple s = (s1, . . . , sn) ∈ An, let 〈s1, . . . , sn〉 be the string
〈s1〉b2 · · · 〈sn〉b2b. Moreover, we write 〈s, r〉 for 〈s1, . . . , sn, r〉. Let (·)dbl be the
function which doubles the lengths of the strings such that, for every string s ∈ A,
the value sdbl is defined by sdbl = sa|s|. Let us define c1 = code(X1 = X1) and
B = {〈x, c1〉r | x ∈A & r ∈A}.

SATΣR
will be defined by formulae of the form ψ(X,Y) and parameters in x.

Moreover, let us present the problems SUB-SATΣR
⊆ SATΣR

, RES-SATΣR
⊆

SATΣR
, and a unary variant RES-SAT

(1)
ΣR

where the domain of parameters or
the quantifier domain is restricted for each formula.

Definition 5. For every unary relation Rel, let the problems SATΣRel
, SUB-

SATΣRel
, RES-SATΣRel

⊆ A∞, and RES-SAT
(1)
ΣRel

⊆ A be defined by

1 The remark with respect to the conservation of theories is a first answer to a question
posed by Dimitri Grigoriev (EPIT 2005).

Expansions of Structures with P = NP 101

SATΣRel
= {(x, codepad(ψ)) | (∃l0, l1 ∈ IN+)(∃ψ ∈ Fl0,l1 & x ∈ Al0

& ΣRel |= ∃Y ψ(x,Y))} ,

SUB-SATΣRel
= {(x, codepad(ψ)) | (∃l0, l1 ∈ IN+)(∃ψ ∈ Fl0,l1

& x ∈ (A(≤m0+m̄0) ∪ B(≤max0))l0 & ΣRel |= ∃Y ψ(x,Y))} ,

RES-SATΣRel
= {(x, codepad(ψ)) | (∃l0, l1 ∈ IN+)(∃ψ ∈ Fl0,l1 & x ∈ Al0

& ΣRel |= (∃Y ∈ (A(≤m1+m̄1) ∪ B)l1)ψ(x,Y))} ,

RES-SAT
(1)
ΣRel

= {〈x, c〉dbl |c∈A(>0) &∃e((x, c,e)∈RES-SATΣRel
&e∈{ε}|c|)}

where for each combination l0, l1 > 0 and for each x ∈ Al0 ,

m0 = m
(l0,l1)
0 = (l0 + 1)(l1 + 1)− 2, m̄0 = m̄

(l0,l1)
0 = l0(l1 + 1)− 1,

m1 = m
(l1,0)
1,x = max{|x1|, . . . , |xl0 |}+ l1, m̄1 = m̄

(l1,0)
1 = l1 − 1 ,

and max0 = max
(l0,l1)
0 = 4m0 + 5m̄0 + 4|c1|+ 15. Since we use these notations

only in this context, we shall omit the indices (l0, l1),(l1, 0), and x.

Definition 6. Let Â = {〈x, code(ψ)〉dbl | (∃l0, l1 ∈ IN+)(ψ ∈ Fl0,l1 & x ∈ Al0)}
and B1 = {〈x, c1〉dbl | x ∈ A}. Let R be the relation in

⋂
k∈IN RELk where

REL = {Rel : A �→ {true, false} | (∀s ∈ B)(Rel(s) ↔ s ∈ B1)} ,

REL0 = {Rel ∈ REL | (∀s ∈ A \ (Â ∪ B))(Rel(s) = false)} ,

RELk = {Rel ∈ RELk−1 | (∀l0, l1 ∈ IN+)(∀x ∈ Al0)(∀ψ ∈ Fl0,l1)
(|〈x, code(ψ)〉dbl| = k → (Rel(〈x, code(ψ)〉dbl) ↔
(∃y ∈ (A(≤m1+m̄1) ∪ B)l1)(∀Rel′ ∈ RELk−1)(ΣRel′ |= ψ(x,y))))}

for all k > 0.

3 A Tree Describing the Problem RES-SAT
(1)
ΣR

The ideas for the definition of the relation R go back to the consideration of
some tree T (see Fig. 1) which resembles a tree of computation paths. The tree

T = TR describes the problem RES-SAT
(1)
ΣR

containing the strings which satisfy
R. The strings correspond to paths from the root of T to the leaves of T in
reverse order. The nodes are labelled by the elements of the basic structure Σ
or by a or b. The edges are labelled by L or R or they are not labelled. The
corresponding paths are defined by path1 and path2 given below.

Let path1(ε) be the empty graph. For any w ∈ A and x ∈ A ∪ {a, b}, let
path1(wx) be the path with the root denoted by x and with the following prop-
erties. The root has an outgoing edge labelled by R iff path1(w) is not the empty
graph. In this case this edge connects the root x to the root of path1(w).

102 Christine Gaßner

For any integer k > 0 and any w ∈ A(=k−1), let path2(wbak) be the path
consisting of the path path1(a

k), one additional edge labelled by L, one addi-
tional node nodek denoted by b, one additional non-labelled edge, and the path
path1(w), in the given order.

Figure 1. The tree T

❜�����
R

❜· · · �������
R

�������
R

�������
R

�������
R

L

L

L

L

❜

❜

❜

❜

❜· · · ·

✏✏✏✏✏✏✮❛���✘✘✾ ✏✏✏✏✏✏✮❛���✘✘✾ ✏✏✏✏✏✏✮❛���✘✘✾ ✏✏✏✏✏✏✮❛���✘✘✾

❛

❅❅❘R

❛

❛
···

❈❈❲
R

❛

❛

❅❅❘R

❛

❛

··
·

❈❈❲
R

❛

❛

❅❅❘R

❛

❛

··
·

❈❈❲
R

❛

❛

❅❅❘R

❛

❛

·
·
·

❈❈❲
R

❛

❛

❅❅❘R

❛

❛
···

❈❈❲
R

❛

❛

❅❅❘R

❛

❛

··
·

❈❈❲
R

❛

❛

❅❅❘R

❛

❛

··
·

❈❈❲
R

❛

❛

❅❅❘R

❛

❛

·
·
·

❈❈❲
R

❛

· · ·

· · ·

· · ·

· · ·

Let tree T be an infinite connected directed circuit-free graph with the fol-
lowing properties.

1. There is exactly one infinite path P . All edges of this path are labelled by R.
For each integer k > 0, the kth node of P can have a second outgoing edge
labelled by L. This second edge incomes in a further node nodek which is
connected, for some strings w ∈ A(=k−1), to the roots of the paths path1(w)
by non-labelled edges.

2. For every string v ∈ A, v ∈ RES-SAT
(1)
ΣR

holds if and only if there are some

positive integer k and some w ∈ A(=k−1), such that v = wbak is valid and
path2(v) is a subgraph of T containing the root of T and some leaf of T .

Note that the complete subtree with nodek as root represents the strings of the
length k which are codes of the tuples in RES-SATΣR

.
In evaluating R we have a situation resembling the evaluation of a tree of

computation paths of a BSS-machine or of a ΣR-machine. If we are interested in
the l first steps of such a machine, then we can make a cut after l nodes in each
of the computation paths. For a special case we show that it is similar for our
strings satifying R. We consider a simple combination of l strings z1, . . . , zl with
subl(zi) = zi−1 for all i ∈ {2, . . . , l} and a conjunction ψ(z1, . . . , zl) with ψ ∈ F .
For a large string z1 with |z1| ≥ l − 1, we only have to know whether path2(z1)
is a suitable subgraph of the following kind. If path2(z1a

l′) is a subgraph of
T containing the root of T and a leaf of T for some l′, then R(z1a

l′) is true

Expansions of Structures with P = NP 103

and R(z1a
l′′) is false for l′′ �= l′. Apart from the existence of such an l′ with

l′ < l, the form of z1 is not important for the truth value of the conjunction
ψ(z1, . . . , zl). We could replace the string z1 with R(z1a

l′) = true by a small
string p with R(pal

′

) = true. In each other case, instead of the large string z1

we could also take a corresponding small string and we could replace the prefix
z1 of z2, . . . , zl in a suitable way described in [7] such that the truth value for
the considered conjunction remains the same one in ΣR. That means that in
evaluating a formula with parameters belonging to the problem SATΣR

we can
also use this fact and reduce SATΣR

to the problem SUB-SATΣR
, further to

RES-SATΣR
, and to RES-SAT

(1)
ΣR

.

4 P = NP for ΣR

Formulae with parameters in any x remain true if we replace any large strings by
small strings inA(≤m1+m̄1)∪B andA(≤m0+m̄0)∪B as in [7] such that the existence
of same prefixes and the other basic properties of these prefixes which are relevant
for satisfying formulae stay the common features. The relevant properties can
be described by functions charm1

l1,0
and charm0

l0,l1
as in [7]. The replacements are

also possible by functions smallm1

l1,0
with the range A(≤m1+m̄1) ∪ B(≤max1) and

smallm0

l0,l1
with the range A(≤m0+m̄0) ∪ B(≤max0) as in [7] where maxi = 4mi +

5m̄i + 4|c1| + 15. The reason is that we get the following propositions and our
main result analogous to [7].

Proposition 1. For every z ∈ Al, charml,n(smallml,n(z)) = charml,n(z) holds. ⊓⊔

Proposition 2. For l0, l1 ∈ IN+, let ψ(X1, . . . , Xl0 , Y1, . . . , Yl1) be a conjunction
in F .

For all x ∈ Al0 and any y(1),y(2) ∈ Al1 with charm1

l1,0
(y(1)) = charm1

l1,0
(y(2)),

there holds
ΣR |= ψ(x,y(1)) ↔ ψ(x,y(2)) .

For any tuples x(1) and x(2) in Al0 with charm0

l0,l1
(x(1)) = charm0

l0,l1
(x(2)),

there holds
ΣR |= ∃Y ψ(x(1),Y) ↔ ∃Y ψ(x(2),Y) .

Proof. The proofs are as in [7]. However, the literals which contain the functions
and the relations resulting from the basic structure have also to be considered.
But, since we do not replace the elements of the basic structure, we can transfer
the proof without difficulties. ⊓⊔

Theorem 1. There holds PΣR
= NPΣR

.

Proof. By Proposition 1 and Proposition 2 there holds SATΣR
= RES-SATΣR

and the problem SATΣR
can be reduced to SUB-SATΣR

. This implies SUB-
SATΣR

⊂ RES-SATΣR
and, consequently, that SUB-SATΣR

can be reduced to

a subset of RES-SAT
(1)
ΣR

. The reductions are even possible in polynomial time.

104 Christine Gaßner

Since (∀s ∈ A)(R(s) ↔ s ∈ RES-SAT
(1)
ΣR

) follows from the definition of R, RES-

SAT
(1)
ΣR

is decidable by means of R in constant time. Thus SATΣR
is decidable

in polynomial time. The fact that every problem in NPΣR
can be reduced to

SATΣR
in polynomial time implies the assumption. ⊓⊔

References

1. Blum, L., F. Cucker, M. Shub, and S. Smale, Complexity and Real Computa-
tion. Springer-Verlag (1998).

2. Blum, L., M. Shub and S. Smale, On a theory of computation and complexity
over the real numbers: NP-completeness, recursive functions and universal ma-
chines. Bulletin of the Amer. Math. Soc., 21 (1989), 1–46.

3. Cucker, F. and M. Matamala, On digital nondeterminism. Math. Systems The-
ory 29 (1996), 635–647.

4. Cucker, F., M. Shub, and S. Smale, Separation of complexity classes in Koiran’s
weak model. Theoretical Computer Science 133 (1994), 3–14.

5. Gassner, C., The P-DNP problem for infinite abelian groups. Journal of Com-
plexity 17 (2001), 574–583.

6. Gassner, C., NP ⊂ DEC und P=NP für Expansionen von Erweiterungen von
Strukturen endlicher Signatur mit Identitätsrelation. Preprint 13 (2004).2

7. Gassner, C., A structure of finite signature with identity relation and with P =
NP - A formal proof with more details. Preprint 9 (2005).2 (The abridged version
appears in Computer Science Report Series of the University of Wales Swansea.)

8. Hemmerling, A., Computability and complexity over structures of finite type.
Preprint 2 (1995).2

9. Koiran, P., Computing over the reals with addition and order. Theoretical Com-
puter Science 133 (1994), 35–47.

10. Meer, K., A note on a P
= NP result for a restricted class of real machines.
Journal of Complexity 8 (1992), 451–453.

11. Meer, K., Real number models under various sets of operations. Journal of Com-
plexity 9 (1993), 366–372.

12. Poizat, B., Les Petits Cailloux. Aléa (1995).

2 Preprint-Reihe Mathematik, E.-M.-Arndt-Universität Greifswald

On Complexity of Ehrenfeucht Theories with
Computable Model⋆

Alexander N. Gavryushkin

Novosibirsk State University, Russia

Abstract. This work is devoted to investigation of complexity of the-
ories with computable model and finite number of countable models up
to isomorphism and also possibilities of location of computable model in
the spectra of Ehrenfeucht theory.
In the work for all m ∈ ω there are examples of Ehrenfeucht theories of
complexity 0(m) with computable model. Also there is example of theory
with finite number of countable models which all models are computable
but not decidable. And example of Ehrenfeucht theory which has un-
computable prime and saturated models but one model of the theory
has computable presentation.

1 Introduction

One of the interesting problems in modern constructive model theory is problem
of existence of computable model of elementary theory. Let a theory T has
computable model. Then what is its algorithmic complexity? If a theory T has
computable model then what about model theoretic properties of such model?

Let now give some definitions and results which we need in this work. Basic
definitions and denotions are from [1], [7], [8].

In this paper we’ll identify sentences with their Gödel numbers i. e. a phrase
like ”complexity of the theory T” means ”complexity of set of Gödel numbers
of all sentences of the theory T”.

Let L be computable language.

Definition 1. Algebraic system M of L is computable if its universum, basic
functions and predicates are uniformly computable.

Definition 2. Algebraic system M of L has computable presentation if it
is isomorphic to any computable model.

Definition 3. Let ω(T) be a number of countable models of the theory T up to
isomorphism. Theory T is Ehrenfeucht theory if 3 ≤ ω(T) < ω.

Theorem 1. (Peretyat’kin[6]). For all n ∈ ω, n ≥ 3, there exists complete
decidable theory Tn of finite signature which has n countable models up to iso-
morphism. Only the prime model of Tn is computable.

⋆ The work was partially supported by President Grant – 4413.2006.1

106 Alexander N.Gavryushkin

Theorem 2. (Khoussainov, Nies, Shore[4]). There exists a theory with three
countable models up to isomorphism such that only saturated model of the theory
has computable presentation.

Theorem 3. (Goncharov, Khoussainov[3]). For any natural number n ≥ 1 there
exists ω-categorical theory T of finite signature such that T is equivalent to 0(n).

Let L be finite language without functional symbols and let
A =< A;Pn0

0 , . . . , Pnm
m > is a structure of L. For all predicates P of the structure

sets Ak \ P and P are infinite where k is arity of P .
Let X be infinite set such that A ∩X = ∅.

Definition 4. Predicate P∃ is Marker ∃-expansion of predicate P if next
properties hold:

1. If P∃(a1, . . . , ak+1) then P (a1, . . . , ak) and ak+1 ∈ X.
2. For all a ∈ X there exists the unique (a1, . . . , ak) ∈ Ak

such that P∃(a1, . . . , ak, a).
3. If P (a1, . . . , ak) then there exists the unique a such that P∃(a1, . . . , ak, a).

Definition 5. Predicate P∀ is Marker ∀-expansion of predicate P , if next
properties hold:

1. If P∀(a1, . . . , ak+1), then a1, . . . , ak ∈ A and ak+1 ∈ X.
2. For all (a1, . . . , ak) ∈ Ak there exist not more then one element ak+1 ∈ X

such that ¬P∀(a1, . . . , ak+1).
3. If P∀(a1, . . . , ak+1) for all ak+1 ∈ X, then P (a1, . . . , ak).
4. For all a ∈ X there exists (a1, . . . , ak) ∈ Ak such that ¬P∀(a1, . . . , ak, a).

Definition 6. The set X in any ∃- or ∀-expansion is companion of P .

Definition 7. Let A =< A;Pn0
0 , . . . , Pnm

m > is model. Let

A∃ ⇌< A ∪
m⋃

i=0

Xi, P
n0+1
0 , . . . , Pnm+1

m , X0, . . . , Xm >,

A∀ ⇌< A ∪
m⋃

i=0

Yi, Q
n0+1
0 , . . . , Qnm+1

m , Y0, . . . , Ym >,

where every predicate Pni+1
i is Marker ∃-expansion of Pni

i with companion Xi,
i ∈ (m + 1), every Qni+1

i is Marker ∀-expansion of Pni

i with companion Yi,
i ∈ (m + 1). Xi ∩ Xj = ∅ and Yi ∩ Yj = ∅ for i �= j. Then A∃ and A∀ are
Marker ∃- and ∀-expansions of model A respectively.

Marker expansions let us to expand the basic model inductive next way. Let
A be a model and w be a word in the alphabet {∃,∀}. Define Aw by induction.
If w is empty then let Aw = A. If w = w′∃ or w = w′∀ and B = Aw′ then
Aw′∃ = B∃ and Aw′∀ = B∀.

On Complexity of Ehrenfeucht Theories with Computable Model 107

Theorem 4. (Goncharov, Khoussainov[3]). If a model A is X ′-computable then
A∃∀ is X-computable.

In [2] there is a proof of correctness Marker expansions application in Ehren-
feucht theories case i. e.

N∃ ≡M∃ ⇔ N ≡ M⇔ N∀ ≡ M∀,

moreover T , T∃ and T∀ has the same number of countable models up to isomor-
phism.

2 The Result

Let M1 =< M1;Σ1 > and M2 =< M2;Σ2 > are countable models of signatures
Σ1 and Σ2 respectively such that Σ1 ∩Σ2 = ∅, there are no functional symbols
in Σ1 and Σ2, M1 ∩M2 = ∅.

Definition 8. Let M =< M ;Σ1, Σ2, P
1
1 , P 1

2 > where M = M1 ∪M2, Pi(x) ↔
x ∈ Mi, i = 1, 2, values of constants from Σ1 and Σ2 are the same as it was
in M1 and M2, predicates from Σ1 (Σ2) let be false on any tuples not from
M1 (M2). Model M is disjunctive amount of models M1 and M2. Denote it
M = M1 ⊕M2.

Let T1 and T2 be theories of signatures Σ1 and Σ2 respectively. Ni |= Ti,
i = 1, 2.

Definition 9. Elementary theory of model N1⊕N2 Th(N1⊕N2) is disjunctive
amount of T1 and T2. Denote it T1 ⊕ T2.

Definition 9 is correct i. e. it isn’t depend on selection of models. The proof
of this fact there is in [2]. Also in [2] there is next clear fact: T1⊕T2 is deg(T1)⊕
deg(T2)-computable.

Proposition 1. For all m ∈ ω there exists Ehrenfeucht theory T
(m)
1 with com-

putable model such that T
(m)
1 ≡T 0(m).

⊳ Len m be a natural number, Te be Ehrenfeucht theory which only prime
model has computable presentation (see 1). And Tω be ω-categorical theory
such that Tω ≡ 0(m) (see 3). In this case T ′ = Te ⊕ Tω will be 0(m)-computable

Ehrenfeucht theory. And let T
(m)
1 = (T ′)w where w = ∃∀ . . . ∃∀, |w| = 2m. There

exists computable model of T
(m)
1 because of 4. Inasmuch as T ′ is definable in

T
(m)
1 and T ′ is deg(Te)⊕ deg(Tω) = 0(m)-computable as T

(m)
1 ≡T 0(m). T

(m)
1 is

Ehrenfeucht theory because of the note in the end of previous section. ⊲

Proposition 2. There exists Ehrenfeucht theory T2 which all models are com-
putable but not decidable.

108 Alexander N.Gavryushkin

⊳ Let T1 = T
(m)
1 for any m ≥ 1. Note that there exists k ∈ ω such that

for all M |= T1 M ≤T 0(k). Considere v = ∃∀ . . . ∃∀, |v| = 2k, and T2 = (T1)v.
If N |= T2 then there exists A |= T1 such that N ∼= Av. Inasmuch as Av is
computable by 4 as Av is computable presentation of N.

Note that for all m ∈ ω one can choose T2 to be 0(m)-computable but not
0(m−1)-computable. And if N |= T2 is decidable then T2 should be decidable too
but it isn’t so. ⊲

Proposition 3. There exists Ehrenfeucht theory T3 with only one computable
model such that neither prime nor saturated model of T3 has computable presen-
tation.

⊳ Let Te be Ehrenfeucht theory which only computable model is prime (see
1) and Ts be a theory with three countable models which only computable model
is saturated (see 2). T3 = Te ⊕ Ts.

Let A0 |= Te is prime and B2 |= Ts is saturated model. Obviously A0 ⊕
B2 is computable model of T3. If all countable models of Te are Spec(Te) =
{A0, . . . ,Ak−1}, all countable models of Ts are Spec(Ts) = {B0,B1,B2} then
it isn’t hard to show that Spec(T3) = {Ai ⊕Bj |i ∈ k, j ∈ 3}. Note that C |= T3

is computable if and only if C ∼= A0 ⊕B2. If A0 ⊕B2 is prime (saturated) then
both A0 and B2 should be prime (saturated). Thus neither prime nor saturated
model of T3 has computable presentation. ⊲

References

1. Chang,C.C., Keisler, H. J., Model Theory, North-Holland, Amsterdam, 1990.
2. Gavryushkin, A.N., Complexity of Ehrenfeucht Models, the article is in Algebra i

Logika journal editorial.
3. Goncharov, S., Khoussainov, B., Complexity of Categorical Theories with Com-

putable Models, Algebra and Logic, 43, No. 6, 365–373, 2004.
4. Khoussainov, B., Nies, A., Shore, R., Computable Models of Theories with Few

Models, Notre Dame Journal of Formal Logic, 38, 165–178, 1997.
5. Marker,D., Non-Σn-axiomatizable Almost Strongly Minimal Theories, The Jour-

nal of Symbolic Logic, 54, No. 3, 921-927, 1989.
6. Peretyat’kin, M. G., On Complete Theories with Finite Number of Countable Mod-

els, Algebra i Logika, 12, No. 5, 550-576, 1973.
7. Rogers, H. J., Theory of Recursive Functions and Effective Computability, McGraw-

Hill, New York-Toronto-London, 1967.
8. Soare, R. I., Recursively Enumerable Sets and Degrees. A Study of Computable

Functions and Computably Generated Sets, Soringer Verlag, Berlin-New York,
1987.

Functional Interpretation and Modified
Realizability Interpretation of the

Double-negation Shift

Philipp Gerhardy

BRICS⋆, Department of Computer Science, University of Aarhus, Aabogade 34,
DK-8200 Aarhus N, Denmark,peegee@daimi.au.dk

Abstract. In this paper, we investigate the relationship between the
functional, resp. the modified realizability, interpretation of finite and
infinite variants of the double-negation shift. The aim of these investi-
gations is to compare and gain a better understanding of the existing
(bar-recursive) interpretations of the full, infinite double-negation shift.
In particular, we obtain a new modified realizability interpretation of
the double-negation shift that is derived by extending a corresponding
interpretation (derived from a simple proof of) the intuitionistic principle
¬¬P0 ∧ ¬¬P1 → ¬¬(P0 ∧ P1) to the infinite case.

Key words:Proof theory, functional interpretation, modified realizability.

1 Introduction

In [1], Spector gives his famous consistency proof for classical analysis, using
bar-recursion to give a computational interpretation (in the sense of Gödel’s
functional interpretation) of the double-negation shift

DNS: ∀x0¬¬P (x)→ ¬¬∀x0P (x),

for arbitrary formulas P . The negative translation of the axiom of countable
choice is derivable in WE-HAω + CC + DNS, weakly extensional Heyting
arithmetic in all finite types + the axiom of choice + the double-negation shift.
This allows Spector to prove that classical analysis Aω :≡ WE-PAω + CC,
weakly extensional Peano arithmetic in all finite types + the axiom of countable
choice, has a functional interpretation in the (Spector) bar-recursive functionals,
T + SBR, where T are the Gödel primitive recursive functionals and SBR is
Spector’s scheme of bar-recursion.

Bezem, Berardi and Coquand ([2]) and, inspired by this, Berger and Oliva
([3]), developed a modified realizability interpretation of the double-negation
shift. The interpretation uses a variant of bar-recursion first defined in [2] and

⋆ BRICS, Basic Research in Computer Science, is funded by the Danish National
Research Foundation.

110 Philipp Gerhardy

coined modified bar-recursion (in short: MBR) by Berger and Oliva. However,
the mr-interpretation of DNS using MBR is subject to important limitations,
which we will discuss in greater detail below.

Such computational interpretations of classical analysis are of special inter-
est as they allow one to extract effective realizers or bounds from ineffective
proofs of ∀∃Aqf statements, where Aqf is quantifier-free. In recent years, the
extraction of bounds from ineffective proofs in analysis using monotone variants
of functional interpretation has shown to be particularly fruitful (see e.g. [4–6]).
Both the functional interpretation and the mr-interpretation of arithmetic can
be carried out by terms in Gödel’s T. The interpretation of DNS requires some
form of bar-recursion. For the extraction of bounds using monotone variants of
such interpretations, it is crucial that the chosen form of bar-recursion and the
interpretation of DNS is valid in Bezem’s type structure Mω of the majorizable
functionals ([7]). While Spector’s interpretation of DNS is valid in Mω and
SBR is effectively majorizable, the mr-interpretation of DNS using MBR uses a
continuity principle that is not valid in Mω. Moreover, even though MBR exists
in Mω it is only majorizable ineffectively.

In this paper, we investigate a finite version of the double-negation shift:

fDNS: ∀k
(
∀x ≤ k¬¬P (x) → ¬¬∀x ≤ kP (x)

)
.

Since this finite version of the double-negation shift follows by induction on k
from the intuitionistic principle

¬¬P0 ∧ ¬¬P1 → ¬¬(P0 ∧ P1),

it has both a functional interpretation and a modified realizability interpretation
by primitive recursive (in the sense of Gödel) functionals.

These investigations are motivated by two main points:

1. Spector’s solution of the functional interpretation of the full DNS is easy
to verify, but the intuition behind the solution is non-trivial. By investigat-
ing the interpretation (both in the sense of functional interpretation and
the mr-interpretation) of the finite version of DNS, we may get a better
understanding of the interpretation of the full DNS.

2. As mentioned above, the mr-interpretation of DNS is subject to certain
restrictions relative to Spector’s solution. By comparing the different inter-
pretations of the finite version of DNS, we hope to gain some insight into
the differences between the two interpretations of DNS and maybe even lift
some of the restrictions on the mr-interpretation of the full DNS.

The investigations carried out in this paper indicate that every computational
interpretation of some proof of (the intuitionistic principle) fDNS, essentially
¬¬P0∧¬¬P1 → ¬¬(P0∧P1), contains the germ of a corresponding computational
interpretation of full DNS. Spector’s solution can be shown to be an extension
to the infinite case of the functional interpretation of a simple intuitionistic
proof of fDNS. From an mr-interpretation of that same proof we will obtain a

Interpretation of the Double-Negation Shift 111

new mr-interpretation of the full DNS. However, this interpretation requires a
very strong form of bar-recursion and is not feasible for e.g. program extraction.
The mr-interpretation of DNS using MBR may be understood as an extension
of the mr-interpretation of a different, more complicated proof of fDNS. The
question is then, whether there is a proof of fDNS from which an idea for an
mr-interpretation using only Spector’s bar-recursion, which is weaker than all
the other forms of bar-recursion considered, can be obtained.

Throughout the paper we will assume basic familiarity with Peano arithmetic
in all finite types, as well as Gödel’s functional interpretation[8], Kreisel’s mod-
ified realizability interpretation[9] and their use in interpreting classical arith-
metic and analysis. Given a functional C of type 0→ ρ, i.e. a sequence of objects
of type ρ, we write 〈C0, . . . , C(n− 1)〉 for the initial segment of length n of that
sequence continued with the constant 0-element of type ρ. We may sometimes
also write 〈C0, C1, . . .〉 for the infinite sequence C.

2 Spector’s consistency proof

In this section, we briefly recall Spector’s ingenious solution for the functional
interpretation of the double-negation shift. First, let the Gödel ()D-transform
of the formula P (x) be ∃a∀bP (x, a, b), then we need to solve the functional
interpretation of

∀x¬¬∃a∀bP (x, a, b) → ¬¬∀y∃c∀dP (y, c, d), (1)

(recall that the types of x, y are 0 (i.e. natural numbers)) of which the ()D-
transform is

∀A, Y,D∃x,B,C
(
P (x,A(x,B), B(A(x,B))) → P (Y (C), C(Y (C)), D(C))

)
,
(2)

which means we wish to obtain x,B,C as functionals in A, Y,D solving the
system of equations

x = Y (C), A(x,B) = C(Y (C)), B(A(x,B)) = D(C). (3)

Here, x is of type 0, C of type 0 → ρ for some type ρ and B is of type ρ → τ
corresponding to the type (0 → ρ) → τ of D for some type τ ; the types of Y
and A are (0 → ρ) → 0 and 0→ ((ρ→ τ) → ρ) respectively.

Spector solves these equations with the following special form of bar-recursion
(which is primitive recursively definable in SBR):

ϕ(x,C, n) =

⎧
⎨
⎩

Cn if n < x,
0 if n > x ∧ Y (〈C0, . . . C(x− 1)〉) < x,
ϕ(x + 1, 〈C0, . . . C(x− 1), a0〉) otherwise .

where a0 = G0(x, λa.ϕ(x+1, 〈C0, . . . C(x−1), a〉)), Y,G0 are further parameters
for ϕ, ϕ(x,C) = λn.ϕ(x,C, n) and 0 is the constant 0-functional of type ρ.

Defining:

112 Philipp Gerhardy

– G0 = λm,E.A(m,λa.D(E(a)),
– C = ϕ(0, 〈〉), where 〈〉 denotes the empty sequence,
– x = Y (C),
– Em = λa.ϕ(m + 1, 〈C(0), . . . C(x− 1), a〉),
– Bm = λa.D(Em(a)),

one easily checks that x,Bx and C as defined above solve the equations (3).
Likewise, one easily checks that there is no circularity in the definitions, as
each functional only depends on the parameters A, Y,D, the bar-recursor ϕ or
functionals already defined above. Finally, assuming that all functionals Y of
type (0 → ρ) → 0 satisfy the following well-foundedness condition

(WF): ∀C0→ρ∃n0(Y (〈C0, . . . C(n− 1)〉) < n),

the solution is well-defined, as eventually the stopping condition Y (〈C0, . . . C(x−
1)〉) < x will be true. The above condition (WF) holds both for the continuous
functionals (see e.g. [10, 11]) and the majorizable functionals (see [7]), which
both are models of the bar-recursive functionals T + SBR.

3 Functional interpretation of the finite double-negation
shift

In section 10 of [1], Spector suggests that there is a much simpler interpretation
of the following finite version of the double-negation shift:

∀k
(
∀x ≤ k¬¬∃a∀bP (x, a, b) → ¬¬∀y ≤ k∃c∀dP (y, c, d)

)
. (4)

which corresponds to having an a-priori bound k on Y (C) for all sequences C.
Finite DNS is provable in Heyting arithmetic by induction on k and hence

has a functional interpretation by primitive recursive functionals. The argument
is the following: For k = 0 the proof is trivial. For the induction step k ⇒ k + 1
we heavily use that

(¬¬∃a0∀b0P0 ∧ ¬¬∃a1∀b1P1) → ¬¬(∃c0∀d0P0 ∧ ∃c1∀d1P1) (5)

is intuitionistically provable and hence has a functional interpretation by prim-
itive recursive functionals.

However, one may also obtain an interpretation of fDNS using the fact that
the (Spector) bar-recursive definition can be completely evaluated (i.e. yielding a
primitive recursive functional) if we have an a-priori bound k on Y (C) for all C.
We compare these two approaches by extracting the functional realizers for the
case k = 2, i.e. compare the two-element sequence C obtained by bar-recursion
with the realizing terms for c0 and c1 when interpreting an intuitionistic proof
of (5).

The full ()D-translation of the equation (5) yields the following functional
equations:

A0(tB0
) = tC0

, tB0
(A0(tB0

)) = D0(tC0
, tC1

),
A1(tB1

) = tC1
, tB1

(A1(tB1
)) = D1(tC0

, tC1
).

Interpretation of the Double-Negation Shift 113

The intuition behind a solution for these equations is as follows: Assume we
have already produced a solution for tC0

. Then tB1
has to be a function that

given tC1
= A1(tB1

) has the same value as D1(tC0
, tC1

), so the obvious solution
is tB1

= λc.D1(tC0
, c). If we then set tC1

= A1(tB0
) the lower two equations are

satisfied. The solutions for tB0
, tC0

can be obtained in a similar way: For tB0
we

construct a function that passes any solution for tC0
to D0, i.e. λa.D0(a, []), but

now we need to explicitly construct a potential solution for tC1
to plug into []

as well. However, within the scope of λa we have a potential realizer a for tC0

available, so we just repeat the above construction for tC1
, only this time with

a for tC0
.

Based on e.g. the intuitionistic proof of ¬¬P0 ∧¬¬P1 → ¬¬(P0 ∧P1) in [12],
one may – employing Gödel’s functional interpretation – obtain the following
terms for tC0

and tC1
:

tC0
:= A0(λa.D0(a,A1(λb.D1(a, b)))),

tC1
:= A1(λc.D1(tC0

, c)),

which exactly implement the intuitive solution sketched above.
Alternatively, evaluating the bar-recursive definition C for Y (C) < 2, one

obtains the following sequence C:

〈A(0, λa.D(〈a,A(1, λb.D(〈a, b〉))〉)), A(1, λc.D(〈[C0(0)], c〉))〉

where again for simplicity we write [C0(0)] in the definition of the second element
instead of repeating the first element of C0 in detail.

Note, that the approach via interpreting ¬¬P0∧¬¬P1 → ¬¬(P0∧P1) and the
approach via evaluating the bar-recursive solution for Y (C) < 2 – modulo some
renaming – result in exactly the same realizing terms. This shows that Spector’s
solution for the functional interpretation of DNS is an infinite, bar-recursive
version of a specific primitive recursive interpretation of finite DNS. For the
finite case we merely solve a finite number of equations. In the full case we have
a sequence of equations, enumerated by possible values 0, 1, 2, . . . of x = Y (C),
and hence we construct a corresponding sequence C. Since it is required that
the functional Y satisfies the condition (WF), the bar-recursive construction of
the sequence C eventually terminates, and the solution for the “initial segment”
of the sequence of equations is then a solution for the functional interpretation
of full DNS.

4 Modified realizability interpretation of the finite and
infinite double-negation shift

Modified realizability interpretation differs conceptually from functional inter-
pretation. Whereas functional interpretation reduces the task of witnessing a
formula to solving a corresponding set of essentially logic-free functional equa-
tions, modified realizability asks to construct a functional realizer for the formula,

114 Philipp Gerhardy

leaving the formula unchanged. Furthermore, the interpretation of classical sys-
tems requires the use of A-translation ([13, 14]) on top of negative translation,
before mr-interpretation can be applied. For modified realizability a negative
formula ¬B := B → ⊥ is realized by the empty realizer, as there is no realizer
for ⊥(false), and thus the modified realizability interpretation of the negative
translation of a given formula B would not contain any useful information.

Thus interpreting the (A-translated) double-negation shift

∀x0((PA(x) → A) → A) → (∀x0PA(x) → A) → A

boils down to constructing a realizer for A from realizers:

G0→((ρ→∗)→∗) mr ∀x0((PA(x) → A) → A)
Y (0→ρ)→∗ mr ∀x0PA(x) → A

where ρ is the type of a realizer for the A-translation PA(x) of P (x) and ∗ the
type of a realizer of the formula A in the A-translation.

In [3], Berger and Oliva solve the modified realizability interpretation1 of
DNS under one significant restriction (relative to the solution for functional
interpretation): The functional Y is assumed to be continuous, whereas for func-
tional interpretation and Spector’s solution it suffices that Y satisfies the condi-
tion (WF). Due to this restriction, the mr-interpretation of DNS is only valid
for the continuous functionals, although the modified bar-recursor itself exists
both in the continuous and the majorizable functionals. As mentioned earlier,
the validity in the majorizable functionals is important for the extraction of
effective bounds from ineffective proofs in classical analysis.

Moreover, the interpretation crucially depends on the fact that the formula
PA(x) in the double-negation shift is the A-translation of some formula P (x)2.
From this, one may derive the existence of a closed term H∗→ρ that satisfies
∀nH mr (A→ PA(n)), where H is independent of n. This is essentially the mr-
interpretation of the A-translation of “ex falso quodlibet”: ⊥ → P for arbitrary
P . It should be clear that such an H cannot exist for general formulas P (x).

The interpretation of the double-negation shift is then given using the fol-
lowing weak variant of modified bar-recursion([3]):

Φ(〈C0, . . . C(n− 1)〉) =0 Y (〈C0, . . . C(n− 1), a, a, . . .〉),

where a = H(〈C0, . . . C(n− 1)〉, λb.Φ(〈C0, . . . C(n− 1), b〉)). The functional Y is
of type (0 → ρ) → 0 and H takes a finite sequence and a functional ρ → 0 and

1 In [3], Berger and Oliva employ a variant of the the mr-interpretation in which a
term t realizes ⊥ if it realizes a yet to be determined formula P⊥. This can be
viewed as directly incorporating the A-translation into the mr-interpretation. To
avoid confusing the two variants we will base the discussion below on explicitly
employing the A-translation.

2 In the variant of the mr-interpretation employed by Berger and Oliva, the require-
ment is that all atoms in the formula P(x) in the double-negation shift occur neg-
atively. This requirement is fulfilled when interpreting the negative translation of
countable, resp. dependent choice.

Interpretation of the Double-Negation Shift 115

produces an element of type ρ. Finally, the weak modified bar-recursor Φ takes
a finite sequence of elements of type ρ and the parameters Y and H as its input
and outputs a natural number.

Given the realizers Y and G from the mr-interpretation of DNS and the
functional H satisfying ∀nH mr (A → PA(n)), Berger and Oliva the present
the following realizer for A:

Φ(〈C0, . . . C(n− 1)〉) = Y (〈C0, . . . C(n− 1), a, a, . . .〉),

where a = H(G(n, λb.Φ(〈C0, . . . C(n− 1), b〉))).
The realizer Φ(〈〉) is verified using quantifier-free pointwise bar-induction

relativized to the set S of sequences realizing ∀xP (x) (for the precise definition
of this scheme, see [3]). As mentioned above the proof depends on the continuity
of Y and – to secure the existence of the functional H – the fact that PA(x) is
the A-translation of some formula P (x).

In fact, one may show that the realizing strategy for DNS using MBR
basically corresponds to the following, more complicated proof of fDNS, i.e.
¬¬P0 ∧ ¬¬P1 → ¬¬(P0 ∧ P1): We start with the assumptions (1) P0, (2) P1,
(3) ¬(P0 ∧ P1) and (4) ¬¬P0 ∧ ¬¬P1. From (1) and (2) we obtain P0 ∧ P1 and
together with (3) we obtain ⊥. Discharging the assumption (1) we obtain ¬P0

and together with (4) we again get ⊥. Now, one uses “ex falso quodlibet” to
obtain P0, and it is this which after A-translation leads to the application of the
realizer H mentioned above. Symmetrically, we may dispose of the assumption
(2), again obtaining a proof of ⊥. Another application of “ex falso quodlibet”
yields P0 ∧ P1 and together with (3) a proof of ⊥. Two final implication intro-
ductions with (3) and (4) yield the proof of ¬¬P0 ∧ ¬¬P1 → ¬¬(P0 ∧ P1) as
desired. The mr-interpretation of DNS using MBR can thus be understood as
an infinitary version of the mr-interpretation of (the A-translation of) this proof.

We now turn to an alternative, primitive recursive interpretation fDNS, ob-
tained from the intuitionistic proof of (the A-translation) of ¬¬P0 ∧ ¬¬P1 →
¬¬(P0 ∧ P1) in [12], from which Spector’s solution can be obtained. More pre-
cisely, we here must construct a realizer for A from realizers:

G
(ρ→∗)→∗
0 mr (P0 → A) → A

G
(ρ→∗)→∗
1 mr (P1 → A) → A

Y (ρ×ρ)→∗ mr (P0 ∧ P1) → A

where ∗ is the type of a realizer for A. Again, strictly speaking P0 and P1 would
here also be the A-translations of some formulas, but for the mr-interpretation
to be given next, obtained from the proof in [12], this is not necessary:

Given x0, x1 realizing (arbitrary formulas) P0 and P1 we may obtain a realizer
Y (x0, x1) for A. Then λx1.Y (x0, x1) realizes P1 → A and G1(λx1.Y (x0, x1)) real-
izes A. Doing the same for x0 we obtain the realizer G0(λx0.G1(λx1.Y (x0, x1)))
for A. Finally, λ-abstracting G0, G1 and Y , we obtain the desired realizer for
¬¬P0 ∧ ¬¬P1 → ¬¬(P0 ∧ P1). This strategy easily generalizes to the general
finite cases of DNS.

116 Philipp Gerhardy

Note, that while in the solution for full DNS by Berger and Oliva the overall
strategy is to produce a sequence realizing ∀xP (x) and then apply Y to this
sequence, here the focal point of the realizing strategy is a nested application of
the Gi’s to one Y . Also note, that the finite solution does not depend on the Pi

being the A-translation of some formula, but works for arbitrary P (x).
Inspired by the above primitive recursive mr-interpretation for fDNS, we

suggest an alternative solution for the interpretation of (the A-translation of)
full DNS. The idea is to apply Y to a sequence of realizers for P (x), and if Y is
continuous this will only depend on a finite initial segment of such a sequence.
Then with appropriate nested λ-abstractions and applications of Gi = G(i, ·) we
obtain the desired realizer.

We first define the following variant of bar-recursion, which we call continuous
bar-recursion (in short: CBR):

ψ(n,C) =

{
Y (〈C0, . . . , C(n− 1)〉) if n is a point of continuity for Y on C,
G(n,C, λa.ψ(n + 1, 〈C0, . . . C(n− 1), a〉) otherwise .

where Y,G are as above for the mr-interpretation of DNS and n is a point of
continuity for Y on C, if for all sequences C ′ agreeing on the first n elements
Y (C) = Y (C ′). This is essentially Spector’s bar-recursion, but with a stopping
condition based on the continuity of Y , rather than Y satisfying (WF). This
form of bar-recursion has previously been discussed in Kreisel’s review([15]) of
[16]. The stopping condition here is slightly ineffective. To be able to effectively
determine the point of continuity of Y , we would have to explicitly ask for a
continuous3 modulus of continuity ω : (0 → ρ) → 0 for Y , as a “modulus of
continuity”-functional does not exist in all models of the continuous functionals
(see [18]).

By defining an appropriate G′ in terms of the pararameters Y,G,H for MBR,
one easily sees that MBR is primitive recursively definable in CBR. Hence, as
MBR is not S1-S9 computable in the continuous functionals (see [3]), neither
is CBR. As in Kohlenbach’s PhD-thesis [19], one may furthermore show that,
similar to the variant of bar-recursion defined there (Def. 3.74, also discussed as
Kohlenbach bar-recursion in [3]) the functional

μY C := minn[Y (〈C0, . . . C(n− 1)〉) = Y (C)],

is definable in CBR. Hence, CBR is not majorizable and thus strictly stronger
than MBR, which is majorizable, although only ineffectively.

The proof that the mr-interpretation of DNS can be carried out using this
variant of bar-recursion is very similar to the proof in [3]: Let S be the set of
sequences realizing ∀xP (x)4 and define

S(x, n) :≡ x mr P (n),
R(n,C) :≡ ψ(n, 〈C0, . . . , C(n− 1)〉) mr A,

3 In [17], Kohlenbach shows that unless the modulus of continuity itself is continuous
the point of continuity of a continuous function cannot be determined effectively.

4 For a finite sequence, 〈C0, . . . , C(n − 1)〉 ∈ S means that the first n elements are
realizers, i.e. ∀i < n(C(i) mr P (i)).

Interpretation of the Double-Negation Shift 117

then we prove that R(0, 〈〉) by quantifier-free pointwise bar-induction.

(i) ∀C ∈ S∃nR(n,C): Let C ∈ S be fixed and let n be the point of continuity
for Y on C, then ψ(n,C) = Y (〈C0, . . . , C(n − 1)〉) = Y (C) and as Y (C) mr A
also ψ(n, 〈C0, . . . , C(n− 1)〉) mr A and so R(n,C).

(ii) The induction step consists of proving ∀〈C0, . . . , C(n−1)〉 ∈ S(∀a[S(a, n)
→ R(n + 1, 〈C0, . . . C(n − 1), a〉)] → R(n, 〈C0, . . . C(n − 1)〉)): Again, let the
sequence 〈C0, . . . , C(n − 1)〉 ∈ S be fixed. If n is already a point of continuity
for Y on C, then trivially R(n, 〈C0, . . . C(n− 1)〉) and we are done. Otherwise,
suppose

∀a[S(a, n) → R(n + 1, 〈C0, . . . C(n− 1), a〉)],

i.e. ∀a[a mr P (n) → ψ(n + 1, 〈C0, . . . C(n− 1), a〉) mr A. Then clearly

λa.ψ(n + 1, 〈C0, . . . C(n− 1), a〉) mr P (n) → A

and so

G(n, λa.ψ(n + 1, 〈C0, . . . C(n− 1), a〉) mr A.

But G(n, λa.ψ(n+1, 〈C0, . . . C(n−1), a〉) = ψ(n, 〈C0, . . . C(n−1)〉) and so again
R(n, 〈C0, . . . C(n− 1)〉). From this quantifier-free bar-induction relativized to S
yields R(0, 〈〉) as desired.

In conclusion, one can ask why there is a direct correspondence between the
functional interpretation of fDNS and full DNS, whereas for mr-interpretation,
the extension of a quite simple interpretation of an intuitionistic proof of fDNS
to the infinite case requires the (relatively) strongest and most impractical form
of bar-recursion (compared to modified bar-recursion and Spector bar-recursion).
At the same time, a better mr-interpretation of the full DNS, using MBR, is
related to a more complicated strategy for interpreting fDNS, obtained from
a more complicated proof of fDNS. Thus, one can speculate whether there is
any proof of fDNS which would yield an mr-interpretation of DNS that only
requires Spector’s bar-recursion, or, more pessimistically, whether such an mr-
interpretation of DNS is possible at all. An answer to that question would
certainly be of interest, both for the extraction of programs from proofs as well
as for the general comparison of the two existing main computational interpre-
tations of full classical analysis.

5 Acknowledgements

The author would like to thank U. Kohlenbach for several discussions on the
subject of this paper and for proof-reading an earlier draft version of this paper.
Likewise, the author would like to thank P. Oliva for useful comments on a draft
version of this paper. Finally, the author would like to thank the reviewers who
made many useful suggestions for improving the presentation of this paper.

118 Philipp Gerhardy

References

1. Spector, C.: Provably recursive functionals of analysis : a consistency proof of anal-
ysis by an extension of principles formulated in current intuitionistic mathematics.
In Dekker, J., ed.: Proceedings of Symposia in Pure Mathematics. Volume 5., AMS,
Providence, R.I. (1962) 1–27

2. Berardi, S., Bezem, M., Coquand, T.: On the computational content of the axiom
of choice. J. of Symbolic Logic 63 (1998) 600–622

3. Berger, U., Oliva, P.: Modified bar recursion and classical dependent choice. In
Baaz, M., Friedman, S.D., Krajcek, J., eds.: Proceedings of the Annual European
Summer Meeting of the Association for Symbolic Logic, Vienna, Austria. Vol-
ume 20 of Lecture Notes in Logic., ASL and A K Peters (2001) 89–107

4. Kohlenbach, U., Oliva, P.: Proof mining: a systematic way of analyzing proofs in
mathematics. Proc. Steklov Inst. Math 242 (2003) 136–164

5. Kohlenbach, U.: Some logical metatheorems with applications in functional anal-
ysis. Trans. Amer. Math. Soc. 357 (2005) 89–128

6. Gerhardy, P., Kohlenbach, U.: General logical metatheorems for functional analysis
(2005) Submitted, 42pp.

7. Bezem, M.: Strongly majorizable functionals of finite type: a model of bar recursion
containing discontinous functionals. J. of Symbolic Logic 50 (1985) 652–660

8. Gödel, K.: Über eine bisher noch nicht benützte Erweiterung des finiten Stand-
punktes. Dialectica 12 (1958) 280–287

9. Kreisel, G.: Interpretation of analysis by means of constructive functionals of
finite types. In Heyting, A., ed.: Constructivity in Mathematics. North-Holland
Publishing Company, Amsterdam (1959) 101–128

10. Scarpellini, B.: A model for bar-recursion of higher types. Compositio Mathematica
23 (1971) 123–153

11. Troelstra, A.S., ed.: Metamathematical investigation of intuitionistic arithmetic
and analysis. Volume 344 of Springer LNM. Springer-Verlag, Berlin (1973)

12. van Dalen, D.: Logic and Structure. Springer-Verlag, Berlin (1997)
13. Friedman, H.: Classical and intuitionistically provably recursive functions. In

Müller, G., Scott, D., eds.: Higher Set Theory. Volume 669 of Springer LNM.
Springer Verlag, Berlin (1978) 21–27

14. Dragalin, A.G.: New kinds of realizability and the Markov rule. Dokl. Akad. Nauk.
SSSR 251 (1980) 534–537 English translation in: Soviet Math. Dokl., 21: 461-464,
1980.

15. Kreisel, G.: Review of [16]. in Zentralblatt MATH (1976) ZBL 0312.02034.
16. Ershov, Y.L.: The model G of BR. Soviet Math., Doklady 15 (1975) 1158–1161

Translation of Doklady Akad. Nauk SSSR 217: 1004–1006 (Russian), 1974.
17. Kohlenbach, U.: Foundational and mathematical uses of higher types. In: Reflec-

tions on the Foundations of Mathematics: Essays in Honor of Solomon Feferman.
Volume 15 of Lecture Notes in Logic. ASL and A K Peters (2002) 92–116

18. Kreisel, G.: On weak completeness of intuitionistic predicate logic. J. of Symbolic
Logic 27 (1962) 139–158

19. Kohlenbach, U.: Theorie der stetigen und majorisierbaren funktionale und ihre an-
wendung bei der extraktion von schranken aus inkonstruktiven beweisen: Effektive
eindeutigkeitsmodule bei besten approximationen aus ineffektiven eindeutigkeits-
beweisen. PhD thesis, Frankfurt, pp. xxii+278 (1990)

Toward Combinatorial Proof of P<NP

Basic Approach

L. Gordeev, FTICA

Logik u. Sprachtheorie, WSI f. Informatik, Tübingen University
gordeew@informatik.uni-tuebingen.de

1 Introduction

1.1 Summary

We present a plausibe “school-algebraic” condition C0 that infers, in Peano
Arithmetic, the negative solution (abbr.: P < NP) to the familiar open problem

P ?
= NP (cf. e.g. [C], [F], [P], [T]). C0 expresses that a slight modification of

the ordinary DNF conversion algorithm needs exponential size inputs in order to
produce a certain big and complex output. This output is explicitly defined and
its structure can be analyzed by standard methods of asymptotic combinatorics
in order to achieve a desired proof of C0. C0 also admits purely combinatorial
tree-presentation. We believe that our approach might accelerate fulfillment of
Harvey Friedman’s prophecy: “2050, P �= NP. Detailed combinatorial work on
easier problems, leading up to the full result” (see [F]).

1.2 Background

Boolean space Let Bn be the space of n−dim boolean polynomials. Polynomi-
als (or circuits) containing only positive literals are called positive. Polynomials
having the same boolean values as positive polynomials are called semi-positive.
We recall a familiar “school-algebra” algorithm f �→ BASE (f) (see Chapter 2.2
below) such that for every semi-positive input f , BASE (f) is the uniquely de-
termined minimal positve DNF having the same values as f . Any such BASE (f)
is also referred to as a basic polynomial. For any basic polynomial g, denote by
BASE−1 (g) the set of semi-positive polynomials f such that BASE (f) = g (mod
boolean commutative and associative laws). We pose a following question:

Q : Given a big and complex basic polynomial g, how big must be every f ∈
BASE−1 (g) ?

Since nontrivial valid DNF are not semi-positive, P ?
= NP is not related to

Q. However, an appropriate analytic upgrade provides us with the desired link.

120 Lev Gordeev

Borel space Keeping this in mind we consider a suitable real space of n2−dim
boolean-valued Borel polynomials, Bn2

0 , whose variables are ranging over the
non-zero part of the real continuum, R�=0. We elaborate basic algebraic theory
along the lines of Bn (as above), except that in the Borel case, our proof tools
are geometrical by nature (cf. Chapter 3.2 below). In particular, we generalize
boolean “school-algebra” algorithm BASE and establish its basic properties (see
Chapter 3.4 below); let BASE0 denote the corresponding Borel generalization.

Our Borel modification of Q reads as follows, in Bn2

0 :

Q0: Given a big and complex basic Borel polynomial g, how big must be every
f ∈ BASE−1

0 (g) ?

We observe that the whole DNF family of Bn (call it Dn) is representable

in Bn2

0 by one “universal” positive CNF Φn; such Φn is explicitly defined (see
Definition 3 below). Furthermore, we observe that BASE0 (Φn) is a DNF whose
clauses are characteristic to minimal valid elements of Dn (see Chapter 5 below);
it is readily seen that BASE0 (Φn) is big and complex, relative to n. We conjecture
that the following C0 answers the corresponding specification of Q0.

Definition 1. Denote by C0 the condition “ for every c ∈ N there is a n ∈ N
so large that the size of any basic polynomial f , in Bn2

0 , satisfying BASE0 (f) =
BASE0 (Φn) (mod boolean commutative and associative laws), is bigger than nc ”.

Next we observe that the hypothesis P = NP is actually stronger than its
“naive” discrete translation. Loosely speaking, P = NP infers that Φn can be
characterized by equivalent polynomial-size algebraic polynomials f . The equiv-
alence Φn ∼ f in question usually refers to extensional equality Φn ∼D f :⇔
(∀x ∈ D) (Φn (x) = f (x)) in a given discrete domain D ⊂ N, that by standard
encoding can be replaced by N (for brevity we identify ⊂ with ⊆). However,
a closer look at the computing nature of P = NP enables us to regard D as
an arbitrary model of an appropriate simple algebra; in particular, we can set
D := R�=0 (see [GK] for more exhaustive algebraic elaboration). Now clearly the
condition Φn ∼R �=0

f is more restrictive than Φn ∼N f , and hence passing from
P = NP to Φn ∼R �=0

f , instead of Φn ∼N f , can provide us with more insight
into the structure of any hypothetical f in question. Actually, from Φn ∼R �=0

f
(that we in the sequel denote by Φn ∼0 f) we infer BASE0 (f) = BASE0 (Φn) (mod
boolean commutative and associative laws) and thereby arrive (see Theorem 3
below) at

Conclusion 1 C0 infers P < NP.

Remark 1. C0 is not a lower bound problem - rather, it says that the set of valid
n−dim boolean DNF is not representable by n2−dim Borel polynomials whose
size is polynomial in n. Moreover, C0 admits purely combinatorial interpreta-
tion CS (see Appendix below). The restriction of CS to positive inputs f seems
provable by purely combinatorial methods. This partial result reminds of the
known separation P �= NP in the model of monotone circuits, but we believe

Toward Combinatorial Proof of P<NP 121

that our proof techniques (to be presented elsewhere) can be strengthened to the
required combinatorial proof of C0. That despite its transparency the underlying
“school-algebraic” question Q0 was not elaborated yet enables us to regard C0

as a desired missing link between P ?
= NP and basic “working mathematics”.

2 Boolean space Bn

2.1 Preliminaries

In the sequel without loss of generality we assume that in boolean polynomi-
als the negation − can be applied only to variables from the list v1, · · · , vn.
f and g are called equivalent (abbr.: f ∼ g) iff they have the same boolean
values V al (f) = V al (g), for all boolean evaluations of the variables. Posi-

tive DNF (abbr.: PDNF) f =
k∨

i=1

si∧
j=1

xi,j and g =
l∨

i=1

ti∧
j=1

yi,j are called iso-

morphic (abbr.: f ∼= g), iff k = l and {{xi,j | j = 1, · · · , si} | i = 1, · · · , k}
and {{yi,j | j = 1, · · · , ti} | i = 1, · · · , l} are equal sets. Moreover, a PDNF f =
k∨

i=1

si∧
j=1

xi,j is called minimal iff for 1 ≤ q < r ≤ k, Xq := [xq,j | j = 1, · · · , sq],

Xr := [xr,j | j = 1, · · · , sr] (the lists) are sets which are mutually incomparable
with respect to ⊂, i.e. Xq � Xr � Xq. Minimal PDNF are also called basic

polynomials (abbr.: BP). Polynomials equivalent to positive (basic) polynomials
are called semi-positive (semi-basic).

Lemma 1. For any BP f and g, f ∼ g iff f ∼= g.

Proof. Suppose f =
k∨

i=1

si∧
j=1

xi,j and g =
l∨

i=1

ti∧
j=1

yi,j . Let

V ari (f) := {xi,j | j = 1, · · · , si} and V ari (g) := {yi,j | j = 1, · · · , ti}
and note that:
V al (f) = 1 iff (∃i = 1, · · · , k) (∀x ∈ V ari (f)) (V al (x) = 1),
V al (g) = 1 iff (∃i = 1, · · · , l) (∀y ∈ V ari (g)) (V al (y) = 1).
Hence

f ∼ g ↔
(

(∀i = 1, · · · , k) (∃ı = 1, · · · , l) (V ari (f) ⊂ V arı (g))
∧ (∀ı = 1, · · · , l) (∃i = 1, · · · , k) (V arı (g) ⊂ V ari (f))

)

Now by the minimality of BP, we can replace above every ⊂ by = and arrive
at f ∼ g ↔ f ∼= g, as required.

2.2 “School-algebra” conversions

Algorithm 1 : BASE. For any boolean polynomial f we construct a BP BASE (f)
in four subsequent steps, as follows (for brevity we rename ∨ and ∧ by + and ·,
respectively, and also omit · as usual in school algebra).

122 Lev Gordeev

1. Apply rewriting rules (t + s) · r →֒ t · r + s · r and r · (t + s) →֒ r · t + r · s to
arbitrary subterms r, s, t so long as possible.

2. Delete all inconsistent clauses, i.e. maximal conjunctions containing both x
and x, for any variable x.

3. Delete all negative literals.
4. Delete all but minimal clauses, i.e. those whose sets of variables are proper

extensions of other conjunctions’ sets of variables.
Denote by BASE (f) the output.

Example 1. Let f = ((x + y) · (z + x) + (u + x) · (x + x)) · (y + y) and g = (x +
y) · (z + x) + u + x. Obviously g is positive and equivalent to f . Hence f is
semi-positive.

1. Step 1 yields plain DNF conversion that is given by the familiar school-
algebra conversion EXPAND:

EXPAND (f) = xzy + xzy + xxy + xxy + yzy + yzy + xyy + xyy

+uxy + uxy + uxy + ux y + xxy + xxy + xxy + xx y

2. Steps 1-2 upgrade EXPAND to EXPANDC by deleting all inconsistent clauses:

EXPANDC (f) = xzy + xzy + xxy + xxy + yzy + xyy + uxy + uxy +

uxy + ux y + xxy + xxy

3. Steps 1-3 upgrade EXPANDC to EXPANDCP by further deleting all negative
literals:

EXPANDCP (f) = xzy + xz + xxy + xx + yzy + xyy + uxy + ux +

uy + u + xxy + xx

4. Finally, we remove all repetitions and all but minimal products and arrive
at the desired BP of f :

BASE (f) = x + yz + u

Theorem 1. The following holds for any semi-positive polynomials f and g.

1. BASE (f) is a BP
2. f ∼ EXPAND (f) ∼ EXPANDC (f) ∼ EXPANDCP (f) ∼ BASE (f)
3. f is semi-basic
4. f ∼ g infers BASE (f) ∼= BASE (g), and hence BASE (f) = BASE (g) (mod

boolean commutative and associative laws)

Proof. 1. Straightforward by the definition (see the example).
2. It will suffice to verify that the passage from EXPANDC to EXPANDCP (see

the example) preserves ∼. This can be shown by induction on the number of
negative literals occurring in EXPANDC (f), as follows. Let g = (x ∧ y1 ∧ · · · ∧ yl)∨

Toward Combinatorial Proof of P<NP 123

k∨
i=1

si∧
j=1

ℓi,j , g′ := (y1 ∧ · · · ∧ yl) ∨
k∨

i=1

si∧
j=1

ℓi,j , h =
r∨

i=1

ti∧
j=1

xi,j such that g ∼ h,

where x /∈ {y1, · · · , yl}, since g is consistent. Clearly V al (x) := 0, V al (y1) =
· · · = V al (yl) := 1 and V al (z) := 0 for other variables z occurring in g, h
yields V al (g) = V al (h) = 1. Hence there exists a ≤ r with {xa,1, · · · , xa,ta} ⊆
{y1, · · · , yl}. Moreover, for any variable evaluation we have V al (g′) ≥ V al (g) =
V al (h). Suppose there is a one satisfying V al (g′) = 1 > 0 = V al (h). Since
V al (h) = V al (g), in that case we can just as well assume V al (x) = 1 and
V al (y1) = · · · = V al (yl) = 1, which infers V al (xa,1 ∧ · · · ∧ xa,ta) = 1 = V al (h)
- a contradiction. Hence g′ ∼ h, Q.E.D.

3. Follows from 1 and 2.
4. Follows from 2 and Lemma 1.

Remark 2. For arbitrary f , the conversion to BASE (f) must not necessarily pre-
serve boolean equivalence. This is because EXPANDCP does not preserve ∼ in the
whole polynomial domain. For example, EXPANDCP (x ∨ x) = x ≁ x ∨ x.

3 Borel space Bn2

0

3.1 Preliminaries

1. Let n > 1 and n : = {1, · · · , n}. For any i, j ∈ n let (i, j) := n (i− 1) + j.
Clearly (−,−) is an injective pairing of type n× n→ n2.

2. Let 〈〈n〉〉 := {{(i, j) , (k, l)} | i, j, k, l ∈ n ∧ j �= l}
3. For any I ⊂ 〈〈n〉〉 let I+ ⊂ 〈〈n〉〉 be the minimal closure of I satisfying the

following anti-equivalence conditions (a)-(c):

(a) I ⊂ I+

(b) if {{u, v} , {v, w} , {w, z}} ⊂ I+ and {u, z} ∈ 〈〈n〉〉, then {u, z} ∈ I+

(c) if {{u, v} , {v, w} , {w, u}} ⊂ I+ then I+ := 〈〈n〉〉
4. I ⊂ 〈〈n〉〉 is called basic iff I = I+.

3.2 Basic Borel sets

Definition 2. Set Rn2

�=0 := (R�=0)
n2

. For any {u, v} ∈ 〈〈n〉〉, Borel sets O{u,v} :={−→x ∈ Rn2

�=0 | xu + xv = 0
}

and O{u,v} :=
{−→x ∈ Rn2

�=0 | xu + xv �= 0
}

are called

regular planes and coplanes (in Rn2

�=0), respectively; they both are also called reg-

ular elements. A set of regular elements
{
Oı,Oj | ı ∈ I, j ∈ J

}
, I, J ⊂ 〈〈n〉〉,

is called consistent iff I+ ∩ J = ∅. Intersections of sets of regular planes and
consistent sets of regular elements are called regular Π1-sets and regular Π1-

expansions, respectively. For any regular Π1-expansion E =
⋂
ı∈I

Oı ∩
⋂
j∈J

Oj, de-

note by Ep the regular Π1-set
⋂
ı∈I

Oı; clearly E ⊂ Ep. Unions of regular Π1-sets

are called regular Σ2-sets.

124 Lev Gordeev

Lemma 2. Disjunction property. For any regular Π1-sets U , V and W , if U ⊂
V ∪W then either U ⊂ V or U ⊂W .

Proof. Regular Π1-sets are convex. (Geometrically obvious.)

Lemma 3. Absorption property. For any regular Π1-expansion E and regular
Σ2-set Z, if E ⊂ Z then Ep ⊂ Z.

Proof. Suppose E ⊂ Z and a ∈ Ep − Z. There is a sufficiently small 1 − dim
interval [b, c] and a regular Π1-set U ⊂ Z such that a ∈ [b, c] and b, c ∈ U .
Since U is convex, it follows that a ∈ U , and hence a ∈ Z - a contradiction.
(Geometrically obvious; cf. also [GK: Lemma 34]).

Lemma 4. Monotonicity.
⋂
ı∈I

Oı =
⋂

ı∈I+

Oı. If
⋂
j∈J

Oı ⊂
⋂
ı∈I

Oı then I+ ⊂ J+.

Proof. Easy linear algebra a/o the completeness of equational calculus.

3.3 Basic syntax and semantic

1. Vocabulary:

(a) Variables v1, · · · , vn2 (abbr.: x, y, z, w - possibly indexed)
(b) Binary operations ∨ , ∧ and atomic unary operation −

(c) Binary relation J

2. Literals: terms xJy and xJy (abbr.: ℓ - possibly indexed)

3. Basic clauses:
s∧

i=1

vui
Jvvi

for basic sets {{ui, vi} | i = 1, · · · , s} ⊂ 〈〈n〉〉
4. Borel polynomials (or just polynomials, or circuits): arbitrary terms accord-

ing to 1 (we also adopt boolean notions of positive polynomials and PDNF,
see above Chapter 2.1). The size #f of a given polynomial f is the number
of all operation occurrences in f

5. BP (basis polynomials): PDNF
k∨

i=1

si∧
j=1

xi,jJyi,j such that:

(a) for every i = 1, · · · , k,
si∧
j=1

xi,jJyi,j is a basic clause

(b) for any 1 ≤ q < r ≤ k, the lists Xq := [{xq,j , yq,j} | j = 1, · · · , sq],
Xr := [{xr,j , yr,j} | j = 1, · · · , sr] are sets which are mutually incompa-
rable with respect to ⊂

6. Boolean evaluation of polynomials in real domain: V al (f) is defined as in
boolean algebra via

V al (xJy) :=

{
1 if V al (x) + V al (y) = 0
0 else

for V al (x), V al (y) ranging over R�=0

7. Equalities:

(a) f and g are semi-equivalent (abbr.: f ∼0 g), iff V al (f) = V al (g) holds
for all variable evaluations in R�=0

Toward Combinatorial Proof of P<NP 125

(b) Two BP f =
k∨

i=1

si∧
j=1

xi,jJyi,j and g =
l∨

i=1

ti∧
j=1

x′
i,jJy′i,j are isomorphic

(abbr.: f ∼= g) iff k = l and Var (f) = Var (g), where
(c) Var (f) = {{{xi,j , yi,j} | j = 1, · · · , si} | i = 1, · · · , k}

8. Semi-basic polynomials: polynomials semi-equivalent to basic polynomials
9. For any polynomial f and vector −→u ∈ Rn2

�=0, we let f (−→u) := V al (f) for

V al (vi) := ui, i = 1, · · · , n2. Set (f) :=
{−→u ∈ Rn2

�=0 | f (−→u) = 1
}

is called

regular Borel set generated by f .

Lemma 5. For any BP f and g, f ∼0 g iff f ∼= g.

Proof. Obviously f ∼0 g iff Set (f) = Set (f). If f and g are BP, then Set (f)
and Set (g) are regular Σ2-sets. The conclusion now follows straightfoward by
Lemmata 2, 4 and minimality of BP (cf. also proof of Lemma 1).

3.4 “School-algebra” conversions

Algorithm 2 : BASE0. We take as input any Borel polynomial f and construct
BASE0 (f) in five subsequent steps 1-5:

1. Apply the same rules as at Step 1 of BASE (see above Algorithm 1) and arrive
at EXPAND (f).

2. Consider any clause C from EXPAND (f) and let X be the set of positive
literals (i.e. variables) occurring in C. Replace X by X+ (see above) and
rewrite C to C [X := X+]. Apply this rewriting rule C →֒ C [X := X+] to
all clauses of EXPAND (f). Denote the output by EXPANDB (f).

3. Proceed as at Step 2 of BASE and delete all inconsistent clauses occurring in
EXPANDB (f). Denote the output by EXPANDBC (f).

4. Proceed as at Step 3 of BASE and delete all negative literals occurring in
clauses of EXPANDBC (f). Denote the output by EXPANDBCP (f).

5. Proceed as at Step 4 of BASE and delete all but minimal clauses, i.e. those
whose sets of variables are proper extensions of other conjunctions’ sets of
variables.
Denote the output by BASE0 (f).

Theorem 2. The following holds for any semi-basic polynomials f and g.

1. BASE0 (f) is a BP
2. f ∼0 EXPAND (f) ∼0 EXPANDB (f) ∼0 EXPANDBC (f) ∼0 EXPANDBCP (f) ∼0

BASE0 (f)
3. f ∼0 g infers BASE0 (f) ∼= BASE0 (g), and hence BASE0 (f) = BASE0 (g) (mod

permutation of clauses and literals within clauses)

Proof. 1. Straightforward by definition.
2. It will suffice to verify that the passage from EXPANDBC to EXPANDBCP

preserves ∼0 (the rest is obvious). By the assumption there is a basic polynomial

126 Lev Gordeev

g such that g ∼0 f ∼0 EXPANDBC (f). Let X := Set (EXPANDBC (f)) =
⋃

κ∈K

Eκ,

Y := Set (EXPANDBCP (f)) =
⋃

κ∈K

Ep
κ, Z := Set (g) and note that Y and Z are

regular Σ2-sets. Moreover, we have X = Z ⊂ Y . Furthermore, by Lemma 11,
Eκ ⊂ Z infers Ep

κ ⊂ Z. Thus X = Z infers Y ⊂ Z = X, and hence X = Y , from
which we arrive at EXPANDBC (f) ∼0 EXPANDBCP (f), Q.E.D.

3. Follows from 2 and Lemma 5.

4 The link

Definition 3. Denote by Dn the set of all DNF
n∨

j=1

n∧
i=1

ℓi,j, for ℓi,j ranging over

arbitrary literals from Bn. Denote by Φn (also called Borel universal CNF) a

positive CNF
∧

ξ:n→n

∨
i<j∈n

v(ξ(i),i)Jv(ξ(j),j), in Bn2

0 .

Lemma 6. There exists a fixed bijective embedding

Dn ∋ f �→ valf :
{
vı | ı ∈ n2

}
→ Z�=0 ⊂ R�=0

such that for every f ∈ Dn, f is valid in Bn iff Val (Φn) = 1 in Bn2

0 , where
Val is the evaluation uniquely determined by valf .

Proof. For any f =
n∨

j=1

n∧
i=1

ℓi,j , let valf
(
v(i,j)

)
:=

{
k if ℓi,j = vk

−k if ℓi,j = vk
.

Remark 3. The lemma shows that the whole n − dim boolean DNF family Dn

is representable by one n2−dim positive Borel polynomial Φn and/or the corre-
sponding Borel set Set (Φn). Moreover, the validity problem for Dn is reducible
to the evaluation of Φn in Z�=0 by an algorithm whose Turing complexity is
polynomial in n. Note that circuit complexity of Φn is exponential in n.

Theorem 3. NP ⊂ P/poly holds iff there exists c ∈ N such that for every

n ∈ N there exists a n2 − dim Borel polynomial f ∼0 Φn, in Bn2

0 , such that #f
does not exceed nc.

Proof. Sufficiency easily follows from the last remark. Consider necessity. A bi-
nary relation J ⊂ n2 is called anti-equivalence iff the following holds:

(
∀x, y, z, u ∈ n2

)((xJy → yJx) ∧ (xJy ∧ yJz ∧ zJu→ xJu)
∧ (xJy ∧ yJz → ¬xJz)

)

Such J determines a disjoint partition n2 =
m⋃
i=1

Si ∪
m⋃
i=1

S′
i, m ≤ n, where

xJy ↔ (∃i ≤ m) ((x ∈ Si ∧ y ∈ S′
i) ∨ (y ∈ Si ∧ x ∈ S′

i))

and a DNF DJ =
n∨

j=1

n∧
i=1

ℓi,j ∈ Dn where ℓi,j :=

{
vk if (i, j) ∈ Sk

vk if (i, j) ∈ S′
k

Toward Combinatorial Proof of P<NP 127

with the corresponding word wJ = a1, · · · , an4 ∈ {0, 1}n
4

such that aκ =
1 ↔ ıJj holds for ı, j ∈ n2 with κ = n2 (ı− 1) + j. We observe that L ={

w ∈ {0, 1}n
4

| w = wJ where J is anti-equivalence and DJ is valid
}

is a coNP

complete language. Hence NP ⊂ P/poly iff L can be recognized in {0, 1}n
4

by a
polynomial size boolean circuit in De Morgan normal form. From this we arrive
at the required n2−dim Borel polynomial f ∼0 Φn by rewriting circuit’s sources
vκ and vκ to literals vıJvj and vıJvj, respectively, where κ = n2 (ı− 1)+j. [This
proof is elaborated in [K] - it upgrades considerations from [G], [GK].]

Now by Theorem 2 (3), we replace f ∼0 Φn by BASE0 (f) ∼= BASE0 (Φn) and
arrive, by contraposition, at the desired Conclusion 1 (see Chapter 1.2 above).

5 Structure of BASE0 (Φn)

Definition 4. Consider any n ×m matrix M = (ℓi,j)n×m, m ≤ n, where ℓi,j
are arbitrary literals from Bn. M is called valid iff so is the correlated boolean

DNF
m∨
j=1

n∧
i=1

ℓi,j. Let ∂ (M) :=
{
{(i, j) , (k, l)} ∈ 〈〈n〉〉 | j, l ≤ m ∧ ℓi,j = ℓk,l

}
. A

valid n × m matrix M is called basic DNFn matrix iff for any m′ ≤ n and a
valid n×m′ matrix M ′, ∂ (M ′) is not a proper subset of ∂ (M). Denote by Ωn

the set of ∂ (M) for M ranging over arbitrary basic DNFn matrices.b

Theorem 4. Suppose Ωn = {∂ (Mı) | ı = 1, · · · , r}. For ı ∈ r, let ∂ (Mı) =

{{αı,j, βı,j} ∈ 〈〈n〉〉 | j = 1, · · · , sı}. Then BASE0 (Φn) ∼=
r∨

ı=1

sı∧
j=1

vαı,j
Jvβı,j

.

Proof. Let fn be
r∨

ı=1

sı∧
j=1

vαı,j
Jvβı,j

, as above. Clearly fn is a BP and by Theorem

2 (1) so is BASE0 (Φn). Now by Lemma 5 and Theorem 2 (2), BASE0 (Φn) ∼= fn
iff BASE0 (Φn) ∼0 fn iff Φn ∼0 fn. That Φn ∼0 fn holds true follows by standard
boolean arguments. Hence BASE0 (Φn) ∼= fn, Q.E.D.

Example 2. There are two basic DNF2 matrices

M1 =

(
x x
x x

)
and M2 =

(
x x
x x

)

which are mutually isomorphic, i.e. ∂ (M1) = ∂ (M2). Hence

Ω2 = {{(1, 1) , (1, 2)} , {(1, 1) , (2, 2)} , {(2, 1) , (1, 2)} , {(2, 1) , (2, 2)}}

and #Ω2 = 1. There are 129 non-isomorphic basic DNF3 matrices, and hence
#Ω3 = 129. #Ω4 = 1023486.

Remark 4. By the last theorem, BASE0 (Φn) is uniquely determined by the set
Ωn. Loosely speaking, P < NP problem reduces to appropriate asymptotic com-
binatorial analysis of Ωn as n→∞. Ωn also admits explicit recursive definition
that enables detailed investigations along these lines.

128 Lev Gordeev

6 Appendix: Combinatorial translations

1. For any X,Y ⊂ 〈〈n〉〉 let X ⊘ Y :=

{
X if X ∩ Y = ∅
∅ else

2. Let T be a finite rooted binary tree whose gates are labeled by ∧ or ∨,
and whose sources x are labeled by elements 〈χ (x) , ρ (x)〉 of the ordinary
Cartesian product 2×〈〈n〉〉. Denote by #T the weight of T , i.e. total number
of all vertices occurring in T .

(a) A set of sources X is called T -conjunctive iff any pair of distinct sources
from X has the closest common ancestor ∧.

(b) Maximal T -conjunctive sets of sources are called T -cuts. Denote by
CUT (T) the set of all T -cuts.

(c) For any X ∈ CUT (T) and i ∈ 2, let X(i) := {ρ (x) | χ (x) = i ∧ x ∈ X}.
(d) Set � (T) :=

{
X+

(1) ⊘X(2) | X ∈ CUT (T)
}

(cf. Preliminaries 3.1).

3. For any labeled trees T and T ′, as above, let

T ≈ T ′ :⇔ (∀X ∈ � (T)) (∃X ′ ∈ � (T ′)) (X ′ ⊂ X)

∧ (∀X ′ ∈ � (T ′)) (∃X ∈ � (T)) (X ⊂ X ′)

4. Denote by Fn a labeled tree
∧

ξ:n→n

∨
i<j∈n

〈1, {(ξ (i) , i) , (ξ (j) , j)}〉.
5. Denote by CS the following combinatorial sentence:

T ≈ Fn fails for sufficiently large n if #T is merely polynomial in n.

Theorem 5. In Peano Arithmetic, P < NP is derivable from CS.

Proof. It is readily seen that CS is equivalent to C0. Now proof of Theorem 3
(see above) can be formalized by standard encodings in Peano Arithmetic.

7 References

[C]: S. Cook, The P versus NP Problem,
http://www.claymath.org/millennium/P vs NP/

[F]: H. Friedman. CLAY MILLENIUM PROBLEM:P = NP
http://www.math.ohio-state.edu/%7Efriedman/manuscripts.html

[G]: L. Gordeev, Proof-sketch: Why NP is not P, 2004
http://www-ls.informatik.uni-tuebingen.de/gordeew/publikationen/Proof

Sketch.pdf

[GK]: L. Gordeev, A. Krebs, Elementary interpretations of P vs. NP, 2003
http://www-ls.informatik.uni-tuebingen.de/gordeew/publikationen/e4.pdf

[K]: A. Krebs, Turing machine transformation, Preprint, 2005
[P]: E. Post, Finite combinatory processes - formulation I,

Journ. Symb. Logic 1 (1936), 103-105
[T]: A. Turing, On computable numbers, with an application to the Entschei-

dungsproblem, Proc. London Math. Soc. 42 (1937), 230-265

Models of Timing Abstraction in Simultaneous
Multithreaded and Multi-Core Processors

Neal A. Harman⋆

Department of Computer Science,
University of Wales Swansea, Swansea SA2 8PP, UK

n.a.harman@swan.ac.uk

Abstract. This paper builds on a series examing algebraic models of
microprocessors and their correctness. The modeling is based on using
recursive functions on many-sorted algebras and the reasoning is based on
the connection with algebraic specification and rewriting. Current models
can accommodate pipelined and superscalar processors. However, these
are no longer state-of-the-art: Simultaneous Multithreaded (SMT) and
Multi-core microprocessors enable a single microprocessor implementa-
tion to present itself to the programmer as multiple (virtual in the case
of SMT) processors with shared state. We extend the existing algebraic
tools for modeling microprocessors and their correctness to SMT and
Multi-Core systems. We outline how the one-step theorems for simplify-
ing verification are modified for SMT and Multi-Core processors.

Keywords: Algebraic Models; Formal Verification; Microprocessors; Multi-
Core; Simultaneous Multithreading

Formal approaches to the correctness of computer hardware are now well es-
tablished and enjoy a degree of industrial adoption, with a range of impressive
examples [1, 5, 12]. However, despite this success, there is little attention paid to
(a) how hardware systems should be modelled, and (b) what it means for an im-
plementation to be correct with respect to a specification. Modelling techniques
are wide-ranging and correctness concepts are - sometimes subtly and sometimes
wildly - different; often there is no clear statement of what ‘correctness’ means
in a particular instance. For example, some correctness models consider only
the passage of a single, isolated, instruction through an execution pipeline, and
do not consider interaction between instructions. This paper forms part of a
series that attempts to address these issues: focussing specifically on modeling
and not verification. The recursive schemes we use to model different processors
at different levels of abstraction are relatively simple theoretically. However, in
comparing models we obtain more complex equations made from schemes with
different data spaces and different timing abstractions.

Past work has addressed microprogrammed [10]; pipelined [9]; and super-
scalar [7] processors. The pipelined model has been used to verify the ARM6

⋆ The author would like to thank Prof. J V Tucker of his valuable suggestions when
revising this paper.

130 Neal A. Harman

microprocessor: the first ‘commercial’ processor to be verified not explicitly de-
veloped with verification in mind [5, 6]. Here, the model is extended to Simulta-
neous Multithreaded and Multi-Core processors.Our models are algebra-based:
however, they can be moved to other formalisms ([5, 6] uses HOL).

Microprocessor implementations are growing in complexity. The simplest and
most obvious case is an implementation G of a processor specification F in
which the execution of each machine instruction is completed before the next one
starts: now restricted to simple embedded processors. The timing relationship
between specification F and G in such a case is trivial: each clock cycle in F
corresponds uniquely with one or more cycles in G. However, more complex
timing relationships increase the complexity of the timing relationship between
F and G.

– Pipelined implementations overlap the execution of machine instructions.
Consequently the relationship between clock cycles in F and G is no longer
unique.

– Superscalar implementations attempt to execute multiple instructions si-
multaneously, sometimes out of program order. In the (common) event of
multiple instructions ending simultaneously (or out of order) there may be
no identifiable cycle of G’s clock S corresponding with a cycle of F ’s clock
T .

– Simultaneous Multithreaded (SMT)1 and Multi-Core implementations be-
have like multiple specification level processors F . In the case of SMT these
processors are virtual, and in the case of multi-core they are real. In both
cases, some of the implementation processor state is shared between spec-
ification level processors - more in the case of SMT than multi-core. Fur-
thermore, SMT processors are by definition also superscalar; in principle,
Multi-Core processors need not be, but currently-available examples are.

In this paper we extend a suite of existing models and correctness definitions
[4, 7, 9, 10] to accommodate SMT and multi-core processors. The structure of
the paper is as follows: first we briefly review the field; then we introduce the
basic concepts of the model: clocks dividing up time; retimings relating clocks at
different levels of abstraction and their extension to superscalar timing models;
iterated map models of microprocessors; correctness models and the one-step
theorems that simplify the verification process. Then we extend the existing
iterated map model and correctness model to accommodate SMT and Multi-
Core processors.

1 Related Work

There is a substantial body of work devoted to microprocessor verification and
only a brief summary is possible here. A common characteristic of much of the
work is the need to address a specific, usually complex2 example. Neglecting

1 called Hyperthreading by Intel.
2 At least with reference to the state-of-the-art in processor verification at the time.

Simultaneous Multithreaded and Multi-Core Processors 131

early work from the 1980s3 and earlier, a landmark leading to much subsequent
work is [2]. Key concepts like the relationship between time at different levels
of abstraction, and how it can be addressed appear [13, 7]. Work appears on
pipelined and superscalar models with parallels with our own: substantial differ-
ences are that although the concept of timing abstraction is present, formally the
notion of time itself is often not. Also, in pipelined and superscalar processors
are specification state components distributed in time in an implementation [16];
or (our position) are they functions of implementation state components from
the same time? Consider a three-stage pipeline in which instructions are fetched
three cycles ahead of execution4. Is the the program counter pc in the specifi-
cation the value from the implementation three [specification] cycles earlier, or
the current value less three5? This always enables use to separate timing and
data abstraction maps. Recent work addresses larger and more complex exam-
ples: the VAMP project, [1], the ARM6 verification project at Cambridge[5, 6],
Hunt’s Group Austin,Texas[14], and the UV group at Utah [12].

2 Clocks and Basic Models of Computers

A clock T is an algebra T = (N | 0, t + 1) denoting intervals of time called clock
cycles. Time is defined in terms events and not vice versa: typically, clock cycles
mark the beginning/end of ‘interesting’ events, and need not be equal in length.

Systems are modelled by state algebras St = (A, T | F) where A is the state
set and iterated map F : T × A → A. St is implemented in terms of next-state
algebra Nst = (A, T | init, next)

F (0, a) = init(a),

F (t + 1, a) = next(F (t, a))

where init : A → A and next : A → A are the initialization and next state
functions, implemented in terms of a machine algebra: finite bit sequences and
operations on bit sequences typical of those found in low-level hardware. State
set A is a Cartesian product of simpler state components. In general, we ex-
pect machine algebra operations to be at most simultaneous primitive recursive
functions over St [8]. Hence F is generally a simultaneous primitive recursive
function. The rôle of init is not to initialize the processor, but to ensure that
the execution trace of F starts in a legal state, since not all initial states a ∈ A
may be consistent with correct future execution: see section 4.

3 Correctness Models for Non-Pipelined, Pipelined and
Superscalar Processors

Correctness models relate iterated maps F : T × A → A and G : S × B → B.
The majority of our effort is devoted to time: the relationship between state sets

3 And also work on verifying processor fragments.
4 Neglecting complications to do with branching and so on.
5 More likely, some multiple of three.

132 Neal A. Harman

A and B is a typically a straightforward projection π : B → A. However, timing
abstraction is complex.

We define a retiming λ : S → T to be a surjective (all specification times
occur in the implementation) and monotonic (time does not go backwards) map.
Retimings are typically parameterized by the implementation state, and since
microprocessors are deterministic, λ is uniquely determined by the initial imple-
mentation state.

λ : B → [S → T]

In addition to retimings, we also need immersions λ : B → [T → S]:

λ(b)(t) = least s[λ(b)(s) ≥ t]

and the start operator start : [S → T]→ [S → S]

start(λ)(s) = λλ(s).

Microprocessors can be modelled at different levels of abstraction. We are
concerned with the lowest level accessible by a programmer: the programmer’s
model PM and the most abstract implementation level: the abstract circuit
model AC. Clock cycles in PM models correspond with machine instructions:
in AC models they are [some multiple of] system clock cycles. A non-pipelined
microprocessor implementation G of AC is correct with respect to a specification
F of PM if and only if the state of G under data abstraction map π is identical
to the state of F for all times s ∈ S corresponding with the start/end of cycles
of T . That is, for all s = start(λ)(s):

F (λ(b)(s), π(b)) = π(G(s, b)).

In a pipelined processor, instruction execution overlaps, and during instruc-
tion execution we cannot uniquely relate cycles of S with cycles of T . However,
instructions terminate at unique times: If instruction i terminates at time si,
then no other instruction will terminate at time si. Provided retiming λ relates
s to the time ti ∈ T corresponding with the end of instruction i and the start of
i + 1, our correctness model above still applies [9].

Superscalar processors attempt to execute multiple [pipelined] instructions
in parallel, and instructions are allowed to terminate simultaneously, or out of
program order. We cannot uniquely associate cycles of S corresponding with
the start/end of instructions with cycles of T . Our approach is based on the
following: in the event that instructions i and i + 1 terminate simultaneously or
out of order, it is not meaningful to ask ‘is G correct with respect to F after i
has terminated but before i + 1’ because there is no such time.

We introduce a new retirement clock R marking the completion of one or more
instructions, with retimings λ1 : T → R and λ2 : S → R. Retiming λ1 captures
the relationship between the sequential ‘one-at-a-time’ execution model of the
programmer and the actual order of instruction completion; λ2 marks instruction

Simultaneous Multithreaded and Multi-Core Processors 133

completion times with respect to the system clock. The non-surjective adjunct
retiming ρ : S → T constructed by

ρ(s) = λ1λ2(s)

relates system clock times and the completion of machine instructions.
Our existing correctness model still applies if we replace retiming λ with

adjunct retiming ρ [4].

4 One-Step Theorems

The obvious correctness proof for the models in section 3 is induction over clock
S. However, we can eliminate induction by using the one-step theorems. We
require two conditions.

– Iterated map G is time-consistent. That is:

G(s, b) = initG(G(s, b))

for all s = start(λ)(s) and where initG is the initialization function for iter-
ated map G. Equivalently, G(λ(b)(t)+λ(b)(t′), b) = G(λ(b)(t), G(λ(b)(t′), b)).

– Retiming λ is uniform. That is for all t ∈ T

λ(b)(t + 1)− λ(b)(t) = dur(b),

where dur : B → N+ is a duration function.

Informally, microprocessors are functions only of their state (and possibly inputs)
at any given time s ∈ S: not of the numerical value of s. The conditions above
establish the independence of AC model G from the numerical value of s. As
well as being necessary conditions for the application of the one-step theorems,
time-consistency and uniformity are characteristics of real hardware, so models
that did not possess them would be flawed.

Not all elements of a state set B will be consistent with correct execution
of G. For example, consider an example with program counter pc, memory m
and instruction register ir: we require ir = m[pc]. Time-consistency requires a
carefully constructed initialization function init which leaves all ‘legal’ states un-
changed: otherwise, for some state b ∈ B, init(b) �= b and hence time-consistency
would not hold. In practice, implementations are so complex that identifying
legal states can be difficult, and defining init problematic. A systematic mech-
anism is introduced in [9] that can be used whenever the contents of a pipeline
are uniquely determined at time s by its contents at time s. This is not always
the case - consider an example with two integer execution units, in which the
unit chosen for a particular instructions is determined by which has the shortest
queue: the contents of the queues may be a function of instructions that have
already left the pipeline.

134 Neal A. Harman

To establish that retiming λ is uniform, it is sufficient to define its immersion
in terms of a duration function:

λ(b)(0) = 0,

λ(b)(t + 1) = imm(b)(t) + dur(G(λ(b)(t), b).

Because a typical implementation G is extremely complex, defining dur in-
dependently of G is usually prohibitively difficult. The usual definition is non-
constructive of the form:

dur(b) = least s[end(G(s, b)),]

where end : B → B is some function that identifies when one (or more) in-
structions have completed. Because G forms part of the definition of dur and
λ, in this case our correctness model makes no statement about how long each
instruction will take to execute.

Initially, it seems that establishing time-consistency requires induction. How-
ever, the first one-step theorem addresses this. Given iterated map G : S×B →
B, and retiming λ : S → [S → T] then to establish

G(s, b) = initG(G(s, b))

for all s = start(λ)(s), it is sufficient to show that:

G(0, b) = initG(G(0, b)), and

G(λ(b)(1), b) = init(G(λ(b)(1), b)).

The proof [4] is omitted.
The second one-step theorem can be used to establish correctness.Given time-

consistent iterated maps F : S × A → A and G : S × B → B, and uniform
retiming λ : S → [S → T] then to establish

F (λ(b)(s), π(b)) = π(G(s, b))

for all s = start(λ)(s), it is sufficient to show that:

F (0, π(b)) = π(G(0, b)), and

F (1, π(b)) = π(G(λ(b)(1), b)).

The proof [4] is omitted.
We omit discussion of the case when F and G are related by an adjunct

retiming ρ other than to say that the one step theorems still hold [4, 9] .

5 VTM Model Definition

In this section, we consider how we can extend our existing microprocessor model
to accommodate SMT. From the perspective of an operating system kernel pro-
grammer, an SMT/multi-core processor appears as multiple PM -level processors

Simultaneous Multithreaded and Multi-Core Processors 135

in which some state is shared . These processor will be implemented, collectively,
by a single AC-level model We will use the term Virtual Thread Model (V TM)
to distinguish these processors from the conventional PM level.

The temporal relationship with other V TM processors is exposed via the
shared state. This relationship is defined by state information that is not present
in the V TM state, but is in the implementation (AC) state. For example, one
implementation may choose to prioritize one thread at the expense of others
as a function of state elements not visible at the V TM level, while another
implementation of the same V TM level model may not. Consequently, V TM
models must be defined over a PM state set extended by at least part of the
corresponding AC state. In this paper we choose to use the complete AC state.
However, there is a case for introducing a new, intermediate, level of abstraction
[11].

5.1 VTM State Set

Consider a Simultaneous Multi-Threaded/Multi-Core processor that is able to
execute n threads - that is, it appears to be n (virtual) processors. Each virtual
processor F i

VTM, i ∈ {1,. . . , n}, will operate over its own clock Ti; the state of
F i

VTM will be composed of some parts that are local to F i
VTM and some parts that

are shared with F 1
VTM,. . . , F i−1

VTM, F i+1
VTM,. . . , Fn

VTM. We assume, without loss of

generality, that the private state elements priv ∈ Σpriv
VTM precede the shared state

elements share ∈ Σshare
VTM in the state vector:

ΣVTM = Σpriv
VTM ×Σshare

VTM

The state trace of each V TM processor will be a function of its own local and
shared state, and the shared state of all other V TM processors. There is only
one shared state in the AC level implementation. However each individual V TM
model has its own copy of the shared state, from its own perspective: a conceit
we wish to maintain. Consequently we need to merge the shared states of each
V TM level processor.

Each V TM processor operates with its own clock: to correctly merge shared
states from different V TM processors, we must match states at the appropriate
times. We can relate times on different V TM processors using the [adjunct]
retimings and corresponding immersions between V TM and AC level clocks:
ρi(b)ρj(b)(tj) is the time on clock Ti corresponding to time tj ∈ Tj .

5.2 VTM Definition

Given clocks Ti, i ∈ {1,. . . , n}; AC state set ΣAC; V TM state set ΣVTM; adjunct
retimings ρi : ΣAC → [S → Ti]; AC state projection function πi : ΣAC → ΣVTM;

private state projection functions πi
priv : ΣVTM → Σpriv

VTM; merge operators τi :

(Σshare
VTM)n → Σshare

VTM, for i ∈ {1,. . . ,n}; initialization function init : ΣVTM →

136 Neal A. Harman

ΣVTM; and next-state function next : ΣVTM → Σpriv
VTM, we model an individual

V TM level processor F i
VTM as follows.

F i
VTM : Ti ×ΣAC → ΣVTM

F i
VTM(0, σAC) = init(πi(σAC))

F i
VTM(t + 1, σAC) = next[(πi

priv(F i
VTM(t, σAC))),

τi(F
i
VTM(t, σAC),

F 1
VTM(ρi(σAC)ρ1(σAC)(t), σAC),

...

F i−1
VTM(ρi(σAC)ρi−1(σAC)(t), σAC),

F i+1
VTM(ρi(σAC)ρi+1(σAC)(t), σAC),

...

Fn
VTM(ρi(σAC)ρn(σAC)(t), σAC))].

Note that as well as containing the AC-level state ΣAC, our V TM -level def-
inition contains the state dependent adjunct retimings ρi. Recall that it is usual
to define ρi in terms of some AC-level implementation (Section 3). Consequently,
the AC implementation is deeply embedded in the definition of a V TM level
model. We return to this issue in Section 6.

5.3 VTM Model Observations

A significant issue in our V TM level model is that next-state and initialization
functions are taken from a [probably existing] PM level model. Since the defi-
nitions of next and init are by far the most complex part of model definition, it
is important to be able to reuse them which is the case in the model above.

The definition above is the most general case: in some circumstances it can be
simplified, depending on the requirements of the merge operators τi that unify
the various shared state components of the n V TM processors. The definition of
τ will depend on the precise nature of the shared state Σshare

VTM; and the behaviour
of the processor implementation - for example, if two V TM processors attempt
to update the same state unit simultaneously. Commonly, the shared state will
consist of the processor’s main memory. In some circumstances, the definitions of
τi will not be functions of the private state; and in others all the merge operators
τi are identical: see [11].

5.4 Correctness of the VTM Model

We now consider what it means for a V TM level model to be correctly im-
plemented by an AC level model. Note that because there are n V TM level
processors corresponding to each AC level processor, there are n separate cor-
rectness statements.

Simultaneous Multithreaded and Multi-Core Processors 137

AC model G : S×ΣAC → ΣAC is said to be a correct implementation of V TM
model F i

VTM : Ti × ΣAC → ΣVTM, i ∈ {1, . . . , n} if, given adjunct retimings
ρi : Ret(′ΣAC, S, Ti) and surjective data abstraction map ψ : ΣAC → ΣVTM,
then for each clock Ti, for all s = start(ρi(σAC))(s) and state ∈ ΣAC, the
following conditions hold for i ∈ {1, . . . , n}

F i
VTM(ρi(σAC)(s), σAC) = ψ(G(s, σAC).

5.5 Extending the One-Step Theorems to the VTM Model

In considering how we can apply the one-step theorems to our VTM model, recall
that the AC-level processor G : S ×B → B is essentially identical to any other
AC processor model: that is, it represents the implementation of a more abstract
specification. We are interested in it correctness with respect to some uniform
adjunct retiming ρ at times s such that s = start(ρ)(s). Hence the existing one-
step theorems show how to establish that G is time-consistent. Clearly we can
establish the uniformity of retiming ρi by construction in terms of a duration
function (section 4). However, we must establish that the time-consistency of
the collection of V TM level processors Fi, i ∈ {1 . . . n} can be determined by
the first one-step theorem. Note we omit the straightforward (though tedious)
proofs [11].

Let Fi : Ti×ΣAC → ΣVTM be the ith VTM component F : S×ΣAC → ΣAC.
For all t ∈ Ti and i ∈ {1,. . . ,n}:

Fi(t + t′, σAC) = Fi(t, Fi(t
′, σAC))

if and only if

Fi(0, σAC) = init(Fi(0, σAC), and

Fi(1, σAC) = init(Fi(1, σAC)

The proof is by induction over t and requires the following lemma:

Fj(ρj(σAC)ρi(σAC)(t + t′), σAC) = Fj(ρj(β)ρi(β)(t), β),

for each Fj : Tj ×ΣAC → ΣVTM j = {1,. . . ,i− 1, i + 1,. . . ,n} and t ∈ Ti, where
β ∈ ΣAC is the AC system state at time t′ ∈ Ti, defined as follows:

β =[πpriv(F1(ρ1(σAC)ρi(σAC)(t′), σAC)), . . . ,

πpriv(Fi−1(ρi−1(σAC)ρi(σAC)(t′), σAC)),

πpriv(Fi(t
′, σAC)),

πpriv(Fi+1(ρi+1(σAC)ρi(σAC)(t′), σAC)), . . . ,

[πpriv(Fn(ρn(σAC)ρi(σAC)(t′), σAC))]

Informally, ρj(σAC)ρi(σAC)(t + t′) ∈ Tj corresponds to time t + t′ ∈ Ti.
Evaluating Fj at this time, from starting state σAC ∈ ΣAC is equivalent to first
evaluating Fj at time t′ ∈ Ti (resulting in intermediate state σAC

′ ∈ ΣAC), and
then evaluating Fj at time t ∈ Ti from starting state β. The proof is again by
induction over t ∈ Ti.

138 Neal A. Harman

6 Concluding Remarks

We have extended our existing models of microprocessors and their correctness
to superscalar SMT and multi-core processor implementations, which represent
the state-of-the-art in current commercial implementation. However, although
we can successfully model such processors, and define what it means for them
to be correct, practical verification of realistic examples would be a formidable
undertaking. (This is generally the case: practical verifications of complete non-
trivial processors are currently limited to non-superscalar pipelined processors.)
There are some practical steps that can be taken to reduce complexity: we omit
discussion here, but see [11]. Although helpful, these simplifications are unlikely
to make realistic examples practical at the current time. Nonetheless, we feel
that a considered approach to modeling processors and their correctness that
runs ahead of actual application is useful: the modeling approaches to pipelined
processors that were ultimately used to verify ARM6 [5, 6] were developed some
years in advance of their practical use.

A point worthy of note is the presence of the definition of the AC level
implementation in the definition of the V TM level model. This should not be
surprising: in practice, the implementation of an SMT or multi-core processor
does impact the behaviour seen by programmers; and the timing behaviour of
all processors is a function of their implementation. This last fact is generally ac-
knowledged in our model by the definition of retimings in terms of the AC-level
model. There has been a general weakening of the long-established separation of
processor architecture and implementation: good compilers for modern proces-
sors need to be aware of implementation details (e.g. how many functional units
are there, and of what type) in order to generate high-quality code.

Finally, observe that a situation similar to SMT occurs with operating system
kernels: a single physical processor presents as multiple virtual processors. The
situation is somewhat different (in a kernel a privileged virtual processor at the
higher level of abstraction, rather than the lower) but we believe the work here
can be adapted to accommodate operating system kernels. Together with [15]
on modelling high- and low-level languages and their relationships, this would
produce a chain of fundamentally identical models from high-level languages to
abstract hardware.

References

1. S Beyer, C Jacobi, D Kröning, D Leinenbach and W Paul. Instantiating
uninterpreted functional unit and memory system: Functional verification
of VAMP In D Geist and T Enrico, editors, Correct Hardware Design and
Verification Methods, pages 51-65. Lecture Notes in Computer Science 2860,
Springer-Verlag, 2003.

2. J Burch and D Dill. Automatic verification of pipelined microprocessor
control. In D Dill, editor, Proceedings of the 6th International Conference,
CAV’94: Computer-Aided Verification, pages 68 – 80. Lecture Notes in Com-
puter Science 818, Springer-Verlag, 1994.

Simultaneous Multithreaded and Multi-Core Processors 139

3. D Cyrluk, J Rushby, and M Srivas. Systematic formal verification of inter-
preters. In IEEE international conference on formal engineering methods
(ICFEM’97, pages 140 – 149, 1997.

4. A C J Fox. Algebraic Representation of Advanced Microprocessors. PhD
thesis, Department of Computer Science, University of Wales Swansea, 1998.

5. A C J Fox. Formal specification and verification of ARM6. In David Basin
and Burkhart Wolff, editors, TPHOLs ’03, volume 2758 of LNCS, pages
25-40. Springer-Verlag, 2003.

6. A C J Fox. An algebraic framework for verifying the correctness of hardware
with input and output: a formalization in HOL.In J.L. Fiadeiro et al. (Eds.):
CALCO 2005, LNCS 3629, pp. 157-174, 2005

7. A C J Fox and N A Harman. Algebraic models of superscalar microproces-
sor implementations: A case study. In B Möller and J V Tucker, editors,
Prospects for Hardware Foundations, pages 138 – 183. Lecture Notes in
Computer Science 1546, Springer-Verlag, 1998.

8. A C J Fox and N A Harman. Algebraic Models of Correctness for Micro-
processors Formal Aspects of Computing, 12(4): 298–312, 2000.

9. A C J Fox and N A Harman. Algebraic Models of Correctness for Abstract
Pipelines. The Journal of Algebraic and Logic Programming, 57 (2003),
71-107

10. N A Harman and J V Tucker. Algebraic models of microprocessors: Archi-
tecture and organisation. Acta Informatica, 33:421 – 456, 1996.

11. N A Harman. Algebraic Models of Virtual Processor Implementations. In
preparation, 2005.

12. R Hosabettu, G Gopalakrishnan, and M Srivas, Formal Verification of a
Complex Pipelined Processor. In Formal Methods in System Design, 23(2),
171–213, 2003.

13. S Miller and M Srivas. Formal verification of an avionics microprocessor.
Technical report, SRI International Computer Science Laboratory CSL-95-
04, 1995.

14. S Ray and W A Hunt .: Deductive Verification of Pipelined Machines Using
First-Order Quantification. In Computer Aided Verification CAV 2004,
pages 31–43, Springer-Verlag, Lecture Notes in Computer Science 3114,
2004.

15. K Stephenson. Algebraic specification of the Java virtual machine. In
B Möller and J V Tucker, editors, Prospects for Hardware Foundations.
Lecture Notes in Computer Science 1546, Springer-Verlag, 1998.

16. P Windley and J Burch. Mechanically checking a lemma used in an auto-
matic verification tool. In A Camilleri and M Srivas, editors, Formal meth-
ods in computer-aided design, pages 362 – 376. Lecture Notes in Computer
Science 1166, Springer-Verlag, 1996.

Finite Prediction of
Recursive Real-Valued Functions

Eiju Hirowatari1, Kouichi Hirata2, and Tetsuhiro Miyahara3

1 Center for Fundamental Education, The University of Kitakyushu
Kitakyushu 802-8577, Japan

eiju@kitakyu-u.ac.jp
2 Department of Artificial Intelligence, Kyushu Institute of Technology

Iizuka 820-8502, Japan
hirata@ai.kyutech.ac.jp

3 Faculty of Information Sciences, Hiroshima City University
Hiroshima 731-3194, Japan

miyahara@its.hiroshima-cu.ac.jp

Abstract. This paper concerns learning theory of recursive real-valued
functions that are one of the formulations for the computable real func-
tion. Hirowatari et al. (2005) have introduced the finite prediction of
recursive real-valued functions, which is based on a finite prediction ma-
chine that is a procedure to request finite examples of a recursive real-
valued function f and a datum of a real number x, and to output a
datum of a real number as the value of f(x). In this paper, we newly
establish the interaction of the criterion RealFP for finite prediction
of recursive real-valued functions and the criteria RealEx, RealCons,
RealFin and RealNum! for inductive inference of recursive real-valued
functions.

1 Introduction

A computable real function [12, 13, 16], of which origin draws back into the clas-
sical work by Turing [15], is a model of the computations with continuous data
like real numbers. Recently, the computable real function has been developed in
a new research field of computational paradigm [4, 6] related to analysis, math-
ematical logic and computability. In this field, the computable real function is
characterized from the logical viewpoints (cf., [4, 6]).

A recursive real-valued function [8–10], which we mainly deal with in this
paper, is one of the formulations for the computable real function. The recursive
real-valued function is formulated as a function that maps a sequence of closed
intervals which converges to a real number to a sequence of closed intervals which
converges to another real number.

Inductive inference of recursive real-valued functions has been first intro-
duced by Hirowatari and Arikawa [7] and developed by their co-authors [1, 8].
In their works, the criteria such as RealEx and RealNum! for inductive in-
ference of recursive real-valued functions have been formulated as extensions of

Finite Prediction of Recursive Real-Valued Functions 141

Ex for identification in the limit and Num! for identification by enumeration [5],
respectively, and their interaction has been widely studied (cf., [3, 11]).

On the other hand, the prediction or extrapolation of recursive functions [2, 3]
is to predict the n-th element of the sequence given the first n− 1 elements by a
prediction machine. The prediction machine is realized as simply an algorithmic
device that accepts as input a finite (possibly empty) sequence of values and
may output some value and halt, or may diverge.

Note that the examples in the prediction of recursive real-valued functions is
not ordered, while the examples in the prediction of recursive functions implicitly
assumed to be ordered, which is a reason why the criterion NV of the prediction
is named after ‘next value.’ Then, Hirowatari et al. [9] have formulated predic-
tion of recursive real-valued functions as an infinite process and introduced the
criterion RealNV as similar as NV [2, 3].

In the criterion RealNV, it is necessary to assume that the prediction ma-
chine can receive infinitely many approximate values with any error bound of the
target function, so RealNV is considered as a supervised learning process and
is insufficient to capture the realistic prediction of functions. On the other hand,
Hirowatari et al. [10] have formulated the finite prediction, that is, prediction
of recursive real-valued functions from finite examples, and introduced another
criterion RealFP.

The finite prediction is based on a finite prediction machine that is a proce-
dure to request finite examples of a recursive real-valued function f and a datum
of a real number x, and to output a datum of a real number as the value of f(x).
Since the criterion RealFP contains no infinite process and preserves consis-
tency in the sense of RealCons [8], it is a more realistic model for prediction
of recursive real-valued functions than RealNV.

Note here that this prediction model is concerned with our practical work
on discovery of differential equations from numerical data [14]. However, in [10],
there remains an open problem to compare the criterion RealFP with other
criteria for inductive inference of recursive real-valued function given in [8].

Hence, in this paper, by comparing the criterion RealFP with other criteria
RealEx, RealCons, RealFin and RealNum!, we newly establish the interac-
tion of their criteria as in Fig. 1 (left). In particular, by focusing on the interaction
between RealFP and RealCons, we show that RealFP and RealCons are
incomparable, that is, RealCons\RealFP �= ∅ and RealFP\RealCons �= ∅.

2 Recursive Real-Valued Functions

In this section, we prepare some notions for a recursive real-valued function,
which is one of the formulations for a computable real function [12, 13, 16]. Refer
to papers [7–9] in more detail.

Let N,Q and R be the sets of all natural numbers, rational numbers and real
numbers, respectively. By N+ and Q+ we denote the sets of all positive natural
numbers and positive rational numbers, respectively. By [a, b], we denote a closed

142 Eiju Hirowatari, Kouichi Hirata, and Tetsuhiro Miyahara

Fig. 1. The interaction of criteria for finite prediction and inductive inference of recur-
sive real-valued functions (left) and one of recursive real-valued functions defined on a
fixed rational closed interval [8, 10] (right). We will show in this paper the existence of
the functions in the place marked by •.

interval, where a, b ∈ R such that a < b. Furthermore, the length of a closed
interval [a, b] is defined as b− a.

Throughout of this paper, h is a real-valued function from S to R, where
S ⊆ R. By dom(h) we denote the domain of h, that is, dom(h) = S.

Definition 1. Let f and g be functions from N to Q and Q+, respectively,
and x a real number. We say that a pair 〈f, g〉 is an approximate expression
of x if f and g satisfy the following conditions: (1) limn→∞ g(n) = 0, and (2)
|f(n) − x| ≤ g(n) for each n ∈ N . Note here that f(n) and g(n) represent an
approximate value of x and an error bound of x at point n, respectively. A real
number x is recursive if there exists an approximate expression 〈f, g〉 of x such
that f and g are recursive.

Definition 2. For S ⊆ R, a rationalized domain of S, denoted by RDS , is a
subset of Q×Q+ satisfying the following conditions:

(1) Every interval in RDS is contained in S. For each 〈p, α〉 ∈ RDS , it holds
that [p− α, p + α] ⊆ S.

(2) RDS covers the whole S. For each x ∈ S, there exists an element 〈p, α〉 ∈
RDS such that x ∈ [p− α, p + α]. In particular, if x ∈ S is an interior point
in S, then there exists an element 〈p, α〉 ∈ RDS such that x ∈ (p−α, p+α).

(3) RDS is closed under subintervals. For each 〈p, α〉 ∈ RDS and 〈q, β〉 ∈ Q×Q+

such that [q − β, q + β] ⊆ [p− α, p + α], it holds that 〈q, β〉 ∈ RDS .

For a real-valued function h, we denote RDdom(h) by RDh simply.

Definition 3. Let h be a real-valued function. A rationalized function of h,
denoted by Ah, is a computable function from RDh to Q × Q+ satisfying the
following condition: For each x ∈ dom(h), let 〈f, g〉 be an approximate expression
of x. Then, there exists an approximate expression 〈f0, g0〉 of h(x) and it holds
that Ah(〈f(n), g(n)〉) = 〈f0(n), g0(n)〉 for each n ∈ N such that 〈f(n), g(n)〉 ∈
RDh.

Finite Prediction of Recursive Real-Valued Functions 143

For a real-valued function h, an algorithm which computes h means an algo-
rithm which computes a rationaized function Ah of h.

Definition 4. A function h is a recursive real-valued function if there exists a
rationalized function Ah : RDh → Q × Q+ of h, where RDh is a rationalized
domain of dom(h). We demand thatAh(〈p, α〉) does not halt for all 〈p, α〉 �∈ RDh.
Furthermore, by RRVF we denote the set of all recursive real-valued functions.

For a set S ⊆ R, the set DomS = {〈p, α〉 ∈ Q × Q+ | [p − α, p + α] ⊆ S}
is a rationalized domain of S. If a function h : S → R is a recursive real-valued
function, then there exists a rationalized function Ah : DomS → Q × Q+ of
h. Hence, without loss of generality, we can assume that a rationalized domain
RDh of dom(h) is fixed to {〈p, α〉 ∈ Q ×Q+ | [p − α, p + α] ⊆ dom(h)}. Then,
Ah(〈p, α〉) always halts for each 〈p, α〉 such that [p− α, p + α] ⊆ dom(h).

As an approximation of a real number x, we deal with a pair 〈p, α〉 ∈ Q×Q+

of rational numbers such that p is an approximate value of x and α is its error
bound, i.e., x ∈ [p− α, p + α]. We call such a pair 〈p, α〉 a datum of x.

Definition 5. An example of a recursive real-valued function h is a pair 〈〈p, α〉,
〈q, β〉〉 satisfying that there exists a real number x ∈ dom(h) such that 〈p, α〉
and 〈q, β〉 are data of x and h(x), respectively.

Definition 6. A presentation of a recursive real-valued function h is an infinite
sequence σ = w1, w2, . . . of examples of h in which, for each real number x ∈
dom(h) and ζ > 0, there exists an example wk = 〈〈pk, αk〉, 〈qk, βk〉〉 such that
x ∈ [pk − αk, pk + αk], h(x) ∈ [qk − βk, qk + βk], αk ≤ ζ and βk ≤ ζ.

By σ[n] and σ{n}, we denote the initial segment of n examples in σ and the set
of all examples in σ[n], respectively.

An inductive inference machine (IIM, for short) is a procedure that requests
inputs from time to time and produces algorithms, called conjectures, that com-
pute recursive real-valued functions from time to time. Let σ be a presentation
of a function. For σ[n] = 〈w1, w2, . . . , wn〉 and an IIMM, byM(σ[n]) we denote
the last conjecture of M after requesting examples w1, w2, . . . , wn as inputs.

Definition 7. Let σ be a presentation of a function and {M(σ[n])}n≥1 an infi-
nite sequence of conjectures produced by an IIM M. A sequence {M(σ[n])}n≥1

converges to an algorithm ah if there exists a number n0 ∈ N such thatM(σ[m])
equals ah for each m ≥ n0.

Definition 8. Let h be a recursive real-valued function and T a set of re-
cursive real-valued functions. An IIM M RealEx-infers h, denoted by h ∈
RealEx(M), if, for each presentation σ of h, the sequence {M(σ[n])}n≥1 con-
verges to an algorithm that computes an extension of h.

Definition 9. Let h be a recursive real-valued function and T a set of recur-
sive real-valued functions. An IIM M RealCons-infers h, denoted by h ∈
RealCons(M), if it satisfies the following conditions.

144 Eiju Hirowatari, Kouichi Hirata, and Tetsuhiro Miyahara

1. h ∈ RealEx(M).
2. For each presentation σ of h, conjecture an =M(σ[n]) and 〈〈p, α〉, 〈q, β〉〉 ∈

σ[n] such that [p−α, p+α] ⊆ S, there exists an x ∈ [p−α, p+α] such that
hn(x) ∈ [q− 2β, q + 2β], where hn is a recursive real-valued function and an
is an algorithm which computes hn.

Definition 10. Let h be a recursive real-valued function and T a set of re-
cursive real-valued functions. An IIM M RealFin-infers h, denoted by h ∈
RealFin(M), if for each presentation σ of h, M outputs a unique algorithm
that computes an extension of h after some finite time from presented σ’s data.

Let T be a set of recursive real-valued functions and X ∈ {Ex,Cons,Fin}.
Then, an IIM M RealX-infers T if M RealX-infers every h ∈ T , and T is
RealX-inferable if there exists an IIM that RealX-infers T . By RealX, we
denote the class of all RealX-inferable sets of recursive real-valued functions.

Definition 11. A set T of recursive real-valued functions is recursively enu-
merable if there exists a recursive function Ψ such that the set T is equal to the
set of all functions computed by algorithms Ψ(1), Ψ(2), · · ·. By RealNum!, we
denote the class of all recursively enumerable sets of recursive real-valued func-
tions. We also say that a set T of recursive real-valued functions is recursively
enumerable if there exists a set H of recursive real-valued functions which is a
set of extensions of functions in T and H is recursively enumerable.

We call functions x, −x, 1
x , ex, log x, sinx, arctanx, x

1
2 , arcsinx and the

constant functions cr for each recursive real number r basic functions. Here, 1
x

for x = 0, log x for each x ≤ 0, x
1
2 for each x ≤ 0, and arcsinx for each x ∈ R

such that |x| ≥ 1 are undefined as usual. By BF we denote the set of all basic
functions.

Definition 12. By EF we denote the smallest set containing BF and satisfying
the following condition: If h1, h2 ∈ EF , then h1 + h2, h1 × h2, h1 ◦ h2 ∈ EF . We
say that a function in EF an elementary function.

We can show that every elementary function is a recursive real-valued func-
tion [7]. Hence, we can conclude that the class of recursive real-valued functions
is rich enough to express the elementary functions with recursive real coefficient.

3 Finite Prediction Machine

In this section, we introduce a finite prediction machine of recursive real-valued
functions.

Let w = 〈〈p, α〉, 〈q, β〉〉 be an example of h. Then, we can imagine an example
w of h as a rectangle box [p − α, p + α] × [q − β, q + β]. Then, a set W =
{w1, w2, . . . , wn} of such boxes is finite examples of h if each example contains
a point (x, h(x)) on the graph of h.

Finite Prediction of Recursive Real-Valued Functions 145

A finite prediction machine (FPM , for short) is a procedure that requests
finite examples of a recursive real-valued function and a datum of a real number,
and that outputs a datum of a real number. For an FPM P, finite examples W
of a recursive real-valued function and a datum 〈p, α〉 of a real number, by
P(W, 〈p, α〉), we denote the output of P after requesting W and 〈p, α〉 as inputs.
In this paper, we assume that P(W, 〈p, α〉) is defined for each finite examples W
of a recursive real-valued function and datum 〈p, α〉 of a real number.

Definition 13. Let h be a recursive real-valued function, W finite examples of
h, and 〈p, α〉 a datum of a real number such that [p−α, p+α]∩dom(h) �= ∅. Then,
we say that an FPM P predicts h from W exactly if the following conditions hold.

(1) 〈〈p, α〉,P(W, 〈p, α〉)〉 is an example of h.
(2) If 〈p, α〉 ∈ RDh, then it holds that h(x) ∈ [q − β, q + β] for each x ∈

[p− α, p + α], where 〈q, β〉 = P(W, 〈p, α〉).
(3) For each x ∈ dom(h) and each approximate expression 〈fx, gx〉 of x, there ex-

ists an approximate expression 〈fh(x), gh(x)〉 of h(x) satisfying that, for each
m ∈ N with 〈fx(m), gx(m)〉 ∈ RDh, it holds that 〈fh(x)(m), gh(x)(m)〉 =
P(W, 〈fx(m), gx(m)〉).

Now consider the set T of recursive real-valued functions. It is difficult that,
for a target function h ∈ T , an FPM predicts h from finite examples exactly.
Then, we propose prediction from finite examples approximately which permits
some error bound.

Definition 14. Let h be a recursive real-valued function, 〈〈p, α〉, 〈q, β〉〉 a datum
of a recursive real-valued function and W finite examples of a recursive real-
valued function. Then, we say that 〈〈p, α〉, 〈q, β〉〉 is near to h if there exists an
x ∈ [p−α, p+α] such that h(x) ∈ [q− 2β, q + 2β]. Furthermore, we say that W
is near to h if there exists an x ∈ [p−α, p + α] such that h(x) ∈ [q− 2β, q + 2β]
for each 〈〈p, α〉, 〈q, β〉〉 ∈W .

Definition 15. Let h be a recursive real-valued function, W finite examples of
h, and 〈p, α〉 a datum of a real number such that [p − α, p + α] ∩ dom(h) �= ∅.
Then, we say that an FPM P predicts h from W approximately if there exists a
recursive real-valued function h′ such that the following conditions hold.

(1) W is near to h′.
(2) It holds that dom(h) = dom(h′).
(3) P predicts h′ from W exactly.

For a target function h, by using a presentation σ of h, we introduce an FPM
which finitely predicts h in the limit.

Definition 16. Let h be a recursive real-valued function. Then, we say that
an FPM P predicts h with limiting convergence if, for each presentation σ of h,
there exists a natural number k ∈ N such that P(σ{n}, 〈p, α〉) = P(σ{k}, 〈p, α〉)
for each n ∈ N such that n ≥ k and each 〈p, α〉 ∈ Q×Q+.

146 Eiju Hirowatari, Kouichi Hirata, and Tetsuhiro Miyahara

Definition 17. Let h be a recursive real-valued function. Then, we say that an
FPM P finitely predicts h if the following conditions hold.

(1) P predicts h from W approximately, for each finite examples W of h.
(2) P predicts h with limiting convergence.

Also let T be a set of recursive real-valued functions. Then, we say that an
FPM P finitely predicts T if P finitely predicts every h ∈ T , and T is finitely
predictable if there exists an FPM that finitely predicts T . By RealFP, we
denote the class of all finitely predictable sets of recursive real-valued functions.

4 Finite Prediction and Inductive Inference

In this section, we investigate the interaction of the criteria RealFP, RealEx,
RealCons, RealFin and RealNum!. First we note that the following relations
hold: RealFin ⊆

�
RealCons, RealCons ⊆

�
RealEx, RealFin∩RealNum! �=

∅, RealFin \RealNum! �= ∅, and RealNum! \RealEx �= ∅ [8].
Now let S be a subset of R such that there exist the following computable

functions Com1
S and Com2

S from Q×Q+ to {0, 1}.

Com1
S(〈p, α〉) =

{
1 if [p− α, p + α] ⊆ S,
0 otherwise.

Com2
S(〈p, α〉) =

{
1 if [p− α, p + α] ∩ S �= ∅,
0 otherwise.

For the set S, let T S be a recursively enumerable set of recursive real-valued
functions defined on a fixed domain S. Then, the following theorem holds.

Theorem 1. T S ∈ RealFP ∩RealCons.

Proof. Since T S is recursively enumerable and the rationalized domain of S is
recursive, there exists an IIM M which RealCons-infers T S .

For each function h ∈ T S , let W be finite examples of h, and 〈p, α〉 a datum
of a real number such that [p − α, p + α] ∩ S �= ∅. Furthermore, let σ be a
presentation of h such that σ{n} = W for an n ∈ N . Then, we can construct
the following FPM P.

P(W, 〈p, α〉) =

⎧
⎪⎪⎨
⎪⎪⎩

M(σ[n])(〈p, α〉) if [p− α, p + α] ⊆ S,
M(σ[n])(Bh(〈p, α〉)) if [p− α, p + α] �⊆ S

and [p− α, p + α] ∩ S �= ∅,
〈q, β〉 otherwise,

where 〈q, β〉 ∈ Q×Q+. Here we can construct a computable function Bh which
receives 〈p, α〉 ∈ Q×Q+ and outputs 〈p0, α0〉 ∈ Q×Q+ such that [p0−α0, p0 +
α0] ⊆ [p − 2α, p + 2α] ∩ S and [p0 − α0, p0 + α0] ∩ [p − α, p + α] �= ∅. Hence, P
finitely predicts h. ⊓⊔

Finite Prediction of Recursive Real-Valued Functions 147

By ϕj we denote the partial recursive function from N to N computed by
a program j. By P we denote the set {ϕ0, ϕ1, ϕ2, . . .} of all partial recursive
functions from N to N and by R the set of all recursive functions.

For the domain Sj ⊆ N of ϕj ∈ P and S =
⋃

i∈Sj
(i− 1

2 , i+ 1
2), the following

function hj : S → R (S ⊆ R) is called the stair function of ϕj : hj(x) = ϕj(i)(x ∈
(i − 1

2 , i + 1
2), i ∈ S0). For S ⊆ P, we call a stair function of a function in S a

stair function in S simply.

Theorem 2. (1) RealFP ∩RealFin ∩RealNum! �= ∅.
(2) (RealFP ∩RealCons ∩RealNum!) \RealFin �= ∅.
(3) (RealFP ∩RealFin) \RealNum! �= ∅.
(4) (RealFP ∩RealCons) \ (RealNum! ∪RealFin) �= ∅.

Proof. (1) It is obvious that {h(x) = 0} ∈ RealFP∩RealFin∩RealNum!. (2)
Let CQ be the set of all constant functions cr : R→ Q such that cr(x) = r for each
r ∈ Q. By Theorem 1, CQ ∈ (RealFP ∪RealCons ∩RealNum!). Since CQ �∈
RealFin, it holds that CQ ∈ (RealFP∩RealCons∩RealNum!) \RealFin.
(3) Let U be a subset of N which is not recursively enumerable and CU the set
of all constant functions cr : R → U such that cr(x) = r for each r ∈ U . Then,
it holds that (RealFP ∩RealFin) \RealNum! �= ∅. (4) Let S0 be the set of
all recursive functions f from N to N such that ϕf(0) = f and f(n) ≤ 1 for each
n ∈ N+, and SFS0

the set of all stair functions in S0. Since SFS0
is the set

of all stair functions in S0, it holds that SFS0
∈ RealFin \RealNum!. Since

RealFin ⊆
�

RealCons, there exists an IIM M whose outputs are algorithms
that computes a recursive real-valued functions defined on the domain SN =⋃

i∈N (i− 1
2 , i + 1

2), and then M RealCons-infers every h ∈ SFS0
.

For each function h ∈ SFS0
, let W be finite examples of h, and 〈p, α〉 a

datum of a real number such that [p−α, p+α]∩SN �= ∅. Furthermore, let σ be
a presentation of h such that σ{n} = W for an n ∈ N . Then, we can construct
the following FPM P.

P(W, 〈p, α〉) =

⎧
⎨
⎩
M(σ[n])(〈p, α〉) if [p− α, p + α] ⊆ SN ,
M(σ[n])(B0(〈p, α〉)) if p− α < − 1

2 and |p + α| < 1
2 ,

〈 12 , 1
2 〉 otherwise.

Here we can construct a computable function B0 which receives 〈p, α〉 ∈ Q×Q+

and outputs 〈p0, α0〉 ∈ Q×Q+ such that [p0 − α0, p0 + α0] ⊆ [p− 2α, p + 2α] ∩
(− 1

2 ,
1
2). Since P finitely predicts h, it holds that SFS0

∈ RealFP.

Let C−Q be the set of all constant functions cr : (−∞,− 1
2) → Q such that

cr(x) = r for each r ∈ Q. Since C−Q ∈ (RealFP ∩ RealCons ∩ RealNum!) \
RealFin, it holds that SFS0

∪ C−Q ∈ (RealFP ∩RealCons) \ (RealNum! ∪
RealFin). ⊓⊔

Theorem 3. (1) RealFin ∩RealNum! \RealFP �= ∅.
(2) RealFin \ (RealFP ∪RealNum!) �= ∅.
(3) (RealCons ∩RealNum!) \ (RealFP ∪RealFin) �= ∅.
(4) RealCons \ (RealFP ∪RealFin ∪RealNum!) �= ∅.

148 Eiju Hirowatari, Kouichi Hirata, and Tetsuhiro Miyahara

Proof. Note that no FPM finitely predicts the following function t(x) [9], where
Φn(n) is a step counting function for computation of ϕn(n).

t(x) =

⎧
⎨
⎩
| tanπ

(
n− 1

2m − 1
2

)
| if x ∈ [n− 1

2m , n + 1
2m] for n,m ∈ N+

such that ϕn(n) is defined and Φn(n) = m,
| tanπ(x− 1

2)| otherwise.

Then, for the sets CU , CQ and SFS0
∪C−Q in the proof of Theorem 2, {t(x)}, CU ∪

{t(x)}, CQ ∪{t(x)} and SFS0
∪C−Q ∪{t(x)} are the sets showing the statements,

respectively. ⊓⊔
Theorem 4. (1) (RealFP ∩RealEx) \ (RealCons ∪RealNum!) �= ∅.
(2) RealEx \ (RealFP ∪ReanCons ∪RealNum!) �= ∅.
Proof. Let R0 be the set of all recursive function f ∈ R satisfying the following
conditions: There exist j ∈ N+ and k ∈ N such that f(k − 1) = 0, f(k) = j,
and f(n) ∈ {1, 2} for each n ∈ N such that n > k. Furthermore, let SFR0

be
the set of all stair functions in R0. Then, SFR0

∈ RealEx \RealCons.
(1) For each h ∈ SFR0

, let W be finite examples of h, and Point(W) a set
of all 〈x, y〉 ∈ N × N such that, for each 〈〈p0, α0〉, 〈q0, β0〉〉 ∈ W , |p0 − x| <
min(α0,

1
2 − α0) and |q0 − y| < min(β0,

1
2 − β0). Furthermore, let σPoint(W) =

〈x1, y1〉, 〈x2, y2〉, . . . , 〈xk, yk〉 be a finite sequence such that Point(W) = {〈x1, y1〉,
〈x2, y2〉, . . . , 〈xk, yk〉} and x1 < x2 < . . . < xk. Then, there exists an algorithm
Al that, after receiving finite examples W of h, behaves as follows: If there exist
j ∈ N+ and t ∈ N such that yt−1 = 0, yt = j, and yn ∈ {1, 2} for each n ∈ N
such that t < n and n ≤ k, then Al outputs 〈t, j〉, otherwise Al outputs 0, where
σPoint(W) = 〈x1, y1〉, 〈x2, y2〉, . . . , 〈xk, yk〉.

By Al(W), we denote the output of Al receiving W . Let π be a computable
function from N ×N to N such that π(〈x, y〉) = y for each 〈x, y〉 ∈ N ×N .

For each h ∈ SFR0
, h is defined on the domain SN =

⋃
i∈N (i − 1

2 , i + 1
2).

For each 〈p, α〉 a datum of a real number such that [p− α, p + α] ∩ SN �= ∅, we
can construct the following FPM P.

P(W, 〈p, α〉) =

⎧
⎨
⎩
〈ϕπ(Al(W))(x∗), α〉) if [p− α, p + α] ⊆ SN , Al(W) �= 0,

and Φπ(Al(W))(x∗) ≤ 1
α

〈y∗2 , y∗2 〉 otherwise,

where x∗ ∈ N and y∗ ∈ Q such that |x∗ − p| < 1
2 and y∗ = max{p + α |

〈〈p, α〉, 〈q, β〉〉 ∈ W}. Here, Φn(m) is a step counting function for computation
of ϕn(m). Hence, P finitely predicts h.

(2) By using the set {t(x)} in the proof of Theorem 3, it holds that SFR0
∪

{t(x)} ∈ RealEx \ (RealFP ∪ReanCons ∪RealNum!). ⊓⊔
Theorem 5. (RealFP ∩RealNum!) \RealEx �= ∅.
Proof. Let Ĥ be {ĥ, h0, h1, h2, · · ·}, where hi and ĥ are the following recursive
real-valued functions for each i ∈ N .

hi(x) =

{
1 if x ≤ 0,
0 if x > 1

2i .
ĥ(x) =

{
1 if x < 0,
0 if x > 0.

Then, it holds that Ĥ ∈ RealFP ∩RealNum! \RealEx. ⊓⊔

Finite Prediction of Recursive Real-Valued Functions 149

5 Conclusion

In this paper, we have compared the criterion RealFP for finite prediction of
recursive real-valued functions with the criteria RealEx, RealCons, RealFin

and RealNum! for inductive inference of recursive real-valued functions and
shown the interaction as Fig. 1 (left), where it is open whether or not the set
marked by # is not empty. Furthermore, we have shown the interaction of the
criteria defined on a fixed rational closed interval as Fig. 1 (right) [8, 10]. While
we have shown the interaction between RealFP and RealCons, we have not
characterized the interaction between RealNV and RealCons. Note that the
relationship RealFP ⊆ RealNV follows from the definitions of RealFP and
RealNV [9]. Hence, it is a future work to investigate the interaction between
RealFP, RealNV and RealCons in more detail.

References

1. K. Aps̄ıtis, S. Arikawa, R. Freivalds, E. Hirowatari, C. H. Smith, On the inductive
inference of recursive real-valued functions, Theoret. Comput. Sci. 219, 3–17, 1999.

2. J. M. Bārzdiņš, R. V. Freivalds, On the prediction of general recursive functions,
Soviet Mathematics Doklady 13, 1224–1228, 1972.

3. J. Case, C. Smith, Comparison of identification criteria for machine inductive
inference, Theoret. Comput. Sci. 25, 193–220, 1983.

4. S. B. Cooper, B. Löwe, L. Torenvliet (eds.), New computational paradigms, Proc.
1st International Conference on Computability in Europe, LNCS 3526, 2005.

5. E. M. Gold, Language identification in the limit , Inform. Control 10, 447–474,
1967.

6. T. Grubba, P. Hertling, H. Tsuiki, K. Weihrauch (eds.), Proc. 2nd International
Conference on Computability and Complexity in Analysis, 2005.

7. E. Hirowatari, S. Arikawa, Inferability of recursive real-valued functions, Proc.
ALT’97, LNAI 1316, 18–31, 1997.

8. E. Hirowatari, S. Arikawa, A comparison of identification criteria for inductive
inference of recursive real-valued functions, Theoret. Comput. Sci. 268, 351–366,
2001.

9. E. Hirowatari, K. Hirata, T. Miyahara, S. Arikawa, On the prediction of recursive
real-valued functions, Proc. Computability in Europe 2005, 93-103, 2005.

10. E. Hirowatari, K. Hirata, T. Miyahara, Prediction of recursive real-valued functions
from Finite Examples, Proc. JSAI 2005 Workshops, LNAI 4012, 224–234, 2006.

11. S. Jain, D. Osherson, J. S. Royer, A. Sharma, Systems that learn: An introduction
to learning theory (2nd ed.), The MIT Press, 1999.

12. K. Ko. Complexity theory of real functions, Birkhäuser, 1991.
13. M. B. Pour-El, J. I. Richards, Computability in analysis and physics, Springer-

Verlag, 1988.
14. K. Niijima, H. Uchida, E. Hirowatari, S. Arikawa, Discovery of differential equa-

tions from numerical data, Proc. DS’98, LNAI 1532, 364–374, 1998.
15. A. M. Turing, On computable numbers, with the application to the Entschei-

dungsproblem, Proc. London Mathematical Society 42, 230–265, 1936.
16. K. Weihrauch, Computable analysis – An introduction, Springer-Verlag, 2000.

The Dyment Reducibility on the Algebraic
Structures and on the Families of Subsets of ω

Iskander Kalimullin1

Kazan State University, Kazan, 420008, Kremlevskaya str. 18, Russia, e-mail:
Iskander.Kalimullin@ksu.ru

Abstract. In the paper a positive reducibility on the special noncom-
putable algebraic structures and the connected reducibilities on the fam-
ilies of subsets of ω are studied.

Keywords: algebraic structure, enumeration operator, partial compu-
table function, computably enumerable sets, c.e. families of subsets of
ω.

1 Introduction

Following Dyment [3] we will call any set P of partial functions on ω partial mass
problem. Extending the Medvedev reducibility [6] on the total mass problems
Dyment defined the corresponding reducibility for any partial mass problems.
Namely P ≤ Q iff there is a enumeration operator Ψ such that for any ψ ∈ Q,
Ψ(ψ) is a partial function and Ψ(ψ) ∈ P .

In this paper we study the Dyment reducibility on partial mass problems of
presentability of special algebraic structures. Given a countable structure A we
consider the partial mass problem PD(A) of presentability of A containing all
atomic diagrams D(B), where B ∼= A and the universe of B is a subset of ω. If
we require here that the universe of B is equal to ω then we get the Medvedev
mass problem PM (A) of presentability of A.

It is easy to check that PD(A) ≤ PD(B) implies PM (A) ≤ PM (B) and the
reverse does not hold (see, e.g., Proposition 2). Also the reducibility PD(A) ≤
PD(B) is equivalent to the computable embedding of the class {C : C ∼= B} into
the class {C : C ∼= A} in the sense of the paper [1].

Let S be a family of subsets of ω. There are many natural ways of coding the
family into an algebraic structure. For example, let AS be the structure with
three binary predicates T 0, T 1, T 2 on the universe

{aX,i
j : X ∈ S & i ∈ ω & j ∈ ω} ∪ {bX,i

j : X ∈ S & i ∈ ω & j ∈ X}

such that

T 0
AS

= {〈aX,i
0 , aX,i

j 〉 : X ∈ S & i ∈ ω & j ∈ ω},

T 1
AS

= {〈aX,i
j , aX,i

j+1〉 : X ∈ S & i ∈ ω & j ∈ ω},

The Dyment Reducibility on the Algebraic Structures of ω 151

T 2
AS

= {〈aX,i
j , bX,i

j 〉 : X ∈ S & i ∈ ω & j ∈ X}.
Then, for a countable family S the partial mass problem PD(AS) is equivalent

to the partial mass problem PE(S) containing all partial enumerations of S, i.e.,
all (semicharacteristic functions of) sets R such that

{∅} ∪ S = {R(x) : x ∈ ω}, where R(x) = {y ∈ ω : 〈x, y〉 ∈ R}.

We will say that S1 is Dyment reducible to S2 (and write S1 ≤ S2) for a
countable families S1 and S2 iff PD(AS1

) ≤ PD(AS2
), or equivalently PE(S1) ≤

PE(S2).
Under this reducibility the zero degree consists of all c.e. families (i.e., the

families with c.e. partial enumerations), e.g., this contains the family CE of all
c.e. sets.

Notations. For any X ⊆ ω and x ∈ ω we will write

X(x) = {y : 〈x, y〉 ∈ X};

X [x] = {〈x, y〉 : 〈x, y〉 ∈ X};
X [>x] = {〈z, y〉 : z > x & 〈z, y〉 ∈ X};

X⌈x = {y : y < x & y ∈ X};
x + X = {x + y : y ∈ X};
〈x,X〉 = {〈x, y〉 : y ∈ X}.

The definitions and basic properties of the enumeration operators and the e-
reducibility can be find in the monograph [7]. In particular, each e-operator Φ
can be defined by the corresponding c.e. set of axioms 〈x, F 〉, where x ∈ ω and
F is a finite subset of ω, so that for any X ⊆ ω

Φ(X) = {x ∈ ω : (∃F ⊆ X)[〈x, F 〉 ∈W]}.

The jump a′ of an e-degree a is the e-degree of the graph of the set K(A) =
{x : x ∈ Φx(A)}, where A ∈ a and {Φx}x∈ω is an acceptable numbering of all
enumeration operators (see [2] for further information). In particular, 0′

e is the
e-degree of complements K of creative sets K.

2 Natural families of c.e. sets and the ≤σ-reducibility

To illustrate the Dyment reducibility consider the following families:
InfCE—the family of infinite c.e. sets;
InfCom—the family of infinite computable sets;
ComF—the family of graphs of computable functions.

Note that these families are not c.e. (for a degree a these families have a-c.e.
enumerations iff 0′′ ≤ a′, see [4]).

Proposition 1. (Kalimullin, Puzarenko [5]). InfCE ≡ InfCom ≡ ComF ∪
{ω}, and hence InfCE ≤ ComF.

152 Iskander Kalimullin

Proof. The reducibility InfCE ≤ InfCom follows from the fact that each infi-
nite c.e. set contains an infinite computable set. Hence

InfCE = {B ∪Wm : B ∈ InfComp & m ∈ ω}.

Then, for any partial enumeration R of InfCom the set

{〈〈m + 1, n〉, x〉 : R(n) �= ∅ & x ∈ R(n) ∪Wm}

is a partial enumeration of InfCE.

To prove InfCom ≤ ComF ∪ {ω}, we will use that the infinite computable
sets coincides with the images of increasing computable functions. Define the
e-operator Θ, such that Θ(B) = ω, if there are integers x < y and b ≤ a such
that 〈x, a〉 ∈ B and 〈y, b〉 ∈ B, and otherwise Θ(B) = {a : (∃x)[〈x, a〉 ∈ B]}.
Then InfCom = {Θ(B) : B ∈ ComF ∪ {ω}} and for any partial enumeration
R of ComF ∪ {ω} the set {〈n, x〉 : x ∈ Θ(R(n))} is a partial enumeration of
InfCom.

It remains to prove ComF ∪ {ω} ≤ InfCE. For each partial computable
function ϕm define the partial computable function cm(x) = (μs)[ϕm,s(x) ↓].
Fix an injective effective listing {τn}n∈ω of all finite strings in the alphabet ω
(which will be considered also as partial functions whose domains are the initial
segments of ω).

Let Lm be the set consisting of all n such that τn(x) = cm(x) for all x < |τn|.
Clearly, the binary predicate n ∈ Lm is computable, and Lm is infinite iff ϕm is
total. Then there is computable sequence of e-operators Θm, m ∈ ω, such that
Θm(B) = graph (ϕm), if B ⊆ Lm, and Θm(B) = ω otherwise.

It follows, that ComF ∪ {ω} = {Θm(B) : B ∈ InfCE & m ∈ ω} and,
therefore, for any partial enumeration R of InfCE the set

{〈〈m + 1, n〉, y〉 : R(n) �= ∅ & y ∈ Θm(R(n))}

is a partial enumeration of ComF ∪ {ω}.
⊓⊔

Proposition 2. (Kalimullin, Puzarenko [5]). ComF �≤ InfCE.

Proof. Suppose that PE(ComF) ≤ PE(InfCE) via an e-operator Φ. Then the
c.e. set {〈x + 1, y〉 : y ∈ Ψ(ω)(x)} will be a partial enumeration of ComF , but
this is impossible since ComF is not c.e.

Indeed, first note that for any finite set F there a partial enumeration R ⊇ F
of InfCE, since ω ∈ InfCE. Then Ψ(ω)(x) is a graph of a partial function
for any x ∈ ω. Moreover, if Ψ(ω)(x) �= ∅ then Ψ(ω)(x) is a graph of a total (and
computable) function. Let f be a total computable function. Then for any partial
enumeration R of InfCE there is a column x such that Ψ(R)(x) = graph (f),
hence for some x we have graph (f) = Ψ(ω)(x) since the last is a graph of a
function. ⊓⊔

The Dyment Reducibility on the Algebraic Structures of ω 153

Note that in contrast with the last result it is easy to check that

PM (AComF) ≡ PM (AInfCom) ≡ PM (AInfCE)

and this gives an example when PM (A) ≤ PM (B) and PD(A) �≤ PD(B).

All reducibilities S1 ≤ S2 from Proposition 1 are provided by computable
sequences {Φi}i∈ω of e-operators (and in some cases by only one e-operator)
such that

S1 = {Φi(X) : X ∈ S2 & i ∈ ω}.

Kalimullin and Puzarenko [5] introduced and studied a generalization of this
special case of Dyment reducibility.

Definition 1. (Kalimullin, Puzarenko [5]). 1) Let S be a family of subsets of
ω. Any set {〈n,m〉} ⊕ (A1 ⊕ . . .⊕Am), where Ai ∈ S for each i, 1 ≤ i ≤ m, we
will call an S-cortege. The family of all S-corteges we denote via Q(S).
2) We write S1 ≤0

σ S2 if for some e-operator Φ we have

{∅} ∪ S1 = {Φ(B ⊕ E(S2)) : B ∈ Q(S2)},

where E(S2) is the set of (canonical indices of) finite sets F such that F ⊆ X
for some X ∈ S2 (in fact, the set E(S2) is e-equivalent to the ∃-theory of AS2

).
2) We write S1 ≤σ S2 if for some e-operator Φ and an S2-cortege A we have

{∅} ∪ S1 = {Φ(A⊕B ⊕ E(S2)) : B ∈ Q(S2)}.

Note that if S2 is a countable family, then S1 ≤0
σ S2 implies S1 ≤ S2, and if

S2 consists of c.e. sets (or even of sets e-reducible to E(S2)), then S1 ≤σ S2 is
equivalent to S1 ≤0

σ S2.

In contrast with Dyment reducibility the ≤σ- and ≤0
σ-reducibilities can be

considered on uncountable families. Also, these are tightly connected with Σ-
definability on admissible sets.

Theorem 1. (Kalimullin, Puzarenko [5]). 1) S1 ≤0
σ S2 iff S1 is Σ-definable in

IHIF(AS2
) without parameters.

2) S1 ≤σ S2 iff S1 is Σ-definable in IHIF(AS2
) with parameters.

Thus, for a fixed family S2 the families S1 ≤σ S2 precisely are the c.e. families
of subsets of ω in the hereditary finite superstructure over the structure AS2

. For
all simple examples of countable families we always have S1 ≤ S2 iff S1 ≤0

σ S2,
so that it is natural to state the following problem.

Problem 1. Let S1 and S2 be countable families.
1) Is S1 ≤0

σ S2 equivalent to S1 ≤ S2?
2) Is S1 ≤σ S2 equivalent to PD(AS1

) ≤ PD(AS2
, c1, . . . , cm) for some c1, . . . cm ∈

AS2
?

154 Iskander Kalimullin

In the case of positive answer we get an arithmetical characterization of Dy-
ment reducibily of two families S1 and S2 presented by their partial enumerations

R1 and R2. Namely, the predicate {R(x)
1 : x ∈ ω} ≤0

σ {R(x)
2 : x ∈ ω} is Σ0

4 un-
der R1 and R2 by the definition of ≤0

σ. In contrast, for one-element families we
have {A} ≤ {B} iff A ≤e B and the last condition is Σ0

3 by the definition of
enumeration reducibility.

The author still does not know an easy counterexample for the negative
answer of this problem, but an existence of such counterexamples follows from
a structural difference between ≤- and ≤σ-reducibilities. In general, there is a
feeling that ≤σ is more like Turing and enumeration reducibilities on subsets of
ω. In particular, the following theorem can be proved.

Theorem 2. If a family S is not c.e. then for any sequence of sets Xi, i ∈ ω,
there is a set A such that S �≤σ F(A) and A �≤e Xi for all i ∈ ω, where F(A) is
the family containing all singletons {x} for x ∈ A and the set ω.

Proof. Since for all A ⊆ ω each element of F(A) is c.e. and E(F(A)) = ω it
suffices to construct a set A satisfying the requirements

P〈i,j〉 : A �= Φj(Xi);

Nn : S0 �= {Φn(C) : C ∈ Q(F(A))}
for every i, j, n ∈ ω, where S0 = S ∪ {∅} and {Φn}n∈ω is a computable sequence
of all e-operators.

At each stage s of the construction below we will define a finite set As such
that As ⊆ As+1 and A = ∪sAs will be the desired set. At each stage s we will
also define an auxiliary finite set Bs such that Bs ⊆ Bs+1 and At ∩ Bs = ∅ for
all s and t.

Construction.
Stage s = 0. A0 = B0 = ∅.
Stage s+1 = 2〈i, j〉+1. Let x〈i,j〉 = (μx)[x /∈ As∪Bs]. If x〈i,j〉 ∈ Φj(Xi) define

As+1 = As and Bs+1 = Bs∪{x〈i,j〉}. If x〈i,j〉 /∈ Φj(Xi) define As+1 = As∪{x〈i,j〉}
and Bs+1 = Bs.

Stage s + 1 = 2n + 2. Since S is not c.e. we have

S0 �= {Φn(C) : C ∈ Q(F(Bs))}.

Let Yn be such set that

Yn ∈ (S0 − {Φn(C) : C ∈ Q(F(Bs))}) ∪ ({Φn(C) : C ∈ Q(F(Bs))} − S0).

If Yn ∈ S0 − {Φn(C) : C ∈ Q(F(Bs))} then define As+1 = As and Bs+1 = Bs.
Suppose that Yn ∈ {Φn(C) : C ∈ Q(F(Bs))} − S0. Then we can fix a

finite set Gn ⊆ Bs such that Yn = Φn(Cn) for some Cn ∈ Q(F(Gn)). Define
As+1 = As ∪Gn and Bs+1 = Bs.

The description of the construction is finished.

The Dyment Reducibility on the Algebraic Structures of ω 155

Let A = ∪sAs. Since As ∩ Bt = ∅ for all s, t ∈ ω, we have x〈i,j〉 ∈ A ⇐⇒
x〈i,j〉 /∈ Φj(X) for each i, j ∈ ω. Hence, all requirements P〈i,j〉 are satisfied and
A �≤e Xi for each i ∈ ω.

To show that all requirements Nn are satisfied fix arbitrary n ∈ ω and con-
sider the stage s + 1 = 2n + 2 of the construction.

If at this stage we have Yn ∈ {Φn(C) : C ∈ Q(F(Bs))} − S0 then the
construction provides

Yn ∈ {Φn(C) : C ∈ Q(F(As+1))} ⊆ {Φn(C) : C ∈ Q(F(A))}.

Otherwise we have Yn ∈ S0 − {Φn(C) : C ∈ Q(F(Bs))}, and hence

Yn /∈ {Φn(C) : C ∈ Q(F(A))},

since A ⊆ Bs and {Φn(C) : C ∈ Q(F(A))} ⊆ {Φn(C) : C ∈ Q(F(Bs))}.
Thus, Yn ∈ S0 ⇐⇒ Yn /∈ {Φn(C) : C ∈ Q(F(A))}. Therefore, each

requirements Nn is satisfied. ⊓⊔

3 ≤ is not equivalent to ≤0
σ

Note that Theorem 2 does not hold for the Medvedev reducibility on the families.
Moreover, Wehner [8] found a non-c.e. family C of finite sets such that PM (AC) ≤
PM (B) for any noncomputable countable structure B.

Definition 2. (Wehner [8]). 1) For each i, n, s ∈ ω let Ω
(n)
i,s = {x ∈ ω : 〈i, x〉 ∈

Wn,s} and Ω
(n)
i = ∪sΩ

(n)
i,s = {x ∈ ω : 〈i, x〉 ∈Wn}.

2) For each n ∈ ω define the c.e. family Cn = {Ω(n)
i : i ∈ ω}. Note that each c.e.

family F coincides with Cn for some n ∈ ω.

3) Define the partial computable function r(n) = ((μ〈i, x, s〉)[〈n, x〉 ∈ Ω
(n)
i,s])1. It

is easy to see that (Ω
(n)
r(n))

[n] �= ∅ if r(n) ↓ .

4) Fix a computable function g such that (Ω
(n)
r(n))

[n] = 〈n,Wg(n)〉 if r(n) ↓ and

Wg(n) = ∅ otherwise.
5) Let C be the family defined by

C = {〈n, V 〉 : n ∈ ω & V is finite & V �= Wg(n)}.

Theorem 3. (Wehner [8]) 1) C is not c.e.
2) There is a computable sequence of partial Turing functionals Δn, n ∈ ω such
that for any noncomputable set X each function ΔX

n is total and {0, 1}-valued,
and

C = {C : (∃n ∈ ω)[χC = ΔX
n]}.

Hence, PM (AC) ≤ Q for any total mass problem Q without computable elements.

156 Iskander Kalimullin

Unfortunately, it is impossible to strength this theorem for the Dyment reducibil-
ity. Moreover, for any computable sequence of e-operators Ψn, n ∈ ω, there are
continually many sets X ⊆ ω such that C �= {Ψn(X) : n ∈ ω}. For this reason, we
make a correction in the Wehner’s family (allowing infinite but c.e. elements),
so that at this new family the Dyment reducibility has no the same property as
≤σ in Theorem 2.

Definition 3. Let D be the family defined by

D = {〈n, V 〉 : n ∈ ω & V is c.e. & V �= Wg(n)}.

Proposition 3. D is not c.e.

Proof. Suppose that D = Ω(n) for some n ∈ ω. Then r(n) ↓ and Ω
(n)
r(n) ∈ D.

Therefore, Ω
(n)
r(n) = (Ω

(n)
r(n))

[n] = 〈n,Wg(n)〉. This contradicts with the definition

of D. ⊓⊔

Proposition 4. ∅ ∈ D.

Proof. By Proposition 3 there is n0 ∈ ω such that Wg(n0) �= ∅, since otherwise

D = {〈n,Wm ∪ {k}〉 : n,m, k ∈ ω}.

Therefore, ∅ = 〈n0, ∅〉 ∈ D. ⊓⊔

Proposition 5. There is a computable sequence of e-operators Θn, n ∈ ω, such
that for each n ∈ ω and X /∈ Δ0

2 the set Θn(X) is computable and Θn(X) �= Wn.

Proof. We define each e-operator Θn, n ∈ ω, by induction on stages s ∈ ω
Stage s = 0. Θn,0 = ∅.
Stage s+1. For a finite set F we say that an axiom 〈〈x, y〉, F 〉 is axiom of type

I at the stage s+1, if x < s, y < s, Wn,s⌈x ⊆ Θn,s(F) and Θn,s(F)⌈x−Wn,s �= ∅.
We say also that an axiom 〈〈x, 2y + 1〉, F 〉 is axiom of type II at the stage s+ 1,
if x < s, y < s, Wn,s⌈x ⊆ Θn,s(F) and x ∈ F .

The e-operator Θn,s+1 is produced from Θn,s by adding all axioms of types
I and II at the stage s + 1.

Set Θn = ∪sΘn,s for each n ∈ ω. Fix n ∈ ω. It is easy to see, that if an axiom
〈〈x, y〉, F 〉 is the axiom of type I at a stage s, then 〈〈x, y′〉, F 〉 is also the axiom
of type I at the stage s for each y′ < y. Analogously, if an axiom 〈〈x, 2y + 1〉, F 〉
is the axiom of type II at a stage s, then 〈〈x, 2y′ + 1〉, F 〉 is also the axiom of
type II at the stage s for each y′ < y. It follows that for a set X and an integer
x we have one of the following possibilities:
Case 1. (Θn(X))[x] = {〈x, y〉 : y ∈ ω};
Case 2. (Θn(X))[x] = {〈x, 2y + 1〉 : y ∈ ω} ∪ {〈x, y〉 : y < t} for some t;
Case 3. (Θn(X))[x] = {〈x, 2y + 1〉 : y < s} ∪ {〈x, y〉 : y < t} for some s and t.

Thus, for each x ∈ ω and X ⊆ ω the set (Θn(X))[x] is computable.

The Dyment Reducibility on the Algebraic Structures of ω 157

Note that Case 1 holds iff there are infinitely many y such that for some
F ⊆ X the axiom 〈〈x, y〉, F 〉 is the axiom of type I at some stage, and the last
condition is equivalent to Θn(X)⌈x−Wn �= ∅ and Wn⌈x ⊆ Θn(X).

If Case 1 does not hold then Case 2 holds iff there are infinitely many y such
that for some F ⊆ X the axiom 〈〈x, 2y + 1〉, F 〉 is the axiom of type II at some
stage, and the last is equivalent to x ∈ X and Wn⌈x ⊆ Θn(X).

In the Case 3 we also note that if x /∈ X then there are no axioms of type II
〈〈x, 2y + 1〉, F 〉 such that F ⊆ X, and hence (Θn(X))[x] = {〈x, y〉 : y < t} for
some t.

Fix now an arbitrary set X which is not Δ0
2. Suppose that Θn(X) = Wn.

Then for each x ∈ ω the Case 2 holds if x ∈ X, otherwise (if x /∈ X) the
Case 3 holds, i.e., (Θn(X))[x] = {〈x, y〉 : y < t} for some t. Thus, x ∈ X iff
〈x, (μy)[〈x, y〉 /∈Wn] + 1〉 ∈Wn for each x ∈ ω, so that X ∈ Δ0

2. A contradiction.
Thus, Θn(X) �= Wn. To prove a computability of Θn(X), suppose at first

that Wn ⊆ Θn(X). Then x0 ∈ Θn(X) − Wn for some x0, and hence for all
x > x0 we have the Case 1, i.e., (Θn(X))[>x0] = ω[>x0] is computable.

Suppose now that Wn−Θn(X) �= ∅. Fix t ∈ ω such that Wn,t⌈t−Θn(X) �= ∅.
Then for each x > t and s > t there are no axioms 〈〈x, y〉, F 〉 of types I or II at
the stage s, such that F ⊆ X. Also, for all axioms 〈〈x, y〉, F 〉 of one of types I,II
at the stages s ≤ t we have necessarily x < s. Therefore, (Θn(X))[>t] = ∅.

Thus, in any case there is x0 ∈ ω such that (Θn(X))[>x0] is computable,
and hence Θn(X) is computable, since for each x the set (Θn(X))[x] is also
computable. ⊓⊔
Theorem 4. There is a computable sequence of e-operators Ψk, k ∈ ω, such
that D = {Ψk(X) : k ∈ ω} for each X /∈ Δ0

2.

Proof. Let Θn, n ∈ ω, be the computable sequence of e-operators from Proposi-
tion 5.

By the s-m-n Theorem there is a computable function h(n, t) such that for
all n, t ∈ ω

Wh(n,t) = {z ∈ ω : z + t ∈Wn}.
For each m, n, x ∈ ω let Ψ〈m,n,x〉 be the e-operator such that for each X ⊆ ω

– Ψ〈m,n,x〉(X) = ∅, if x /∈Wm ∪Wg(n);
– Ψ〈m,n,x〉(X) = 〈n,Wm〉, if x ∈ (Wm −Wg(n)) ∪ (x ∈Wg(n) −Wm);
– Ψ〈m,n,x〉(X) = 〈n,Wm⌈t ∪ (t + Θh(g(n),t)(X))〉 otherwise, where t ∈ ω is the

least integer such that x ∈Wm,t ∩Wg(n),t.

Suppose that 〈n,Wm〉 ∈ D. By the definition of D there is x ∈ (Wg(n) −
Wm) ∪ (Wm −Wg(n)). Then Ψ〈m,n,x〉(X) = 〈n,Wm〉 for all X ⊆ ω.

Fix arbitrary X /∈ Δ0
2. Since ∅ ∈ D, it remains to prove that Ψ〈m,n,x〉(X) ∈ D

for all m, n, x ∈ ω such that x ∈Wm ∪Wg(n). Then either x ∈ (Wm −Wg(n))∪
(Wg(n) −Wm), or x ∈Wm ∩Wg(n).

In the first case we have Wm �= Wg(n) and Ψ〈m,n,x〉(X) = 〈n,Wm〉. Then
Ψ〈m,n,x〉(X) ∈ D.

158 Iskander Kalimullin

In the last case we have

Ψ〈m,n,x〉(X) = 〈n,Wm⌈t ∪ (t + Θh(g(n),t)(X))〉

for some t ∈ ω. Suppose that

Wm⌈t ∪ (t + Θh(g(n),t)(X)) = Wg(n).

Then we have Θh(g(n),t)(X) = Wh(g(n),t) by the choice of h, and this contradicts
Proposition 5. Thus,

Wm⌈t ∪ (t + Θh(g(n),t)(X)) �= Wg(n),

and hence Ψ〈m,n,x〉(X) ∈ D, since Θh(g(n),t)(X) is computable by Proposition 5.
Thus, D = {Ψk(X) : k ∈ ω}. ⊓⊔

Corollary 1. There is a computable sequence of e-operators Ψ̂k, k ∈ ω, such
that D = {Ψ̂k(X) : k ∈ ω} for each X such that (dege(X))′ > 0′

e.

Proof. Since (dege(X))′ = 0′
e ⇐⇒ K(X) ∈ Δ0

2 we can set Ψ̂k = Ψk ◦K. ⊓⊔

Corollary 2. There are families of c.e. sets S1 and S2 such that S1 ≤ S2 and
S1 �≤σ S2.

Proof. Let S1 be the family D from Definition 3. Apply Theorem 2 with S = S1

and X1 = K to obtain a set A /∈ Σ0
2 such that S1 �≤σ F(A) = {{x} : x ∈ A}∪{ω}.

On the another hand, F(A) can not have a partial enumeration R ∈ Δ0
2,

since otherwise A ∈ Σ0
2 . Thus, S1 ≤ F(A) by Theorem 4. Set S2 = F(A). ⊓⊔

In fact, Theorems 2 and 4 give something more: the predicate ≤ is not iso-
morphic to the predicate ≤0

σ on the class of countable families and on the class
of families of c.e. sets (since there are only countably many families with Δ0

2

enumerations).
Note that Theorem 2 with S = D and X1 = K produces the 0′′-computable

set A, so that the family S2 in the proof of Corollary 2 has Σ0
2 partial enumera-

tions. For the set A consider the family G(A) = {{x} : x ∈ A}∪{{x, y} : x �= y}.
Then G(A) ≡0

σ F(A) and G(A) has a Δ0
2 partial enumeration. Thus, the families

S1 and S2 in the Corollary 2 can be chosen with Δ0
2 partial enumerations.

The paper finishes by the following open problems.

Problem 2. Give a direct proof for Corollary 2.

It is easy to check that for any family S ≤σ ComF of c.e. sets the index set
{x ∈ ω : Wx ∈ S} is Σ0

3 . The previous problem will be solved if such property
does not hold for Dyment reducibility.

Problem 3. Let S contains only c.e. sets and S ≤ ComF . Must the index set
{x ∈ ω : Wx ∈ S} be Σ0

3?

The Dyment Reducibility on the Algebraic Structures of ω 159

In particular, let CoInf be the family of all c.e. sets with infinite complements,
its index set is Π0

3 -complete so that CoInf �≤σ ComF . It is possible to check
that PM (ACoInf) ≤ PM (AComF), but for the Dyment reducibility it is not so
clear.

Problem 4. Is CoInf ≤ ComF?

Note that CoInf can not be Dyment equivalent to ComF . Moreover, for degree
a the family CoInf has a-c.e. partial enumeration iff 0′′′ ≤ a′′, so that InfCE �≤
CoInfCE.

The family S2 from the Corollary 2 has no partial enumerations R ∈ Δ0
2. The

family G(A) can not have a partial enumeration R such that (dege(R))′ = 0′
e, if

A /∈ Σ0
2 . By this reason the next problem seems interesting.

Problem 5. Does S1 ≤ S2 imply S1 ≤0
σ S2 if the family S2 has a partial enumer-

ation R such that (dege(R))′ = 0′
e?

Theorem 4 and even Corollary 1 can not help to build a counterexample to
this problem.

The last problem is connected to Theorem 3. Does the analogue of this the-
orem hold for the Dyment reducibility?

Problem 6. Is there a noncomputable countable structure B such that PD(B) ≤
Q for any partial mass problem Q without partial computable elements?

A positive answer would essentially improve Theorem 3. Corollary 1 gives
only a weak version for such result: we have PD(AD) ≤ Q for any partial mass
problem Q without elements of low e-degrees.

References

1. Calvert, W., Cummins, D., Knight, J. F., Miller S.: Comparing classes of finite
structures. Algebra and Logic, 43 (2004), 374–392.

2. Cooper, S. B.: Enumeration reducibility, nondeterministic computations and relative
computability of partial functions. In K. Ambos-Spies, G. Müller, and G. E. Sacks,
editors, Recursion Theory Week, Oberwolfach 1989, volume 1432 of Lecture Notes
in Mathematics, pages 57–110, Heidelberg, 1990. Springer–Verlag.

3. Dyment, E.Z.: Certain properties of the Medevedev lattice, Mat. Sborn. 101 (143)
(1976), 360-379.

4. Jockusch, C. G., Jr.: Degrees in which the recursive sets are uniformly recursive.
Canad. J. Math., 24 (1972), 1092–1099.

5. Kalimullin, I.Sh., Puzarenko V.G.: On a reducibility on the families. In preparation.
6. Medvedev, Yu.T.: Degrees of difficulty of the mass problems. Dokl. Akad. Nauk

SSSR, , 104 (1955), 501–504.
7. Rogers, H. Jr.: Theory of Recursive Functions and Effective Computability. McGraw-

Hill, New York, 1967.
8. Wehner, S.: Enumerations, counatble structures and Turing degrees. Proceedings of

the American Mathematical Society, July 1998.

Computing the Recursive Truth Predicate on
Ordinal Register Machines

Peter Koepke1 and Ryan Siders2

1 University of Bonn, Mathematisches Institut,
Beringstraße 1, D 53115 Bonn, Germany

Koepke@Math.Uni-Bonn.de
2 University of Helsinki, Department of Mathematics and Statistics

Gustaf Hällströminkatu 2b, Helsinki 00014, Finland
bissell@mappi.helsinki.fi

(corresponding author)

Abstract. We prove that any constructible set is computable from or-
dinal parameters by a wellfounded program on an infinite-time ordinal-
storing register machine.
This brings us closer to “minimal” computation of set theoretic con-
structibility. To that end, we describe data types and well-founded pro-
gramming to consider what can be cut from the machine or programming
languge.
These machines were designed to define and study run-time complex-
ity for hypercomputation. We solve one complexity problem: deciding
the recursive truth predicate is ordinal-exponential time on a register
machine, and ordinal-polynomial time on a Turing machine.

1 Register Machines

Ordinal Register Machines increment and erase a finite number of registers con-
taining ordinals; the number of necessary registers can eventually be reduced to
four. They exemplify abstract model-theoretic computation. The ordinals they
store can refer to the timesteps of a hypercomputation.

We motivate these machines by first considering 1. finite-time register ma-
chines storing finite register values, and 2. finite-time register machines ordinal
register machines storing ordinal register values with an oracle for ordinal arith-
metic.

Definition 1. ([10]) A register machine stores natural numbers and runs for
finite time. A register machine program is written using the three instructions:
1. Zero(x), which sets x to zero; 2. x++ which increments x; and 3. If (x = y)
goto i else j, which switches the flow of control, depending on whether two
registers are equal or not. Here, i and j name instructions in the program. When
the program is interpreted in a machine, i and j label states of the machine.

Definition 2. On a register machine, a “For-program” uses goto switches only
to define the commands: 3a. if (x = y) (instructions); 3b. for (x = y;x <
z;x + +) (instructions), where x is never set to zero within the loop.

Ordinal Register Machines 161

A “While-program” has the extra instruction 4. Decrement(x); but only uses
goto switches to define: 3a. if (x = 0) (instructions); 3b. while (x > 0;x−
−) (instructions), where x is never incremented within the loop.

We call finite register machine For- and While-programs “well-structured.”

Definition 3. for x from 0 to y means Zero (x); for (x = x;x < y;x + +).
if(a = b) (instructions) means Zero(x); for(c = a; c < b; c + +)(x + +);
for(c = b; c < a; c + +)(x + +); if(x = 0)(instructions).

Theorem 1. ([9] p. 205) 5-variable While-programs simulate Turing machines.

Theorem 2. ([9] pp. 255-8) While-programs using 2 variables can simulate
all While-programs. FOR-programs using 3 variables can simulate all While-
programs.

In this paper, we have used the word ”model” in the sense of ”a model
of computation,” and in the sense of ”model theory.” We try to never say a
machine A ”models” the behaviour of machine B, but rather that it ”simulates”
B. Simulating one machine on another, and building a model of one theory inside
a model of another are such similar concepts, that the idea of computing over
abstract models seems ripe for self-reference.

Definition 4. (see the survey [11]) For M any model, an M -register machine
stores (has some variables xi refering to) elements ai of M , and runs for finite
time. Its programming language assigns variables to elements of M with the
following two commands:

1. assign xi to aj (duplicate);
2. assign xi to aj; assign xj to ai; (swap);
The constants, functions, and relations in M are assumed to be computable,

so the programming language includes the following three commands
3. ai = fM (a1...an);
4. ai = cM ;
5. If RM (a1...an), then i, else j.

The storage of elements of M in the register machine is like the assignment
of variables to elements of M in a finite-variable pebble game. The M -register
machine can set a register to any constant in M , set a register a1 to f(a1...an), for
any n-ary function f , and switch its state, depending on whether M |= R(a1...an)
or not.

Analyzing the flow of control in a computer program, without looking at
what is in the registers, was pursued in [3], in which it is proved that “any Goto
program is equivalent to a While program.” Such analyses are fruitful too in
“abstract computability theory,” surveyed by [11].

1.1 Pairing and Stacking

Research on abstract-model recursion theory since [2] suggests that the ordi-
nary theorems of recursion theory will lift, if equality is decidable, pairing is

162 Peter Koepke and Ryan Siders

computable, and the domain is finitely generated. Fortunately, ordinals have an
efficient notion of pairing.

Definition 5. Let Γ be the pairing function taking (a, b) to the wellorder of pairs
(c, d) <2 (a, b), where (c, d) <2 (a, b) iff max(c, d) < max(a, b), or max(c, d) =
max(a, b) and c < a, or max(c, d) = max(a, b) and c = a and d < b.

Lemma 1. Γ (a, a) ∼= a iff a is a ×-closed ordinal. (so Γ is “efficient.”)

Remark 1. ([11] pp. 485,486) show that recursion theory lifts to M -register ma-
chines if M has counting and stacking. Our main result depends heavily on
using the following binary stack to prove that ordinals have stacking, and that
the stack is robust, as the ordinal register machine runs over a limit-ordinal time.

Definition 6. A “binary stack” codes a finite, monotonically decreasing se-
quence (βi : i < n) as

∑
i 2

βi+1 = 2β0+1 + 2β1+1 + ... + 2βn−1+1, where 2α

is ordinal exponentiation.

The reason for +1 in the exponent is that when βi+1 limits up to βi, and
βi is a limit ordinal and false (it codes φβi

, a falsehood, so for T the Recursive
Truth Predicate of definition 13, T (β) =“false”) then we need to be able to check
whether βi being false witnesses the truth of βi−1, before incrementing βi. The
+1 in the exponent allows us to identify a limit ordinal appearing as a term in
the

∑
which is the stack as a limit of earlier stack elements and not a stack

element itself.

Definition 7. Let “Seq” be the set of finite, descending sequences of ordinals,
all less than $, ordered by their first difference.

Lemma 2. (βi) �→
∑

2βi is an isomorphism between Seq and 2$.

Lemma 3. If the supremum of T is α, then the supremum of {2β : β ∈ T} is
2α.

We will define Pop, Push, and IsEmpty for this stack in section 3, after we
have learned the natural data types and definitions for ordinal computers and
are comfortable writing longer routines.

1.2 A model of infinitely-long computation

Definition 8. An Infinite-time Ordinal-storing Register Machine is a register
machine storing ordinal values and runing for ordinal time, with a programming
language including the three instructions: 1. Zero(x); 2. x + +; 3. if x = y goto
i else j; in which the registers’ values at limit times obeys the following three
rules:

R1. If the command “Zero(x)” is called at each time t ∈ T , then x is 0 at
time supT , too.

R2. At limit times, command passes to the liminf of the commands which
have been active cofinally often.

R3. Until it is zero’d, a register’s value increases continuously.

Ordinal Register Machines 163

We’ll also call this model of computation an Ordinal Computer, or OC.

Remark 2. The study of continuous computation or abstract register machine
computation over an infinite model motivates the study of hypercomputation.

Our rule 2. is the same as that in [6]. Other definitions of limit time use the
lim-sup rule ([4]) or require wellfounded programs ([1], see definition 9) so at
a limit time, the machine only decides whether to keep looping (see remark 3
below). These approaches are equivalent.

Definition 9. An OC program is “well-structured” if goto switches are only
used to model the following two commands: 3a. if(xi = 0) (instructions); 3b.
for(x = y;x < z;x + +) (instructions); where neither Zero(x) nor Zero(z) is
among the instructions in the loop. A for loop tests x < z, then executes.

Remark 3. At any limit time λ during the run of a well-structued program, there
is a unique instruction for(x = y;x < z;x++)(loop) for which we have checked
whether x ≥ z at times T a cub subset of λ, but x < z was true each time. Rule
2. of definition 8 requies that at a limit time, control returns to the start of the
loop; the start of a for loop is its test, so equivalently, Rule 2’. At a limit time
λ, repeat the outermost loop which has been active cofinally often. That is, after
checking x < z infinitely often and finding it always true, check again.

Rule 2’ makes a very reasonable, but nontrivial, requirement of the machine’s
state at a limit time: that if the program says to loop states until x ≥ z, then
the machine does not stop looping states simply because it reaches a limit time,
but only when x ≥ z.

Theorem 3. For well-structured computations, Rule 1 can be simplified, so as to
require nothing of the machine’s limiting behaviour, but only require something
syntactical, about how well-structured programs are formulated: Rule 1’: In a
well-founded program, immediately before a switch if(x = 0) is called, x was
changed one last time (and not an infinite, unbounded set of times, before the
switch is called).

Then any register, at any time, is defined in terms of other variables, each
of which was defined one last time beforehand, such that there is a finite tree
of variables and times, on whose definition x’s value at the time of the switch
depends, the leaves of which are variables which are never zero’d, during the
computation. So OC programs can be written so that switches well-foundedly
depend on monotonic variables.

1.3 Discovering data types

Lemma 4. 1. If all registers are set to 0 repeatedly (after any time t, each
register is again set to 0 at some time t′ > t), then there is a time at which all
registers are simultaneously zero. 2. Any active loop index is equal to the clock
at all times ǫα.

164 Peter Koepke and Ryan Siders

As a result, we find that there are fundamentally different natural data types.

Remark 4. In a well-structured computation we can identify three types of reg-
isters: 1. registers which are zero’d infinitely often, 2. registers which are never
zero’d, and so are cub-often equal to the clock, and 3. registers which are neither
incremented nor zero’d.

Registers that are zero’d infinitely often are the indices to short loops and
“active memory.” Registers that are frequently close to the clock are really just
marking time (and storing type 1 variables between each other). Registers that
do not change during the computation are the parameters which the computation
(seen as a subroutine) was given from the outside.

Definition 10. We call type 1. variables ORD, type 2. variables MON, and
type 3 variables STO, for “ordinal,” “monotone,” and “static storage.” In long
programs, all variables will have for scope only the subroutine they are defined
in, and we will declare their type before using them, for clarity.

Lemma 5. All well-structured ordinal computer programs halt.

Proof: by induction on the depth of For loops: the maximum value ρ of the
registers is a normal function in time, which has arbitrarily large fixed points.
At exp-closed ordinal times, the loop-index is time, as well. At these times, the
loop index and bound are equal, and the loop terminates. �

But other programs need not halt:

Example 1. A. For-programs halt when they reach a fixed point. B. some non-
well-structured programs do not halt at all

A. for(b = a + 1;a < b;a++) (b + +) halts at the least limit ordinal > b.
B. b = a; 1. if (b = a) (b + +); b + +; a + +; if (b �= a) (goto 1);

never halts since at limit times line-control passes to its lim-inf (def’n 8, R2).

Because of the intuitive variable types found in lemma 4 and remark 4 and
the simple program-flow described in lemma 5 and remark 3, we will restrict our
attention to well-structured ordinal computer programs.

1.4 Reflection of few registers

How many registers are needed to simulate an infinitary Turing machine on
an ordinal computer? How many registers are clearly trivial? Four registers are
universal, and three registers are fairly trivial. In the next subsection we will
prove the reflection of up to three registers. Note that the program computing the
universal truth predicate uses 6 variables outside any subroutine, and the longest
subroutine, Pop, uses 6 variables. So twelve registers are enough to compute any
element of the constructible universe, and hence any ordinal computer with
more than twelve registers. A reduction to four registers is simply technical,
using oscilating stacks as in 2, repeating all finite intervals as many times as
there are stack elements, and using the last variable to store a single variable,

Ordinal Register Machines 165

just as it appears on the stack, and store it, after the stack limits and is erased,
very high on the stack, where it won’t be erased by the varying and limiting of
values lower on the stack. However, we will not prove rigorously in this paper
that four register suffice.

Definition 11. Let OCn be the set of n-register well-structured ordinal com-
puter programs (obeying rules 1 and 2’). Say ρ : Ordn → αn reflects OCn if for
each P in OCn, the function fP which takes the inputs to P to the output of P ,
commutes with ρ. Let Ln be the vocabulary with a function for each n-register
program: Ln = {Ord,<,=}∪{fP : P ∈ OCn}, and let FOk(L) be the first order
formulas in the language L, to quantifier depth k.

Definition 12. Let ρ0 be the function ρ0(α) = α mod ω.
Let ρ1 be the identity below ω, and be ω + ρ0 above ω.
Let ρ2 be the identity below ω × 2, and be ω × 2 + ρ0 above ω × 2.
Let ρ3(α) = α mod ωω.
Let ρ4 be the identity below ωω, and be ωω + ρ3 above ωω.
Let ρ5(α, β) be the pair (ρ4(α), ρ4(α) + ρ4(β −α)) if α ≤ β and be undefined

if α > β.

Lemma 6. ρ1 : Ord→ ω× 2 reflects OC1, is the minimal reflection preserving
FO1(L1), and preserves even FO2(L1). ρ2 preserves FO3(L1).

Corollary 1. FO3(L1) is much less expressive than the 4-quantifier theory of
linear order, FO4(<). Indeed, FO4(<) can define every predicate definable in
FO3(L1).

Lemma 7. ρ5 : Ord2 → (ωω×3)2 reflects OC2, is minimal such that it preserves
FO2(L2), and preserves FO(L2).

Remark 5. Suppose that the rule 3b in definition 9 were relaxed, and only the
index were not allowed to be zero’d. Then y + +; for(x = 0;x < y;x + +)

(Zero(y); for(y = y; y < x; y + +)(x + +); y + +) halts with register values
ωω).

Corollary 2. FO(L2) computes x �→ x × ω and x �→ n × x (for finite n), but
it is weaker than FO(Ord,<, c0, c1), where c0 and c1 are constants naming any
two ×-closed ordinals; this is much weaker than FO(Ord,+). So an ORM with
two variables can not compute the + of two input values.

By theorem 2, OC3 can simulate a finite turing machine. But OC3 still
reflects into a small ordinal, and as a result, we find that stacking ordinals re-
quires more registers than stacking finite numbers. Moving an infinite ordinal
onto a stack by incrementing the stack once every few time-steps requires in-
finite time. So the stacking operation with which OCn simulates a finite-time
(ω1,+,×, a→ ωa)-register machine (an abstract register machine as in definition
4) must limit continuously without losing any information.

Lemma 8. Ord3 reflects below ǫω×4, and not lower.

166 Peter Koepke and Ryan Siders

2 Recursive Truth Predicate

Our main theorem is that infinite ordinal register machines can decide all sets
of ordinals which are elements of the constructible hierarchy, L, i.e.: For every
set of ordinals S which exists in L, there is an ordinal computer program P and
a single ordinal input, the Γ -stack Γ (...Γ (α0, α1)..., αn) of (α0...αn−1), which
program decides S.

Conversely, the definition of the program P exists within L, so OC com-
putation reflects into L. That is, anything OC-computed from finite ordinal
parameters a0...an ∈ L is thereby constructed in L.

Theorem 4. (analogous to Theorem 5 of [8]) A set S of ordinals is ordinal
computable from some finite set of ordinal parameters if and only if it is an
element of the constructible universe L.

We prove the theorem, that everything in L can be computed by an ordinal
computer (from some ordinal parameters), by computing the “recursive truth
predicate” described in [8].

The recursive truth predicate is a recursive characteristic function on the
ordinals, coding all constructible sets of ordinals. It is defined as

Definition 13. Let T be the recursive truth predicate, defined by: T (α) = True
if and only if (α,<, Γ, T ↾ α) |= φα, where Γ is the ordinal pairing function in
definition 5, where the sentence φα is coded by α, has a finite number of ordinal
parameters.

Definition 14. (F from H): F (α) =True⇐⇒ ∃β < α H(α, β, F (β)) =True:
for β from 0 to α (

if (F (β) = False and H(α, β, False) = True) (return True);

if (F (β) = True and H(α, β, True) = True) (return True);

);

Return False

That program is written in a language which allows a subroutine to call itself.
First, we show that from this recursive routine, set-theoretical constructibility
can be carried out.

Theorem 5. If an OC can simulate the recursive routine in definition 14, then
theorem 4 holds.

Now we simulate the program in definition 14 using a wellordered stack of
formulas on an OC.

3 Stack, Pop, Push, IsEmpty

Definition 15. Pop, taking two parameters (Stack, Threshold) and referenc-
ing the global variable $ in which the program has received as its input a formula

Ordinal Register Machines 167

whose truth is to be witnessed, (and which serves as an upper bound to all for-
mulas and all searches) is the following routine:

MON SmallStack := 0;

MON TempStack := 0;

for ǫ from 0 to $ (

for α from 0 to Stack (

if (α + 2ǫ+SmallStack = Stack) (

if (ǫ > Threshold) (return ǫ);

for TempStack to Smallstack ();

for Smallstack to 2ǫ ();

for κ from 0 to TempStack (Smallstack++)

)

)

)

Pop doesn’t really change the stack. It just reads the next element, past a
certain threshold.

Lemma 9. Pop reads least element 2ǫ of the Stack, such that ǫ is at least as
large as the parameter Threshold.

Definition 16. Push, a program taking two parameters (Stack, β), is the fol-
lowing routine:

Stack ++;

for ι from 0 to 2β+1 (

if (¬ (2β+1 divides Stack)) (Stack ++)

)

where
β divides α is the routine:
MON γ = 0
for ι from 0 to α (

for κ from 0 to β (γ + +)

if (γ = α) (Return Yes);

if (γ > α) (Return No)

);

Return No

Push(β onto Stack) erases all stack values less than β.

Lemma 10. Push(β onto Stack) increases the Stack to the next full multiple
of 2β+1.

Definition 17. IsEmpty, taking the single input Stack, is the routine:
ORD α = Pop(Stack,0);
if (2α = Stack) (return "True")

else (return "False")

IsEmpty(Stack) returns the value “True” when the stack is a singleton, 2$,
i.e., the initial value, the truth of which we would like to determine.

168 Peter Koepke and Ryan Siders

Definition 18. β is the largest element on the stack is the program
for ι < 2β (if (2β + ι = Stack) (Return Yes));

Return No

Clearly, this halts before ι exhausts β iff β is indeed the largest stack value.
On the other hand, 2β + ι = Stack never holds if β is larger than the largest
stack value, nor if β is less than the largest stack value.

3.1 The Recursive Truth Predicate OC Program

Theorem 6. The recursive truth predicate F defined in 14 is equivalent to the
following program:
Determining the Truth Value of ($):

ORD α = 0;
ORD β = 0;
ORD ν = 0;
MON Stack = 0;
ORD TruthValue = Unknown;

Push($ onto Stack);

for ι from 0 to 2$ (

β = Pop(Stack,0);
If (β is a limit) (TruthValue = Unknown);

If IsEmpty(Stack) (Stack ++); # That is, "if Stack = 2β."

if TruthValue is Unknown (

if β is a successor ordinal (Stack ++;β = 0);
α = Pop(Stack,β + 1);
if β is not a successor ordinal and α = β + 1 (

β = α;TruthValue = False;

);

if β is not a successor ordinal and α
= β + 1 (

Push(β onto Stack);

)

);

while TruthValue is Known (

if β is the largest element on the stack (return TruthValue);

α = Pop(Stack,β + 1);
Let ν = H(α − 1, β − 1, TruthValue);
if (ν = True)(β = α;TruthValue= ν);

if (ν = False and α = β + 1)(β = α;TruthValue= ν);

if (ν = False and α
= β + 1)(
TruthValue=Unknown;

Push(β onto Stack)

)

)

)

Definition 19. Call (αi : i ≤ k) a witnessing sequence if, for each i < k − 1,
αi − 1 is true and H(αi − 1, αi+1 − 1, F (αi+1 − 1)) = True, and αk−1 is false
and αk = αk−1− 1. Call WIT (γ) the least witnessing sequence (αi : i < k) such

Ordinal Register Machines 169

that γ = α0 and αk−1 − 1 is false and a limit. Call W (γ) =
∑

α∈W (γ) 2α the
witnessing series.

Lemma 11. a) If Stack =
∑

i<n 2γi+1+W (γn), where γn does not witness γn−1

(i.e.: it is not the case that γn is true and H(γn−1, γn, 1) = 1, nor is it the case
that γn is the predecessor of γn−1 and γn−1 is false), and W (γn) is a series with
m terms, then in the first part of the loop TruthValue becomes known and after
m iterations of the while loop, the program passes command to Push(γn−1 onto

Stack).
b) If Stack = W (γn), a series with m terms, then in the first part of the loop

TruthValue becomes known and after m iterations of the while loop, the program
halts, returning the truth value of γ0 − 1.

Now we prove theorem 6 by induction on the following:

Lemma 12. Intention Lemma:
a. If Stack is 2$ +1 + σ + 2γ , where 2γ × 2 divides σ, γ is a successor, and

TruthValue is Unknown, then the Stack will reach 2$ +1 + σ + W (γ), when ι ≤
(σ × 1/2) + 2γ−1, with β = γ and TruthValue known.

b. If Stack is 2$ +1 +σ+2γ , where 2γ ×2 divides σ, and γ−1 is a false limit
then the stack will be ≥ 2$ +1 + σ + 2γ + 2δ, for each successor δ < γ − 1, at
some time ι ≤ (σ × 1/2) + 2γ−1 + 2δ−1.

c. if the Stack is 2$ +1 = 2γ , and TruthValue is Unknown, then the Stack will
reach W (γ), when ι ≤ 2γ−1, with β = γ and TruthValue known, i.e., P halts
on input $ after at most 2$ loops through the main loop, and returns the value
F ($).

References

1. R. Bissell-Siders, Ordinal computers. math.LO/9804076 at arXiv.org, 1998.
2. H. Friedman, Algorithmic procedures, generalized Turing algorithms, and elemen-

tary recursion theory. Logic Colloquium ’69 (Proc. Summer School and Colloq.,
Manchester, 1969), pp. 361–389. North-Holland, Amsterdam, 1971.

3. G. Jacopini and C. Böhm, Flow Diagrams, Turing Machines, and Languages with
Only Two Formation Rules. Comm ACM, 9,5 May 1966.

4. J. Hamkins and A. Lewis, Infinite Time Turing Machines. J. Symbolic Logic, 65(2):
567-604, 2000.

5. P. Koepke, Infinite Time Register Machines. Submitted to Computing In Europe
2006; this volume. 11(3): 377-397, 2005.

6. P. Koepke, Turing Computations on Ordinals. Bulletin of Symbolic Logic, 11(3):
377-397, 2005.

7. P. Koepke and M. Koerwien, The Theory of Sets of Ordinals. math.LO/0502265
at the e-print archive arXiv.org, 2005

8. P. Koepke and M. Koerwien, Computing a Model of Set Theory. CIE 2005.
9. M. Minsky, Computation: Finite and Infinite Machines. Prentice-Hall, 1967.

10. J. Shepherdson and H. Sturgis, Computability of recursive functions, J. Assoc.
Comput. Mach. 10 217–255, 1963.

11. J. Tucker and J. Zucker, Computable functions and semicomputable sets on many
sorted algebras, in S. Abramsky, D. Gabbay and T Maibaum (eds.) Handbook of
Logic for Computer Science, Volume V, Oxford University Press, 317-523.

Logic Programs with Uncertainty: Neural
Computation and Automated Reasoning

Ekaterina Komendantskaya1 and Anthony Seda2

1 Department of Mathematics, University College Cork, Cork, Ireland
e.komendantskaya@mars.ucc.ie

2 Department of Mathematics, University College Cork, Cork, Ireland
a.seda@ucc.ie ⋆ ⋆⋆

Abstract. Bilattice-based annotated logic programs (BAPs) form a very
general class of programs which can handle uncertainty and conflicting
information. We use BAPs to integrate two alternative paradigms of com-
putation: specifically, we build learning artificial neural networks which
can model iterations of the semantic operator associated with each BAP
and introduce sound and complete SLD-resolution for this class of pro-
grams.
Key words: Logic programs, artificial neural networks, SLD-resolution

1 Introduction

The problem of reasoning with uncertainty and conflicting sources of information
has been a subject of research for quite a long time, see [1, 5, 6, 9], for example. In
[7], we defined very general annotated (first-order) logic programs (BAPs) based
on infinite bilattices. These logic programs can process information about facts
whilst incorporating conflicting or incomplete information about them. The se-
mantic operator TP defined in [7] for BAPs reflects some remarkable properties
of the least Herbrand model for BAPs. In this paper, we show that the computa-
tion of TP by connectionist neural networks requires the introduction of learning
functions into the structure of the networks. In this sense, we believe that BAPs
provide a suitable formalism for integrating the pure logical deduction of con-
nectionism and the properties of spontaneous learning manifested by artificial
neural networks (ANNs) thought of as nature-inspired models of computation.
We propose an SLD-resolution for BAPs which is the first sound and complete
proof procedure we know of for logic programs based on infinite (bi)lattices.

The structure of the paper is as follows. In §2, we summarise all the results
obtained in [7] in relation to the computation of the least Herbrand model for
BAPs. In §3, we build learning ANNs which are able to compute the least Her-
brand model for BAPs and prove this fact. In particular, we describe in §3 how

⋆ The authors thank the Boole Centre for Research in Informatics (BCRI) at Univer-
sity College Cork for substantial support in the preparation of this paper.

⋆⋆ The authors are grateful to three anonymous referees for their useful suggestions
concerning a preliminary version of the paper. We also thank D. Woods for providing
us with interesting examples of reasoning with uncertainty in complexity theory.

Logic Programs with Uncertainty 171

first-order fragments of BAPs can be approximated by ANNs. In §4, we intro-
duce sound and complete SLD-resolution for BAPs. In §5, we conclude by giving
a summary of our results.

2 Bilattice-Based Logic Programming

In this section, we survey some basic definitions and results obtained in [7]. We
use the well-known definition of bilattices due to Ginsberg, see [1].

Definition 1. A bilattice B is a sextuple (B,∨,∧,⊕,⊗,¬) such that (B,∨,∧)
and (B,⊕,⊗) are both complete lattices, and ¬ : B→ B is a mapping satisfying
the following three properties: ¬2 = IdB, ¬ is a dual lattice homomorphism from
(B,∨,∧) to (B,∧,∨), and ¬ is the identity mapping on (B,⊕,⊗).

We use here the fact that each distributive bilattice can be regarded as a product
of two lattices, see [1]. Therefore, we consider only logic programs over distribu-
tive bilattices and regard the underlying bilattice of any program as a product
of two lattices. Moreover, we always treat each bilattice we work with as iso-
morphic to some subset of B = L1 × L2 = ([0, 1],≤) × ([0, 1],≤), where [0, 1]
is the unit interval of reals with the linear ordering defined on it.3 Throughout
this paper, we use B to denote the underlying bilattice of a given language.

In fact, we can use bilattice structures to formalize hypothetical and uncer-
tain reasoning of the sort humans beings are capable of carrying out.

Example 1. Hypothetical reasoning is natural when, for example, scientists face
an unsolvable problem which is, however, very important for their subject. Con-
sider, for example the “P �= NP?” problem. Imagine two bright scientists Dr.
N and Dr. M employed by a university to solve it. The scientists consider some
related problems which may lead to the final proof of “P �= NP”; for example,
“NP �= coNP?” and “NC�= NP?”. After a while, both scientists give proofs (both
are very long and need to be checked by someone): Dr. M has proven that “NP�=
coNP”, and Dr. N has proven that “NP=coNP”. If a two-valued logic program
receives the data, it will report a contradiction. Humans might, for example,
make the following conclusions. If “NP�= coNP” and then “NP=coNP” were
proven, than no conclusions yet can be made about the “P �= NP” problem. If
next Dr. M reports that “P �= NP” and Dr. N reports that “P=NP”, it will be
possible to derive the evidence foe and against the statement “It is proven that
”NC�= NP”.

We need to introduce some formalism to reason in situations of the sort
described in Example 1. We define an annotated bilattice-based language L
3 Elements of such a bilattice are pairs: the first element of each pair denotes evidence

for a fact, and the second element denotes evidence against it. Thus, 〈1, 0〉 is the
analogue of “truth” and is maximal with respect to the truth ordering, while 〈1, 1〉
may be seen as “contradiction” (or “both”) and is maximal with respect to the
knowledge ordering.

172 Ekaterina Komendantskaya and Anthony Seda

to consist of individual variables, constants, functions and predicate symbols
together with annotation terms which can consist of variables, constants and/or
functions over a bilattice. We allow six connectives and two quantifiers, as follows:
⊕,⊗,∨,∧,¬,∼, Σ,Π.

An annotated formula is defined inductively as follows: if R is an n-ary
predicate symbol, t1, . . . , tn are terms, and (μ, ν) is an annotation term, then
R(t1, . . . , tn) : (μ, ν) is an annotated formula (called an annotated atom). Anno-
tated atoms can be combined to form complex formulae using the connectives
and quantifiers.

A bilattice-based annotated logic program (BAP) P consists of a finite set of
(annotated) program clauses of the form

A : (μ, ν) ← L1 : (μ1, ν1), . . . , Ln : (μn, νn),

where A : (μ, ν) denotes an annotated atom called the head of the clause, and
L1 : (μ1, ν1), . . . , Ln : (μn, νn) denotes L1 : (μ1, ν1) ⊗ . . . ⊗ Ln : (μn, νn) and is
called the body of the clause; each Li : (μi, νi) is an annotated literal called an
annotated body literal of the clause. Individual and annotation variables in the
body are thought of as being existentially quantified using Σ.

In [7], we showed how the remaining connectives ⊕,∨,∧ can be introduced
into BAPs. The definitions of the terms unit clause, program goal and pre-
interpretation are standard, see [8].

Let D, v, and J denote respectively a domain of (pre-)interpretation, a vari-
able assignment and a pre-interpretation for a given language, see [8]. An inter-
pretation I for L consists of J together with the following mappings. The first
mapping I assigns |R|I,v : Dn −→ B to each n-ary predicate symbol R in L.
Further, for each element 〈α, β〉 of B, we define a mapping χ〈α,β〉 : B −→ B,
where χ〈α,β〉(〈α′, β′〉) = 〈1, 0〉 if 〈α, β〉 ≤k 〈α′, β′〉 and χ〈α,β〉(〈α′, β′〉) = 〈0, 1〉
otherwise. The mapping χ is used to evaluate annotated formulae. Thus, if F
is an annotated atom R(t1, . . . , tn) : (μ, ν), then the value of F is given by
I(F) = χ〈μ,ν〉(|R|I,v(|t1|v, . . . , |tn|v)). Furthermore, using χ we can proceed to
give interpretation to complex annotated formulae in the standard way, see [7]
(or [6] for lattice-based interpretations of annotated logic programs). All the
connectives of the language are put into correspondence with bilattice opera-
tions, and in particular quantifiers correspond to infinite bilattice operations.
We call the composition of the two mappings I and χ an interpretation for the
bilattice-based annotated language L and for simplicity of notation denote it
by I. Indeed, the interpretations of BAPs possess some remarkable properties
which make the study of BAPs worthwhile, as follows.

Proposition 1. [7]

1. Let F be a formula, and fix the value I(F). If I(F : (α, β)) = 〈1, 0〉, then
I(F : (α′, β′)) = 〈1, 0〉 for all 〈α′, β′〉 ≤k 〈α, β〉.

2. I(F1 : (μ1, ν1)⊗ . . .⊗ Fk : (μk, νk)) = 〈1, 0〉 ⇐⇒ I(F1 : (μ1, ν1)⊕ . . .⊕ Fk :
(μk, νk)) = 〈1, 0〉 ⇐⇒ I(F1 : (μ1, ν1) ∧ . . . ∧ Fk : (μk, νk)) = 〈1, 0〉 ⇐⇒
each I(Fi : (μi, νi)) = 〈1, 0〉, where i ∈ {1, . . . , k}.

Logic Programs with Uncertainty 173

3. If I(F1 : (μ1, ν1) ⊙ . . . ⊙ Fk : (μk, νk)) = 〈1, 0〉, then I((F1 ⊙ . . . ⊙ Fk) :
((μ1, ν1) ⊙ . . . ⊙ (μk, νk))) = 〈1, 0〉, where ⊙ is any one of the connectives
⊗,⊕,∧.

4. For every formula F , I(F : (0, 0)) = 〈1, 0〉.
These properties influence models for BAPs. In particular, we introduced in

[7] a semantic operator which shows how all the logical consequences of each
program can be computed.

Let I be an interpretation for L and let F be a closed annotated formula of
L. Then I is a model for F if I(F) = 〈1, 0〉. We say that I is a model for a set
S of annotated formulae if I is a model for each annotated formula of S. We
say that F is a logical consequence of S if, for every interpretation I of L, I is
a model for S implies I is a model for F .

Let BP and UP denote an annotation Herbrand base respectively Herbrand
universe for a program P , see [7] for further explanations. An annotation Her-
brand interpretation HI for P consists of the Herbrand pre-interpretation HJ
(see [8]) with domain HD of L together with the following: for each n-ary pred-
icate symbol in L, the assignment of a mapping from Un

L into B. In common
with conventional logic programming, each Herbrand interpretation HI for P
can be identified with the subset {R(t1, . . . , tk) : (α, β) ∈ BP |R(t1, . . . , tk) :
(α, β) receives the value 〈1, 0〉 with respect to HI} of BP it determines, where
R(t1, . . . , tk) : (α, β) denotes a typical element of BP . This set constitutes an
annotation Herbrand model for P . Finally, we let HIP,B denote the set of all
annotation Herbrand interpretations for P .

In [7], we introduced a semantic operator TP for BAPs, proved its continuity
and showed that it computes the least Herbrand model for a given BAP. Indeed,
we define TP next.

Definition 2. We define the mapping TP : HIP,B → HIP,B as follows: TP (HI)
denotes the set of all A : (μ, ν) ∈ BP such that either

1. There is a strictly ground instance of a clause A : (μ, ν) ← L1 : (μ1, ν1), . . . ,
Ln : (μn, νn) in P such that there exist annotations (μ′

1, ν
′
1), . . . , (μ

′
n, ν

′
n)

satisfying {L1 : (μ′
1, ν

′
1), . . . , Ln : (μ′

n, ν
′
n)} ⊆ HI, and one of the following

conditions holds for each (μ′
i, ν

′
i):

(a) (μ′
i, ν

′
i) ≥k (μi, νi),

(b) (μ′
i, ν

′
i) ≥k ⊕j∈Ji

(μj , νj), where Ji is the finite set of those indices such
that Lj = Li

or

2. there are annotated strictly ground atoms A : (μ∗
1, ν

∗
1), . . . , A : (μ∗

k, ν
∗
k) ∈ HI

such that 〈μ, ν〉 ≤k 〈μ∗
1, ν

∗
1 〉 ⊕ . . .⊕ 〈μ∗

k, ν
∗
k〉.4

Semantic operators defined for many logic programs as in the papers of Fitting
and Van Emden (and other authors) use only some form of item 1.a from Defini-
tion 2. However, this condition is not sufficient for computation of the Herbrand
models for (bi)lattice-based logic programs.

4 Note that whenever F : (μ, ν) ∈ HI and (μ′, ν′) ≤k (μ, ν), then F : (μ′, ν′) ∈ HI.
Also, for each formula F , F : (0, 0) ∈ HI.

174 Ekaterina Komendantskaya and Anthony Seda

Example 2. Consider the logic program: B : (0, 1) ←, B : (1, 0) ←, A : (0, 0) ←
B : (1, 1), C : (1, 1) ← A : (1, 0), A : (0, 1). We can regard this program as for-
malizing Example 1. Let B stand for “NP �= coNP”, A stand for “P �= NP” and
C stand for “It is proven that “NC �= NP”, annotations (0, 0), (0, 1), (1, 0), (1, 1)
express respectively “no proof/refutation is given”, “proven”, “proven the oppo-
site” and “contradictory, or proven both the statement and the opposite”. The
least fixed point of TP is TP ↑ 3 = {B : (0, 1), B : (1, 0), B : (1, 1), A : (0, 0), C :
(1, 1)}, precisely the conclusions we mentioned in Example 1. However, the item
1.a (corresponding to the classical semantic operator) would allow us to com-
pute only TP ↑ 1 = {B : (0, 1), B : (1, 0)}, that is, only explicit consequences of
a program, which then leads to a contradiction in the two-valued case. In the
same way, the properties stated in Proposition 1 suggest that there can be some
implicit logical consequences which can be derived if we take into consideration
the underlying (bi)lattice structure of the program.

3 Neural Networks for Reasoning with Uncertainty

3.1 Connectionist Networks: Some Basic Definitions

In this subsection, we follow closely [3] and [4]. A connectionist network is a
directed graph. A unit k in this graph is characterized, at time t, by its input
vector (ik1(t), . . . iknk

(t)), its potential pk(t) ∈ IR, its threshold Θk ∈ IR, and its
value vk(t). Units are connected via a set of directed and weighted connections.
If there is a connection from unit j to unit k, then wkj ∈ IR denotes the weight
associated with this connection, and ikj(t) = wkjvj(t) is the input received by
k from j at time t. The units are updated synchronously. In each update, the
potential and value of a unit are computed with respect to an activation and
an output function respectively. All units considered in this paper compute their
potential as the weighted sum of their inputs minus their threshold:

pk(t) =

⎛
⎝

nk∑

j=1

wkjvj(t)

⎞
⎠−Θk.

The units are updated synchronously, time becomes t+Δt, and the output value
for k, vk(t+Δt) is calculated from pk(t) by means of a given output function ψ,
that is, vk(t+Δt) = ψ(pk(t)). The output function ψ we use in this paper is the
binary threshold function H, that is, vk(t+Δt) = H(pk(t)), where H(pk(t)) = 1
if pk(t) > 0 and 0 otherwise. Units of this type are called binary threshold units.

In this paper, we will only consider connectionist networks where the units
can be organized in layers. A layer is a vector of units. An n-layer feedforward
network F consists of the input layer, n− 2 hidden layers, and the output layer,
where n ≥ 2. Each unit occurring in the i-th layer is connected to each unit
occurring in the (i + 1)-st layer, 1 ≤ i < n. Let r and s be the number of units
occurring in the input and output layers, respectively. A connectionist network F
is called a multilayer feedforward network if it is an n-layer feedforward network

Logic Programs with Uncertainty 175

for some n. A miltilayer feedforward network F computes a function fF : IRr →
IRs as follows. The input vector (the argument of fF) is presented to the input
layer at time t0 and propagated through the hidden layer to the output layer. At
each time point, all units update their potential and value. At time t0+(n−1)Δt,
the output vector (the image under fF of the input layer) is read off the output
layer.

3.2 Neural Networks and Propositional BAPs.

Hölldobler et al. defined in [4] ANNs which are capable of computing the immedi-
ate consequence operator TP for classical propositional logic programs. However,
these ANNs cannot “learn” new information, that is, they cannot change their
weights either with supervision or without it.

We extend this approach to learning ANNs which can compute logical con-
sequences of BAPs. This will allow us to introduce hypothetical and uncertain
reasoning into the framework of neural-symbolic computation. Bilattice-based
logic programs can work with conflicting sources of information and inconsis-
tent databases. Therefore, ANNs corresponding to these logic programs should
reflect this facility as well, and this is why we introduce some forms of learn-
ing into ANNs. These forms of leaning can be seen as corresponding to a sort
of unsupervised Hebbian learning, which is commonly used in the context of
ANNs. The general idea behind Hebbian learning is that positively correlated
activities of two neurons strengthen the weight of the connection between them
and that uncorrelated or negatively correlated activities weaken the weight of
the connection (the latter form is known as Anti-Hebbian learning).

The general conventional definition of Hebbian learning is given as follows,
see [2] for example. Let k and j denote two neurons and wkj denote a weight of
the connection from j to k. We denote the value of j at time t as vj(t) and the
potential of k at time t as pk(t). Then the rate of change in the weight between
j and k is expressed in the form

Δwkj(t) = F (vj(t), pk(t)),

where F is some function. As a special case of this formula, it is common to
write

Δwkj(t) = η(vj(t))(pk(t)),

where η is a constant that determines the rate of learning and is positive in case of
Hebbian learning and negative in case of Anti-Hebbian learning. In this section,
we will compare the two learning functions we introduce with this conventional
definition of Hebbian learning.

First, we prove a theorem establishing a relationship between learning ANNs
and bilattice-based annotated logic programs with no function symbols occur-
ring either in the predicate symbols or in the annotations. (Since the Herbrand
base for these programs is finite, they can equivalently be seen as propositional
bilattice-based logic programs with no functions allowed in the annotations.) In
the next subsection, we will extend the result to first-order BAPs with functions
in individual and annotation terms.

176 Ekaterina Komendantskaya and Anthony Seda

Theorem 1. For each function-free BAP P , there exists a 3-layer feedforward
learning ANN which computes TP .

Proof. Let m and n be the number of strictly ground annotated atoms from
the annotation Herbrand base BP and the number of clauses occurring in P
respectively. Without loss of generality, we may assume that the annotated atoms
are ordered. The network associated with P can now be constructed by the
following translation algorithm.

1. The input and output layers are vectors of binary threshold units of length k,
where the i-th unit in the input and output layers represents the i-th strictly
ground annotated atom, 1 ≤ k ≤ m. The threshold of each unit occurring in
the input or output layer is set to 0.5.

2. For each clause of the form A : (α, β) ← B1 : (α1, β1), . . . , Bm : (αm, βm),
m ≥ 0, in P do the following.
2.1 Add a binary threshold unit c to the hidden layer.
2.2 Connect c to the unit representing A : (α, β) in the output layer with

weight 1. We will call connections of this type 1-connections.
2.3 For each atom Bj : (αj , βj) in the input layer, connect the unit repre-

senting Bj : (αj , βj) to c and set the weight to 1. (We will call these
connections 1-connections also.)

2.4 Set the threshold θc of c to l − 0.5, where l is the number of atoms in
B1 : (α1, β1), . . . , Bm : (αm, βm).

2.5 If an input unit representing B : (α, β) is connected to a hidden unit
c, connect each of the input units representing annotated atoms Bi :
(αi, βi), . . . , Bj : (αj , βj), where (Bi = B), . . . , (Bj = B), to c. These
connections will be called ⊗-connections. The weights of these connec-
tions will depend on a learning function. If the function is inactive, set
the weight of each ⊗-connection to 0.

3. If there are units representing atoms of the form Bi : (αi, βi), . . . , Bj :
(αj , βj), where Bi = . . . = Bj in input and output layers, correlate them as
follows. For each Bi : (αi, βi), connect the unit representing Bi : (αi, βi) in
the input layer to each of the units representing Bi : (αi, βi), . . . , Bj : (αj , βj)
in the output layer. These connections will be called the ⊕-connections. If
an ⊕-connection is set between two atoms with different annotations, we
consider them as being connected via hidden units with thresholds 0. If an
⊕-connection is set between input and output units representing the same
annotated atom B : (α, β), we set the threshold of the hidden unit connect-
ing them to −0.5, and we will call them ⊕-hidden units, so as to distinguish
the hidden units of this type. The weights of all these ⊕-connections will
depend on a learning function. If the function is inactive, set the weight of
each ⊕-connection to 0.

4. Set all the weights which are not covered by these rules to 0.

Allow two learning functions to be embedded into the ⊗ -connections and the
⊕ -connections. We let vi denote the value of the neuron representing Bi : (αi, βi)
and pc denote the potential of the unit c.

Logic Programs with Uncertainty 177

Let a unit representing Bi : (αi, βi) in the input layer be denoted by i. If i
is connected to a hidden unit c via an ⊗ -connection, then a learning function
φ1 is associated to this connection. We let φ1 = Δwci(t) = (vi(t))(−pc(t) + 0.5)
become active and change the weight of the ⊗-connection from i to c at time t
if units representing atoms Bj : (αj , βj), . . . , Bk : (αk, βk) (Bi = Bj = . . . = Bk)
became activated at time t−Δt, they are connected to c via 1-connections and
〈αi, βi〉 ≥k (〈αj , βj〉 ⊗ . . .⊗ 〈αk, βk〉).

Function φ2 is embedded only into connections of type ⊕, namely, into ⊕-
connections between hidden and output layers. Let o be an output unit represent-
ing an annotated atom Bi : (αi, βi). Activate φ2 = Δwoc(t) = (vc(t))(po(t)+1.5)
at time t if it is embedded into an ⊕-connection from the ⊕- hidden unit c to o
and there are output units representing annotated atoms Bj : (αj , βj), . . . , Bk :
(αk, βk), where (Bi = Bj), . . . , (Bi = Bk), which are connected to the unit o
via ⊕-connections, these output units became activated at time t − 2Δt and
〈αi, βi〉 ≤k (〈αj , βj〉 ⊕ . . .⊕ 〈αk, βk〉).

Each interpretation I for P can be represented by a binary vector (v1, . . . , vm).
Such an interpretation is given as an input to the network by externally activat-
ing corresponding units of the input layer at time t0. It remains to show that
A : (α, β) ∈ TP ↑ n for some n if and only if the unit representing A : (α, β)
becomes active at time t0 +2Δt, for some Δt. The proof that this is so proceeds
by routine induction.

Example 3. The following diagram displays the neural network which computes
TP ↑ 3 from Example 2. Without functions φ1, φ2 the ANN will compute only
TP ↑ 1 = {B : (0, 1), B : (1, 0)}, explicit logical consequences of the program.
Note that arrows �� , ����� , �� denote respectively 1-connections,
⊗-connections and ⊕-connections, and we have marked by φ1, φ2 the connections
which are activated by the learning functions.5

A:(1,1) A:(1,0) A:(0,1) A:(0,0) B:(1,1) B:(1,0) B:(0,1) B:(0,0) C:(1,1) C:(1,0) C:(0,1) C:(0,0)

�������	0.5 �������	0.5 �������	0.5 �������	0.5 �������	0.5 �������	0.5 �������	0.5 �������	0.5 �������	0.5 �������	0.5 �������	0.5 �������	0.5

φ2 φ2

������−0.5

��

������−0.5

��

������−0.5

��

�������	0.5

��

������−0.5

��

������−0.5

��

������−0.5

��

������−0.5

��

�������	1.5

��

������−0.5

��

������−0.5

��

������−0.5

��

φ1

φ1

�������	0.5

���
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

��

�� �� ��

�������	0.5

���������������������������������������

��

		 ��

�������	0.5

���������������������������������

��

		�� ��

�������	0.5

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��

		����

�������	0.5

���
�
�
�
�
�
�
�
�
�

��

�� �� ��

�������	0.5

���

�

�

�

�

�

�

		

��

�� ��

�������	0.5

��	

	

	

	

	

	

	

	

	

���� 		

��

�������	0.5

��

��

		����

�������	0.5

��

��

 ��

�������	0.5

		

��

�� ��

�������	0.5

�� 		

��

��

�������	0.5

�� �� 		

��

A:(1,1) A:(1,0) A:(0,1) A:(0,0) B:(1,1) B:(1,0) B:(0,1) B:(0,0) C:(1,1) C:(1,0) C:(0,1) C:(0,0)

5 According to the conventional definition of feedforward ANNs, each output neuron
denoting some atom is in turn connected to the input neuron which denotes the same
atom via a 1-connection and thus forms a loop. We do not draw these connections
here.

178 Ekaterina Komendantskaya and Anthony Seda

We can make several conclusions from the construction of Theorem 1.

– Neurons representing annotated atoms with identical first-order (or propo-
sitional) components are joined into multineurons in which neurons are cor-
related using ⊕- and ⊗-connections.

– The learning function φ2 roughly corresponds to Hebbian learning, with the
rate of learning η2 = 1, the learning function φ1 corresponds to Anti-Hebbian
learning with the rate of learning 1, and we can regard η1 as negative because
the factor pc in the formula for φ1 is multiplied by (−1).

– The main problem Hebbian learning causes is that the weights of connections
with embedded learning functions tend to grow exponentially, which cannot
fit the model of biological neurons. This is why traditionally some functions
are introduced to bound the growth. In the ANNs we have built some of the
weights may grow with iterations, but the growth will be very slow, because
of the activation functions, namely, binary threshold functions, used in the
computation of each vi.

3.3 Neural Networks and First-Order BAPs

Since ANNs were proven to compute least fixed points of the semantic operator
defined for propositional logic programs, many attempts have been made to
extend this result to first-order logic programs. See, for example, [3], [10]. We
extend here the result obtained by Seda [10] for two-valued first-order logic
programs and their representations by ANNs to first-order BAPs.

Let l : BP → IN be a level mapping with the property that, given n ∈ IN, we
can effectively find the set of all A : (μ, ν) ∈ BP such that l(A : (μ, ν)) = n. The
following definition is due to Fitting, and for further explanation see [10] or [7].

Definition 3. Let HIP,B be the set of all interpretations BP → B. We define the
ultrametric d : HIP,B×HIP,B → IR as follows: if HI1 = HI2, we set d(HI1,HI2) =
0, and if HI1 �= HI2, we set d(HI1,HI2) = 2−N , where N is such that HI1 and
HI2 differ on some ground atom of level N and agree on all atoms of level less
then N .

Fix an interpretation HI from elements of the Herbrand base for a given
program P to the set of values {〈1, 0〉, 〈0, 1〉}. We assume further that 〈1, 0〉 is
encoded by 1 and 〈0, 1〉 is encoded by 0. Let HIP denote the set of all such inter-
pretations, and take the semantic operator TP as in Definition 2. Let F denote a
3-layer feedforward learning ANN with m units in the input and output layers.
The input-output mapping fF is a mapping fF : HIP → HIP defined as fol-
lows. Given HI ∈ HIP , we present the vector (HI(B1 : (α1, β1)), . . . , HI(Bm :
(αm, βm))), to the input layer; after propagation through the network, we de-
termine fF (HI) by taking the value of fF (HI)(Aj : (αj , βj)) to be the value
in the jth unit in the output layer, j = 1, . . . ,m, and taking all other values of
fF (HI)(Aj : (αj , βj)) to be 0.

Suppose that M is a fixed point of TP . Following [10], we say that a family
F = {Fi : i ∈ I} of 3-layer feedforward learning network Fi computes M if

Logic Programs with Uncertainty 179

there exists HI ∈ HIP such that the following holds: given any ε > 0, there
is an index i ∈ I and a natural number mi such that for all m ≥ mi we have
d(fm

i (HI),M) < ε, where fi denotes fFi
and fm

i (HI) denotes the mth iterate
of fi applied to HI.

Theorem 2. Let P be an arbitrary annotated program, let HI denote the least
fixed point of TP and suppose that we are given ε > 0. Then there exists a
finite program P = P (ε) (a finite subset of ground(P)) such that d(HI,HI) < ε,
where HI denotes the least fixed point of TP . Therefore, the family {Fn|n ∈ IN}
computes HI, where Fn denotes the neural network obtained by applying the
algorithm of Theorem 1 to Pn, and Pn denotes P (ε) with ε taken as 2−n for
n = 1, 2, 3,

This theorem clearly contains two results corresponding to the two separate
statements made in it. The first concerns finite approximation of TP , and is a
straightforward generalization of a theorem established in [10]. The second is an
immediate consequence of the first conclusion and Theorem 1. Thus, we have
shown that the learning ANNs we have built can approximate the least fixed
point of the semantic operator defined for first-order BAPs.

4 SLD-Resolution for BAPs

We propose a sound and complete proof procedure for BAPs as an alternative
computational paradigm to ANNs. It can be particularly useful for programs
whose annotation Herbrand Base is infinite, because in this case it may be prob-
lematical to build ANNs approximating the least fixed point of TP . As far as
we know, this is the first sound and complete proof procedure for first-order
infinitely interpreted (bi)lattice-based annotated logic programs. Compare, for
example, our results with those obtained for constrained resolution for GAPs,
which was shown to be incomplete, see [6], or with sound and complete (SLD)-
resolutions for finitely-interpreted annotated logic programs (these logic pro-
grams do not contain annotation variables and annotation functions), see, for
example, [5, 9]. We proceed with the definition of our proof procedure for BAPs.

We adopt the following terminology. Let P be a BAP and let G be a goal
← A1 : (μ1, ν1), . . . , Ak : (μk, νk). An answer for P ∪ {G} is a substitution θλ
for individual and annotation variables of G. We say that θλ is a correct answer
for P ∪ {G} if Π((A1 : (μ1, ν1), . . . , Ak : (μk, νk))θλ) is a logical consequence of
P .

Definition 4 (SLD-derivation). Let Gi be the annotated goal
← A1 : (μ1, ν1), . . . , Ak : (μk, νk), and let C,C∗

1 , . . . , C
∗
l be the annotated clauses

A : (μ, ν) ← B1 : (μ′
1, ν

′
1), . . . , Bq : (μ′

q, ν
′
q), A∗

1 : (μ∗
1, ν

∗
1) ← body∗1, . . . , A

∗
l :

(μ∗
l , ν

∗
l) ← body∗l . Then the set of goals G1

i+1, . . . , G
m
i+1 is derived from Gi and

C (and C∗
1 , . . . , C

∗
l) using mgu6 θλ if the following conditions hold.

1. Am : (μm, νm) is an annotated atom, called the selected atom, in G.

6 Throughout this section, mgu stands for “most general unifier”.

180 Ekaterina Komendantskaya and Anthony Seda

2. θ is an mgu of Am and A, and one of the following conditions holds:
(a) λ is an mgu of (μm, νm) and (μ, ν);
(b) (μm, νm)λ and (μ, ν)λ are constants and (μ, ν)λ ≥k (μm, νm)λ;
(c) there are clauses C∗

1 , . . . , C
∗
l of the form A∗

1 : (μ∗
1, ν

∗
1) ← body∗1, . . . , A

∗
l :

(μ∗
l , ν

∗
l) ← body∗l in P , such that θ is an mgu of A, Am and A∗

1, . . . , A
∗
l ,

λ is an mgu of (μm, νm), (μ, ν) and (μ∗
1, ν

∗
1), . . . , (μ∗

l , ν
∗
l) or (μm, νm)λ,

(μ, ν)λ and (μ∗, ν∗)λ, . . . , (μ∗
l , ν

∗
l)λ are constants such that (μm, νm)λ ≤k

((μ, ν)λ⊕ (μ∗
1, ν

∗
1)λ⊕ . . .⊕ (μ∗

l , ν
∗
l)λ).

3. in case 2(a), 2(b), Gi+1 = (← A1 : (μ1, ν1), . . . , Am−1 : (μm−1, νm−1), B1 :
(μ′

1, ν
′
1), . . . , Bq : (μ′

q, ν
′
q), Am+1 : (μm+1, νm+1), . . . , Ak : (μk, νk))θλ.

4. in case 2(c), Gi+1 = (← A1 : (μ1, ν1), . . . , Am−1 : (μm−1, νm−1), B1 :
(μ′

1, ν
′
1), . . . , Bq : (μ′

q, ν
′
q), body

∗
1, . . . , body

∗
l , Am+1 : (μm+1, νm+1), . . . , Ak :

(μk, νk))θλ.
In this case, Gi+1 is said to be derived from Gi, C and C∗

1 , . . . , C
∗
l using θλ.

5. The goals G1
i+1, . . . , G

m
i+1 can be obtained using the following rules: in case

there are atomic formulae Fi : (μi, νi), Fi+1 : (μi+1, νi+1), . . . , Fj : (μj , νj)
in Gi such that Fiθ = Fi+1θ = . . . = Fjθ, form the next goal G1

i+1 = Fiθ :
((μi, νi) ⊗ (μi+1, νi+1)), . . . , Fj : (μj , νj), then G2

i+1 = Fi : (μi, νi), Fiθ :
((μi+1, νi+1)⊗ (μi+2, νi+2)), . . . , Fj : (μj , νj) and so on for all possible com-
binations of these replacements. Form the set of goals G1

i+1, . . . , G
m
i+1, which

is always finite and can be effectively enumerated by, for example, enumerat-
ing goals according to their leftmost replacements and then according to the
number of replacements.

6. Whenever a goal Gi
j contains a formula of the form F : (0, 0), then remove

F : (0, 0) from the goal and form the next goal Gi
j+1.

Definition 5. Suppose that P is a BAP and G0 is a goal. An SLD-derivation
of P ∪ {G0} consists of a sequence G0, G

i
1, G

j
2 . . . of BAP goals, a sequence

C1, C2, . . . of BAP clauses and a sequence θ1λ1, θ2λ2, . . . of mgus such that each
Gk

i+1 is derived from Gj
i and Ci+1 using θi+1λi+1.

An SLD-refutation of P ∪ {G0} is a finite SLD-derivation of P ∪ {G} which
has the empty clause � as the last goal of the derivation. If Gi

n = �, we say that
the refutation has length n.

The success set of P is the set of all A : (μ, ν) ∈ BP such that P ∪ {∼ A} has
an SLD-refutation.

Theorem 3 (Soundness and completeness of SLD-resolution). The suc-
cess set of P is equal to its least annotation Herbrand model. Alternatively,
soundness and completeness can be stated as follows. Every computed answer
for P ∪ {G} is a correct answer for P ∪ {G}, and for every correct answer θλ
for P ∪ {G}, there exist a computed answer θ∗λ∗ for P ∪ {G} and substitutions
ϕ, ψ such that θ = θ∗ϕ and λ = λ∗ψ.

5 Conclusions and Further Work

We have shown that the logical consequences of the BAPs introduced in [7]
can be computed by artificial neural networks with learning functions. Certain

Logic Programs with Uncertainty 181

constructions in the ANNs we have built for BAPs appear to be novel, and
the question concerning the relationship between quantitative (bi)lattice-based
logic programming and learning neural networks is itself quite novel. The BAPs
were shown to be a very general formalism for reasoning about uncertainty and
conflicting sources of information. In [7], we showed that implication-based logic
programs á la van Emden and the annotation-free bilattice-based logic programs
of [1] can be translated into the language of BAPs, and iterations of the semantic
operators usually associated with these logic programs were shown to correspond
to iterations of TP . These results extend bounds for further implementation of
the ANNs we have introduced in the paper. The sound and complete SLD-
resolution we have introduced for BAPs will serve as a complementary technique
when working with BAPs having infinite annotation Herbrand base.

References

1. M. C. Fitting. Bilattices in logic programming. In G. Epstein, editor, The twentieth
International Symposium on Multiple-Valued Logic, pages 238–246. IEEE, 1990.

2. S. Haykin. Neural Networks. A comprehensive Foundation. Macmillan College
Publishing Company, 1994.

3. P. Hitzler, S. Hölldobler, and A. K. Seda. Logic programs and connectionist net-
works. Journal of Applied Logic, 2(3):245–272, 2004.

4. S. Hölldobler, Y. Kalinke, and H. P. Storr. Approximating the semantics of logic
programs by recurrent neural networks. Applied Intelligence, 11:45–58, 1999.

5. M. Kifer and E. L. Lozinskii. Ri: A logic for reasoning with inconsistency. In
Proceedings of the 4th IEEE Symposium on Logic in Computer Science (LICS),
pages 253–262, Asilomar, 1989. IEEE Computer Press.

6. M. Kifer and V. S. Subrahmanian. Theory of generalized annotated logic program-
ming and its applications. Journal of logic programming, 12:335–367, 1991.

7. E. Komendantskaya, A. K. Seda, and V. Komendantsky. On approximation of the
semantic operators determined by bilattice-based logic programs. In Proceedings of
the Seventh International Workshop on First-Order Theorem Proving (FTP’05),
pages 112–130, Koblenz, Germany, September 15–17 2005.

8. J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 2nd edition,
1987.

9. J. J. Lu, N. V. Murray, and E. Rosental. Deduction and search strategies for
regular multiple-valued logics. Journal of Multiple-valued logic and soft computing,
11:375–406, 2005.

10. A. K. Seda. On the integration of connectionist and logic-based systems. In
T. Hurley, M. Mac an Airchinnigh, M. Schellekens, A. K. Seda, and G. Strong,
editors, Proceedings of MFCSIT2004, Trinity College Dublin, July, 2004, Electronic
Notes in Theoretical Computer Science. Elsevier, 2005. To appear.

Clocking Type-2 Computation in the Unit Cost
Model

Chung-Chih Li

School of Information Technology
Illinois State University, Normal, IL 61790, USA

Abstract. In [12] we defined a class of functions called Type-2 Time
Bounds (henceforth T2TB) for clocking the Oracle Turing Machine
(OTM) in order to capture the long missing notion of complexity classes
at type-2. In the present paper we further advance the type-2 complexity
theory under our notion of type-2 complexity classes. We have learned
that the theory is highly sensitive to how the oracle answers are handled.
We present a reasonable alternative called unit cost model, and examine
how this model shapes the outlook of the type-2 complexity theory. Un-
der the unit cost model we prove two theorems opposite to the classical
union theorem and gap theorem. We also investigate some properties of
T2TB including a very useful theorem stating that there is an effec-
tive operator to convert any β ∈ T2TB into an equivalent one that is
locking-detectable. The existence of such operator allows us to simplify
many proofs without loss of generality.1

1 Introduction

Let 〈ϕi〉i∈N be an acceptable programming system and 〈Φi〉i∈N be a complexity
measure associated to 〈ϕi〉i∈N, where N is the set of natural numbers. Simply

put, one may consider ϕi as the function computed by the ith Turing machine.
A formal definition for an acceptable programming system can be found in [16,
15]. For the complexity measure, one may consider Φi(x) as the amount of re-
source needed to compute ϕi on x. We use ϕi(x) ↓= y to denote that the
computation of ϕi on x is converged and its value is y. Similarly, Φi(x) ↓= m
means that the cost of computing ϕi on x is converged to m. In [7] Hart-
manis and Stearns gave a precise definition for complexity classes as follows:
C(t) =

{
f
∣∣ ∃i[ϕi = f and Φi ≤∗ t

]
}, where Φi ≤∗ t means that the relation,

Φi(x) ≤ t(x), holds on all but finitely many values of x. Within two years, Blum
proposed two axioms in [1] as the basic requirements for any reasonable dynamic
complexity measures to meet. The two requirements are straightforward: for any
i, x,m ∈ N, we require (i) ϕi(x) ↓ if and only if Φi(x) ↓, and (ii) Φi(x) = m is
effectively decidable. The two axioms had successfully lifted the study of com-
plexity theory to an abstract level with rich results that are independent from

1 We’ve omitted all detailed proofs due to the space constraints. A full version is
available at http://galaxy.cs.lamar.edu/∼chungli/type2/UnitCost.pdf.

Clocking Type-2 Computation in the Unit Cost Model 183

any specific machine models. These two landmark papers initiated an important
study now known as abstract complexity theory in theoretical computer science.

It is obvious that the complexity theory should be extended into type-2 (a.k.a.
second-ordered) computation. This inquiry can be traced back to Constable’s
1973 paper [5] in which he asked what should a type-2 complexity theory look
like? However, only a few scattered works had been done in the past three
decades due to the difficulty of having a generally accepted abstraction for type-
2 computation. In particular, we face a fundamental problem that there is no
Church-Turing thesis at type-2. As a result, the notion of asymptotical behavior
at type-2 and the way of clocking whatever type-2 computing devices become
not quite as intuitive as ordinary type-1 computation. Recently, we introduced
a notion of type-2 asymptotical behavior in [11] to catch the idea of its type-
1 counterpart – for all but finitely many. Using this notion and the clocking
scheme with type-2 time bounds proposed in [12], we describe a natural notion
of type-2 complexity classes that seems to be a solid ground for type-2 complexity
theory to take off. In the present paper, we further study the properties of our
type-2 time bounds and point out that the type-2 complexity theory is highly
sensitive to the actual cost model used in the clocking scheme. We believe that
our investigation initiates a sound framework for theorists to further speculate a
more complete machine-independent complexity theory for type-2 computation.

Notations: We first fix some necessary notations. By convention, natural num-
bers are taken as type-0 objects and functions over natural numbers are type-1
objects. Type-2 objects are functionals that take as inputs and produce as out-
puts type-1 objects. Let type-0 ⊂ type-1 ⊂ type-2. We are interested only in total
functions of type N → N when they are taken as inputs of type-2 functionals.
For convenience, let T denote the set of total functions of type N → N and P
the set of partial functions of type N ⇀ N. Also, let F denote the set of finite
functions, i.e., F ⊂ P and σ ∈ F if and only if dom(σ) ⊂ N and card(σ) ∈ N.
We fix a canonical indexing for F so we can treat any function in F as a natural
number when it is taken as the input of some type-1 function. Let 〈·, ·〉 be the
standard pairing function defined in [15]. Thus, for every σ ∈ F and x ∈ N,
there is a unique 〈σ, x〉 ∈ N. Let |n| be the length of the presentation of n ∈ N.
Unless stated otherwise, we let a, b, x, y, z range over N, f, g, h range over T ,
and F,G,H range over type-2 functionals. Without loss of generality we restrict
type-2 functionals to our standard type T ×N ⇀ N. Thus, we can follow the
tradition by using the OTM as our standard formalism for type-2 computation.
We also fix some necessary conventions for OTM’s in the following paragraph.

Oracle Turing Machines: In addition to the standard I/O tape of a TM, an OTM
has two extra tapes called query tape and answer tape. The type-0 numerical
input is prepared at the beginning of the I/O tape and the type-1 functional input
is prepared as a function oracle attached to the machine before the computation
begins. During the course of computation, if the OTM needs some value from
the function oracle, the OTM have to place the quetion to the query tape and
then transit to a special state called query state. Then, the oracle will place the

184 Chung-Chih Li

answer to the answer tape in one step; no matter how big the answer might be.
As for the classical complexity theory, we fix a programming system 〈ϕ̂i〉i∈N
associated with a complexity measure 〈Φ̂i〉i∈N for our OTM’s. Conventionally,
we take the number of steps an OTM performed as our time complexity measure.
Note that the steps for the OTM to prepare the query and read the answer are
counted as a part of the computational cost.

2 Type-2 Complexity Classes and Time Bounds

Seth followed Hartmanis and Stearns’s notion to define type-2 complexity classes
in [18] where he proposed two alternatives:

1. Given recursive t : N→ N, let DTIME(t) denote the set of type-2 functionals
such that, for every functional F ∈ DTIME(t), F is total and there is an

OTM M̂e that computes F and, on every (f, x) ∈ T ×N, M̂e halts within
t(m) steps, where m = |max({x}∪Q)| and Q is the set of all answers returned
from the oracle during the course of the computation.

2. Given computable H : T ×N→ N, let DTIME(H) denote the set of type-2
functionals such that, for every functional F ∈ DTIME(H), F is total and

there is an OTM M̂e that computes F and, on every (f, x) ∈ T ×N, M̂e

halts within H(f, x) steps.

The key idea behind Seth’s complexity classes is directly lifted from [7]. In fact,
the same idea can also be found in other works such as [8, 17] along the line of
machine characterizations. However, we face some problems that do not exist
in type-1 computation. For example, in one of Seth’s definitions, the resource
bound is determined by the set of all answers returned from the oracle; but
this set in general is not computable and hence it can’t be available before
the computation completes. Alternatively, we should update the resource bound
dynamically upon each answer returned from the oracle during the course of the
computation. But if we do so, there is no guarantee that a clocked OTM must
be total. For example, Cook’s POTM [6] is an OTM bounded by a polynomial
in this manner but a POTM may run forever. Kapron and Cook’s proposed
their remedies in the context of feasible functionals in [8] and gave a very neat
characterizations of type-2 Basic Feasible Functionals (BFF), where the so-called
second-ordered polynomial is used as the resource bound. We may adapt all these
ideas with our ≤∗

2
defined in [11] and extend the second-ordered polynomial to

a general type-2 computable functional to have the following complexity class:

DTIME(H) = {F
∣∣ ∃e[ϕ̂e = F and Φ̂e ≤∗

2
H]}. (1)

DTIME(H) seems to be a perfect analog of classical DTIME. However, we do
not think using a type-2 functional as a resource bound is proper because the
bound should not depend on information that is irrelevant to the computation.
In other words, we prefer the clocking scheme of POTM. To avoid the problem
of POTM we mentioned, we give a class of functions called Type-2 Time Bounds
denoted by T2TB in order to properly clock OTMs [12].

Clocking Type-2 Computation in the Unit Cost Model 185

Definition 1 (Type-2 Time Bounds). Let β : F ×N→ N. We say that:

1. β is nontrivial, if for every (σ, a) ∈ F ×N, β(σ, a) ≥ |a|+ 1;
2. β is bounded, if for every (f, x) ∈ T × N, σ ∈ F , and σ ⊂ f, we have

β(σ, x) ≤ limτ→f β(τ, x);
3. β is convergent, if for every (f, a) ∈ T ×N, there exists σ ∈ F with σ ⊂ f

such that, for all τ with σ ⊆ τ , we have β(σ, a) = β(τ, a);
4. β is F-monotone, if for every a ∈ N and σ, τ ∈ F with σ ⊆ τ , we have

β(σ, a) ≤ β(τ, a).

If β is computable, nontrivial, bounded, and convergent, we say that β is a type-2
time bound. Moreover, if β is F-monotone, we say that β is strong.2

The properties listed in Definition 1 are formulated so to catch our intuition
about what a resource bound should be in clocking the OTM (see the full ver-
sion for details). By a standard diagonalization, one can prove that T2TB is
not recursively enumerable. This indeed is an uneasy fact, since being able to
enumerate T2TB is a property that can make many proofs possible or easier.
Let β(σ, x) ↓ denote the situation that ∀τ ⊇ σ[β(σ, a) = β(τ, a)]. If β(σ, x) ↓, we
say that (σ, x) is a locking fragment of β.

Definition 2 (Locking Detectors). Let β ∈ T2TB. We say that ℓ is a
locking detector of β if ℓ : F × N → {0, 1} is computable and (i) ℓ is F-
monotone, (ii) ∀(σ, x) ∈ F ×N[(ℓ(σ, x) = 1) ⇒ β(σ, x) ↓], and (iii) ∀(f, x) ∈
T ×N[limσ→f ℓ(σ, x) = 1].

If β ∈ T2TB has a locking detector ℓ, we say that β is locking detectable. If
ℓ(σ, x) = 1, then (σ, x) is a locking fragment of β. It is clear that whether a given
β on some (σ, x) has converged is undecidable. Thus, we cannot simply assume
that every type-2 time bound is locking detectable. Nevertheless, we have a very
positive theorem allowing us to make that assumption without loss of generality
(see Theorem 9 in Section 5).

3 A Clocking Scheme and Two Cost Models

We present a clocking scheme using our T2TB. This scheme is used implicitly
in some works such as Kapron and Cook’s [8], Seth’s [18], and Royer’s [17].

Definition 3 (Clocked OTM). Let β ∈ T2TB and M̂e be an OTM with index

e. We say that M̂e is clocked by β if M̂e is simulated by the procedure shown in
Figure 1. Such a clocked OTM is denoted by M̂e,β and the functional computed

by M̂e,β is denoted by ϕ̂e,β.

Consider the procedure in Figure 1. The budget provided by β is computed
upon every answer returned from the oracle during the course of the simulation

2 In [12] we used WB to denote the set of type-2 time bounds and SB to denote the
set of strong type-2 time bounds. Clearly, SB ⊂ WB and SB
= WB.

186 Chung-Chih Li

Program for Clocked OTM cMe,β :
input (f, x) ∈ T × N;
var σ ∈ F ; q, y, expense, budget ∈ N; /* variable declaration */
σ ←− ∅; expense ←− 0; budget ←− β(σ, x); /* initialization */

Simulate cMe on (f, x) step by step and upon each step completed do:
expense ←− expense + 1;
if (expense > budget) /* check budge */

then output ⊥ and stop; /* ⊥ is the bottom symbol. (⇑) */

if (cMe halts with the output y)
then output y and stop; /* simulation completed. (⇓) */

if (the step just simulated completes an oracle query)
then do

q ←− current query;
σ ←− σ ∪ {(q, f(q))}; /* update query-answer set */
budget ←− β(σ, x); /* update budget */

end-do;
Resume the simulation;

End program

Fig. 1. A Clocking Scheme for OTM’s

of M̂e on (f, x). If the simulation has overrun the budget, then the simulation

will be terminated at the line marked (⇑). In this case we say that M̂e is clipped
down by β on (f, a) denoted by ϕ̂e,β(f, a) ⇑. On the other hand, if the simulation

reaches the line marked (⇓), which means that the simulation of M̂e on (f, a) is
successfully completed, then we say that ϕ̂e,β(f, a) converges to value ϕ̂e(f, a).
We denote this situation by ϕ̂e,β(f, a) ⇓. Since β is convergent, it follows that the

simulation of M̂e on (f, a) will either complete or eventually be clipped down by
the clock. Therefore, for any β ∈ T2TB, ϕ̂e,β is a total computable functional
of type T ×N→ N. This removes the problem of POTM.

Theorem 1. Given any computable F : T ×N→ N and β ∈ T2TB, there is a
ϕ̂-program e for F such that ϕ̂e �= ϕ̂e,β.

The theorem above show that arbitrarily complex ϕ̂-programs exist. The
proof is an easy application of classical recursion theory. Although the locking
fragment of β in general is undecidable (see Section 5), we need not to know the
value of β in the limit in order to construct an arbitrarily complex ϕ̂-program for
any given computable type-2 functional. This is similar to the ordinary type-1
computation. A slightly more involved theorem is the type-2 version of Rabin
Theorem [14] stating that, given any β ∈ T2TB, there is a 0-1 valued computable
functional that cannot be computed by any ϕ̂e,β . We prove a versions in [11]
where the bound function is simply a computable type-2 functional. The proof
is perfectly valid under the present clocking scheme with T2TB.

Unfortunately, the properties of β ∈ T2TB and our intuitive clocking scheme
are not sufficient to standardize a framework for type-2 complexity theory. The

Clocking Type-2 Computation in the Unit Cost Model 187

way an OTM handles the oracle answers does matter. We have the following two
conventions under our clocking scheme.

Definition 4 (Two Cost Models for OTM’s).

1. Answer-Length Cost Model: Whenever the oracle returns an answer to the
oracle query, the machine is required to read every bit of the answer.

2. Unit Cost Model: The machine needs not to read any bit of the oracle answer
unless the machine decides to do so.

In other words, the cost for each answer returned from the oracle under the
answer-length cost model is one unit step plus the length of the answer, while the
other model is one. The underlying cost model used in [8, 17, 18] are the answer-
length cost model. Also, the outline of a type-2 complexity theory given in [12]
is also based on the answer-length cost model. The answer-length cost model
from many aspects is more manageable. Nevertheless, we do not think the unit
cost model is merely a peculiar convention. On the contrary, the unit cost model
is rather reasonable in real computation. For example, only the first bit of the
answer is needed to decide whether it is odd or even. However, the controversial
part is that, under the unit cost model, the computation can aggressively gain
some budget by just querying the oracle without reading the answers. This trick
makes the complexity theory under the unit cost model much flatter than the
theory under the other model. For example, there exist certain versions of Union
Theorems [12] and Gap Theorems [10] under the answer-length cost model, but
the theorems fail to hold under the unit cost model.

4 Complexity Theory under The Unit Cost Model

We explicitly make the notations for the unit cost model different by using a
superscript u as follows: M̂u

e , ϕ̂u
e , Φ̂u

e , M̂u
e,β , ϕ̂

u
e,β , and Φ̂u

e,β . For example, M̂u
e is

the unit cost model OTM with index e, and ϕ̂u
e,β denotes the functional computed

by M̂u
e with clock β. Since the two models do not differ in computability, we

have ϕ̂e = ϕ̂u
e for every e. On the other hand, Φ̂e �= Φ̂u

e , and hence ϕ̂e,β �= ϕ̂u
e,β in

general. Unless stated otherwise, if the superscript is omitted from the statement
of some theorem, we mean that the theorem holds under both cost models. We
adapt the notion of type-2 complexity classes proposed in [10–12] and alter the
cost model to the unit cost model. The exception set, Eu

e,β is defined as follows:

Eu
e,β =

{
(f, x) ∈ T ×N

∣∣ ϕ̂u
e,β(f, x) ⇑

}
.

We also adopt the topology introduced in [11], i.e., for every continuous func-
tional F : T ×N→ N, T(F) is the topology obtained by taking the set of total
extensions of every minimum locking fragment of F as a basic open set. Since
each functional ϕ̂e is continuous, the topology T(ϕ̂e) is well defined. It’s also
clear that such T(F) is induced from the Baire topology. Note that, we require
σ to be the minimum locking fragment, otherwise T(F) will inflate to the Baire
topology.

188 Chung-Chih Li

Definition 5 (Type-2 Complexity Classes). Let β ∈ T2TB. Define the set
of computable type-2 functionals Cu(β) as

Cu(β) =
{
ϕ̂e : T ×N→ N

∣∣ e ∈ N and Eu
e,β is compact in T(ϕ̂e)

}
.

Inclusion property: In [11] we pointed out that it doesn’t seem likely to have
a reasonable notion for type-2 asymptotic relation, ≤∗

2
, that is transitive due

to the topological constraints. Thus, if a type-2 complexity class is defined by
some type-2 functional in the classical manner such as (1), a bigger resource
bound does not always promise a bigger complexity class. Our clocking scheme
and type-2 time bounds can easily fix this problem. This adds another reason to
why we do not think using type-2 functionals as resource bounds is appropriate.
Note that the theorem below holds under both cost models.

Theorem 2. For every β1, β2 ∈ T2TB, [β1 ≤ β2] =⇒ [C(β1) ⊆ C(β2)].

Since the value of a continuous functional on a compact set is bounded, it
follows that, intuitively, if ϕ̂e ∈ C(β) then we need only some constant extra
budget to let ϕ̂e finish its computation on every points in Ee,β . This intuition
indeed is correct under the unit cost model, i.e., if F ∈ Cu(β), then there exist
c, e ∈ N such that ϕ̂u

e = F and Eu
e,β+c = ∅. However, under the answer-length

cost model, we need more than a constant extra budge as shown in [10]: If
F ∈ C(β), then there exist c, e ∈ N such that ϕ̂u

e = F and Ee,2β+c = ∅ under
the answer-length cost model.

Enumerability: It is easy to show that the finite invariant closure of a type-1
complexity class is recursively enumerable [2]. However, not every complexity
class itself can be recursively enumerated. When the cost bound function t is
too small, the complexity class determined by t is unlikely to be recursively
enumerable [2, 9]. On the other hand, if t is big enough to bound all finite sup-
port functions3 almost everywhere, then the complexity class determined by t is
recursively enumerable. In particular, if t(x) ≥ |x| + 1 for all x ∈ N, then all
finite support functions are contained in the complexity class determined by t
(see [3], section 9.4). Although we required every β ∈ T2TB to be nontrivial,
this requirement is not sufficient for enumerating C(β). The difficulty is that,
given (σ, x) ∈ F ×N, we may not be able to test if it is the case that σ ⊂ f
for any input f ∈ T under the the answer-length cost model, since querying the
oracle outside the domain of the locking fragment of β is dangerous, which may
cause a huge returned answer and the OTM will use up its budget in scanning
the entire answer as required under the answer-length cost model. In [10] we im-
posed two rather strong conditions to have C(β) being recursively enumerable.
We also conjecture that there exists β ∈ T2TB such that C(β) is not recursively
enumerable. On the contrary, the cost of querying the oracle is more manageable
under the unit cost model. As a result, we have the following theorem without
any extra condition on β needed.

Theorem 3. For every β ∈ T2TB, Cu(β) is recursively enumerable.

3 A function f is finite support if the value of f is 0 almost everywhere.

Clocking Type-2 Computation in the Unit Cost Model 189

Non-Union Theorem: The Union Theorem [13] is one of the most fascinating
theorems in classical complexity theory. Not just because the technique used in
the proof then was new to complexity theorists, but also the theorem told us that
most natural complexity classes have clear boundaries in terms of the bounds
that determine Hartmanis and Stearns’s complexity classes. In other words, we
can use one computable function to exactly bound any given natural complexity
class. Although any arbitrary union of computable functions is not necessarily
a complexity class in general, we only need a very weak condition to have the
following theorem known as the union theorem.

Theorem 4 (McCreight & Meyer [13]). Let the sequence of recursive func-
tions, f0, f1, f2, . . ., be recursive and fi(x) ≤ fi+1(x) for all i, x ∈ N. Then,
there is a recursive function g such that C(g) =

⋃
i∈N

C(fi).

According to the theorem, a complexity class such as PTIME, PSPACE,
etc., each can be exactly determined by one recursive function; same to the set
of computable functions bounded by computable functions in O(f) (the big-O
notation). At type-2, the union theorem seems to break down. For example, the
class of type-2 basic feasible functionals is not a complexity class [10]. Neverthe-
less, in [12, 10] we imposed some quite strong but yet reasonable conditions on
the sequence of type-2 time bounds to have a type-2 union theorem under the
answer-length cost model. As a result, if we define a type-2 big-O notation as
O(β) =

⋃
a,b∈N

C(aβ+ b), then for each β ∈ T2TB there exists γ ∈ T2TB such
that C(γ) = O(β) under the answer-length cost model. However, the conditions
are not sufficient under the union cost model. The union theorem does not hold
under the unit cost mode unless the sequence of the type-2 time bounds tends
to trivial.

Theorem 5 (Non-Union Theorem). For any β ∈ T2TB, there is no α ∈
T2TB such that Cu(α) =

⋃
c∈N

Cu(cβ).

Thus, O(β) is not a complexity class under the unit cost model. Note that the
sequence we proposed above, β, 2β, 3β, . . ., is very conservative in a sense that
the sequence is uniformly convergent, i.e., every one in the sequence converges at
the same locking fragment, which is a very strong condition. Thus, the condition
must be further strengthened if we want to sustain the union theorem under the
unit cost model. For example, we may require the value of the sequence to be
bounded on any (f, x), i.e., lim(i→∞,σ→f) βi(σ, x) ∈ N. However, we consider a
union theorem under such strong condition trivial.

Anti-Gap Theorem: When people tried to find an effective operation to enlarge
a type-1 complexity class, the gap phenomena were discovered [2, 4]. We have
learned that it is impossible to have such effective operation unless some “nice”
property is assumed. We state a stronger version of gap theorems known as the
Operator Gap Theorem in the following.

Theorem 6 (Constable [4] & Young [19]). For any total effective operator
Θ, we can effectively find an arbitrarily large recursive function t such that C(t) =
C(Θ(t)).

190 Chung-Chih Li

In other words, we can always find resource bound t such that the given effective
operator fails to enlarge the complexity class determined by t. Some properties
such as time-constructibility and honesty are those commonly mentioned “nice”
ones to dismiss the gap phenomena. Three major theorems in classical complex-
ity theory – Compression theorem, Gap theorem, and Honesty theorem – form
a wonderful trilogy telling a full story along this line.

In [10] we gave a preliminary idea for type-2 time-constructibility, but we
still do not fully understand what should be the proper meaning of type-2 hon-
est functionals. Under the answer-length cost model, the gap phenomena are
inherited from the type-1 computation, i.e., the gap phenomena are caused by
the type-1 part of the computation. We observe that no “pure” type-2 computa-
tion is possible under the answer-length cost model because every oracle query
must be followed by an inevitable type-1 computation (i.e., reading the answer
that can go arbitrarily huge). On the other hand, under the unit cost model, the
type-2 computation becomes “purer” and the gap phenomena disappear. We see
this as a positive result because we can uniformly enlarge a complexity class.
The only condition is that, β has to be strong.

Theorem 7 (Anti-Gap Theorem). Suppose g : N→ N is recursive and, for
every x ∈ N, g(x) ≥ 3x. Then, for every strong β ∈ T2TB, Cu(β) ⊂ Cu(g ◦β).

Note that Theorem 7 above does not hold if β is not strong (i.e., not F-
monotone). An intuitive explanation is that, if β is not strong, then it can shrink
the budget to the bottom (i.e., |x|+ 1) until it receives a locking fragment that
is too long to be seen under the budget provided by g ◦ β.

5 Properties of Type-2 Time Bounds

In this section we study the relation between type-2 time bounds and type-2
functionals. It is clear that each type-2 time bound determines a limit functional
as follows. (More details about limit functionals can be found in Rogers’ [15]).

Definition 6. Given any β ∈ T2TB, define Fβ = λf, x.(lim
σ→f

β(σ, x)).

Some obvious properties of this limit functional, Fβ , come directly from the
properties of β. For example, Fβ is a continuous functional and total on T ×N.
Taking the type-2 almost everywhere relation, ≤∗

2
, defined in [11], we can prove

that, ϕ̂e ∈ C(β) ⇒ Φ̂e ≤∗

2
Fβ . However, the converse is false because the history

of requesting budget from β does matter. Thus, Fβ1
= Fβ2

does not imply that
C(β1) = C(β2), which means that the budget provided by β in the limit may
not be useful for the computation. This causes the major difference between
complexity classes defined by T2TB and type-2 functionals. However, we may
want to have a certain computable operation on β’s to force the budget in the
limit to be used earlier during the computation; in such a way all computations
with complexity bounded by Fβ can be finished. We argue that such an effective
operation is impossible. We state this in the following theorem.

Clocking Type-2 Computation in the Unit Cost Model 191

Theorem 8. There is no recursive operator Θ : T2TB→ T2TB such that, for
any β ∈ T2TB and ϕ̂e : T ×N→ N, Φ̂e(f, x) ≤ Fβ(f, x) ⇔ ϕ̂e,Θ(β)(f, x) ⇓ .

We know that not every limit functional corresponds to a recursive functional
that is total on recursive functions [15]. It is clear that if β is locking-detectable,
then Fβ is computable. Thus, there is a β ∈ T2TB such that Fβ is total but not
computable. We obtain the following corollary.

Corollary 1. There is β ∈ T2TB that is not locking detectable.

Locking Detectable Type-2 Time Bounds: Locking detectability probably is the
most useful property we want to have in our proofs. For example, the proof
of Theorem 3 makes such assumption. We argue that making this seemingly
strong assumption in fact does not lose the generality of our proofs under both
cost models. We say that β and α are equivalent if the two determine the same
complexity class, i.e., C(β) = C(α). Our approach is to construct an effective
operator that converts any β ∈ T2TB to an equivalent locking detectable one.
We state the theorem as follows.

Theorem 9. There is an effective operator ΘL : T2TB → T2TB such that,
for every β ∈ T2TB, ΘL(β) is a locking detectable type-2 time bound equivalent
to β. Moreover, if β is strong, then so is ΘL(β).

6 Conclusion and Futures

Type-2 computation to some extent is a better model for many real-world com-
putations. Just to name some: real computation, real time (interactive) compu-
tation, mass database inquiries, machine learning, Web search engine, and so
on, where we do not use all available information just as the OTM does not use
the entire knowledge of the oracle. But as a matter of fact, type-2 complexity
theory is a highly underdeveloped area mainly because a tiny difference between
computation models can easily cause manifest discrepancy in the notion of com-
putability. The situation becomes even worse when computational complexity is
concerned. Even with the OTM, a widely accepted standard for type-2 computa-
tion, the way we treat the answers returned from the oracle radically shapes the
outlook of the complexity theory at type-2. The answer-length cost is the most
common cost model assumed in the literatures. This obviously is not the only
choice (we do not read every entry returned from the Google search engine, do
we?). We thus propose a reasonable alternative model called unit cost model. We
have learned that even under the same clocking scheme, this cost model gives
us a very different type-2 complexity structure. The complexity theory is much
more fragile under the unit cost model.

There are apparently many questions yet to be answered along the line of
classical complexity theorems. For example, is there any reasonable version of
the Speedup theorem? Hierarchy theorem? What is the meaning of complete-
problems at type-2? Is the classical notion of honesty necessarily trivial at type-2?

192 Chung-Chih Li

If yes, what should it be and what problem it is meant to fix? BFF does not fit
our notion of complexity classes, but are there any intuitively feasible classes that
do? Etc, etc. All these questions should be answered and we speculate that the
clocking scheme together with our type-2 time bounds has provided an accessible
approach to explore this long missing piece of a more general complexity theory.

References

1. Manuel Blum. A machine-independent theory of the complexity of recursive func-
tions. Journal of the ACM, 14(2):322–336, 1967.

2. A. Borodin. Computational complexity and the existence of complexity gaps.
Journal of the ACM, 19(1):158–174, 1972.

3. Walter S. Brainerd and Landweber Lawrance H. Theory of Computation. John
Wiley & Sons, New York, 1974.

4. Robert L. Constable. The operator gap. Journal of the ACM, 19:175–183, 1972.
5. Robert L. Constable. Type two computational complexity. In Proceedings of the

5th ACM Symposium on the Theory of Computing, pages 108–122, 1973.
6. Stephen A. Cook. Computability and complexity of higher type functions. In Y. N.

Mpschovakis, editor, Logic from Computer Science, pages 51–72. Springer-Verlag,
1991.

7. J. Hartmanis and R. E. Stearns. On the computational complexity of algorithms.
Transitions of the American Mathematics Society, pages 285–306, May 1965.

8. Bruce M. Kapron and Stephen A. Cook. A new characterization of type 2 feasi-
bility. SIAM Journal on Computing, 25:117–132, 1996.

9. L.H. Landweber and E.R. Robertson. Recursive properties of abstract complexity
classes. ACM Symposium on the Theory of Complexity, May 1970.

10. Chung-Chih Li. Type-2 complexity theory. Ph.d. dissertation, Syracuse University,
New York, 2001.

11. Chung-Chih Li. Asymptotic behaviors of type-2 algorithms and induced baire
topologies. Proceedings of the Third International Conference on Theoretical Com-
puter Science, pages 471–484, August 2004.

12. Chung-Chih Li and James S. Royer. On type-2 complexity classes: Preliminary
report. Proceedings of the Third International Workshop on Implicit Computational
Complexity, pages 123–138, May 2001.

13. E. McCreight and A. R. Meyer. Classes of computable functions defined by bounds
on computation. Proceedings of the First ACM Symposium on the Theory of Com-
puting, pages 79–88, 1969.

14. M.O. Rabin. Degree of difficulty of computing a function and a partial ordering of
recursive sets. Technical Report 2, Hebrew University, 1960.

15. Hartley Rogers, Jr. Theory of Recursive Functions and Effective Computability.
McGraw-Hill, 1967. First paperback edition published by MIT Press in 1987.

16. James Royer and John Case. Subrecursive Programming Systems: Complexity &
Succinctness. Birkhäuser, 1994.

17. James S. Royer. Semantics vs. syntax vs. computations: Machine models of type-2
polynomial-time bounded functionals. Journal of Computer and System Science,
54:424–436, 1997.

18. Anil Seth. Complexity theory of higher type functionals. Ph.d. dissertation, Uni-
versity of Bombay, 1994.

19. Paul Young. Easy construction in complexity theory: Gap and speed-up theorems.
Proceedings of the American Mathematical Society, 37(2):555–563, February 1973.

On the Calculating Power of Laplace’s Demon

John Longley

LFCS, School of Informatics, University of Edinburgh, UK.
Email: jrl@inf.ed.ac.uk

Abstract. We discuss some of the choices that arise when one tries to
make the idea of physical determinism more precise. Broadly speaking,
‘ontological’ notions of determinism are parameterized by one’s choice of
mathematical ideology, whilst ‘epistemological’ notions of determinism
are parameterized by the choice of an appropriate notion of computabil-
ity. We present some simple examples to show that these choices can
indeed make a difference to whether a given physical theory is ‘deter-
ministic’ or not.

Keywords: Laplace’s demon, physical determinism, philosophy of math-
ematics, notions of computability.

1 Introduction

Given for one instant an intelligence which could comprehend all the
forces by which nature is animated and the respective situations of the
beings who compose it — an intelligence sufficiently vast to submit these
data to analysis — it would embrace in the same formula the movements
of the greatest bodies and those of the lightest atom; for it, nothing would
be uncertain and the future, as the past, would be present to its eyes. [19,
chapter II]

In these now famous words, Laplace articulated his vision of an orderly,
mechanistic universe whose history unfolds like clockwork according to fixed
deterministic laws. In essence, this vision may be traced back at least to Dem-
ocritus, and it has remained enormously influential down to the present time
(see e.g. [25] for a modern incarnation). Philosophers still argue over whether or
not the issue of physical determinism has any bearing on the problem of free will
(see e.g. [6]). It is therefore very natural to ask how well Laplace’s claim holds
up in the light of our present-day understanding of science and mathematics.

Broadly speaking, the answer to this question will depend on two kinds of
considerations. Firstly, it clearly depends on what the ‘laws of physics’ actually
are: for example, some proposed formulations of quantum theory appear to allow
for some kind of indeterminacy at the interface between ‘quantum’ and ‘classical’
levels, whilst others do not. Issues of this kind are clearly a matter for the
physicists. Secondly, and less obviously, one can ask how exactly the Laplacian
concept of determinism is to be made precise. It is this latter question that I
wish to consider in this paper.

194 John Longley

I will argue, drawing on ideas from computability theory and mathematical
logic, that there are a whole range of different ways in which the idea of deter-
minism might be understood. Some of the choices involved are purely technical
in nature, whilst others touch on deeper philosophical issues. I will show, more-
over that these choices can sometimes radically affect whether a physical theory
is ‘deterministic’ or not, even in the case of very simple theories.

Laplace’s imagery of a hypothetical predictive ‘intelligence’ (nowadays known
as Laplace’s demon) provides a valuable prop for the imagination. Roughly
speaking, we will be asking exactly how the instantaneous state of the universe is
supposed to be ‘presented’ to the demon (that is, what kinds of raw facts about
this state he has access to), and exactly what kinds of ‘analysis’ — particularly
what kinds of infinitary operations — he is supposed to be able to perform on
this data. I hope to show how these considerations can make interesting and
perhaps surprising differences to the conclusions that can be drawn.

1.1 Ontological versus epistemological determinism

As a first stab, we may broadly distinguish between two ways of interpreting
Laplace’s claim, which we call the ontological and the epistemological interpre-
tation. The ontological version would say that given the present state of the
universe (or of some closed physical system), there is, in fact, only one possible
course of history starting from this state in which the laws of physics are upheld
(whether or not we have any way of knowing what that history is). By contrast,
an epistemological version would say that given knowledge of the present state,
there is some way of knowing or ‘working out’ how the future will unfold.

The ontological and epistemological notions of determinism may be under-
stood with reference to the mathematical notions of truth and computability
respectively. Schematically, if histories are represented by mathematical func-
tions from Times to States, ontological determinism claims that some sentence
of the form

∀s : States, t : Times. ∃!h : Times → States . h(t) = s∧Laws Of Physics(h) (†)

is true, where Laws Of Physics(h) might say (for instance) that certain differ-
ential equations are satisfied at every point in space and time, and s specifies
a boundary condition.1 By contrast, epistemological determinism would claim
that there is some kind of computable operation

Φ : States → (Times → States)

1 Some care is needed over the status of the sentence (†). If it is understood purely
as a mathematical statement about some model of physics, it does not succeed in
saying anything about how the actual universe behaves. On the other hand, if it
is understood as referring directly to physically real entities, it does not say what
we want: since there is only one actual course of history, the uniqueness assertion
becomes vacuous — we would really like h to range over all mathematically possible
history functions. Our proposed solution is to understand (†) as a mathematical
assertion, and to supplement it with the following statement, in which T, T ′ range

On the Calculating Power of Laplace’s Demon 195

such that for any state s, the history Φ(s) correctly represents the evolution of
the physical system starting from s. In connection with the ontological claim,
one might imagine a demon so powerful that he can magically survey all possi-
ble history functions and pick out the one with the required property; for the
epistemological version, one might imagine a more modest demon who makes
predictions by following some kind of algorithmic procedure, perhaps involving
idealized ‘measurements’ on the state s.

The a priori possibility that the behaviour of physical systems might be
mathematically deterministic but not algorithmically computable in nature has
been highlighted by Penrose [22, 23], who has furthermore suggested that physi-
cal laws of this kind might play an essential role in the science of consciousness.

1.2 Drawing finer distinctions

These two varieties of determinism presuppose, respectively, a notion of math-
ematical truth and a notion of computability. Discussions of determinism often
implicitly assume that these are both unambiguous and unproblematic notions:
surely in mathematics the notion of truth is absolute, and Church and Tur-
ing have provided us with the definitive notion of computability. However, an
acquaintance with mathematical logic and computability theory would tend to
suggest that things are not quite so simple.

On the one hand, the concept of mathematical truth certainly touches on
deep philosophical issues. And since the idea of ontological determinism is itself
of such philosophical interest, it is surely natural to ask what philosophical pre-
suppositions this idea rests on. What metaphysical status does an assertion such
as (†) about ‘possible histories’ really have? Different philosophies of mathemat-
ics would answer this question in very different ways. For example:2

– Platonism (the ‘classical’ view of mathematics) maintains that mathemati-
cal sentences like (†) do indeed have a definite truth-value independently of
whether we can know what it is. This view involves a metaphysical commit-
ment to a notion of truth not grounded in empirical or sensory experience.

– Semi-constructivism would subscribe only to a much more limited version of
this idea: if φ(n) has a definite truth-value for each n ∈ N, it is accepted that
∃n.φ(n) has a definite truth value. (This idea is embodied in the so-called
‘Limited Principle of Omniscience’.) There is still a metaphysical commit-
ment here, though it is more moderate than in the case of Platonism.

over actual points in time and S(T) is the actual state of the universe at time T .

∀h : Times → States.
(∀t, T. Models(t, T) ⇒ Models(h(t),S(T)) ⇒ Laws Of Physics(h)

This at least isolates the mathematical content of determinism in our assertion (†).
2 For a discussion of the main philosophical issues at stake (from an intuitionist per-

spective), see [7, chapter 7].

196 John Longley

– Constructivism regards mathematical statements purely as expressions of
what we can actually do or calculate; there is no reference to any independent
notion of truth. Nothing entitles us to say ∃x.φ(x) other than knowing some
suitable value of x. Under a constructivist reading of (†), our ontological
notion of determinism might closely resemble an epistemological one.

Many further subdivisions and intermediate positions might be mentioned. We
thus obtain a whole spectrum of interpretations of ‘ontological determinism’,
involving varying levels of metaphysical commitment.

Regarding the question of computability, the familiar Turing notion is indeed
generally accepted as the definitive notion for computations involving natural
numbers or other finite entities that can be effectively coded by them. But what
do we mean by computation where infinite entities are concerned, such as real
numbers or continuous functions on the reals? Typically, many different answers
to this question can be given, leading to several plausible but distinct notions of
computability for such entities. Many of the issues, and possible choices, are dis-
cussed in [20], which focuses on computability at higher types over N, an arena of
particular interest within computer science. In other settings (e.g. higher types
over R, or the classical spaces of functional analysis), several computability no-
tions have been proposed and studied (see e.g. [32, 36]), but we are still some way
from seeing the overall picture. The crucial point here is that, in our characteri-
zation of epistemological determinism, the demand for a ‘computable’ operation
Φ might be interpreted in many different ways.

It will be clear by now that there is considerable overlap between the onto-
logical and epistemological notions. On the one hand, ontological determinism
from a constructive standpoint can often be closely related to epistemological
determinism based on some ‘finitary’ computability notion. Indeed, there is an
extensive body of metamathematical work on using computability notions to
model constructive formal systems (see e.g. [35]). On the other hand, ontological
determinism from a non-constructive standpoint can often be related to episte-
mological determinism based on ‘infinitary’ computability notions. For instance,
what ‘exists’ from a semi-constructivist standpoint is closely related to what
is ‘computable’ in the presence of the existential quantifier ∃ : (N → B) → B
where B = {true, false} (see [15]) — that is, what would be visible to a demon
who could ‘see all the natural numbers at once’.3 In the presence of even more
powerful infinitary operations, computability would approach classical notions
of truth (see e.g. [29]).

All these considerations might seem rather arcane, and the suggestion that
any of them might be of relevance to real physical theories might at first seem
rather far-fetched. My purpose in the remainder of this paper is to present a se-
lection of examples to show that these considerations really do make a difference
to the question of determinism, even for simple physical theories.

3 It is interesting to note that critiques of the Limited Principle of Omniscience some-
times take the form that it comes precariously close to presupposing the existence
of such a ‘demon’. See for example Wittgenstein [38, §352].

On the Calculating Power of Laplace’s Demon 197

1.3 Infinities in the physical universe?

The questions of mathematical ideology discussed above, as well as the com-
putability considerations we have mentioned, are closely bound up with the
mathematical idea of ‘the infinite’. Consequently, many of the issues we are dis-
cussing would trivialize if, in fact, the universe could be completely modelled by
some discrete, finite mathematical structure. A brief discussion of this possibility
is therefore in order; see also [24, chapters 3,33], [30, II.D], and [5].

The vast majority of successful physical theories in use today rely heavily
on the calculus, which presupposes the mathematical idea of an infinitely sub-
divisible continuum. However, we do not know whether genuine continua — or
infinities of any kind — actually occur anywhere in the physical world, and physi-
cists have sometimes expressed unease at the seeming ontological extravagance
of this assumption (see e.g. [11, pp. 57–8]). There have been several interest-
ing attempts to put physics onto a more ‘discrete’ footing, but it would seem
that this is not so easy to do, and most leading-edge physical theories still make
extensive use of the mathematical continuum.

In view of this, it seems to us that it is interesting to explore the implications
of the supposition that physical continua do exist. Even if, in the end, such an
investigation served only to convince us of the implausibility of this supposition,
this would still be a valuable outcome. Of course, investigations of this kind are
perhaps of academic interest for physical theories that are already known not
to hold ‘all the way down’, but they acquire an added dimension of significance
for theories which are proposed as candidates for an ‘ultimate’ description of
physical reality.

In this short article, my intention is not to map out a coherent programme
of research, nor to consider current leading-edge physical theories in detail, but
merely to collect together a few observations, based on known mathematical
results, in order to illustrate the kinds of issues that can arise, and thus perhaps
to indicate that the general area merits further exploration.

2 Determinism and the constructive continuum

First, I would like to explore some implications of adopting a strictly construc-
tivist mathematical stance à la Bishop [3], by focusing on a childishly simple
problem in Newtonian physics. A particle in one dimension is initially at rest,
and no forces act on it: what happens to it?

Suppose we model this problem using a physical theory such as the following:4

States = R, Times = R, Laws Of Physics(h) ≡ ∀t. ḣ(t) = 0,
s = c (a constant), t0 = 0

4 The standard Newtonian formulation of this problem would of course involve the
second time derivative, but even the simplified version we give here will serve to
illustrate our point.

198 John Longley

The existence of suitable solutions, and even their computability (given c) is of
course unproblematic; the issue is with the uniqueness part of (†). The problem
is that, assuming h(0) = c and Laws Of Physics(h), we cannot constructively
conclude that h(t) = c for all t. This is because the Fundamental Theorem of
the Calculus, saying that any continuous function has a unique antiderivative
modulo an added constant, is not constructively valid.

One can understand the problem better by considering an alternative func-
tion h satisfying the above conditions within the universe of effective mathe-
matics (which provides one possible model for constructive mathematics — see
e.g. [14]). Such a solution is easy to construct using the well-known Kleene tree
[15, §LII]. Looked at from a classical perspective, h is at most points a locally
constant function, but one whose value jumps around, with discontinuities at a
set of points homeomorphic to Cantor space. However, the values of t at which h
is discontinuous are all non-computable reals — so seen from within the effective
universe, h is continuous and has derivative 0 everywhere! Such a pathological
history function is clearly ludicrous in physical terms, but the point is to ask
how precisely we intend our theory to rule out such a possibility.

One might suppose that the problem could be fixed simply by strengthening
our Laws Of Physics predicate in some way. But the same problem will beset
any proposed predicate Laws Of Physics(h) which is local in character:5 that
is, any predicate of the form ∀t. L(h, t), where L satisfies

∀h, h′, t. (h, h′ agree on some neighbourhood of t) ⇒ (L(h, t) ⇔ L(h′, t))

This is because the pathological solution above is locally just fine: at every point,
it agrees locally with some globally constant function which we do want to allow.

There are, of course, many possible responses to this problem, e.g.:

1. Accept the non-determinism. (This would be silly: any theory that fails to
predict that everyday objects do not jump about in this erratic fashion must
be judged sorely deficient.)

2. Abandon the continuous model of time.
3. Abandon the locality principle. For example, we might postulate an addi-

tional physical law saying that h had to be uniformly continuous on any
compact interval, a non-local property.6

4. Abandon strict constructivism, and admit some additional mathematical
principle that allows us to deduce the uniqueness of h. One minimal such
principle would be a weak (double-negation sanitized) version of König’s
Lemma for binary trees (cf. [31, Chapter IV]), which can certainly be justified
on the philosophical premises of semi-constructivism.7

5 The idea that the laws of physics ought to be local in character seems quite deeply
ingrained in the informal conception of a ‘mechanistic’ universe. For an illuminating
discussion of the ‘locality principle’ from a physicist’s perspective, see [11, Chapter 2].

6 This is in fact the notion of continuity adopted by Bishop-style constructivists in
order to obtain a viable theory.

7 Or, for that matter, on the premises of Brouwerian intuitionism.

On the Calculating Power of Laplace’s Demon 199

One impression that emerges from this situation is that there is some kind of
trade-off between the strength of the physical assumptions (as in 3) and that
of the mathematical (or metamathematical) assumptions (as in 4) needed to
conclude determinism. It does not pay to be too parsimonious on both fronts.

3 Finite dimensional systems

From a semi-constructivist or Platonist standpoint, it seems that for physical
systems with States = Rn governed by ordinary differential equations (e.g. n-
body problems), both ontological and epistemological determinism are relatively
unproblematic. Indeed, there is a now well-established canonical computability
notion for total functions f : Rn+1 → Rn (first introduced by Lacombe [17] and
Grzegorczyk [13]), and this notion appears to suffice for predicting behaviour in
all cases of physical interest.

The essence of this notion of computability is that one can compute the
output f(x) to within any desired ǫ > 0 if one knows the input x to within
some δ > 0 dependent on ǫ and x. (In particular, all computable functions
are continuous). We can therefore think in terms of a demon equipped with
an infinite sequence of measuring devices of increasing resolving power, who is
able to make affirmative observations on the state corresponding to open subsets
of Rn, and follows some effective procedure for processing the results of such
observations. The set of all observationally affirmable properties that hold at
time 1 (say) can then be computably determined from the set of all affirmable
properties at time 0.

However, even in this relatively unproblematic setting, a couple of caveats
need to be made. The first concerns physical systems whose behaviour exhibits
singularities — whose state at time 1 can be discontinuous in the state at time
0. One example (described in [22, chapter 5]) is the collision problem for three
elastic billiard balls: the classical physical theory does not determine what hap-
pens if the three balls collide at exactly the same point in time. At the very
least, one should here modify one’s claim of determinism to a conditional state-
ment involving a computable partial function Rn+1 ⇀ Rn. It is fair to add here
that the relationships between candidate definitions of computability for partial
functions on the reals remain to be fully clarified.

A second caveat is a rather technical one concerning the notion of effective
procedure involved: the demon had better not be following a program in a deter-
ministic, sequential programming language. More specifically, imagine that once
the demon has decided to test for some property like ‘x > 1

2 ’, he is commit-
ted to obtaining an answer before he can proceed with anything else. If indeed
x > 1

2 , the demon will eventually discover this by means of a sufficiently precise
measurement; but if x = 1

2 , he will be side-tracked into making measurements
of increasing precision forever.8 The problem can be overcome if the demon is
allowed to use a ‘parallel conditional’ operator of the kind used in [9].

8 This is reminiscent of the fact that even functions as simple as addition are not
computable in the sequential version of Real PCF [10].

200 John Longley

4 Infinite dimensional systems

For physical systems with infinite state spaces (e.g. continuously varying fields
governed by partial differential equations), the picture gets considerably more
interesting. As an example, we will consider the wave equation for a scalar field
ψ(x, t) in three space dimensions: ∇2ψ = ψ̈. We take the set States to be some
space of functions s : R3 → R2: the first component of s(x) gives the instanta-
neous value of ψ at x, while the second component gives its time-derivative ψ̇.
We are therefore interested in the computability or otherwise of an operation of
type [R3 → R2] → [R4 → R2].

The theory of second-order computability over the reals is far from trivial, and
there are various choices available to us. First, let us briefly consider one choice
that will not work well here: namely, Kleene-style higher-type computability in
the spirit of [15]. In this approach, functions are treated as oracles, so that the
only way to extract information about a function [R3 → R2] would be to apply
it to particular values x. Suppose then that we consider the style of computation
envisaged in Section 3 augmented with such oracle calls. This would mean that
a computation of the value of ψ(0, 1) (say) to within some ǫ > 0 would only be
able to interrogate the initial state s at finitely many points before returning an
answer. It is easy to see that this is not enough, since the true value of ψ(0, 1)
cannot be determined even up to ǫ from such a finite sample.

Our demon must therefore somehow be able to observe properties of s that
pertain to whole regions of R3, rather than simply its value at particular points.
One could of course endow the demon with the ability to survey regions by
adding a suitable quantifier such as ∃R to its repertoire, but this would seem like
overkill. It seems more interesting to regard certain kinds of observations over
regions as ‘atomic’, and ask whether some finitary style of computation involving
these observations will suffice.

4.1 The Pour-El/Richards approach

A more suitable approach involves the theory of computability for Banach spaces
developed by Pour-El and Richards [27, 28], who have moreover made a particu-
lar study of the wave equation in their setting. In this theory, one first axioma-
tizes the notion of a computability structure on a Banach space X, consisting of a
set of computable sequences N → X with certain closure properties. An element
x ∈ X is considered computable if x, x, x, . . . is a computable sequence.

Although computability structures are defined axiomatically, it turns out for
quite general reasons that, for all naturally occurring spaces X, there is only one
reasonable choice of computability structure. This gives the theory the attractive
feature that the notion of computability is intrinsic for such spaces. However,
this computability notion is sensitive to the choice of norm on the space: thus,
for instance, there exist continuous functions s : R3 → R2 with compact support
which are non-computable if regarded as elements of C(R3,R2) (the space of
bounded continuous functions with the supremum norm), but computable if
regarded as elements of L2(R3,R2). Insofar as the choice of norm is up to us

On the Calculating Power of Laplace’s Demon 201

rather than given ‘by nature’, we therefore have a range of possible computability
notions even at the level of individual states.9

Next, consider linear maps T : X → Y between Banach spaces with com-
putability structures. A major theorem of [28] asserts that, under modest condi-
tions, T maps computable sequences to computable sequences iff T is bounded.
In fact it is very reasonable to regard such maps T as the computable maps
X → Y , as is shown by results of [32, 33]. Specifically, the set of computable ele-
ments of a Banach space with computability structure can naturally be endowed
with a computable representation in the sense of Weihrauch [36] (or alternatively
with an effective domain representation in the sense of Scott and Ershov). It can
then be shown that the linear maps that satisfy the Pour-El/Richards conditions
are precisely those whose action on computable elements is computable in the
Weihrauch sense (or alternatively in the sense of effective domain theory).

In the case of the supremum norm, these notions have especially good creden-
tials. A natural and robust notion of second order computability over the reals
has been studied in [2], where several non-trivially equivalent characterizations
are given. Here one is able to perform computations on first order functions f
by making use of ‘compact-open observations’ about them: ‘f(x) ∈ U for all
x ∈ K’, where U is open and K is compact. This is one way to make precise the
idea of ‘atomic observations over regions’ mentioned earlier. Now let X be the
Banach space C(I3,R2) (we here replace R by the unit interval I to avoid some
annoying technical complications). Then the computable maps X → X turn out
to be precisely the linear maps that are computable in the sense of [2].

Given the good credentials of this notion, it is perhaps all the more surprising
that the solution operators for the wave equation are not computable in this
sense. For simplicity, let X = C(R3,R2), and let T : X → X be the operator
that maps a wave state at time 0 to the wave state at time 1 that results from
it. It was shown in [26] that T : X → X is not computable — in fact, that there
is even a computable state s such that the first component of T (s)(0) is a non-
computable real. An important aspect of the example given in [26] is that though
the first component of s is computable, its space-derivative is non-computable.

What about the computability notions arising from spaces with other norms?
One important example considered in [28] is the energy norm ‖−‖E given by:

‖〈s0, s1〉‖2E =

∫∫∫

R3

|∇s0 |2 +s2
1

In physical terms, this corresponds to the total amount of energy present in
a wave state, and it satisfies the axioms required for a norm. The fact that
energy is conserved as the wave propagates says that the operator T is bounded
by 1, and is therefore a computable map. The wave equation thus provides a
good example of a physical theory for which the question of epistemological
determinism is sensitive to the computability notion adopted.

9 Interestingly, in the case of quantum mechanical systems this issue seems not to
arise, since the physical theory itself makes essential use of an inner product which
gives us a preferred choice of norm. See [1].

202 John Longley

The precise conditions under which the solution operator is or is not com-
putable have been investigated in some detail by Weihrauch and Zhong [37]. As
these authors point out, different choices of norm (or topology) correspond to
different notions of ‘possible affirmative observation’ on states, and it is a mat-
ter of physics to investigate whether any of these choices correspond to what is
observable by means of ‘idealized physical measurements’ of some kind.

Let us suppose that the class of ‘physically realizable’ affirmative observations
(in some idealized sense) corresponded precisely to the topology induced by some
norm ‖ − ‖obs. The effective domain of closed balls for this norm (say) would
then constitute an epistemic (i.e. information-theoretic) model of the physical
system, and states (considered as functions R3 → R2) would appear as maximal
consistent sets of affirmable observations. However, a more minimalist ontology
might then reject these ‘ideal’ elements in favour of a purely finitary theory of
possible observations, in which idealized mathematical points would be aban-
doned in favour of a theory of intervals or regions, somewhat in the spirit of
[8]. Indeed, one can conceive that this might offer one way of putting the whole
physical theory on a more ‘constructive’ or ‘finitary’ footing as suggested in [30].

If it turned out that T were computable with respect to ‖−‖obs, we would be
in the very pleasing situation that the set of potentially observable facts at time 1
was computably determined by the set of such facts at time 0 — and this would
also systematically explain why the ontologically underlying non-computable
values of the wave function ψ (on computable arguments, for computable initial
states) can never surface at the level of what is measurable. However, if (as the
author suspects is more likely), T were not computable with respect to ‖−‖obs
we would face a dilemma similar to the one encountered at the end of Section 2:
either certain kinds of state information must be considered as ontologically
real though they are not observable even by approximation, or the future state
cannot be effectively predicted from the present state.

Conclusion and acknowledgements

In this short paper we have barely scratched the surface of our proposed area of
investigation, and many of the issues we have highlighted demand much more
detailed discussion than we have provided. Nevertheless, we hope that our selec-
tion of examples has persuaded the reader that the task of elucidating different
notions of determinism is interesting and worthwhile, and that this may prove
to be a fruitful area of interaction between physics and computability theory.

I am grateful to Gordon Plotkin, Matthias Schröder, Alex Simpson and Alan
Smaill for helpful comments and discussions, and to the anonymous referees for
valuable suggestions and pointers. Barry Cooper’s papers [4, 5] provided much
of the initial stimulus for my reflections, as well as a helpful guide to the existing
literature on determinism and computability.

On the Calculating Power of Laplace’s Demon 203

APPENDIX: A thought experiment concerning
non-computability in the physical world

We here present a simple thought experiment in connection with the question of
whether non-computability ever manifests itself in the physical world. Though
this stands somewhat apart from our present inquiry into possible interpreta-
tions of determinism, it is clearly relevant to whether the laws of physics are
deterministic in a strong epistemological sense, and provides another example of
the application of ideas from computability theory to such questions.

It is tempting to imagine that — because non-computability is an infinitary
property that cannot be detected from any finite sample of data, and because
every continuous function on [0, 1] can be approximated arbitrarily closely by a
computable one, and so on — it cannot possibly make any kind of observable
difference whether the laws of physics are computable or not. The following
experiment suggests one possible sense in which this is not the case.

The experiment involves the Lacombe tree [18], a variation on the Kleene tree
which deserves to be better known. The Lacombe tree is a computable binary
tree T (that is, a decidable prefix-closed set of finite sequences over {0, 1}) such
that

– every computable infinite sequence over {0, 1} eventually exits from T ; but

– classically, the set of infinite sequences that eventually exit from T has some
measure m < 1

2 within {0, 1}N.

One may therefore imagine setting up 100 instances of the following appa-
ratus. Some physical device not known to have computable behaviour (perhaps
a Geiger counter) is set up to generate a stream of binary digits, which are fed
into a computer. At each stage, the computer tests whether the finite sequence
received so far is a node of T . If, at some stage, the sequence is found to have
exited from T , a light is turned on.

After allowing the experiment to run for some finite period of time, we return
and count how many of the lights have come on. If the answer is fewer than
m.100, we cannot conclude anything — perhaps we have just not waited long
enough for the other sequences to exit yet. However, if the answer is 95 (say), this
provides good evidence that the infinite sequences generated by our devices are
not being drawn at random from the classical set {0, 1}N, but from some more
restricted set, perhaps the set of computable sequences. If one supposes that
the choice is between ‘all sequences’ and ‘the computable sequences’, we thus
have a probabilistic semi-decision test for whether the behaviour of our physical
devices is computable. (Interesting further questions arise if we also consider the
possibility of other sets, such as the set of hyperarithmetic sequences.)

We hasten to add that this experiment would be of no use in practice, in view
of the hyper-astronomical length of time one would have to wait for a significant
number of lights to come on.

204 John Longley

References

1. Baez, J.C., Recursivity in quantum mechanics, Trans. Amer. Math. Soc. 208(1)
(1983), 339–350.

2. Bauer, A., M.H. Escardó, and A. Simpson, Comparing functional paradigms for
exact real-number computation, in Proc. ICALP 2002, Springer LNCS 2380 (2002),
488–500.

3. Bishop, E., and D. Bridges, “Constructive Analysis”, Springer-Verlag (1985). Re-
vised and expanded version of E. Bishop, “Foundations of Constructive Analysis”,
McGraw-Hill (1967).

4. Cooper, S.B., Clockwork or Turing U/universe? — Remarks on causal determin-
ism and computability, in S.B. Cooper and J.K. Truss, editors, “Models and Com-
putability”, Cambridge University Press (1999), 63–116.

5. Cooper, S.B., and P. Odifreddi, Incomputability in nature, in S.B. Cooper and S.S.
Goncharov, editors, “Computability and Models: Perspectives East and West”,
Kluwer/Plenum (2003), 137–160.

6. Dennett, D.C., “Freedom evolves”, Penguin Books (2003).
7. Dummett, M., “Elements of intuitionism”, Clarendon Press, Oxford (1977).
8. Edalat, A., Domain theory and integration, Theoretical Computer Science 151

(1995), 163–193.
9. Escardó, M.H., PCF extended with real numbers, Theoretical Computer Science

162(1) (1996), 79–115.
10. Escardó, M.H., M. Hofmann and T. Streicher, “On the non-sequential nature of the

interval-domain model of exact real-number computation.” Mathematical Struc-
tures in Computer Science 14(6) (2004), 803–814.

11. Feynman, R., “The character of physical law”, Penguin Books (1992).
12. Geroch, R., and J.B. Hartle, Computability and physical theories, Foundations of

Physics 16 (1986), 533–550.
13. Grzegorczyk, A., On the definitions of computable real continuous functions, Fun-

damenta Mathematicae 44 (1957), 61–71.
14. Hyland, J.M.E., The effective topos, in Troelstra, A.S. and D. van Dalen, editors,

“The L.E.J. Brouwer Centenary Symposium”, NorthHolland (1982), 165–216.
15. Kleene, S.C., Recursive functionals and quantifiers of finite types I, Transactions

of the American Mathematical Society 91 (1959), 1–52.
16. Kreisel, G., A notion of mechanistic theory, Synthese 29 (1974), 11–26.
17. Lacombe, D., Extension de la notion de fonction récursive aux fonctions d’une ou

plusieurs variables réelles I, II, III, Comptes Rendus de l’Académie des Sciences
240 (1955), 2478–2480, and 241 (1955), 13–14, 151–153.

18. Lacombe, D., Remarques sur les opérateurs récursifs et sur les fonctions récursives
d’une variable réelle, Comptes Rendus de l’Académie des Sciences 241 (1955), 151–
153.

19. Laplace, P. S. de, Essai philosophique sur les probabilités (1819). English transla-
tion by F.W. Truscott and F.L. Emory, Dover, New York (1951).

20. Longley, J.R., Notions of computability at higher types I, in R. Cori, A. Razborov,
S.Todorčević and C. Wood, editors, “Logic Colloquium 2000: Proceedings of the
ASL meeting held in Paris”, Lecture Notes in Logic 200, ASL (2005), 32–142.

21. Odifreddi, P.G., Kreisel’s Church, in P.G. Odifreddi, editor, “Kreiseliana: About
and Around Georg Kreisel”, A.K. Peters (1996).

22. Penrose, R., “The Emperor’s New Mind: Concerning Computers, Minds, and the
Laws of Physics”, Oxford University Press (1989).

On the Calculating Power of Laplace’s Demon 205

23. Penrose, R., “Shadows of the Mind: A Search for the Missing Science of Conscious-
ness”, Oxford University Press (1994).

24. Penrose, R., “The Road to Reality”, Jonathan Cape (2004).
25. Poundstone, W., “The Recursive Universe: Cosmic Complexity and the Limits of

Scientific Knowledge”, New York: Morrow (1985).
26. Pour-El, M.B., and J.I. Richards, The wave equation with computable initial data

such that its unique solution is not computable, Advances in Mathematics 39
(1981), 215–239.

27. Pour-El, M.B., and J.I. Richards, Noncomputability in analysis and physics, Ad-
vances in Mathematics 48 (1983), 44–74.

28. Pour-El, M.B., and J.I. Richards, “Computability in Analysis and Physics”,
Springer-Verlag (1989).

29. Sacks, G.E., “Higher Recursion Theory”, Perspectives in Mathematical Logic,
Springer-Verlag (1990).

30. Shipman, J., Aspects of computability in physics, in Proc. 1992 Workshop on
Physics and Computation, IEEE (1993).

31. Simpson, S.G., “Subsystems of second order arithmetic”, Perspectives in Mathe-
matical Logic, Springer (1998).

32. Stoltenberg-Hansen, V., and J.V. Tucker, Concrete models of computation for topo-
logical algebras, Theoretical Computer Science 219 (1999), 347–378.

33. Stoltenberg-Hansen, V., and J.V. Tucker, Computable and continuous partial ho-
momorphisms on metric partial algebras, Bulletin of Symbolic Logic 9(3) (2003),
299–334.

34. Svozil, K., The Church-Turing thesis as a guiding principle for physics, in C.S.
Calude, J. Casti and M.J. Dinnen, editors, “Unconventional Models of Computa-
tion”, Springer (1998), 371–385.

35. Troelstra, A.S., “Metamathematical Investigation of Intuitionistic Arithmetic and
Analysis,” Lecture Notes in Mathematics 344, Springer-Verlag, 1973.

36. Weihrauch, K., “Computable Analysis”, Springer (2000).
37. Weihrauch, K., and N. Zhong, Is wave propagation computable or can wave comput-

ers beat the Turing machine?, Proc. London Mathematical Society 85(2) (2002),
312-332.

38. Wittgenstein, L., “Philosophical Investigations”, Blackwell (1953). Third edition,
with English translation by G.E.M. Anscombe, Blackwell (2001).

Scaled Dimension of Individual Strings

Maŕıa López-Valdés

Departamento de Informática e Ing. de Sistemas, Maŕıa de Luna 1, Universidad de
Zaragoza. 50018 Zaragoza, SPAIN. marlopez@unizar.es ⋆

Abstract. We define a new discrete version of scaled dimension and we
find connections between the scaled dimension of a string and its Kol-
mogorov complexity and predictability. We give a new characterization
of constructive scaled dimension by Kolmogorov complexity, and prove
a new result about scaled dimension and prediction.

1 Introduction

Effective fractal dimension, defined by Lutz (2003) [10], allows us to study the
fractal structure of many sets of interest in computational complexity. Further-
more, many connections have been found between effective fractal dimension
and other topics in computational complexity like Kolmogorov complexity [12],
[11] and prediction [2], [3].

In 2004, Hitchcock et al [5] introduced the scaled dimension as a natural
hierarchy of “rescaled” effective fractal dimensions. Their main objective was
to overcome some limitations of the effective fractal dimension for investigating
complexity classes. For example classes such as the Boolean circuit-size com-
plexity classes SIZE(2αn) and SIZE(2n

α

) have trivial dimensions, and the defini-
tion of scaled dimension made possible to quantify the difference between those
classes. Connections between Kolmogorov Complexity and scaled dimension were
found in [6].

The definition of effective fractal dimension is based on a characterization
of the classical Hausdorff dimension in the Cantor space C in terms of gales
(s-gales). Intuitively, we regard an s-gale d as an strategy for betting on the
successive bits of a sequence S ∈ C and the parameter s gives us an idea about
the fairness on the gambling game. Scaled dimension is defined using scaled gales
(sg-gales), intuitively, d is an strategy for betting on a sequence but the fairness
on the gambling game depends on the s and on the scale g.

In [11], Lutz used supertermgales, which are supergale-like functions that
bet on the terminations of (finite, binary) strings as well on their successive
bits, to define a discrete version of constructive dimension (an special case of
effective fractal dimension). Lutz then characterized the dimension of a finite
string in terms of its Kolmogorov complexity. We generalize those results by
defining a new discrete version of constructive scaled dimension (section 3).

⋆ This research was supported by Spanish Government MEC project TIN2005-08832-
C03-02

Scaled Dimension of Individual Strings 207

The main result of this section states that the scaled dimension of an infinite
sequence is characterized by the scaled dimension of its prefixes (Theorem 4).
As a consequence, when we obtain characterizations of the scaled dimension
of individual strings in terms of Kolmogorov complexity or prediction (section
4), we can obtain results in constructive scaled dimension, just by applying the
results to the prefixes of a sequence.

With this method, we obtain a new characterization of the ith -order scaled
constructive dimension in terms of Kolmogorov Complexity extending the results
in [6].

Finally, we define the concept of termpredictor by adding the ability to pre-
dict the end of an unknown finite string to the standard on-line prediction al-
gorithms. That is, a termpredictor guesses the next character as well as the
termination point of a finite string.

We show that the scaled constructive dimension of sets of sequences can be
bounded in terms of the log-loss of constructive termpredictors. This extends par-
tially the characterization that Hitchcock obtained in [3] for resource-bounded
dimension to the cases of scaled and constructive dimension.

2 Preliminaries

A string is a finite, binary string w ∈ {0, 1}∗. We write |w| for the length of a
string and λ for the empty string. The Cantor space C is the set of all infinite
binary sequences. If w ∈ {0, 1}∗ and x ∈ {0, 1}∗ ∪C, w ⊑ x means that w is a
prefix of x. For 0 ≤ i ≤ j, we write x[i . . . j] for the string consisting of the i-th
through the j-th bits of x.
The set of all terminated binary strings and prefixes thereof is the set

T = {0, 1}∗ ∪ {0, 1}∗✷,

where we use the symbol ✷ to mark the end of a string.

Definition 1. Let f : D → IR be a function where D is some discrete domain
such as IN, {0, 1}∗, T , etc.

1. f is computable if there is a computable function f̂ : D × IN → Q such that
for all (w, n) ∈ D × IN, |f̂(w, n)− f(w)| ≤ 2−n.

2. f is lower semicomputable if there is a computable function f̂ : D× IN → Q
such that
(a) for all (w, n) ∈ D × IN, f̂(w, n) ≤ f̂(w, n + 1) < f(w), and

(b) for all w ∈ D, limn→∞ f̂(w, n) = f(w).

Definition 2. 1. A subprobability measure on {0, 1}∗ is a function
p : {0, 1}∗ → [0, 1] such that

∑

w∈{0,1}∗

p(w) ≤ 1.

208 Maŕıa López-Valdés

2. A subprobability measure on {0, 1}∗ is constructive if it is lower semicom-
putable.

3. A subprobability measure p on {0, 1}∗ is optimal constructive if for every
constructive subprobability measure p′ there is a real constant α > 0 such
that, for all w ∈ {0, 1}∗, p(w) > αp′(w).

Theorem 1. (Levin [13]) There exists an optimal constructive subprobability
measure m on {0, 1}∗.

The following theorem is the well-know characterization by Levin [7], [8] and
Chaitin [1] of Kolmogorov complexity in terms of m. Further details may be
found in [9].

Theorem 2. There is a constant c ∈ IN such that for all w ∈ {0, 1}∗,
∣∣∣∣K(w)− log

1

m(w)

∣∣∣∣ ≤ c.

Definition 3. A scale is a continuous function g : H × [0,∞) → IR with the
following properties.

1. H = (a,∞) for some a ∈ IR ∪ {−∞}.
2. g(m, 1) = m for all m ∈ H.
3. g(m, 0) = g(m′, 0) ≥ 0 for all m,m′ ∈ H.
4. For every sufficiently large m ∈ H, the function s �→ g(m, s) is nonnegative

and strictly increasing.
5. For all s′ > s ≥ 0, limm→∞[g(m, s′)− g(m, s)] = ∞.

For each scale g : H × [0,∞) → IR, we define Δg : H × [0,∞) → IR by

Δg(m, s) = g(m + 1, s)− g(m, s).

Definition 4. A smooth scale is a computable scale function g : H×[0,∞) → IR
such that verifies

1. g is differentiable in the second coordinate and ∂g
∂s (m, ·) are strictly increasing

for all m ∈ H.
2. ∂g

∂s (m, 0) →∞ as m→∞.
3. △g(m, s′)−△g(m, s) > 0 for all m ∈ H, s′ > s.

The following important family of smooth scales is used in the definition of the
ith-order dimension.

Definition 5. We define gi : Hi × [0,∞) → IR by the recursion on i ∈ IN as
follows:

g0(m, s) = ms.
gi+1(m, s) = 2gi(logm,s).

The domain of gi is of the form Hi = (ai,∞), where a0 = −∞ and ai+1 =
2ai .

Scaled Dimension of Individual Strings 209

Definition 6. Let g : H × [0,∞) be a scale function. Denote by
fm : [g(m, 0),∞] → [0,∞) the inverse of g(m, .), that is the function defined as
fm(x) = y if g(m, y) = x. This function is well define since g(m, .) is strictly
increasing. For the family {gi} we denote by fm

i the inverse of gi(m, .) and

fm
i (x) =

log(log(i. . . log(x)..))

log(log(i. . . (log(m + 1))..))
.

3 Scaled Dimension of Individual Strings

In this section we first introduce scaled termgales and scaled supertermgales,
which are a generalization of the termgales introduced by Lutz in [11]. Next, we
show the existence of optimal constructive scaled supertermgales that allows us
to give a universal definition of the scaled dimension of a string.

Definition 7. For s ∈ [0,∞) and g : H × [0,∞) → [0,∞) a scale function,

1. An sg-supertermgale is a function dg : T → [0,∞) such that
(a) dg(w) ≤ 1 for |w| /∈ H.
(b) For all w ∈ {0, 1}∗ with |w| ∈ H,

dg(w) ≥ 2−△g(|w|,s)[dg(w0) + dg(w1) + dg(w✷)]. (1)

2. An sg-termgale is an sg-supertermgale that satisfies (1) with equality for all
w ∈ {0, 1}∗ with |w| ∈ H.

An sg-termgale is a strategy for betting on the successive bits of a binary string
and also on the point at which the string terminates. The fairness of the gambling
game depends on the s and on the scale function g.

Remark 1. Let g : H × [0,∞) → IR be a scale, dg, d
′
g : T → [0,∞) and s, s′ ∈

[0,∞). If

2−g(|w|,s)dg(w) = 2−g(|w|,s′)d′g(w)

for all w ∈ T with |w| ∈ H, then dg is an sg-supertermgale (sg-termgale) if and
only if d′g is an s′g − supertermgale (s′g-termgale).

Thanks to this remark, a 0g-supertermgale (termgale) determines a whole family
of sg-supertermgales (termgales).

Definition 8. For g : H × [0,∞) → [0,∞) a constructive scale function,

1. A g-supertermgale is a family dg = {dsg | s ∈ [0,∞)} such that each dsg is an
sg-supertermgale and

2−g(|w|,s)dsg(w) = 2−g(|w|,s′)ds
′

g (w)

for all s, s′ ∈ [0,∞), w ∈ T , |w| ∈ H.
2. A g-termgale is a g-supertermgale where each dsg is an sg-termgale for all

s ∈ [0,∞).

210 Maŕıa López-Valdés

3. A g-supertermgale dg is constructive if d0
g is constructive.

4. A constructive g-supertermgale d̃g is optimal if for every constructive g-
supertermgale dg there is a constant α > 0 such that for all s ∈ [0,∞) and
w ∈ {0, 1}∗ with |w| ∈ H,

d̃g
s
(w✷) > αdsg(w✷).

5. The g-supertermgale induced by a subprobability measure p on {0, 1}∗ is the
family dg[p] = {dsg[p] | s ∈ [0,∞)}, where each dsg[p] is defined by

dsg[p](w) = 2g(|w|,s)
∑

x∈{0,1}∗

w⊑x✷

p(x)

for all w ∈ T with |w| ∈ H.

Theorem 3. If p̃ is an optimal constructive subprobability measure on {0, 1}∗
and g : H × [0,∞) → [0,∞) is a constructive scale function then dg[p̃] is an
optimal constructive g-supertermgale.

Corollary 1. For every g : H × [0,∞] → [0,∞) constructive scale function,
there exists an optimal constructive g-supertermgale.

Definition 9. Let g : H × [0,∞] → [0,∞) be a scale function and w ∈ {0, 1}∗
with |w| ∈ H. If dg is a constructive g-supertermgale, then the g-dimension of
w relative to dg is

dimdg
(w) = inf{s ∈ [0,∞) | dsg(w✷) > 1}.

The next two results prepare the definition of g-dimension of a string.

Proposition 1. Let g : H × [0,∞) → [0,∞) be an smooth scale function.
If d̃g is an optimal constructive g-supertermgale and dg is a constructive g-
supertermgale, there exists C > 0 such that

dimd̃g
(w) ≤ dimdg

(w) +
C

∂g
∂s (|w|+ 1,dimdg

(w))

for all |w| ∈ {0, 1}∗ (|w| large enough).

Corollary 2. Let g : H×[0,∞) → [0,∞) be an smooth scale function. If d̃g1 and

d̃g2 are optimal constructive g-supertermgales, then there is a constant C > 0
such that for all w ∈ {0, 1}∗ (|w| large enough),

|dimd̃g1
(w)− dimd̃g2

(w)| ≤ C
∂g
∂s (|w|+ 1, s0)

where s0 = min{dimd̃g1
(w),dimd̃g2

(w)}.

Scaled Dimension of Individual Strings 211

As g is an smooth scale function, ∂g
∂s (m, 0) → +∞ as m → ∞, and Corollary

2 says that if we base our definition of g-dimension on an optimal constructive
g-supertermgale d̃g, then the particular choice of d̃g has negligible impact on the
dimension dimd̃g

(w).

We fix an optimal constructive g-supertermgale dg✷
and define the g-dimensions

of finite strings as follows.

Definition 10. Let g : H × [0,∞) → [0,∞) be an smooth scale function. The
g-dimension of a string w ∈ {0, 1}∗ with |w| ∈ H is

dimg(w) = dimdg✷

(w).

3.1 Scaled dimension of strings and sequences

Resource-bounded scaled dimension of sequences in the Cantor space was defined
in [5] as a generalization of resource-bounded dimension. In that definition scaled
gales were used.

Definition 11. Let g : H × [0,∞) → IR be a scale function, and let s ∈ [0,∞).

1. An sg-supergale is a function d : {0, 1}∗ → [0,∞) such that for all w ∈
{0, 1}∗ with |w| ∈ H,

d(w) ≥ 2−Δg(|w|,s)[d(w0) + d(w1)].

2. We say that an sg-supergale d succeeds on a sequence S ∈ C if

lim sup
n

d(S[0 . . . n− 1]) = ∞.

3. The success set of an sg-supergale d is S∞[d] = {S ∈ C | d succeeds on S}.

Definition 12. Let g be a scale function and X ⊆ C

1. Ĝ(X) is the set of all s ∈ [0,∞) such that there is an sg-supergale d for
which X ⊆ S∞[d].

2. Ĝconstr(X) is the set of all s ∈ [0,∞) such that there is a lower semicom-
putable sg-supergale d for which X ⊆ S∞[d].

3. The constructive g-scaled dimension of X is cdimg(X) = inf Ĝconstr(X).
4. The constructive g-scaled dimension of a sequence S ∈ C is dimg(S) =

cdimg({S}).

The main result of this section states that the constructive scaled dimension
of a sequence is characterized by the scaled dimension of its prefixes in the
following way,

Theorem 4. Let g : H × [0,∞) → [0,∞) be an smooth scale function and
S ∈ C,

dimg(S) = lim inf
n

dimg(S[0 . . . n− 1]).

212 Maŕıa López-Valdés

In [4] Hitchcock showed that constructive gales and constructive supergales are
interchangeable in order to define constructive Hausdorff dimension. In this
spirit, the next lemma relates constructive scaled dimension of finite strings
dimg(w), that uses optimal constructive supertermgales, and constructive scaled
dimension with just constructive termgales involved.

Lemma 1. Let g be an smooth scale function and w ∈ {0, 1}∗, then

dimg(w) ≥ inf{dimd(w) | d constructive g-termgale}.

Such inequality has a remarkable aplication for infinite strings, namely the
following characterization of constructive scaled dimension just using construc-
tive termgales.

Corollary 3. Let S ∈ C and g smooth scale function,

dimg(S) = lim inf
n

Dg(S[0 . . . n− 1]).

where Dg(w) = inf{dimd(w) | d constructive g-termgale}.

4 Kolmogorov Complexity and Log-loss prediction

4.1 Scaled dimension and Kolmogorov Complexity

In [6] the authors give an exact characterization of computable and space-
bounded scaled dimension of a sequence in terms of (time and space-bounded)
Kolmogorov complexity .

Theorem 5. [6]. Let S ∈ C

1. For all i ∈ IN

dim(i)
comp(S) = inf

t∈comp
lim inf

n
fn
i (Kt(n)(S[0 . . . n− 1])).

2. For all i, j ∈ IN with i < j

dim(i)
pjspace(S) = inf

t∈pjspace
lim inf

n
fn
i (KSt(n)(S[0 . . . n− 1])).

In this section we obtain the relationship between the scaled dimension of a
finite string and its Kolmogorov complexity, and this result allow us to give a
new characterization for constructive scaled dimension of an infinite sequence,
extending theorem 5.

Theorem 6. Let g : H × [0,∞) → [0,∞) be an smooth scale function. Then
there exists a constant c > 0 such that for all w ∈ {0, 1}∗ (|w| large enough),

∣∣∣f |w|+1(K(w))− dimg(w)
∣∣∣ ≤ c

∂g
∂s (|w|+ 1, 0)

Scaled Dimension of Individual Strings 213

Corollary 4. Let S ∈ C and g smooth scale function,

dimg(S[0..n− 1]) = lim
n

fn+1(K(S[0..n− 1])).

Example 1. For the family gi, i ∈ IN,

dim(i)(S) = lim inf
n

fn
i (K(S[0 . . . n− 1])).

In the particular case of i = 0 we have the result of constructive dimension
obtained by Mayordomo in [12].

dim(S) = lim inf
n

K(S[0..n− 1])

n + 1
.

4.2 Scaled dimension and Prediction.

Consider predicting the symbols of an unknown finite string. Then, given a prefix
of this string, the next character could be 0, 1 or may be, the string doesn’t have
any more characters. A termpredictor Π gives us an estimation of the probability
of each of these cases.

Definition 13. A function Π : {0, 1}∗ × {0, 1,✷} → [0, 1] is a termpredictor if

Π(w, 0) + Π(w, 1) + Π(w,✷) = 1.

We interpret Π(w, a) as the Π’s estimation of the likehood that there is a bit
a following the string (if a = 0 or 1) or there is no bit following the string (if
a = ✷).

The next lemma establishes a correspondence between termpredictors and
g-termgales.

Lemma 2. Let g be an smooth scale function.

1. Let Π be a termpredictor, define ∀s ∈ [0,∞), dsΠ,g : T → [0,∞) by

dsΠ,g(w) = 1 if |w| /∈ H.

dsΠ,g(w) = 2g(|w|,s)

|w|−1∏

i=0

Π(w[0 . . . i− 1], w[i]) if |w| ∈ H.

Then, dΠ,g is a g-termgale.
2. Let dg be a g-termgale, then for s ∈ [0,∞) define Πdg

: {0, 1}∗×{0, 1,✷} →
[0, 1] by

Πdg
(w, a) = 2−Δg(|w|,s) dg(wa)

dg(w)
if dg(w) �= 0.

Πdg
(w, a) =

1

3
if dg(w) = 0.

Πdg
is a termpredictor and this definition doesn’t depends on s.

214 Maŕıa López-Valdés

3. dΠdg ,g
= dg and ΠdΠ,g

= Π.

In order to define the performance of a termpredictor, we will consider (as
in [3]) the sum of its “loss” on each individual symbol (including ✷).
Definition. For w ∈ T and Π termpredictor we define the log-loss

Llog
Π (w) =

|w|−1∑

i=0

log
1

Π(w[0 . . . i− 1], w[i])
.

Theorem 7. Let g be an smooth scale function, let dg be a constructive g-
termgale and w ∈ {0, 1}∗ with |w| ∈ H then,

dimdg
(w) = f |w|+1(Llog

Πdg
(w✷)).

In particular if d is a simple termgale and w ∈ {0, 1}∗ then

dimd(w) =
Llog
Πd

(w✷)

|w|+ 1
.

Unfortunately, there are no existence of optimal constructive termgales (or
optimal constructive termpredictors) and we can not prove an equality of this
kind for the definition of scaled dimension of a string. But we have the following
result for infinite sequences as a consequence of Proposition 1 and Theorem 7.

Theorem 8. Let g be an smooth scale function and S ∈ C,

dimg(S) ≤ inf{Llog
Π,g(S) | Π is a constructive termpredictor }

where
Llog
Π,g(S) = lim inf

n
fn+1(Llog

Π (S[0 . . . n− 1]✷)).

The next result partially extends the characterization that Hitchcock ob-
tained in [3] for resource-bounded dimension to the cases of scaled and construc-
tive dimension.

Theorem 9. Let S ∈ C and let g be an smooth scale function,

dimg(S) ≤ Llog
g (S)

where,
Llog
g (S) = inf{Llog

Π,g(S) | Π is a constructive predictor }
and

Llog
Π,g(S) = lim inf

n
fn+1(Llog

Π (S[0 . . . n− 1])).

For the particular case of constructive dimension

dim(S) ≤ inf{Llog
Π (S) | Π is a constructive predictor }

where

Llog
Π (S) = lim inf

n

Llog
Π (S[0 . . . n− 1])

n
.

Scaled Dimension of Individual Strings 215

The other inequality seems to be closely related to the open question of
whether constructive prediction and constructive gales are equivalent.

Acknowledgement

The author thanks Elvira Mayordomo and Julio Bernues for very helpful
discussions, comments and suggestions.

References

1. G. J. Chaitin. A theory of program size formally identical to information theory.
Journal of the Association for Computing Machinery, 22:329–340, 1975.

2. L. Fortnow and J. H. Lutz. Prediction and dimension. Journal of Computer and
System Sciences. To appear. Preliminary version appeared in Proceedings of the
15th Annual Conference on Computational Learning Theory, LNCS 2375, pages
380–395, 2002.

3. J. M. Hitchcock. Fractal dimension and logarithmic loss unpredictability. Theo-
retical Computer Science, 304(1–3):431–441, 2003.

4. J. M. Hitchcock. Gales suffice for constructive dimension. Information Processing
Letters, 86(1):9–12, 2003.

5. J. M. Hitchcock, J. H. Lutz, and E. Mayordomo. Scaled dimension and nonuniform
complexity. Journal of Computer and System Sciences, 69:97–122, 2004.

6. J.M. Hitchcock, M. López-Valdés, and E. Mayordomo. Scaled dimension and the
Kolmogorov complexity of Turing-hard sets. In Proceedings of the 29th Interna-
tional Symposium on Mathematical Foundations of Computer Science, volume 3153
of Lecture Notes in Computer Science, pages 476–487. Springer-Verlag, 2004.

7. L. A. Levin. On the notion of a random sequence. Soviet Mathematics Doklady,
14:1413–1416, 1973.

8. L. A. Levin. Laws of information conservation (nongrowth) and aspects of the
foundation of probability theory. Problems of Information Transmission, 10:206–
210, 1974.

9. M. Li and P. M. B. Vitányi. An Introduction to Kolmogorov Complexity and its
Applications. Springer-Verlag, Berlin, 1997. Second Edition.

10. J. H. Lutz. Dimension in complexity classes. SIAM Journal on Computing,
32:1236–1259, 2003.

11. J. H. Lutz. The dimensions of individual strings and sequences. Information and
Computation, 187:49–79, 2003.

12. E. Mayordomo. A Kolmogorov complexity characterization of constructive Haus-
dorff dimension. Information Processing Letters, 84(1):1–3, 2002.

13. A. K. Zvonkin and L. A. Levin. The complexity of finite objects and the devel-
opment of the concepts of information and randomness by means of the theory of
algorithms. Russian Mathematical Surveys, 25:83–124, 1970.

Solving a PSPACE-Complete Problem by a
Linear Interval-Valued Computation

Benedek Nagy1,2 and Sándor Vályi1

1: Department of Computer Science, Faculty of Informatics, University of Debrecen
Hungary H-4010 Debrecen, P.O. Box 12

{nbenedek|valyis}@inf.unideb.hu
2: Research Group on Mathematical Linguistics, Rovira i Virgili University

Tarragona, Spain

Abstract. An interval-valued computing approach was presented in
[Nagy 2005b]. The computation is executed on interval-valued bytes, the
bits of which indexed by the interval [0,1] rather than by a finite set. This
device was presented there as a new possible model of analogue com-
puters. The question of which complexity is needed to solve PSPACE-
complete problems in this paradigm was also raised in [Nagy 2005b].
An answer to this question is provided now, namely, we show that the
problem of validity of quantified propositional formulae is decidable by
a linear interval-valued computation.

Keywords: Interval-valued Logic, Computing with Interval-values, Non-
standard Computing, Massively Parallel Computing

1 Introduction

It is widely acknowledged in the literature that all theoretical models for general
computing devices involve some abstraction of the concrete possibilities of the
available technical devices. For example, a Turing machine can access an un-
limited number of tape units; complexity-theoretical aspects of Turing machines
are usually examined with oracles of high complexity (see [Rogers 1987]). There
is an extensive literature on infinite size and infinite time computations on Tur-
ing machines (e.g. [Lenzi and Monteleone 2004], [Hamkins and Seabold 2001],
[Welch 2000]). In [Blum et al. 1989] (see also [Blum et al. 1998]), a complexity
theory of calculations with real numbers is introduced. It is a possible approach
to model analogue (in the sense of non-digital) computations. Another model
appeared in [Nagy 2005b], where a new generalization of classical digital com-
puters was proposed. The unit of information processing remains a byte which
is in this case not a finite amount of bits but a full sequence of bits indexed by
the interval [0,1]. The model in question has been based on a version of interval-
valued logic proposed in [Nagy 2005a], which is a natural extension of Boolean
logic to interval-values.

Solving a PSPACE-Complete Problem 217

Motivation for this model is given in [Nagy 2005b]. The physical possibility of
full implementation of these kinds of computation is of course a question left for
future investigations. Some limited approximations were mentioned already in
[Nagy 2005b]. The present article deals with a restricted model which is closer to
an implementable version by hardware available today. It may also be of a math-
ematical interest to determine, what class of functions can be computed with
the help of this paradigm and how its complexity hierarchy relates to other hier-
archies of complexity. In [Nagy 2005b] this research program was started; more
specifically, it was shown, that the problem SAT – which is a basic example for
NP-complete problems – can be solved by a linear interval-valued computation.

In this paper we contribute to the development of complexity issues of this
computing paradigm. [Nagy 2005b] raised the question whether there exists a
PSPACE-complete problem solvable by an interval-valued computation of simi-
lar simple complexity. We show that the problem QSAT – i.e. whether a quanti-
fied propositional formula is true, which problem is PSPACE-complete (see e.g.
[Papadimitriou 1994]) – can be solved by a linear interval-valued computation,
as well.

2 Interval-valued computations

In this section we recall the interval-valued computing system of [Nagy 2005b].
First the notion of interval-values is defined. After this, the allowed operations
which can be used to build expressions are presented and the method computing
the values of these expressions is also given. The selection of operators is natural
but we do not claim that this is the only natural possibility. It is clear that
the complexity hierarchy depends on this selection. It is left for possible future
research to carry out investigations in this direction.

2.1 The allowed interval-values

In our model of computation, the computing device is similar to the process-
ing unit of a traditional computer, but it operates on interval-values instead of
bytes. We propose an alternative, but equivalent definition compared to that of
[Nagy 2005b], which is more concise.

Any of the following objects is called a subinterval: [a, b], [a, b), (a, b], (a, b), [a, a]
where 0 � a < b � 1. The allowed class of interval values (denoted by V)
coincides with the set of finite unions of subintervals.

It is important to note that in this paper a restricted set of interval-values is
used. We allow only finite unions of subintervals as values. This selection limits
the computational power but puts the system closer to those implementable by
technical devices which are available today.

The set of finite unions includes the empty set, that is, ∅ is an allowed interval-
value, too. V forms a Boolean set algebra with the usual set-theoretical opera-

218 Benedek Nagy and Sándor Vályi

tions of intersection (as conjunction), union (as disjunction) and complementa-
tion (as negation). Other logical operators (implication, nand etc.) are express-
ible using these basic operators in the usual way.

2.2 Non-logical operators on interval-values

A traditional computer has not only logical (above called set-theoretical) op-
erations, accordingly we need to allow other operations, too, namely two shift
operators and the “fractalian” product. This makes our system a general com-
puting device, as was shown already in [Nagy 2005b].

First of all, we introduce the first-length function Flength which will be useful in
the forthcoming definitions. This function assigns a real number to each interval-
value, namely the length of its first “component”. More precisely, if we denote
loosely both the interval-value and its characteristic function by the same letters,
say A,B, . . . (we will use this notation through the rest of this article) then
Flength(A) = b−a, if A contains the open interval (a, b) and A does not contain
any interval (a, c) where c > b, moreover, the difference of A and [a, b] does not
contain any point x where x < a. Otherwise Flength(A) = 0.

With the help of Flength we turn now to the definition of shift operators. The
left-shift operator will shift the first interval-value by the first-length of the
second operand to the left, and will remove the part which is shifted out of the
interval [0, 1]. As opposed to that, the right-shift operator is defined in a circular
way, i.e. the parts shifted above 1 will appear at the lower end of [0, 1]. If A,B
are two interval-values then interval-values Lshift(A,B) and Rshift(A,B) are
defined with the help of their characteristic functions.

Lshift(A,B)(x) = A(x + Flength(B)) if 0 � x + Flength(B) � 1, and

Lshift(A,B)(x) = 0 otherwise.

Rshift(A,B)(x) = A(frac(x− Flength(B))) if x < 1, and

Rshift(A,B)(1) = Rshift(A,B)(0).

Here the function frac gives the fractional part of a real number, i.e. frac(x) =
x− int(x), where int(x) is the greatest integer which is not greater than x.

Figure 1 illustrates both operations Rshift and Lshift. The second (ancillary-)
operands are shown in grey for better visualization, but they do not form real
parts of the resulting interval-values.

Let us explain now the fractalian product on intervals. If A contains k interval
components with end-points ai,1, ai,2 (1 � i � k) and B contains l components
with end-points bi,1, bi,2 (1 � i � l), then we determine the value of C = A∗B as
follows: we set the number of components of C is k · l. During this process we can
use double indices for the components of C. The starting point and the ending
point of the ij-th component are ai1 + bj1(ai2 − ai1) and ai1 + bj2(ai2 − ai1),
respectively. An end-point belongs to the interval if and only if the original
endpoints belong to the interval-values of the original interval-values A and B.

In Figure 2 the fractalian product is illustrated.

Solving a PSPACE-Complete Problem 219

Fig. 1. Examples of shift operators with interval-values

2.3 Computations as evaluation of expressions

Several variations of ways of computing can be considered depending on the one
hand, on the allowed constants and on the other hand, on the method checking
the result. In this paper we use only one interval-valued constant and we allow to
check emptiness and non-emptiness of the resulted interval-value. It is obvious
that the concepts of computability and complexity depend on the variation used.
Now we will describe the version used in this paper.

An interval-valued expression means a term composed from the constant
FIRSTHALF and from expression labels, by a finite number of applications
of the two-argument operators defined above (the two shifts and the fractal-
ian product) and the set-theoretical operators. No recursion, not even implicit
recursion by a reference cycle, is permitted when expression labels are used.
The operational complexity of an expression E means the number of operation
symbols used while building up E from the constant and the labels. It is an
interesting question left for future research to determine to which class of cyclic
operator definitions one can provide adequate fixpoint semantics.

We define now the interval-value of an expression E, denoted by ‖E‖. We fix
‖FIRSTHALF‖ as [0, 1

2] while the value of the label of an already evaluated

220 Benedek Nagy and Sándor Vályi

Fig. 2. Examples of product of interval-values

expression is just the value of the expression itself. Because of lack of recur-
sion, the interval-value is well-defined, but the evaluation of a referred expres-
sion has to precede the evaluation of its referring expression. ‖Lshift(A,B)‖,
‖Rshift(A,B)‖ and ‖A ∗B‖ have been defined in the preceding subsection like
the logical operators, i.e. as interval-values of union, intersection and comple-
mentation of interval-values.

2.4 Decidability

Let Σ be a finite alphabet. We say that a language L ⊂ Σ∗ is decidable by an
interval-valued computation if there is a logarithmic space algorithm A that for
each input word w ∈ Σ∗ constructs an appropriate expression A(w) such that
w ∈ L if and only if ‖A(w)‖ is nonempty. Further, we consider in this case
L also decidable. (This last remark makes possible to test emptiness and also
‖A(w)‖ = [0, 1] by set-theoretical operators.)

We say that a language L ⊂ Σ∗ is decidable by a linear interval-valued compu-
tation if and only if there is a positive constant c and an algorithm A with the
following properties. For each input word w ∈ Σ∗ A constructs an appropriate
list S of expressions with the last element A(w) such that the length of S is not
greater than c · |w|, and the operational complexity of each member of S is less
than c, moreover, w ∈ L if and only if ‖A(w)‖ is nonempty. Again, L can be
decided instead of L itself.

Solving a PSPACE-Complete Problem 221

Our motivation to define linear interval-valued computations in this way was to
make explicit in what sense [Nagy 2005b] stated that a linear computation exists
to decide SAT .

3 A linear interval-valued computation to decide QSAT

3.1 The language of the true quantified propositional formulae

We recall now the definition of (a suitable variation of) the language QSAT
of the true quantified propositional formulae. It is a subset of the satisfiable
propositional formulae, built from the propositional variables {x1, x2, x3, . . .}.
The quantifier prefix is not added syntactically to the propositional formulae,
only the definition of semantics is given in this way. The variables of odd index
are meant to quantify universally, while the ones of even index to quantify ex-
istentially. It can be shown by variable renaming and using of the fictive quan-
tifiers that this variation is equally PSPACE-complete as the original QSAT
([Papadimitriou 1994]).

Before we continue the definition, we have to arrange some notations. A valuation
is a function with range {0, 1} on the domain {x1, . . . , xn} for some positive
integer n. If t1, . . . , tn are truth values then we write (t1, . . . , tn) for the valuation
v that v(x1) = t1, . . . , v(xn) = tn and dom(v) = {x1, . . . , xn}. For a quantifier-
free formula φ, |φv| denotes the truth value of φ by the valuation v. For any
positive integer i, the quantifier Qi is ∀ if i is odd otherwise it is ∃.
So, for any formula φ, φ belongs to our variation of QSAT if and only if there
exists a positive integer n such that the propositional variables occurring in
φ are exactly x1, . . . , xn, and (∀t1 ∈ {0, 1})(∃t2 ∈ {0, 1}) . . . (Qntn ∈ {0, 1}) :
|φ(t1, . . . , tn)| = 1.

3.2 The result

Theorem 1. QSAT is decidable by a linear interval-valued computation.

Let us choose c to be 9. We give an algorithm to construct expressions A1, . . . , An,
B1, . . . , Bm, C0, . . . , Cn, D for any input formula φ that contains exactly the
variables x1, . . . , xn and the number of its subformulae is m. Clearly, the length
of this list is less than 4 · |φ|. Our algorithm constructs the mentioned list in
such a way that ‖D‖ will be empty if and only if φ ∈ QSAT , moreover the
operational complexity of each of its members is less than 9.

In [Nagy 2005b], a proof was given for the decidability of SAT by a linear
interval-valued computation. This proof essentially gives an algorithm that for
any formula φ, having m subformulae and built from x1, . . . , xn, constructs an
expression list A1, . . . , An, B1, . . . , Bm of length less than 2∗ |φ| and the require-
ment on the operational complexity is also satisfied. We can realize that these
expressions satisfy the following conditions:

222 Benedek Nagy and Sándor Vályi

(1) ‖A1‖ = [0, 1/2],

(2) generally, for every j ∈ {1, . . . , n}, ‖Aj‖ =
2j−2⋃
k=0

[
2k
2j ,

2k+1
2j

]
, further,

(3) ‖Bm‖ = {r ∈ [0, 1] : |φ(r ∈ ‖A1‖, . . . , r ∈ ‖An‖)| = 1}.

Furthermore, for any r ∈ [0, 1], r �= k
2n (k ∈ Z) hold

(4) if r ∈ ‖Aj‖ then r + 1
2j ∈ ‖Ai‖ if and only if r ∈ ‖Ai‖ for all i < j,

(5) if r /∈ ‖Aj‖ then r − 1
2j ∈ ‖Ai‖ if and only if r ∈ ‖Ai‖ for all i < j,

(6) r + 1
2j ∈ ‖Aj‖ if and only if r /∈ ‖Aj‖.

Our algorithm continues the work of the original algorithm and constructs a
new expression list C0, C1, . . . , Cn, D to append to A1, . . . , An, B1, . . . , Bm. The
older expressions are cited as labels in the new ones. The expressions C0, . . . , Cn

are determined by an inductive way. In this way we avoid cyclic recursions. C0

is just a copy of Bm. For j ∈ {0, . . . , n− 1}, let Cj+1 be

((Lshift(Cj , An−j) ∧ An−j) ∨ Cj) ∨ ((Rshift(Cj , An−j) ∧ ¬An−j) ∨ Cj), if
n− j is even,
(Lshift(Cj , An−j) ∧ An−j ∧ Cj) ∨ (Rshift(Cj , An−j) ∧ ¬An−j ∧ Cj) in the
other case.

The following lemma is essential to finish our proof. To make it more read-
able, we assume that the variables from {t1, t2, . . .} range over the truth values
without any further comment. We recall the definition of quantifier sequence
Q1, Q2, Q3, . . . as ∀,∃,∀, . . ., respectively.

Lemma 1. For all integer j between 0 and n and for all r ∈
(

[0, 1] \
2n⋃
k=0

{ k
2n }

)
:

r ∈ ‖Cj‖ if and only if
Qn−j+1tn−j+1 . . . Qntn |φ(r ∈ ‖A1‖, . . . , r ∈ ‖An−j‖, tn−j+1, . . . , tn)| = 1.

Proof. It is an induction on j from 0 to n. For j = 0, condition (3) implies the
needed equivalence, namely
r ∈ ‖C0‖ if and only if |φ(r ∈ ‖A1‖, . . . , r ∈ ‖An‖)| = 1.

Assume that for any r that is in

(
[0, 1] \

2n⋃
k=0

{ k
2n }

)
, r ∈ ‖Cj‖ if and only if

Qn−j+1tn−j+1 . . . Qntn |φ(r ∈ ‖A1‖, . . . , r ∈ ‖An−j‖, tn−j+1, . . . , tn)| = 1. This
is the induction hypotheses.

We have to check whether r ∈ ‖Cj+1‖ if and only if
Qn−jtn−j . . . Qntn |φ(r ∈ ‖A1‖, . . . , r ∈ ‖An−(j+1)‖, tn−j , . . . , tn)| = 1,

for arbitrary r from
(
[0, 1] \

2n⋃
k=0

{ k
2n }

)
.

We write a sequence of equivalent conditions starting with r ∈ ‖Cj+1‖ and
closing with the right side of the equivalence to prove. We prove the case when

Solving a PSPACE-Complete Problem 223

Fig. 3. ∀x1∃x2∀x3∃x4(((x1 ≡ x2)∧¬x4))∨ (x3 ∧ ((¬x1 ∧ x2 ∧¬x4)∨ (x1 ∧¬x2 ∧ x4)))
is true.

224 Benedek Nagy and Sándor Vályi

n − j is even and Qn−j is ∃, the proof in the case of an odd n − j can be
constructed analogously.

(i) r ∈ ‖Cj+1‖,
(ii) r ∈ ‖Cj‖ or

(
r ∈ ‖Lshift(Cj , An−j)‖ ∧ r ∈ ‖An−j‖

)
or(

r ∈ ‖Rshift(Cj , An−j)‖ ∧ r ∈ ¬‖An−j‖
)
,

(iii) ∀tn−j+1 . . . Qntn |φ(r ∈ ‖A1‖, . . . , r ∈ ‖An−j‖, tn−j+1, . . . , tn)| = 1 or
r ∈ ‖An−j‖ ∧
∀tn−j+1 . . . Qntn |φ(r+ 1

2n−j ∈ ‖A1‖, . . . , r+ 1
2n−j ∈ ‖An−j‖, tn−j+1, . . . , tn)| = 1,

or
r �∈ ‖An−j‖ ∧
∀tn−j+1 . . . Qntn |φ(r− 1

2n−j ∈ ‖A1‖, . . . , r− 1
2n−j ∈ ‖An−j‖, tn−j+1, . . . , tn)| = 1,

(iv) ∀tn−j+1 . . . Qntn |φ(r ∈ ‖A1‖, . . . , r ∈ ‖An−j‖, tn−j+1, . . . , tn)| = 1 or
∀tn−j+1 . . . Qntn |φ(r ∈ ‖A1‖, . . . , r ∈ ‖An−j−1‖, r �∈ ‖An−j‖, tn−j+1, . . . , tn)| =
1,

(v) ∃tn−j∀tn−j+1 . . . Qn|φ(r ∈ ‖A1‖, . . . , r ∈ ‖An−j−1‖, tn−j , . . . , tn)| = 1

The equivalence of (i) and (ii) is validated by the definitions of Cj+1 and the
operators, while that of (ii), (iii) and (iv) by the properties (3)–(6). Finally, the
equivalence of (iv) and (v) can be shown considering that only two possible truth
values exist.
Q.E.D.

Now, we are ready for

Proof of Theorem 1. The above lemma ensures by letting j = n that r ∈ ‖Cn‖
if and only if Q1t1 . . . Qntn : |Bm(t1, . . . , tn)| = 1 and this holds for any r
in [0,1] maybe except some of the values k

2n where 0 � k � 2n. By taking
D = ¬(Lshift(Cn, An ∗A1) ∨ Cn ∨Rshift(Cn, An ∗A1)) we get an expression
satisfying the condition that ‖D‖ is empty if and only if φ ∈ QSAT .
Q.E.D.

Figure 3 shows an example of evaluating of a formula. The formula (((x1 ≡
x2)∧¬x4))∨ (x3∧ ((¬x1∧x2∧¬x4)∨ (x1∧¬x2∧x4))) is shown to be in QSAT .

We can observe that due to the special choice of the semantics of the expressions,
the parallelism of our computations is finite (but unbounded). In fact, for any
of our computations there is an integer n such that the occurring interval values
are finite unions of intervals of the form [k

2n , k+1
2n](0 � k < n) and their open or

half open versions. It is obvious that these limitations restrict the computational
power of the model.

4 Conclusion and final remarks

We proved the solvability of a PSPACE-complete problem by a linear interval-
valued computation. It seems to be trivial that a constant amount of operators
is not enough to decide even SAT , at least if we do not allow other operators on

Solving a PSPACE-Complete Problem 225

interval-values. To find the upper side of limitations of this paradigm one should
search for conditions describing linear or general computability of problems by
interval-valued computation. These conditions may differ for different choices of
initial interval values and of operators. For example, one may ask whether the
language of true arithmetics is decidable by an interval-valued computation, of
course without the restrictions used in this paper. We do not see any straight-
forward argumentation against this possibility.

Our definition for computability has a Boolean-network style in some sense.
One could consider a computational framework in a more imperative manner
and relate the hierarchies arising in this way.

Acknowledgements

The authors are grateful to the referee for her or his valuable remarks and to
Enikő Tóth for her help concerning the language. This research was partly sup-
ported by the Hungarian Research Foundation for Scientific Research (OTKA),
grant no. F043090, T049409 and T043242.

References

[Blum et al. 1989] Blum, L., Shub, M. and Smale, S. “On a theory of computation
and complexity over the real numbers”, Bull. AMS (New Series) 21(1989), no. 1,
pp. 1–46.

[Blum et al. 1998] Blum, L., Cucker, F., Shub, M. and Smale, S. “Complexitiy and
real computation”, Springer, 1998

[Hamkins and Seabold 2001] Hamkins, J. D. and Seabold, D. E., “Infinite time Turing
machines with only one tape”, Math. Logic Quarterly 47(2001), no. 2, pp. 271–287.

[Lenzi and Monteleone 2004] Lenzi, G. and Monteleone, E., “On fixpoint arithmetic
and infinite time Turing machines”, Inform. Process. Letters 91(2004), no. 3, pp.
121–128.

[Nagy 2005a] Nagy, B., “A general fuzzy logic using intervals”, 6th International Sym-
posium of Hungarian Researchers on Computational Intelligence, Budapest, Hun-
gary, pp. 613–624. (earlier version: Interval-valued logic, University of Debrecen,
1998, thesis, in Hungarian).

[Nagy 2005b] Nagy, B., “An Interval-valued Computing Device”, in: “Computability
in Europe 2005: New Computational Paradigms”, (eds. S. B. Cooper, B. Löwe, L.
Torenvliet), ILLC Publications X-2005-01, Amsterdam, pp. 166–177.

[Papadimitriou 1994] Papadimitriou, C. H., “Computational Complexity”, 1994,
Addison-Wesley.

[Rogers 1987] Rogers, H., “Theory of Recursive Functions and Effective Computabil-
ity”, 1987, MIT Press.

[Welch 2000] Welch, P. D., “Eventually infinite time Turing machine degrees: infinite
time decidable reals”, J. of Symb. Logic 65(2000), no. 3, pp. 1193–1203.

Hypercomputing the Mandelbrot Set?

Petrus H. Potgieter

Department of Decision Sciences, University of South Africa (Pretoria), PO Box 392,
UNISA, 0003, Republic of South Africa, potgiph@unisa.ac.za

Abstract. The Mandelbrot set is an extremely well-known mathemat-
ical object that can be described in a quite simple way but has very
interesting and non-trivial properties. This paper surveys some results
that are known concerning the (non-)computability of the set. It con-
siders two models of decidability over the reals (which are treated much
more thoroughly and technically in [1], [2], [3] and [4] among others), two
over the computable reals (the Russian school and hypercomputation)
and a model over the rationals.

Keywords: Mandelbrot set, Zeno machines, hypercomputation.

1 Introduction

In theoretical computer science it is no surprise that the halting problem for
Turing machines is the favourite target for solution by non-conventional models
of computation. However, the decidability of sets of reals and the computability
of functions in ordinary real analysis is a topic of great interest to the broader
mathematical community and a potential area of application for so-called hyper-
computation. This paper surveys some of the most important results and gives
an extremely simple example of the application of accelerated Turing machines
to the question of decidability of the Mandelbrot set. This very amusing problem
was raised by Roger Penrose [5] and—like many good questions—implies con-
siderable work on the definitions, in this case what exactly is meant by decidable
for a subset of the plane.

In 1979 Benôıt Mandelbrot used a computer to plot1 a beautiful approxima-
tion of the subset

M = {c ∈ C | for all n ≥ 1, |fn
c (0)| ≤ 2} where fc(x) = x2 + c (1)

of the complex plane C (where fn denotes n-th iteration of f). This set was orig-
inally described by Pierre Fatou in 1905 but after the appearance of a colourful
plot of the set in Mandelbrot’s book [6] and—especially—on the cover of Sci-
entific American and in an accompanying column [7] in August 1985, the Man-
delbrot set has become one of the greatest celebrities of popular mathematics.

1 Mandelbrot actually plotted a mirror image of M .

Hypercomputing the Mandelbrot Set? 227

Plots can easily be generated using a plethora of software freely available, in-
cluding normal LATEX code2. The relatively concise but non-optimised Octave3

code snippet

n=1000; # For an nxn grid

m=50; # Number of iterations

c=meshgrid(linspace(-2,2,n))\ # Set up grid

+i*meshgrid(linspace(2,-2,n))’;

x=zeros(n,n); # Initial value on grid

for i=1:m

x=x.^2+c; # Iterate the mapping

endfor

imagesc(min(abs(x),2.1)) # Plot monochrome, absolute

value of 2.1 is escape

suffices, for example, to plot the Mandelbrot image in Figure 1.

Fig. 1. Membership candidates for the Mandelbrot set

2 http://www.thole.org/manfred/apfel/apfel.tex [accessed 2005-12-30] by Manfred
Thole. The Mandelbrot set is approximated by the white area at the centre of this
plot generated by a correctly compiled apfel.tex.

3 Octave is a free and open-source high-level language for numerical computation with
implementations on many platforms and largely compatible with MATLAB R©. See
http://www.octave.org/.

228 Petrus H. Potgieter

The image in Figure 1 shows an expanse of background (white) points which
were shown during the execution of the code to have left the closed disk of
radius 2—therefore not to belong to the Mandelbrot set—and grey and black
points which are candidates for membership of M . In this plot the points c have
a lighter colour when they have approached relatively closely to the boundary
of the disk after exactly 50 iterations of the map fc(0). This shading scheme
emphasises that the usual routines for generating Mandelbrot plots, like this
one, clearly can identify only elements of the complement of M and not of the
set itself. Scientists are well-aware this fact (that the complement of M is only
known to be recursively enumerable) but it is usually not overemphasised in
the more popular writing. Incidentally, M is compact and simply connected [8]
which one cannot, and should not expect to, see in Figure 1. Figure 2 shows a
plot of the Mandelbrot set candidates as one more usually sees it.

Fig. 2. The Mandelbrot plot as we too often see it

The central part is, of course, the same as the set of grey or black points in
Figure 1—those points who have not (yet) escaped the disk after m iterations
in the Octave code fragment

n=1000; # For an nxn grid

m=60; # Number of iterations

c=meshgrid(linspace(-2,2,n))\ # Set up grid

+i*meshgrid(linspace(2,-2,n))’;

x=zeros(n,n);y=ones(n,n); # Initial values on grid

Hypercomputing the Mandelbrot Set? 229

y counts number of iterations

without escape from the disk

for i=1:m

x=x.^2+c; # Usual iteration

y=y.+(.5+sign(3-abs(x))./2);# Add one if still in radius 3

x=x.*(min(abs(x),3)\ # Scale back points far away to

./(abs(x)+!abs(x))); # speed up and avoid overflow

endfor

imshow(imagesc(y),rand(m+1,3)) # Plot y with random colours

which now keeps track of when a point first leaves the disk (if at all) using
the matrix y. The union of the outer coloured bands represents IR \M on the
computational grid, or what we could discover of it in the number of iterations
executed. Although pretty, these bands show the stages of construction of M ’s
complement and disguise the fact that we know about M not much more than
that it is somewhere in the central coloured section! Incidentally, John Ewing
and Glenn Schober have made [9] laborious numerical estimates of the area4 of
the Mandelbrot set using two different plotting methods and arrived at answers
of respectively 1.52 and 1.72. This is for a set which everybody believes that
they have seen!

In a very readable article [11] Lenore Blum has described the gulf between
numerical analysis and computer science. Blum calls the classical theory of (Tur-
ing) computability

fundamentally inadequate for providing such a foundation for modern
scientific computation, in which most algorithms–with origins in Newton,
Euler, Gauss, et al.–are real number algorithms

as a partial justification of the Blum-Shub-Smale model of computation over the
real numbers (mentioned in 3.1, below). The present author would be inclined to
the opinion that ‘modern scientific computation’ is rather inadequately founded
in the classical theory of computability and that the logical and foundational
problems which arise in this regard (some of which are illustrated in this pa-
per) could be much deeper and connected to our model of the real numbers
and their representation; and to the finite/infinite duality which is drilled into
mathematical recruits in a dingy room in the Hilbert Grand Hotel.

2 M in the Recursive Realm

First, let us consider only computable points in the Mandelbrot set M . By this
we mean points that can be finitely specified and communicated in a consistent
way, which one can take to mean represented by a program for computing ap-
proximating rationals. This is an intuitive idea used in all versions of computable

4 A tighter estimate has recently been computed by Yuval Fisher and Jay Hill [10].

230 Petrus H. Potgieter

analysis and which can be readily grasped. Fix a universal Turing machine U as
well as a (recursive, surjective) encoding φ : IN→ {0, 1} × IN× IN with

φ : n �→ (φ1(n), φ2(n), φ3(n))

so that every rational number is of the form

(−1)φ1(n)φ2(n)− 1

φ3(n)

for some n. If x ∈ IR then we say that x belongs to the set IRc of computable
reals if there exists a program5 ix for U so that, if fix is the function computed
by ix then ∣∣∣∣x − (−1)φ1(fix (m))φ2(fix(m))− 1

φ3(fix(m))

∣∣∣∣ < 2−m

for every m ∈ IN. Penrose’s question in this section should be:

Given a program-description of a computable complex number, can we
algorithmically determine whether it belongs to M , or not?

In other words, does there exist a (partial) function G :⊆ IN × IN → IN, com-
putable in some sense, such that whenever ix and iy are programs for x, y ∈ IRc

respectively then
G (ix, iy) = χM (x + iy). (2)

This simply means that G can be used to determine membership of M for
the recursive points in the plane. Identify C with IR2 in the usual way and
consider Mc = M ∩ IR2

c , the computable points in the plane that belong to the
Mandelbrot set. The unsuspecting reader of popular scientific literature could
reasonably assume that given a full description of a point (x, y), by a program
pair (ix, iy) one supposes there exists a procedure for deciding membership of
Mc. The existence of such a G has been implicitly suggested to the general public
for two decades by the pretty pictures we have had our computers draw, but it
turns out that we do not have such a procedure in classical computability theory
at all.

2.1 Markov computability

In the Russian school of constructive mathematics, pioneered by Andrei Markov,
a function f : IRc → IRc is considered to be computable (or, constructive) if there
exists a Turing machine computable G : IN → IN such that whenever ix is a U -
program for x then G(ix) is a U -program for f(x)—and f(x) is defined if and only
if G(ix) is. A set is computable or decidable in this setting when its characteristic
function is computable. However, every computable function is continuous [12]
and therefore the only computable sets will be closed (and open). This is a rather

5 We shall assume that the program and input for U (actually both simply inputs) are
natural numbers.

Hypercomputing the Mandelbrot Set? 231

ironic development as, for example, the computable interval [0, 1] ∩ IRc will not
be a computable set in this sense, being closed but not open in IRc. The same is
true of the unit circle and the disk in the plane and in both cases the difficulty
springs from the fact that there is not general procedure that, given ix and iy,
can decide whether x = y or not. The Mandelbrot set is, however, closed in IR
(and hence closed in IRc), so could it be computable in this sense? No, since
−2 ∈Mc and −2 is a cluster point in IRc of IRc \Mc and hence Mc is not open
in IRc. Consequently its characteristic function cannot be Markov computable6.

Although apparently intuitive, the notion of computable set used in this sub-
section is clearly very, very bad from the point of view of real analysis. Never-
theless it corresponds in some sense exactly to what a programmer would regard
as computable: given a procedure (subroutine) for an x, having a program that
outputs 1 in finite time if x ∈ Mc and zero otherwise. The situation here is in
contrast to that of subsets of the natural numbers, for which the notion of decid-
ability is very natural and well-established (pace the entire field of ‘super-Turing’
hypercomputation).

2.2 Zeno Machine Computability

Consider what may be called a Zeno machine (ZM) [13] or Accelerated Turing
Machine [14, 15]. With this kind of speed-up of the computing device, one can
solve the halting problem for Turing machines in finite time. Many hypercom-
putational schemes tend to be proposals for somehow accomplishing infinitely
many computational steps in a finite time (see also [16], for example). Without
loss of generality, we shall assume a ZM to be identical to a Turing machine with
one input tape, one output tape and a storage tape except that the ZM takes 1

2
hour to execute the first transition, 1

4 hour for the second, 1
8 hour for the third

etc. After one hour the ZM will have finished its operation and one will perhaps
find the answer to some tantalising question on the output tape. On a putative
ZM one could implement an Octave interpreter that would execute the code

n=1000; # For an nxn grid

c=meshgrid(linspace(-2,2,n))\ # Set up grid

+i*meshgrid(linspace(2,-2,n))’;

x=zeros(n,n); # Initial value on grid

do

x=x.^2+c; # Usual iteration

x=x.*(min(abs(x),3)\ # Scale back points far away to

./(abs(x)+!abs(x))); # speed up and avoid overflow

and infinite values

until (1==0) # Repeat a lot

imagesc(min(abs(x),2.1)) # Plot x, 2.1 counts as escape

6 Since the unit circle is also not computable here, this should not come as a great
surprise.

232 Petrus H. Potgieter

in finite time. This would provide an exact plot of the Mandelbrot set on the grid
points! With a small modification (adding a procedure/subroutine for approxi-
mating the computable real) a ZM can decide membership of Mc for any com-
putable real. For example, the Octave code immediately above can be rewritten
for an (ordinary, Turing computable) Octave function c(i) (instead of a matrix
c) where c(i) gives a rational approximation of c to within 2−i and a scalar
x, initially zero. In the i-th iteration of the loop we then recompute7 x using
c(i). A similar calculation could be done relative to an oracle for the halting
problem. The ZM as used here does not apparently present any of the problems
with respect to defining the terminal configuration of the devices described in
[13] since the matrix x is always bounded. This stability is however illusory: in
executing the code described here one needs to continually reset x back to zero
and therefore the variable x will, for every x ∈ IRc\Mc, have values alternatively
0 and with absolute value 2.1 arbitrarily close to the end of execution time8.

2.3 A Rational Refuge?

Is there some relief from these problems if we restrict our attention to the points
with rational coordinates only? Consider again the (recursive, surjective) encod-
ing φ : IN → {0, 1} × IN2 of the rational numbers used earlier. A set A ⊆ Q
can be defined as computable whenever a Turing machine computable function
F : IN→ IN exists such that

F |φ−1(A) ≡ χA ◦ φ.

In this sense, now, the rational points on the unit circle do constitute a com-
putable set since the condition x2 + y2 = 1 can be checked by a Turing machine
for rational x and y. Is M ∩Q computable in this sense?

This kind of computability over the rationals is very different from Markov-
computability over the computable reals. Consider for example the function
f : Q → {0, 1} such that f(q) = 1 if the reduced improper fraction repre-
sentation of q has an even denominator and f(q) = 0 otherwise. This function is
not continuous on Q and therefore not the restriction of a Markov-computable
function to the rationals. It is therefore conceivable9 that a Turing machine could
compute the characteristic function of M ∩Q with respect to the representation
φ of the rationals, F |φ−1(M∩Q).

The rational points are perhaps a bad basis for developing a general theory
of computability of subsets of IRn however. It could say nothing much about
the curve x3 + y3 = 1. In fact, decidability with respect to the rationals suffers
from a general failure to take the boundary into account (as in the example
below). Nevertheless, for connected and compact sets with non-empty interior,

7 This would require recomputing the previous iterates, of course, but there are only
finitely many to do each time.

8 Thomson’s Lamp showing the way...
9 Although it strikes the present author as unlikely that M will be computable in this

sense, a proof is called for.

Hypercomputing the Mandelbrot Set? 233

computability in this sense seems a relatively natural and quite desirable prop-
erty. It would, for instance, allow one to plot the set with a computer using test
points on a rational grid. Consider also that the set {(x, y) ∈ Q2 | y ≥ ex} is
computable with respect to the representation φ: if e1(q,m) is a computable
function approximation of eq from below and e2(q,m) from above such that
limm→∞ ei(q,m) = eq then an enumeration of the values e1(q,m) and e2(q,m)
for m = 1, 2, . . . will after finitely many steps reveal whether any given rational
lies below eq or above it (since eq is irrational for all rational q �= 0 and the case
q = 0 can be checked separately).

3 M in Real Space

Let us return to the standard real numbers and consider M as a subset of the
standard plane. In pursuing an answer to Penrose’s question, the formulation of
an appropriate notion of decidability of subsets is again required. Most of the
work in this regard has its roots in the Polish school of computable analysis,
starting with Andrzej Gregorczyk and Daniel Lacombe. The Blum-Shub-Smale
system on the other hand, has a rather algebraic flavour.

3.1 The Blum-Smale Result

Blum, Mike Shub and Steven Smale (BSS) have introduced [2, 11] a model of
computation over arbitrary commutative rings which is based on machines that
operate using the elements of the ring R in lieu of a finite alphabet. There
exist universal machines in this model. In the case where the ring is ZZ2 the
classical computability theory is recovered. BSS-computable functions over R
are functions computed by such a machine and they call a set computable or
decidable whenever its characteristic function is BSS-computable. Blum and
Smale have shown that the Mandelbrot set is NOT computable in this framework
[17] which is at least a partial answer to Penrose’s question. However, Vasco
Brattka has shown [3] that in the BSS scheme over the field of standard real
numbers the set {(x, y) ∈ IR2 | y ≥ ex} is not computable either. Brattka’s
result reflects unfavourably on the claim that BSS computability provides a
natural notion of decidable set—at least, for real analysis.

3.2 Computable Real Analysis

Computable real analysis in the Polish school, as developed in [18] and else-
where, is based on the definition of a function as computable whenever it maps
every computable sequence of points (in IRn) to a computable sequence of points
and has a recursive modulus of continuity (defined on {1, 1

2 ,
1
3 ,

1
4 , . . .}) on every

compact subset. The appropriate definition [3] in this context is for a set A to
be computable whenever its distance function dA : IRn → IR is a computable
function in this sense. Computable (in the classical sense) subsets of IN, viewed
as subsets of IR, remain computable in this sense [1] and the notion is therefore a

234 Petrus H. Potgieter

true generalisation of the notion of classical Turing computability. Peter Hertling
has recently shown [1] that if the Mandelbrot set M is locally connected10, then
its distance function has to be computable and hence Penrose’s question would
be answered in the affirmative.

As described in [4], in this notion of computability the closed decidable sub-
sets of IRn are exactly those sets which can in principle be plotted with arbitrary
accuracy on a computer screen11. It is therefore at this point not yet known
whether the Mandelbrot set can be accurately drawn by a computer!

4 Conclusion

The table below summarises the results and the two open problems mentioned
in this survey.

Circle y ≥ ex M’brot
Markov-computability over IRc × × ×
Blum-Shub-Smale over IR
 × ×
Turing-computability over Q

 ?
Computable analysis (Brattka e.a.)

 ?
Zeno-computability over IRc

Although the classical computability of the rational Mandelbrot set M∩Q2 is an
obvious question which one would cautiously expect to be answered in the nega-
tive, the author is not aware of a current result implying this. Among the models
of decidability of sets in IRn, the approach 3.2 studied by Brattka, Weihrauch
e.a. appears the most reasonable and a demonstration of the computability of
M in this setting would be extremely interesting both in itself as well providing
strong support for the intuitiveness of their approach. In the model over Q the
Mandelbrot set is of course decidable with respect to an oracle for the halting
problem but it seems unlikely the converse is true, so if M ∩ Q2 is not Turing-
decidable then it could be interesting12 to study problems that can be solved
relative to an oracle for M ∩ Q2 (or an M -oracle in any model in which M is
not decidable). Until such time as at least one of the question marks in the table
have been decided, a Zeno machine (or any hypercomputing model capable of
solving the halting problem for Turing machines) remains—alas!—the best way
of imagining that we can actually decide membership of the Mandelbrot set.

10 Actually, Hertling proved a stronger result: that the hyperbolic conjecture (which
would be implied by local connectedness) would be sufficient to prove imply com-
putability of the distance function.

11 Using an approach which switches a pixel on when the set is close to the centre of
the pixel. This approach requires some obvious assumptions about the scale.

12 This question was also raised by Klaus Meer and Martin Ziegler in slides for
a talk, http://www.upb.de/cs/ag-madh/WWW/ziegler/LUEBECK2.pdf [accessed
2006-01-04].

Hypercomputing the Mandelbrot Set? 235

References

1. Hertling, P.: Is the Mandelbrot set computable? MLQ Math. Log. Q. 51(1) (2005)
5–18

2. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and real computation.
Springer-Verlag, New York (1998) With a foreword by Richard M. Karp.

3. Brattka, V.: The emperor’s new recursiveness: the epigraph of the exponential
function in two models of computability. In: Words, languages & combinatorics,
III (Kyoto, 2000). World Sci. Publishing, River Edge, NJ (2003) 63–72

4. Brattka, V., Weihrauch, K.: Computability on subsets of Euclidean space. I. Closed
and compact subsets. Theoret. Comput. Sci. 219(1-2) (1999) 65–93 Computability
and complexity in analysis (Castle Dagstuhl, 1997).

5. Penrose, R.: The emperor’s new mind. The Clarendon Press Oxford University
Press, New York (1989) Concerning computers, minds, and the laws of physics,
With a foreword by Martin Gardner.

6. Mandelbrot, B.B.: The fractal geometry of nature. W. H. Freeman and Co., San
Francisco, Calif. (1982) Schriftenreihe für den Referenten. [Series for the Referee].

7. Dewdney, A.K.: Computer Recreations: A computer microscope zooms in for a
look at the most complex object in mathematics. Scientific American 253(2)
(1985) 17–21, 24

8. Branner, B.: The Mandelbrot set. In: Chaos and fractals (Providence, RI, 1988).
Volume 39 of Proc. Sympos. Appl. Math. Amer. Math. Soc., Providence, RI (1989)
75–105

9. Ewing, J.: Can we see the mandelbrot set? The College Mathematics Journal
(1995)

10. Fisher, Y., Hill, J.: Bounding the Area of the Mandelbrot Set (date unknown)
Available online:- http://citeseer.ist.psu.edu/35134.html [accessed 2006-01-02].

11. Blum, L.: Computing over the reals: where Turing meets Newton. Notices Amer.
Math. Soc. 51(9) (2004) 1024–1034

12. Uspensky, V., Semenov, A.: Algorithms: main ideas and applications. Volume
251 of Mathematics and its Applications. Kluwer Academic Publishers Group,
Dordrecht (1993) Translated from the Russian by A. Shen’.

13. Potgieter, P.H.: Zeno machines and hypercomputation. Theoretical Computer
Science (accepted for publication) arXiv:cs/0412022.

14. Copeland, B.: Hypercomputation: philosophical issues. Theoretical Computer
Science 317 (2004) 251–267

15. Boolos, G., Jeffrey, R.C.: Computability and logic. Cambridge University Press
(1980)

16. Calude, C.S., Păun, G.: Bio-steps beyond Turing. Biosystems 77(1–3) (2004)
175–194

17. Blum, L., Smale, S.: The Gödel incompleteness theorem and decidability over a
ring. In: From Topology to Computation: Proceedings of the Smalefest (Berkeley,
CA, 1990), New York, Springer (1993) 321–339

18. Pour-El, M.B., Richards, J.I.: Computability in analysis and physics. Perspectives
in Mathematical Logic. Springer-Verlag, Berlin (1989)

Definability of the Field of Reals in Admissible
Sets⋆

Vadim Puzarenko

Sobolev Mathematical Institute of SD RAS
Novosibirsk

vagrig@math.nsc.ru

Abstract. Admissible sets are used in Definability, Computability and
Model theories. Last time they are actively used in studying of Com-
putable Models. Here we study several problems on representability of
field of real numbers in Admissible Sets. Furthermore, some computa-
tional methods on admissible sets are developed. Problems of definability
of classical structures are studied since 1985[5]. In [5] some positive and
negative answers of definability of fields C and R in hereditarily finite
sets over sets in empty language and over dense linear ordering was got.
In this paper we give full description of the property of R to be definable
in A.

We consider R as the field 〈R,+, ·, 0, 1,≤〉 of reals. We propose that all the
structures are considered in finite languages. Recall some notions from Admis-
sible Sets theory [1, 2].

Let τ be a finite signature such that τ ⊇ {U1,∈2,∅}. Then theory KPUτ

(K, P, U mean Kripke, Platek, Urelements respectively) contains the following
axioms: extensionality, pair, union, existence of empty set, set structure (any
urelement is not a set), Δ0 Separation and Δ0 Collection. Here U , ∈, ∅ are
interpreted as set of urelements, membership relation and empty set respectively.
It can be considered as some weak fragment of Zermelo-Fraenkel theory ZFUτ

with urelements. As in ZF, we can define notions of transitive sets and ordinals,
transitive closure, ordered pair and so on. The set of all ordinals has the same
properties except of well foundedness. This set is called the ordinal or the height
of a considered structure. A structure A of KPUτ is called admissible if its ordinal
is well ordered. We denote the height of A as Ord(A).

Class of Σ formulas is the least one containing Δ0 formulas and closed under
∨, ∧, ∀x ∈ y, ∃x ∈ y and ∃x. S ⊆ dom(A)k, k � 1, is called Σ predicate on A if it
is definable by some Σ formula (possibly with parameters) on A. S ⊆ dom(A)k,
k � 1, is called Δ predicate on A if S, dom(A)k \ S are Σ on A. A partial
function f :⊆ dom(A)k → dom(A), k � 1, is called Σ function on A if its
graph is Σ on A. This function is called total if its domain is dom(A)k. Given
a ∈ dom(A), we denote the transitive closure and the support of a as TC(a) and
sp(a) = {u ∈ TC(a) | U(u)} respectively.

⋆ This paper is partially supported by INTAS 05-109-4919

Definability of the Field of Reals in Admissible Sets 237

Notice that the set of all natural ordinals ω is Δ on any admissible structure.
Moreover, either ω = Ord(A) or ω ∈ dom(A).

Let M be a structure in signature σ. An admissible set is called a hered-
itarily finite set over M if it is the least under inclusion admissible set in
signature σ ∪ {U,∈,∅} with urelements dom(M). It is denoted as HF(M).
The domain of this admissible set can be defined constructively in the fol-
lowing way: HF0(dom(M)) = dom(M); HFn+1(dom(M)) = HFn(dom(M)) ∪
Pfin(HFn(dom(M))); HF(dom(M)) = ∪n<ωHFn(dom(M)) where Pfin(X) is
collection of all finite subset of X.

Definition 1. Let A, B be admissible sets and let M be an arbitrary structure
in signature σ.

– We say that M is Σ-definable in A (M �Σ A) if there exists a surjection
map ν : dom(A) → dom(M) such that ν−1(=) and ν−1(P) are Δ on A, for
any P ∈ σ;

– We say that M is definable in A (M � A) if there exists a surjection map
ν : dom(A) → dom(M) such that ν−1(=) and ν−1(P) are definable by some
formulas on A, for any P ∈ σ;

– We say that B is Σ reducible to A (B ⊑Σ A) if there exists a surjection map
ν : dom(A) → dom(B) such that ν−1(C) is Σ on A, for any Σ predicate C
on B;

– A collection S ⊆ P(dom(A)) is called computable in A if there exists a
surjection map ν : dom(A) → S such that {〈a, b〉 | b ∈ ν(a)} is Σ on A;

– A collection S ⊆ P(dom(A)) is called definable in A if there exists a surjection
map ν : dom(A) → S such that {〈a, b〉 | b ∈ ν(a)} is definable in A.

All the notions except of Σ reducibilty were introduced by Yu.L.Ershov. Of
course, in [2] it is proposed that ν can be a partial surjection map with a domain
which is Σ on A but it is easy to get from the following assumption that the
notions introduced here are equivalent to the original definitions.

Proposition 2. Let A be a KPUτ -model, for some signature τ . Then B ⊆
dom(A) is Σ subset iff B = ∅ or there exists a total Σ function f with range B.

Proof. Let B be a nonempty Σ subset. Fix some a0 ∈ B and some Σ formula
Φ(x) which defines B. By Σ Reflection Principle[1], there exists a Δ0 formula
Φ0 such that KPUτ ⊢ Φ(x) ≡ ∃uΦ0(x, u). Then

f(x) =

{
z if x = 〈z, u〉 for some u,A |= Φ0(z, u);
a0 otherwise

has desired property.

The following assumption can be got as corollary of complicated construc-
tions from [2]. Here we give direct proof.

Proposition 3. Let A be an admissible set and M be a structure in some finite
signature. Then M �Σ A iff HF(M) ⊑Σ A.

238 Vadim Puzarenko

Proof. We assume that M is infinite otherwise it is trivial. First we describe how
to construct a representation of HF(M) with domain ⊆ ω × (∪n<ωdom(A)n).
Consider HF(N) where N is the standard model of arithmetics. It has a com-
putable representation ν with the following additional property: there exists a
computable function f s.t. f(u) is Δ0 index of some finite set {m | ν(m) ∈
ν(u)}. Now we associate with every κ ∈ HF(ω) some term tκ in signature
{{ }1,∪2,∅} such that 〈TC({κ}), U,∈,∅〉 ≃ 〈TC({tκ(u)}), U,∈,∅〉 for any tu-
ple u ∈ dom(M)<ω of distinct elements of length card(sp(κ)). The associated
numbering of such terms is also computable. We correspond 〈κ, u〉 to tκ(u). To
complete proof it remains to apply proposition 1 and representation of Σ subsets
by computable sequences of existentional formulas in signature of M (Theorem
1[4]).

Indeed Σ reducibility preserves computable collections of sets of natural num-
bers.

Lemma 4. Let A, B be admissible sets that A ⊑Σ B and let ν be a map from
definition. Then R0 = {〈x, n〉 | x ∈ dom(B), n ∈ ω, ν(x) = n} is Δ on B.

Proof. We define this predicate by Σ recursion:
〈x, 0〉 ∈ R iff ν(x) = ∅ iff ¬(ν(x) �= ∅);
〈x, n + 1〉 ∈ R0 iff ∃y[〈y, n〉 ∈ R0 ∧ (ν(x) = ν(y) + 1)];
〈x, n+1〉 �∈ R0 iff ¬Nat(ν(x))∨(ν(x) = ∅)∨∃y(〈y, n〉 �∈ R0∧(ν(x) = ν(y)+1))

where Nat is set of all natural ordinals.

Proposition 5. Let A, B be admissible sets that A ⊑Σ B. Then any computable
in A collection ⊆ P(ω) is also computable in B.

Proof. Let A be Σ reducible to B via ν. Let ∅ �= S ⊆ P(ω) be computable in A
and let Q be Σ on A that S = {{n | Q(a, n)} | a ∈ dom(A)}. Then ν−1(Q) is
Σ on B. It is easy to verify that S = {{n | ∃y(R0(y, n) ∧ Q(ν(x), ν(y)))} | x ∈
dom(B)}. Thus S is computable in B.

Similarly, we can get familiar results for definable structures and collections.

Proposition 6. 1. Let A be admissible and let M be a structure. Then M � A
iff HF(M) � A.

2. Let A, B be admissible sets that A � B and let S ⊆ P(ω) be definable in
A. Then S is definable in B.

This technique allows to describe all the admissible sets in which the field of
real numbers is definable. R is Archimedian field so the set of natural number
N ⊆ dom(R) is Δ on HF(R). E.g., N ⊆ dom(C) is Σ but is not Δ on heredi-
tarily finite set HF(C) over field of complex numbers. Furthermore, the natural
correspondence between Ord(HF(R)) and N is Σ function on HF(R).

Theorem 7. [3] Let A be an admissible set. Then R is definable in A iff P(ω)
is definable in A.

Definability of the Field of Reals in Admissible Sets 239

Proof. First we show that collection of all coinfinite sets of natural numbers is
computable in HF(R). For any x ∈ [0; 2) we let Ax = {n ∈ N | [2·{2n−1 ·x}] = 1}
where [x] and {x} are integer and fractional parts of x respectively. It is evident
that the collection {Ax | x ∈ [0; 2)} contains exactly coinfinite sets of natural
numbers. Furthermore, collection of all cofinite sets of all natural numbers is also
computable in HF(R). Thus if R � A then P(ω) is definable in A, by Proposition
6. Conversely, if P(ω) is definable in A then the collection of all coinfinite sets
of natural numbers is also definable in A. We will represent real numbers by cut
of ordered ring K = { n

2m | n ∈ Z, m ∈ N} (here Z is set of all integer numbers).
We fix some its constructivization ν. Now we can define cuts of α as follows:

Bα = {n | ν(n) � α}; Cα = {n | ν(n) > α};
B1

α = {n | ν(n) < α}; C1
α = {n | ν(n) � α}.

Then (Bα|Cα) = (B1
α|C1

α) iff α �∈ K. Furthermore, Ax is finite iff x ∈ K. It allows
to define addition and multiplication operations uniformly in terms of cuts. �

Corollary 8. Let M be a structure of categorical in some infinite power theory.
Then R is not definable in HF(M).

Proof. Any countable structure of such theory T has a computable copy relative
to oracle T . Hence the collection of all possible definable subsets of natural
numbers in HF(M) is countable.

Corollary 9. [2] Let M be a structure of a theory from the following list: dense
linear order, sets without any structures, algebraically closed fields. Then R is
not definable in HF(M).

Corollary 10. [3] Let A, A′ be admissible sets such that A � A′ and R is
definable in A. Then R is definable in A′.

The problem of Σ-definability of R in admissible sets is more complicated. Here
we give a necessary condition for R to be Σ-definable in A. A surjection map
ν : dom(A) → S is called decidable in A if {〈a, b〉 | ν(a) = ν(b)} is Δ on A. It is
easy to verify that if A ⊑Σ B via μ and ν is decidable in A then ν ◦μ is decidable
in B.

Proposition 11. Let A be an admissible set such that R is Σ-definable in A.
Then A has a decidable map ν with range {A ⊆ ω | card(ω \A) = ∞} such that
{〈x, n〉 | n ∈ ν(x), x ∈ dom(A)} is Δ on A.

Proof. This implies from Propositions 3,5 and remarks above.

In [6] an admissible set A is constructed with the following properties:
1) P(ω) is computable in A;
2) it has no decidable map for P(ω) with additional condition from proposi-

tion.
Thus R is definable but is not Σ-definable in A.

Now we give the full description of Σ-definability of R when the height of
admissible sets is greater than ω. Indeed a height of such admissible set is � ω1.

240 Vadim Puzarenko

Proposition 12. There exists the least under inclusion admissible set Cω with
the property P(ω) ⊆ dom(Cω). Moreover, if an admissible A contains P(ω) as
subset then Cω �end A and Cω ⊑Σ A.

Proof. Let Cω = ∪A⊆ωL(ω1, A) where L(α, a) is the set containing exactly ele-
ments which are constructible from a to step α. Then it is admissible. Further-
more, for any α < ω1 there exists A ⊆ ω such that the least admissible ordinal
of structure of kind L(γ,A) is greater than α.

Theorem 13. Let A be an admissible set such that ω ∈ Ord(A). Then R is
Σ-definable in A iff P(ω) ⊆ dom(A).

Proof. If R is Σ-definable in A and ω ∈ dom(A) then for any A ⊆ ω, A ∈
dom(A), by Δ Separation[1] and Proposition 5. Conversely, functionals defin-
ing operations in proof of Theorem 1 have quantifiers acting only on natural
numbers. They can be restricted by ω.

Let ℵ be an arbitrary cardinal. We denote Hℵ(M) as the admissible set over
M consisting of elements x such that |TC(x)| < ℵ. LetHℵ be its pure part. In the
case when ℵ = ω1 is the first uncountable cardinal, Hℵ(M) is called hereditarily
countable set over M and is denoted as HC(M). Recall that Hω(M) = HF(M).

Corollary 14 (2). Let ℵ > ω be a cardinal. Then R is Σ-definable in Hℵ(M),
for any structure M.

The description of admissible sets A such that ω = Ord(A) and R �Σ A is open
problem. It is possible that it has set theoretical nature.

References

1. J. Barwise. Admissible Sets and Structures. Springer–Verlag, Berlin, Göttingen,
Heidelberg, 1975.

2. Yu.L.Ershov. Definability and Computability, New York, NY: Consultants Bureau.
1996.

3. V.G.Puzarenko. Generalized Numberings and Definability of the Field R in Admis-
sible Sets, Vestnik NGU, vol. 3(2), 2003, 107 – 117 (in Russian).

4. V.G.Puzarenko. On computability over models of decidable theories, Algebra and
logic, vol. 39, 2(2000), 98 – 113.

5. 4. Yu.L.Ershov. Σ-definability in Admissible Sets. Dokl. AN SSSR, 285, 4(1985),
792 – 795.

6. V.G.Puzarenko. Computability in special models. Siberian Mathematical Journal,
46, 1(2005), 148 – 165.

The Algebra of Labeled Forests
Modulo Homomorphic Equivalence

Victor L. Selivanov ⋆

A.P.Ershov Institute of Informatics Systems
Siberian Division of the Russian Academyof Sciences

vseliv@nspu.ru

Abstract. We introduce and study some natural operations on the ho-
momorphic quasiorder of finite labeled forests which is of central interest
for extending the difference hierarchy to the case of partitions. It is shown
that the corresponding algebra is the simplest nontrivial semilattice with
discrete closures. The algebra is also characterized as a free algebra in
some quasivariety. Some of results are generalized to countable labeled
forests without infinite chains.

Keywords. Tree, forest, labeled tree, homomorphic quasiorder, lattice,
well quasiorder.

1 Introduction

In [Se04] we studied the structure (Fk;≤), k < ω, of finite k-labeled forests
with the homomorphic quasiorder (earlier the structure was used as a tool for
investigation of the discontinuity degrees of functions [H96]). The structure is
interesting in its own right since the homomorphic quasiorder is one in a series
of relations on words, trees and forests relevant to computer science (see [Ku06]
and references therein). Our original interest to this structure was motivated by
its close relationship to the Boolean hierarchy of k-partitions which we now recall
briefly. Throughout this paper, k denotes an arbitrary integer, k ≥ 2, which is
identified with the set {0, . . . , k − 1}.

Let M be a set, P (M) be the class of subsets of M , and L ⊆ P (M) be a class
of subsets closed under ∪,∩ and containing ∅,M ; for the sake of brevity, we call
such a class L a base. As is well-known, there is a natural classification (called
the Boolean hierarchy over L) of elements of the Boolean algebra generated by L
inside P (M). The class P (M) is in a natural bijective correspondence with the set
2M of all functions ν : M → 2 = {0, 1}. In [Ko00,KW00,Ko05], a so called refined
Boolean hierarchy of k-partitions over L BH∗

k(L) was introduced that extends
the Boolean hierarchy of sets to the case of k-partitions of M (i.e., pairwise
disjoint sets A0, . . . , Ak−1 with A0 ∪ · · · ∪ Ak−1 = M). In [Ko00,KW00] it was
also shown that the structure (BH∗

k(L);⊆) is always a homomorphic image of the
structure (Pk;≤) of finite k-labeled posets with the homomorphic quasiorder. In

⋆ Partially supported by a DAAD project within the program ”Ostpartnerschaften”.

242 Victor L. Selivanov

[Se04] we have shown that for some important bases L the structure (BH∗
k(L);⊆)

is actually equivalent to (Fk;≤).
In this paper, we investigate the algebraic structure of Fk enriched by some

natural operations. We will show that the corresponding algebra occupies a re-
markable place among the so called semilattices with discrete closures introduced
in our previous work on complete numberings and fine hierarchies of the arith-
metical sets and functions [Se82,Se83].

In Section 2 we cite necessary definitions and results from [Se04] and make
a couple of additional remarks. In Section 3 we define the operations on Fk and
establish main properties of the corresponding algebra. In Section 4 we prove that
the algebra is in a sense the simplest semilattice with discrete closures, while in
Section 5 we show that it is an initial object in a suitable quasivariety. In Section
6 we generalize some results to countable forests without infinite chains and
show that the corresponding quasiorder extends the classical Hausdorff difference
hierarchy of sets in the Baire space to the case of k-partitions. We conclude in
Section 7 with mentioning a possible future work.

2 Fk As a Lattice

Here we recall some necessary definitions and results from [Se04] and make a
couple of remarks. We use some standard notation and terminology on posets
which may be found in any book on the subject, see e.g. [DP94]. We will not be
very cautious when applying notions about posets also to quasiorders (known
also as preorders); in such cases we mean the corresponding quotient-poset of
the quasiorder.

A poset (P ;≤) will be often shorter denoted just by P (this applies also
to structures of other signatures in place of {≤}). Any subset of P may be
considered as a poset with the induced partial ordering. In particular, this applies
to the “cones” x̌ = {y ∈ P |x ≤ y} and x̂ = {y ∈ P |y ≤ x} defined by any x ∈ P .

By a forest we mean a poset in which every upper cone x̌ is a chain. A tree is
a forest having the greatest element (called the root of the tree). Note that any
finite forest is uniquely representable as a disjoint union of trees, the roots of the
trees being the maximal elements of the forest. A proper forest is a forest which
is not a tree. Notice that our trees and forests “grow top down”, contrary to
the natural ones. The reason is that this is a bit more comfortable when dealing
with the Boolean hierarchies of partitions.

A k-labeled poset (or just a k-poset) is an object (P ; ,≤, c) consisting of a
poset (P ;≤) and a labeling c : P → k. Sometimes we simplify notation of a
k-poset to (P, c) or even to P . A morphism f : (P ;≤, c) → (P ′;≤′, c′) between
k-posets is a monotone function f : (P ;≤) → (P ′;≤′) respecting the labelings,
i.e. satisfying c = c′ ◦ f .

Let Pk, Fk and Tk be the classes of all finite k-posets, finite k-forests and
finite k-trees, respectively. Define [Ko00,KW00] a quasiorder ≤ on Pk as follows:
(P, c) ≤ (P ′, c′), if there is a morphism from (P, c) to (P ′, c′). By ≡ we denote
the equivalence relation on Pk induced by ≤. For technical reasons we consider

The Algebra of Labeled Forests Modulo Homomorphic Equivalence 243

also the empty k-forest ∅ (which is not assumed to be a tree) assuming that
∅ ≤ P for any P ∈ Pk. Note that in this paper (contrary to [Se04]) we assume
that ∅ ∈ Fk. In [Se04] we have given a description of finite minimal k-forests,
i.e. k-forests not equivalent (under ≡) to a k-forest of lesser cardinality; this
description will be once used below.

Recall [Kr60,Kr72] that a quasiorder is called a well quasiorder (wqo) if it
has neither infinite descending chains nor infinite antichains. Any wqo P has
a rank r(P) which is the greatest ordinal isomorphically embeddable into P .
With any quasiorder we associate also its width w(P) defined as follows: if P has
antichains with any finite number of elements, then w(P) = ω, otherwise w(P)
is the greatest natural number n for which P has an antichain with n elements.

For arbitrary finite k-trees T0, . . . , Tn, let F = T0 ⊔ · · · ⊔ Tn be their join, i.e.
the disjoint union. Then F is a k-forest whose trees are exactly T0, . . . , Tn. Of
course, every finite k-forest is (equivalent to) the join of its trees. Note that the
join operation applies also to finite k-forests, and the join of any two k-forests
is clearly their supremum under ≤. Hence, (Fk;≤) is an upper semilattice. The
next result cites some more facts established in [Se04].

Proposition 1. (i) For any k ≥ 2, (Fk;≤) is a wqo with r(Fk) = ω.
(ii) w(F2) = 2 and w(Fk) = ω for k > 2.
(iii) For any k ≥ 2, the quotient structure of (Fk;≤) is a distributive lattice.
(iv) The finite k-trees define exactly the non-empty join-irreducible elements

of the lattice (Fk;≤).

For any i < k, let T i
k be the set of finite k-trees the roots of which carry the

label i. Let us formulate some more properties of the introduced sets.

Proposition 2. (i) (T 0
k , . . . , T k−1

k) is a partition of Tk modulo ≡.

(ii) For all i, j < k, (T i
k ;≤) is isomorphic to (T j

k ;≤). Moreover, there is an

automorphism of (Fk;≤) sending T i
k onto T j

k .

Proof. (i) We have to show that if (S, c) ∈ T i
k , (T, d) ∈ T j

k and i �= j then
S �≡ T . Suppose the contrary, then there are morphisms φ : (S, c) → (T, d) and
ψ : (T, d) → (S, c). From i �= j it easily follows that s > ψφ(s) > ψφψφ(s) > · · ·,
where s is the root of S. This contradicts to finiteness of S.

(ii) Let π : k → k be a permutation of k such that π(i) = j. The function
(P ;≤, c) �→ (P ;≤, π ◦ c) induces an automorphism of (Fk;≤) (and of (Pk;≤))
sending T i

k onto T j
k . This completes the proof.

From the last proposition we immediately obtain the following

Corollary 1. For every i < k, T i
k is not definable in (Tk;≤) (as well as in

(Fk;≤) and (Pk;≤)) by a formula without parameters.

Our interest to the sets Fk, Tk and T i
k is explained by the above-mentioned

relation to the Boolean hierarchy of k-partitions. Namely, for k = 2 the set T 0
k

(T 1
k , Fk \ Tk) corresponds to the collection of Σ-levels (respectively of Π- and

Δ-levels) of the Boolean hierarchy of sets. For k > 2 and i < k the sets T i
k and

Fk \ Tk correspond to generalizations of Σ- (and Π-) levels and of Δ-levels of
the Boolean hierarchy of k-partitions.

244 Victor L. Selivanov

3 Fk As a dc-Semilattice

In this section, we enrich the set Fk by natural unary operations which make of
Fk a dc-semilattice in the sence of the following notion introduced in [Se82].

Definition 1. By a semilattice with discrete closures of rank k (a dc-semilattice
for short) we mean a structure (S;∪, p0, . . . , kk−1) satisfying the following ax-
ioms:

1) (S;∪) is an upper semilattice, i.e. it satisfies (x ∪ y) ∪ z = x ∪ (y ∪ z),
x ∪ y = y ∪ x and x ∪ x = x; as usual, by ≤ we denote the induced partial order
on S defined by x ≤ y iff x ∪ y = y.

2) Every pi, i < k, is a closure operation on (S;≤), i.e. it satisfies x ≤ pi(x),
x ≤ y → pi(x) ≤ pi(y) and pi(pi(x)) ≤ pi(x).

3) The operations pi have the following discreteness property: for all distinct
i, j < k, pi(x) ≤ pj(y) → pi(x) ≤ y.

4) Every pi(x) is join-irreducible, i.e. pi(x) ≤ y∪z → (pi(x) ≤ y∨pi(x) ≤ z).

The main observation of this section is the following

Theorem 1. There exist unary operations p0. . . . , pk−1 on Fk such that the quo-
tient structure of (Fk;⊔, p0. . . . , pk−1) is a dc-semilattice.

Proof. For every finite k-forest F and every i < k, let pi(F) be the k-
tree obtained from F by joining a new greatest element and assigning the label
i to this element. In particular, pi(∅) will be the singleton tree carrying the
label i. It is straightforward to check that the operations p0. . . . , pk−1 respect
the homomorphic equivalence on Fk, and the corresponding operations on the
quotient structure (which are denoted for simplicity again by p0. . . . , pk−1) make
it a dc-semilattice. This completes the proof.

Remarks. 1. The operations ⊔, p0. . . . , pk−1 extended in the natural way
to the set Pk witness that the quotient structure (Pk;⊔, p0. . . . , pk−1) is a dc-
semilattice as well.

2. Corollary 1 implies that the operations p0, . . . , pk−1 are not first order
definable without parameters in (Fk;≤).

3. The algebra (Fk;⊔, p0. . . . , pk−1) is generated by the empty tree ∅.
Next we use Theorem 1 to obtain additional information on the sets T i

k

introduced in the previous section.

Theorem 2. (i) For every i < k, the quotient structure of (T i
k ;≤) is a dis-

tributive lattice the non-zero join-irreducible elements of which are exactly the
elements pipj(x), where x ∈ Fk and j < k, j �= i.

(ii) For all k > 1 and i < k, r(T i
k) = ω.

(iii) w(T 0
2) = 1 and w(T i

k) = ω for all k > 2 and i < k.

Proof. The assertions (ii) and (iii) are easy, so we check only (i). From
Theorem 1 it follows that for all x, y ∈ T i

k the elements pi(x ⊔ y) and pi(x ⊓ y)
(where ⊓ is the infimum operation in Fk) are respectively the supemum and
infimum of x, y in T i

k .

The Algebra of Labeled Forests Modulo Homomorphic Equivalence 245

As is well known, for proving distributivity it suffices to show that for all
x, y, z ∈ T i

k if x ≤ pi(y ⊔ z) then there are y′, z′ ∈ T i
k with y′ ≤ y, z′ ≤ z

and x = pi(y
′ ⊔ z′). Let x be defined by a minimal tree T ∈ T i

k , then T =
pi(T0 ⊔ · · · ⊔ Tn) for some T0 ⊔ · · · ⊔ Tn ∈ Tk \ T i

k (w.l.o.g. we assume that x
is distinct from the least element pi(∅) of T i

k). Then for every j ≤ n we have
Tj ≤ pi(y ⊔ z), hence Tj ≤ y ⊔ z and therefore Tj ≤ y or Tj ≤ z. Then the trees
y′ = pi(⊔{Tj |j ≤ n, Tj ≤ y}) and z′ = pi(⊔{Tj |j ≤ n, Tj ≤ z}) have the desired
properties.

Now we check that elements of the form pipj(x), where x ∈ Fk and j < k,
j �= i, are join-irreducible in T i

k . Let pipj(x) ≤ pi(y ⊔ z), where y, z ∈ T i
k (and

so y = pi(y) and z = pi(z)). Then pj(x) ≤ pi(y ⊔ z), hence pj(x) ≤ y ⊔ z. Then
pj(x) ≤ y or pj(x) ≤ z and therefore pipj(x) ≤ pi(y) = y or pipj(x) ≤ z. Thus,
pipj(x) is join-irreducible in T i

k .
Conversely, let x be a non-zero join-irreducible element of (T i

k ;≤), so x �≡
pi(∅). We have to show that x is of the form pipj(y) for some y and j �= i. Let
T be a minimal tree equivalent to x, then T = pi(F) for a non-empty minimal
forest F (see description of minimal sets and forests in [Se04]), and therefore
F = T0 ⊔ · · · ⊔ Tn for some pairwise incomparable minimal trees T0, . . . , Tn ∈
Tk \ T i

k . The case n > 0 is actually impossible because in this case the elements
pi(T0), . . . , pi(Tn) were pairwise incomparable and x = pi(pi(T0) ⊔ · · · ⊔ pi(Tn))
were join-reducible in (T i

k ;≤). By Proposition 2(i), T0 = pj(y) for some j < k,
j �= i, and y ∈ Fk. Therefore, x = pipj(y) which completes the proof of the
theorem.

Remark. It is easy to see that the lattices T i
k and Fl are not isomorphic

(even not elementarily equivalent) for all k ≥ 2 and l ≥ 1.
Next we show that, similar to Theorem 1, it is possible to equip T i

k with the
structure of a dc-semilattice. To simplify notation a bit, we consider only the
case i = 0. By Proposition 2(ii), this causes no loss of generality. The supremum
operation in T 0

k is denoted by ∪.

Theorem 3. For every k ≥ 2, there exist unary operations q1, . . . , qk−1 on T 0
k

such that the quotient structure of (T 0
k ;∪, q1, . . . , qk−1) (where ∪ denotes the

supremum operation on T 0
k) is a dc-semilattice of rank k − 1.

Proof. For every finite k-tree T ∈ T 0
k and every i, 0 < i < k, let qi(T) =

p0pi(T
′), where T ′ is the k-subforest of (T ;≤) obtained from T by removing

all elements x ∈ T such that every y ≥ x carries the label 0. In particular,
qi(p0(∅)) = p0pi(∅). It is straightforward to check that the operations q1. . . . , qk−1

respect the homomorphic equivalence on T 0
k , and the corresponding operations

on the quotient structure make it a dc-semilattice. This completes the proof.
We conclude this section with stating an interesting property of the structure

(Tk;≤) in terms of a notion introduced in [Se79,Se82].

Corollary 2. The quotient structure of (Tk;≤) is a discrete weak semilattice
of rank k. This means that for every finite sequence x0, . . . , xn ∈ Tk there exist
u0, . . . , uk−1 ∈ Tk with the following properties:

(i) ∀i ≤ n∀j < k(xi ≤ uj);

246 Victor L. Selivanov

(ii) for every x ∈ Tk, ∀i ≤ n(xi ≤ x) → ∃j < k(uj ≤ x);
(iii) for every x ∈ Tk, ∀j < k(x ≤ uj) → ∃i ≤ n(x ≤ xi).

To see this it suffices to set uj = pj(x0⊔ · · ·⊔xn), j < k, and apply Theorem
1. Note that if there is no greatest element in ({x0, . . . , xn};≤) then the elements
u0, . . . , uk−1 are pairwise incomparable.

Properties (i) and (ii) mean that {u0, . . . , uk−1} is in a sense a weak supre-
mum of {x0, . . . , xn}, so the structure (Tk;≤) resembles an upper semilattice.
On the other hand, the structure is opposite to upper semilattices in the sense
that if a set {x0, . . . , xn} does not have a greatest element then it has no supre-
mum. Note also that {x0, . . . , xn} is a weak infimum of {u0, . . . , uk−1}, thus any
of these sets is definable through the other.

4 The Minimality of Fk

There are several natural examples of dc-semilattices, e.g. the semilattice of num-
berings with completing operations [Se82,Se83] and the semilattice of Bairings
with Wadge reducibility and suitable closure operations [Se04]. So it might be
of interest to understand better the structure of dc-semilattices. Results of this
section show that the dc-semilattice discussed in the last section is in a sense the
simplest nontrivial dc-semilattice.

Theorem 4. Let (S;∪, p0, . . . , pk−1) be a dc-semilattice and a its element such
that a < pi(a) for all i < k. Then the subalgebra (a) of S generated by a is
isomorphic to the quotient structure of (Fk;⊔, p0, . . . , pk−1).

Proof. With any finite k-forest F we associate an element f(F) ∈ (a) by
induction on the number of elements |F | in F as follows:

f(∅) = a;
if F = T0 ⊔ · · · ⊔ Tn is a proper forest with trees T0, . . . , Tn then f(F) =

f(T0) ∪ · · · ∪ f(Tn);
if F = pi(G) is a tree then f(F) = pi(f(G)).

Let us check that for all finite k-forests F and G we have F ≤ G iff f(F) ≤
f(G). In the case F = ∅ we have to show that a ≤ t, where t is the value in
S of some term of signature τ = {∪, p0, . . . , pk−1} constructed from symbol a;
this follows easily from axioms of dc-semilattices by induction on the term. Now
let F �= ∅ and G = ∅; we have to shaw that f(F) �≤ f(G). By definition of f ,
f(G) = a and f(F) is the value in S of a τ -term t from the symbol a, and t
contains at least one of the functional symbols pi, i < k. By induction on t (and
by axioms of dc-semilattices), pi(a) ≤ f(F). Since a < pi(a), f(F) �≤ f(G).

It remains to consider the case when both F and G are non-empty. In this
case the proof is by induction on |F | + |G|. The induction basis (i.e. the case
when F and G are singletons) is trivial. For |F |+ |G| > 2, consider the following
four subcases.

Subcase 1. F is a proper forest with trees F0, . . . , Fm.

The Algebra of Labeled Forests Modulo Homomorphic Equivalence 247

Then F ≤ G iff Fi ≤ G for all i ≤ m iff (by induction) f(Fi) ≤ f(G) for all
i ≤ m iff f(F) = f(F0) ∪ · · · ∪ f(Fm) ≤ f(G).

Subcase 2. F is a tree and G is a proper forest with trees G0, . . . , Gn.
Then F ≤ G iff F ≤ Gj for some j ≤ n iff (by induction) f(F) ≤ f(Gj) for

some j ≤ n iff f(F) ≤ f(G0) ∪ · · · ∪ f(Gn) = f(G).

Subcase 3. F = pi(F
′) and G = pj(G

′) are k-trees, and i �= j.
Then F ≤ G iff pi(F

′) ≤ pj(G
′) iff F ≤ G′ iff f(F) ≤ f(G′) iff f(F) =

pi(f(F ′)) ≤ pj(f(G′)) = f(G).

Subcase 4. F = pi(F
′) and G = pj(G

′) are k-trees, and i = j.
Then F ≤ G iff F ′ ≤ G iff f(F ′) ≤ f(G) = pi(f(G′)) iff f(F) = pi(f(F ′)) ≤

pi(f(G′)) = f(G).

From the equivalence just proven and from definition of f it follows that f
induces isomorphism of the quotient structure of (Fk;⊔, p0, . . . , pk−1) onto (a).
This concludes the proof of the theorem.

The following corollary of the last theorem shows that the theory of non-
linearly ordered dc-semilattices of rank k has a minimal model under inclusion.

Corollary 3. Let (S;∪, p0, . . . , pk−1) be a dc-semilattice such that (S;≤) is not
a linear order. Then the quotient structure of (Fk;⊔, p0, . . . , pk−1) is isomorphic
to a substructure of S.

Proof. Let x, y ∈ S be incomparable and let a = x ∪ y. Then a satis-
fies the conditions of the previous theorem, hence the quotient structure of
(Fk;⊔, p0, . . . , pk−1) is isomorphic to the substructure (a) of (S;∪, p0, . . . , pk−1).
This completes the proof.

Remark. The reader might wonder on how the linearly ordered dc-semilat-
tices look like. It is not difficult to understand such structures completely but
we will not do this here.

5 Fk As a Free Object

In this section we characterize the algebra (Fk;⊔, p0, . . . , pk−1) as the free (or
initial) 1-generated model of the theory with axioms 1) – 3) of Definition 1.
Note that initial algebras (even with arbitrary sets of generators) exist and are
unique up to isomorphism because the axioms in 1) – 3) are quasiidentities (see
[M61,Se96]).

So let (Ik;∪, p0. . . . , pk−1) denote the initial model of 1) – 3) with one gener-
ator. Recall (see e.g. [M61,Se96]) that Ik may be constructed in two steps. First,
construct the syntactic algebra A of τ -terms from a constant symbol c (which
represents the generator). Second, factorize A modulo provable equivalence of
terms in the theory with axioms 1) – 3). The algebra Ik is free in the sense that
for any model S of 1) – 3) and any a ∈ S there is a unique homomorphism
g : Ik → S with f(c) = a (actually f([c]) = a, where [c] is the equivalence class
containing c, but we again prefer simpler but not exact notation).

248 Victor L. Selivanov

Theorem 5. The quotient structure of (Fk;⊔, p0, . . . , pk−1) is isomorphic to the
initial algebra Ik.

Proof. By the property of Ik, there is a homomorphism g : Ik → Fk with
g(c) = ∅. We will show that g is indeed an isomorphism. To this end, define the
function f from finite k-forests to Ik in exactly the same way as the function f
in the proof of Theorem 4, only with a replaced by c. We claim that the function
f respects the equivalence relation on forests. It suffices to check that F ≤ G
implies f(F) ≤ f(G), and this is done in exactly the same way as in the proof
of Theorem 4.

Now it is easy to see that f induces a homomorphism from the quotient
structure of (Fk;⊔, p0, . . . , pk−1) to Ik which is the inverse of g. This completes
the proof of the theorem.

The last theorem gives some information about the algebra of k-forests.
On the other hand, it provides nontrivial information on the initial algebra
Ik: it turns out to be a distributive lattice which satisfies the axiom 4) of dc-
semilattices.

6 Countable k-Forests

In this section we observe that many results established above and in [Se04] may
be extended to (at most) countable k-posets (P ;≤, c) without infinite chains.
The absence of infinite chains is of course equivalent to well-foundednes of both
(P ;≤) and (P ;≥).

Let P̃k, F̃k, T̃k and T̃ i
k denote the classes of all countable k-posets, countable

k-forests, countable trees and countable i-rooted k-trees without infinite chains,
respectively. The quasiorder ≤, the operation ⊔ and other notions from Section
2 extend to this more general situation in the obvious way. By a σ-semilattice
we mean un upper semilattice in which every countable set of elements has a
supremum. Then it is not hard to obtain analogs of results in Section 2, in
particular we have

Proposition 3. (i) For any k ≥ 2, (F̃k;≤) is a wqo, and the rank r(F̃k) is the
first non-countable ordinal ω1.

(ii) For any k ≥ 2, (Fk;≤) is an initial segment of (F̃k;≤).

(iii) w(F̃2) = 2 and w(F̃k) = ω for k > 2.

(iv) For any k ≥ 2, the quotient structure of (F̃k;≤) is a distributive lattice
which is a σ-semilattice.

(v) The set T̃k coincides with the set of non-empty σ-join-irreducible elements

of the lattice (F̃k;≤).

The results of Sections 3 and 4 also generalize to countable k-forests without
infinite chains. As an example, we give the following straightforward general-
ization of Theorems 1 and 4. By a dcσ-semilattice we mean a dc-semilattice

The Algebra of Labeled Forests Modulo Homomorphic Equivalence 249

(S;∪, p0, . . . , pk−1) such that (S;∪) is a σ-semilattice and the axiom 4) of dc-
semilattices holds for supremums of countable subsets of S (i.e., pi(x) is σ-join-
irreducible). The operations pi extend to the countable k-forests in the obvious
way.

Theorem 6. (i) The quotient structure of (F̃k;⊔, p0. . . . , pk−1) is a dcσ-semi-
lattice.

(ii) Let (S;∪, p0, . . . , pk−1) be a dcσ-semilattice and a its element such that
a < pi(a) for all i < k. Then the dcσ-subsemilattice (a) of S generated by a is

isomorphic to (F̃k;⊔, p0, . . . , pk−1).

We conclude this section with observing that main results of [Se04] about
Boolean hierarchy of k-partitions have natural generalizations to the countable
case, with essentially the same proofs.

Let (P, c) be a countable k-poset without infinite chains and L ⊆ P (M) be a
σ-base (i.e. a base which is a σ-semilattice). A function S : P → L is admissible if
∪xSx = M and Sx∩Sy = ∪{Sz|z ≤ x, y} for all x, y ∈ P . For any such S, define

a map S̃ : P → P (M) by S̃x = Sx \ ∪{Sy|y < x}. It is easy to see that if S is

admissible then {S̃x}x∈P is a partitions of M . Let L(P, c) = {c◦ S̃|S ∈ H(P,L)}
where H(P,L) is the set of admissible functions S : P → L and S̃ is identified
with the function from M to P sending a ∈M to the unique p ∈ P with a ∈ S̃p.
Note that L(P, c) ⊆ kM , i.e. L(P, c) is a class of k-partitions of M .

The refined boolean hierarchy of k-partitions over L is the collection of classes
BH∗

k(L) = {L(P, c)|(P, c) ∈ P̃k}. We define also the collection of classes of k-

partitions FBHk(L) = {L(P, c)|(P, c) ∈ F̃k}.
Now it is easy to check that analogs Lemmas 1.1 and 1.2 from [Se04] are

true for the countable case which is crucial for proving the following relationship
between the introduced collections. We call a σ-base L σ-reducible if for every
sequence A0, A1, . . . in L there is a pairwise disjoint sequence B0, B1, . . . in L
such that Bi ⊆ Ai for all i < ω and ∪iBi = ∪iAi.

Theorem 7. Over arbitrary σ-reducible σ-base L, BH∗
k(L) = FBHk(L), and

hence the poset (BH∗
k(L);⊆) is a wqo.

It is also possible to generalize the corresponding proof in [Se04] and obtain
the following interesting concrete example of the countable Boolean hierarchy.

Theorem 8. Over the σ-reducible base L of open sets in the Baire space ωω,
the collection (BH∗

k(L);⊆) is isomorphic to the quotient structure of (F̃k;≤).

The last result characterizes the extension of the Hausdorff difference hier-
archy from the case of sets to the case of k-partitions.

7 Conclusion

The structures considered above arise in different situations. E.g., from a result
in [H96] it follows that the structure of discontinuity degrees of functions f :

250 Victor L. Selivanov

ωω → k (i.e., the structure of Wadge degrees of k-partitions of the Baire space)
of finite rank is embeddable in the quotient structure of (Fk;≤). It is not hard
to improve this result and show that it is indeed isomorphic to the quotient
structure of (Fk \{∅};≤). It is also possible to show that the structure of Wadge
degrees of k-partitions of the Baire space of countable rank is isomorphic to the
quotient structure of (F̃k \ {∅};≤). There are also similar close relationships of

the structure (T̃k;≤) to the Wadge degrees of k-partitions of ω-algebraic domains
considered in [Se05]. But this is another story.

References

[DP94] B.A. Davey and H.A. Pristley. Introduction to Lattices and Order. Cambridge,
1994.

[H96] P. Hertling. Unstetigkeitsgrade von Funktionen in der effectiven Analysis. PhD
thesis, FernUniversität Hagen, Informatik-Berichte 208–11, 1996.

[Ko00] S. Kosub. On NP-partitions over posets with an application of reducing the set
of solutions of NP problems. Lecture Notes of Computer Science, 1893 (2000),
467–476, Berlin, Springer.

[Ko05] S. Kosub. On NP-partitions over posets with an application of reducing the
set of solutions of NP problems. Theory of Computing Systems, 38(1) (2005),
83–113.

[KW00] S. Kosub and K. Wagner. The boolean hierarchy of NP-partitions. In: Proc.
17th Symp. on Theor. Aspects of Comp. Sci., Lecture Notes of Computer Sci-
ence, 1770 (2000), 157–168, Berlin, Springer.

[Kr60] J.B. Kruskal. Well-quasi-ordering, the tree theorem, and Varzsonyi’s conjecture.
Trans. Amer. Math. Soc., 95 (1960), 210–225.

[Kr72] J.B. Kruskal. The theory of well-quasi-ordering: a frequently discovered concept.
J. Combinatorics Th.(A), 13 (1972), 297–305.

[Ku06] D. Kuske. Theories of orders on the set of words. Theoretical Informatics and
Applications, 40 (2006), 53–74.

[M61] A.I. Malcev, Constructive algebras, Uspechi mat. nauk, 16, No 3 (1961) 3—60
(in Russian, English translation in: The Metamathematics of Algebraic Systems
(North Holand, Amsterdam) 1971, p. 148–214).

[Se79] V.L. Selivanov. On the structure of degrees of index sets. Algebra and Logic,
18, N 4 (1979), 463–480 (Russian, there is an English translation).

[Se82] V.L. Selivanov. On the structure of degrees of generalized index sets. Algebra
and Logika, 21, N 4 (1982), 472–491 (in Russian, there is an English translation).

[Se83] V.L. Selivanov. Hierarchies of hyperarithmetical sets and functions. Algebra and
Logic, 22, N 6 (1983), 666–692 (Russian, there is an English translation).

[Se96] V. L. Selivanov. On recursively enumerable structures. Annals of pure and ap-
plied logic, 78 (1996), 243–258.

[Se04] V. L. Selivanov. Boolean hierarchy of partitions over reducible bases. Alge-
bra and Logic, 43, N 1 (2004), 77–109 (see also http://www.informatik.uni-
wuerzburg.de, Technical Report 276, Institut für Informatik, Univers-ität
Würzburg, 2001.

[Se05] V.L. Selivanov. Variations on the Wadge reducibility. Siberian Advances in
Math., 15, N 3 (2005), 44–80.

Third-Order Computation and Bounded
Arithmetic

Alan Skelley⋆

Mathematical Institute, Academy of Sciences of the Czech Republic
Žitná 25, CZ - 115 67 Praha 1, Czech Republic

skelley@math.cas.cz

Abstract. We describe a natural generalization of ordinary computa-
tion to a third-order setting and give a function calculus with nice proper-
ties and recursion-theoretic characterizations of several large complexity
classes. We then present a number of third-order theories of bounded
arithmetic whose definable functions are the classes of the EXP-time
hierarchy in the third-order setting.

Keywords: bounded arithmetic, recursion theory, computability, compu-
tational complexity

1 Introduction

Bounded arithmetic is an important and useful way to approach problems in
computational and propositional proof complexity: strong tools from logic and
model theory can be applied, and many of the connections are intriguingly not
tight, suggesting that it could be possible to skirt around the major barriers of
complexity theory. The second-order viewpoint of Zambella and Cook associates
second-order theories of bounded arithmetic with various complexity classes by
studying the definable functions of strings, rather than numbers. This approach
simplifies presentation of the theories and their propositional translations, and
furthermore is applicable to complexity classes that previously had no corre-
sponding theories.

In previous work [12], we adapted the second-order viewpoint to PSPACE
with the third-order theory W 1

1 . In what follows, we generalize this result in
several directions: First, by expanding the notion of computation to the third-
order setting, essentially allowing a natural way to compute with very large
objects, admitting a function calculus with nice properties and obtaining useful
recursion-theoretic characterizations of large complexity classes above PSPACE.
This computational setting bridges a gap by simultaneously allowing more nat-
ural reasoning about the kind of computation captured by theories of bounded
arithmetic, while at the same time remaining a natural extension of ordinary
computation and complexity. The second direction of generalization is to a full
hierarchy of theories for the EXP-time hierarchy in this general setting. We also

⋆ Partially supported by a Canadian NSERC postdoctoral fellowship

252 Alan Skelley

show how to apply the recursion-theoretic characterization of PSPACE to obtain
a “minimal” theory for that class.

The remainder is organized as follows: In section 2 we describe the third-order
setting: first the framework for bounded arithmetic, then for computation, and
discuss complexity and recursion theory. Section 3 presents theories of bounded
arithmetic and results about definability. We conclude with some open problems.

2 The Third-Order Setting

2.1 Bounded Arithmetic

The three sorts of third-order bounded arithmetic are intended to represent
natural numbers, finite sets of natural numbers, and finite sets of such sets.
For free and bound variables of these sorts we respectively use a, b, c, ... and
x, y, z, ...; A,B,C, ... and X,Y, Z, ...; andA,B, C, ... and X ,Y,Z, The language
L3
A := {0, 1,+, ·, | · |2,∈2,∈3,≤,=1,=2} of nonlogical symbols is the same as the

set L2
A for V 1 but with the addition of the third-order membership predicate

A ∈3 B; note the absence of smash (‘#’) and third-order equality or length. We
write A(B) for B ∈3 A and similarly for ∈2. The second sort closely represent
finite binary strings as in e.g. [5] and likewise with the third sort (with strings
rather than numbers as bit-indices), so we refer to them respectively as “strings”
and “superstrings”. We use a tilde: x̃ to denote unspecified sort.

There is a hierarchy of classes gΣB
i and gΠB

i of formulas in this language
analogous to the hierarchies ΣB

i and ΠB
i of second-order formulas: the subscript

counts alternations of third-order quantifiers (bounded string and number quan-
tifiers ignored) and the ‘g’ denotes general (not strict) quantifier syntax. Note
that there is no way to bound third-order quantifiers, but the number and string
parameters determine the number of initial bits of superstrings that are relevant
to the truth-value of a formula.

2.2 Computation

Our intent now is to capture the nature of string-based computation defined
by third-order theories of bounded arithmetic. For this reason, our primary fo-
cus is on classes of polynomially-bounded functions (from strings to strings) or
similar, as this makes operations such as composition of functions more natural
and matches ordinary complexity theory. We are consequently interested in our
classes of functions somehow maintaining an exponential-size distinction between
the three sorts, as do (standard) theories of bounded arithmetic. Furthermore,
our intent when defining third-order complexity classes is that the third-order
(superstring) arguments not count towards the resource limits of the machine.

Functions in our setting will be strongly typed (each function has a fixed
signature specifying sorts of arguments and output). The domains of the three
sorts are: D1 := N; D2 := {S ⊂ N : |S| < ∞}; and D3 = {S ⊂ D2 : |S| < ∞}.
Again we shall refer to these as numbers, strings, and superstrings; these sorts

Third-Order Computation and Bounded Arithmetic 253

are the same as the intended interpretations of the three sorts of variables in
third-order bounded arithmetic and we use similar notation. Function symbols
in our calculi will similarly be named f, g, ...;F,G, ...; and F ,G, ... to indicate
the sort of the range of the function. Let E = E1 ∪ E2 ∪ E3 be the set of all
functions of fixed signature, categorized according to the sort of the output. The
0-1 valued functions (predicates) are referred to as E0 ⊂ E1.

Such functions are computed by Turing machines or other computational
models by receiving number inputs in unary, strings as usual, and superstrings
by random access. Outputs of strings or numbers are the same way, while super-
strings are either output on a write-only tape, or “by query”, as a predicate with
a distinguished string input as the characteristic function of the output bits of
the superstring-valued function. Precise definitions are in [13]. We are interested
primarily in polynomially bounded functions. In the context of third-order
computation, we mean that the polynomial bound applies to the value of a
number output or the length of a string output, and is computed using only the
number inputs and the lengths of the string inputs. If there are only superstring
inputs, then the bound is a constant, and every superstring-valued function is
polynomially bounded.

2.3 Complexity

An ordinary function or language class becomes a complexity class of third-
order functions as follows: The notation (various superscripts on the complexity
classes) is: For FC a function class, FC+ is the third-order class with superstring
output on write-only tape; for C a class of languages, C� is the class of third-
order predicates, while C◦ are the functions computed “by query” by predicates
in this class. Here we describe some specific cases of complexity classes we are
interested in:

First, FPSPACE+ is the third-order analogue of PSPACE functions. It con-
sists of those polynomially bounded functions computable by a machine in poly-
nomial space (as a function of the string and (unary) number inputs only),
where superstring outputs are written onto a write-only output tape, allowing
exponential-length superstring outputs. The machine’s queries to its superstring
inputs must also be polynomially bounded (as a function of its inputs). FEXP+

is similarly the polynomially bounded exponential-time functions with polyno-
mially bounded access to superstring inputs. In contrast to FPSPACE+, the
polynomial bound is an actual restriction as an exponential time machine could
otherwise write exponentially large strings (either as output, or as a query to
superstring inputs).

Now for the case of polynomial time, the class FP+ defined analogously
to FPSPACE+ and FEXP+ has the property that superstring outputs have
polynomial length, due to the time bound of the machines; however, the class
P◦ of polynomially-bounded functions computed by “by query” by polynomial-
time machines does not have this restriction. For this reason, FP+∪P◦ is in
some contexts a more suitable third-order analogue of P. This is also the case for
functions from levels ✷

p
i of the polynomial-time hierarchy, which are computed

254 Alan Skelley

by polynomial-time machines with access to an oracle from Σp
i−1: The third-order

class (✷p
i)

+ is restricted to polynomially many bits in its superstring outputs and
so (✷p

i)
+ ∪ (✷p

i)
◦ is a more appropriate definition.

As a final set of examples, the predicate classes P�, NP�, (Σp
i)�, NEXP� and

(Σexp
i)� are 0-1 valued functions, and are the characteristic functions of machines

from the corresponding ordinary complexity classes, modified with polynomially
bounded access to superstring inputs.

Some comments are in order concerning these classes. First, and most im-
portantly, the third-order complexity classes discussed thus far, restricted to
functions from strings to strings (or string predicates) are the usual complexity
classes. There are nevertheless some interesting observations to be made: For
example P� �=NP�, as a predicate in the latter class can determine if a given
superstring contains a 1 (up to a bound given by a string argument), while
this predicate is clearly not in P�. The usual argument for Savitch’s theorem
goes through, at least for (unrelativized) NPSPACE�: configurations are still
described by polynomial-sized strings, including queries to superstring inputs.
We conclude that PSPACE� =NPSPACE�.

Now, in order to expand our discussion to the exponential-time hierarchy,
we must first address relativizing classes of functions by adding oracles in the
form of access to a third-order function. Formally, a third-order oracle Turing
machine has a number of specified write-only query tapes, each one designated
with a sort. The machine may write values on these tapes which are polynomially
bounded, in the sense that the numbers (in unary), and lengths of strings written
are all bounded by fixed polynomials in the machine’s (non-superstring) inputs.
When the machine enters the special query state, these tapes are erased, and a
value is returned to the machine by way of a special read-only reply tape (with
random access in the case of a superstring-valued oracle).

The usual exponential-time hierarchy has definition Σexp
i = NEXPΣp

i−1 [10].
This is equal to Σi-TIME(exp), which are the languages computed by exponen-
tial time alternating Turing machines with i alternations (starting with existen-
tial). Paralleling this definition, we can define the corresponding classes of 0-1
valued functions from E0. It is important to observe that the queries made of the
Σp

i−1 oracle by the NEXP machine in the standard definition are in general of
exponential size. Our third-order oracle machines can also issue exponentially-
long queries to their oracles, but these must be in the form of superstrings, as
the string inputs to oracles are restricted to be polynomially bounded per our
definition. Consequently the complexity class of the third-order oracle we use
will be different.

We therefore define (Σexp
1)� =NEXP� and (Σexp

i)� = (NEXP�)(Σ
exp
i−1)

�

. In
other words, each higher level of the hierarchy is obtained by augmenting non-
deterministic exponential time with a third-order oracle for the previous level.
Since the queries to this oracle must be polynomially bounded (although this still
allows exponential-length superstring inputs to the oracle), it can be seen that
this relativization corresponds to unbounded access to an ordinary oracle from
the appropriate level of the quasi-polynomial-time hierarchy (considered as a

Third-Order Computation and Bounded Arithmetic 255

predicate on the superstring inputs): For example, if an NEXP machine writes
string and superstring inputs of lengths p(n) and 2p(n) respectively to a third-
order NEXP oracle, then the query can be answered in nondeterministic time

2(p(n))k

for some k, which is exponential in p(n). In terms of the length of the

superstring input, 2p(n), the quantity 2(p(n))k

is quasi-polynomial.

In the hands of an NEXP machine, however, an unbounded (ordinary) oracle
from some level of the quasi-polynomial-time hierarchy is no more powerful than
one from the same level of the polynomial-time hierarchy, as the machine could

simply make longer queries (i.e. 2(p(n))k

) of this latter oracle. Thus as predicates
purely on strings, the levels of our hierarchy correspond precisely with the levels
of the ordinary exponential-time hierarchy. Therefore:

Theorem 1. The predicates represented in the standard model by ΣB
0 -formulas

are precisely PH�; for i ≥ 1 those represented by gΣB
i - and gΠB

i -formulas (and
also the strict versions of these classes) are precisely (Σexp

i)� and (Πexp
i)�, re-

spectively.

The function classes (✷exp
i)+:=(FEXP(Σexp

i−1)
�

)+ are the polynomially bounded
functions computed by exponential-time Turing machines relativized with a
third-order oracle for a predicate from (Σexp

i)�, and similarly as functions purely
of strings correspond to the usual ✷

exp
i . It should be noted that (Σexp

i)� =
(Πexp

i)� seems to imply that the third-order exponential-time hierarchy collapses
to the ith level, while this is not known for the ordinary case; The difference is
that the assumption Σi = Πi in the third-order context is stronger, in that it
covers also predicates on superstrings.

2.4 Recursion Theory of Functions

First some standard functions: The number functions {x + y, x · y}, constants
0,1, etc. are as usual. The bit, string successor and concatenation functions
{bit(x, Y), s0(X), s1(X), X ' Y } are also standard, but they are operations on
binary strings, while our string-like domain D2 consists of finite sets of natural
numbers. We therefore define these functions to operate on the strings repre-
sented by the input finite sets, and to output the set representing the desired
string. {|X|, X ∈ Y, 1x} respectively give the least upper bound of the set (which
is one more than the length of the string being represented by the set), the (0-1-
valued) characteristic function of Y, and a standard string of x bits (represented
by a set of least upper bound x + 1). All of the functions described thus far are
polynomially bounded.

We now define several operations on these functions. As our focus is on string
functions as opposed to the standard recursion-theoretic viewpoint of number
functions, we shall comment in each case on how these operations compare to
standard operations on number functions.

First, the operation of composition defines a function f̃(x̃) = t by specifying
a term t consisting of variables among x̃ and other functions, constructed in such

256 Alan Skelley

a way that arities and argument types are respected. Observe that this operation
allows permutation and renaming of variables.

Define f̃ (of any sort) by limited recursion from g̃, h̃ (also of any sort) and
l by f̃(0, ...) = g̃(...), f̃(x + 1, ...) = h̃(x, f̃(x, ...), ...) and either f̃(x, ...) ≤ l(x, ...)
or |f̃(x, ...)| ≤ l(x, ...), as appropriate. This operation corresponds roughly to
limited recursion on notation for number functions, as it iterates a function (h̃)
a polynomial number of times subject to a bound on growth. Recursion is the
same operation without the bound on growth.

Define f̃ by limited doubling recursion from g̃ and l by f̃(0, ỹ, ...) =
g̃(ỹ, ...), f̃(x + 1, ỹ, ...) = f̃(x, f̃(x, ỹ, ...), ...) and either f̃(x, ỹ, ...) ≤ l(x, ...) or
|f̃(x, ỹ, ...)| ≤ l(x, ...), as appropriate. This operation corresponds roughly to
limited recursion for number functions, as it iterates a function (g̃) an exponential
number of times (by doubling the number of nestings a polynomial number of
times) subject to a bound on growth. Doubling recursion is the same operation
without the bound on growth.

Define f̃ (of any sort) by limited long recursion from g̃, h̃ (also of any
sort) and l by f̃(10, ...) = g̃(...), f̃(X + 1, ...) = h̃(x, f̃(X, ...), ...) and either
f̃(X, ...) ≤ l(X, ...) or |f̃(X, ...)| ≤ l(X, ...), as appropriate. This operation is
similar to the previous one in that it iterates a function an exponential num-
ber of times; however, it differs in that the exponentially many iterations are
performed directly by using a string as an exponential-length counter. This op-
eration presupposes a suitable string successor function X + 1.

Define F by limited 3-comprehension from g, h ∈ E1 by F(..)(X) ↔
(|X| ≤ g(..) ∧ h(X, ..) = 0).

It should be noted here that the recursion operations, as well as simple com-
position of functions, appear to be significantly more powerful when applied to
superstring-valued functions. This is because in the composition of two such
functions, the space may not be available to write down the intermediate value.
A space-bounded computation model would then have to query the “inner” func-
tion many times (to retrieve bits of its output as needed) in order to compute
the outer function. The composition of two polynomially bounded number- or
string-valued functions can be computed using the sum of the time requirements
(computing first one then the other function), while the required space does not
increase. For superstring-valued functions, on the other hand, the time required
for the composition as described seems in general to be the product of the time
required for each component, while the space required is the sum. If space is
not bounded then the intermediate results can be written in full, and thus time
and space requirements are as for the composition of number- or string-valued
functions.

At this point we can characterize several important complexity classes:

Theorem 2. 1. FP+∪P◦ is the closure of the initial functions I = {0, 1, x +
y, x · y, 1x, |X|, s0(X), s1(X), bit(x, Y), X ' Y,X ∈ Y} under composition,
limited 3-comprehension and limited recursion with the latter restricted to
E1 ∪ E2.

Third-Order Computation and Bounded Arithmetic 257

2. FPSPACE+ is the closure of I under composition, limited 3-comprehension
and limited recursion.

3. FPSPACE+ is the closure of I under composition, limited 3-comprehension
and limited doubling recursion restricted to E1 ∪ E2.

4. FEXP+ is the closure of I under composition, limited 3-comprehension and
limited doubling recursion.

Proof (sketch). The first point is essentially as in Cobham [4].
FPSPACE+ is contained in the closure of FP+∪P◦ by limited recursion on E3,

composition and limited 3-comprehension: First, a superstring-valued FP+∪P◦

function can compute from the input of a PSPACE Turing machine the transition
function of the machine as a table listing the next configuration for each given
configuration. Another function in FP+∪P◦ can compose such a function with
itself by reading two (polynomial-sized) entries from this table. Therefore after
applying limited recursion on these two functions we obtain a third that outputs
the 2x-step transition function and from this it is trivial to extract the value of
the original PSPACE function. Conversely, FPSPACE+ is closed under limited
recursion (as each such operation increases the space requirements of a function
by a polynomial factor) and the other operations.

For point 3, The step function of a PSPACE Turing machine (a polynomial-
time string function) can be iterated exponentially many times using limited
doubling recursion restricted to E1 ∪E2. Conversely FPSPACE+ is closed under
this restriction of limited doubling recursion as the recursion can be unwound
with only a polynomial amount of additional space. This characterization is
analogous to the one used in Dowd [8]: initial functions closed under limited
recursion. Limited recursion in the context of number functions is of exponential
length, as is limited doubling recursion in our setting. This in turn is reminiscent
of E2, the second level of the Grzegorczyk hierarchy [9], which is defined similarly
except with an initial function of linear growth rate as opposed to x#′y; this
was shown by Ritchie [11] to equal the linear space functions.

Finally, with limited doubling recursion on E3, the step function of an exp-
time Turing machine can be iterated exponentially many times. See [3] for a pre-
vious recursion-theoretic characterization of the exponential-time number func-
tions. ⊓⊔

3 Third-Order Bounded Arithmetic Theories

Our main theories are W i
1 and TW i

1, intended to correspond to levels of the
exponential-time hierarchy; they are parameterized by the type of induction.
These theories are suggested by the RSUV isomorphism and are closely con-
nected to U i

2 and V i
2 , respectively, although we do not claim an actual isomor-

phism (but one may hold with the unbounded domain versions of these theories).
For i ≥ 0, W i

1 is a theory over L3
A. The axioms of W i

1 are B1-B14, L1, L2 and
SE of [Cook/Kolokolova], (strict) ∀2ΣB

i -IND and the comprehension schemes
ΣB

0 -2COMP: (∃Y ≤ t(x,X))(∀z ≤ a)[φ(x,X,X , z) ↔ Y (z)] and ΣB
0 -3COMP:

258 Alan Skelley

(∃Y)(∀Z ≤ a)[φ(x,X,X , Z) ↔ Y(Z)], where in each case φ ∈ ΣB
0 subject to the

restriction that neither Y nor Y, as appropriate, occurs free in φ.
W 1

1 defined above is slightly different than the version in CSL04 [12]; it
includes a string equality symbol and extensionality axiom, but this is a con-
servative extension. The unusual class of formulas for which we admit induction
(a bounded string quantifier followed by a strict ΣB

i -formula) is in order for a
replacement scheme to be provable; as a result of this scheme, W i

1 ultimately
admits full gΣB

i -IND; we omit the details.

Define Ŵ i
1 to be the analogous theory with the induction scheme restricted

to (strict) ΣB
i -formulas. Note that Ŵ 0

1 = W 0
1 .

TW i
1 is defined identically as above, but with the following scheme named

ΣB
i -SIND (string or set induction) in place of ∀2ΣB

i -IND:

[∀X,Y, Z((|Z| = 0 ⊃ φ(Z)) ∧ (φ(X) ∧ S(X,Y) ⊃ φ(Y)))] ⊃ ∀Zφ(Z)

for φ ∈(strict)ΣB
i , where S(X,Y) is a ΣB

0 -formula expressing that Y is the
lexicographically next finite set after X. Again, TW i

1 admits (string) induction
on the more general class of formulas due to a replacement scheme.

TTW i
1 is yet another theory in this vein, with a yet stronger induction scheme

named ΣB
i -SSIND (“superstring” induction). Note that since (by design) there

is no way to bound a third-order object, the scheme refers to a term t, and
restricts its attention to the first 2t bits of the objects. It is intended that this t
be some crucial bound from φ. The scheme is:

[∀X ,Y,Z((∀X ≤ t¬Z(X)) ⊃ φ(Z)) ∧ (φ(X) ∧ S3(X ,Y, t) ⊃ φ(Y))] ⊃ ∀Zφ(Z)

for φ ∈(strict)ΣB
i , where S3(X ,Y, z) is a ΣB

0 -formula expressing that when con-
sidering only the lowest 2z bits of the superstrings, Y is lexicographically next
after X .

The scheme ΣB
0 -superstring-recursion is ∃Xφrec(S,X), where φ(Y,X) ∈ ΣB

0 ,
and φrec(x,X) ≡ ∀Y ≤ |S|(L2(Y, S) ⊃ (X (Y) ↔ φ(Y,X<Y))). L2(X,Y) ex-
presses that lexicographically, X < Y , while X<Y is a chop function (i.e.,
X<Y (Z) abbreviates the subformula L2(Z, Y) ∧ X (Z)). φ (and therefore also
φrec) may have other free variables than the displayed ones, but φ must have
distinguished string and superstring free variables Y and X . φrec then has X
free as well as a new variable S. This scheme is analogous to that from [2] and
follows the presentation from [7].

The scheme ΣB
0 -superstring-halfrecursion is ∃Xφhrc(S,X), where φ(Y,X) ∈

ΣB
0 , and φhrc(S,X) ≡ ∀Y ≤ |S|(L2(Y, S) ⊃ (X (Y) ↔ φ(Y,X<Y/2))), where

X<Y/2 is a chop function returning the first Y
2 (as a number) bits of X . φ

and φrec have the same free-variable conventions and requirements as in the
superstring recursion scheme. Then HW 0

1 is the theory W 0
1 with the addition of

the ΣB
0 -superstring-halfrecursion scheme.

3.1 Definability in the Theories

The definability of functions in the third-order setting is a generalization of
the usual definition, but the case of superstring-valued functions additionally

Third-Order Computation and Bounded Arithmetic 259

includes a mechanism for explicitly reasoning about only an initial segment of the
output. This is necessary as superstrings in the theories are formally unbounded,
while in the function calculus they are finite.

The following omnibus theorem summarizes results concerning definable func-
tions in the theories; proofs (and the formal definition of definability) are in [13]
and are fairly technical, yet generally straightforward. We comment below on
especially interesting or unusual points.

Theorem 3. 1. For i ≥ 1, the ΣB
i -definable functions of W i

1 are precisely

(FPSPACE(Σexp
i−1)

�

)+.

2. For i ≥ 1, the ΣB
i -definable functions of TW i

1 are precisely (FEXP(Σexp
i−1)

�

)+.
3. The ΣB

1 -definable functions of TTW 0
1 are precisely FEXP+.

4. The ΣB
1 -definable functions of both HW 0

1 and Ŵ 1
1 are precisely FPSPACE+.

5. W 0
1 = TW 0

1 and the definable functions of this theory are FPH+∪FPH◦, the
polytime hierarchy functions in the third-order setting.

Remarks. 1. Uniqueness of the function value is important, otherwise the
definable multi-functions are (FEXP(Σexp

i−1)
�

[wit,poly])+; analogously to [1]
for U1

2 .
2. Straightforward.
3. Functions are defined using the superstring-recursion scheme.
4. Straightforward.
5. Equality of theories is by “shortening of cuts”; the theories are conservative

extensions of the second-order polytime hierarchy theory V by a standard
argument.

⊓⊔

3.2 An Application of the Function Calculus

W 1
1 does not seem to be a “minimal” theory for PSPACE as witnessing the induc-

tion seems to be too hard. (Put another way, the ΣB
2 -definable functions of W 1

1

might not be contained in FPSPACE+, analogouslt to the situation for, say, S1
2).

An application of the recursion-theoretic characterization previously presented is
that one can specify a language LPS of FPSPACE+ function symbols with open
defining equations. There are cases for initial functions and definitions by limited
recursion, as well as minimization functions allowing elimination of quantifiers.
The resulting theory, HW 0

1 , is universal; it extends HW 0
1 as it contains functions

witnessing the halfrecursion scheme; and the extension is conservative. This last
point is proved by showing inductively that each function of LPS is definable
in HW 0

1 by a single application of the halfrecursion operation followed by a ΣB
0

projection (a subclass of ΣB
1 -definable). The upshot of all of this is that HW 0

1

is therefore in some sense a minimal theory for FPSPACE+.

4 Further Research

Some particular problems: First, does Ŵ 1
1 prove the general induction of W 1

1 ?
One approach is the method of [6], namely by KPT witnessing, with HW 0

1 as the

260 Alan Skelley

starting point. Second, what about propositional translations of these theories?
Partial progress is made in [13]. Third, are any of the theories HW 0

1 , W 1
1 or

TW 1
1 finitely axiomatizable? Finally, would the conservativity of W 1

1 over HW 0
1

have any complexity-theoretic consequences?

5 Acknowledgment

Thanks to Toniann Pitassi, Charles Rackoff, Alasdair Urquhart, Sam Buss and
Stephen Cook for improvements to the presentation and helpful comments; and
to the referees, whose detailed suggestions I have but imperfectly heeded.

References

[1] Samuel Buss, Jan Kraj́ıček, and Gaisi Takeuti. On provably total functions in
bounded arithmetic theories Ri

3, U i
2 and V i

2 . In Peter Clote and Jan Kraj́ıček,
editors, Arithmetic, proof theory and computational complexity, pages 116–61. Ox-
ford University Press, Oxford, 1993.

[2] Samuel R. Buss. Axiomatizations and conservation results for fragments of
bounded arithmetic. In CMWLC: Logic and Computation: Proceedings of a Work-
shop held at Carnegie Mellon University, pages 57–84. Contemporary Mathemat-
ics Volume 106, American Mathematical Society, 1990.

[3] Peter Clote. A safe recursion scheme for exponential time. In Sergei I. Adian
and Anil Nerode, editors, LFCS97, volume 1234 of Lecture Notes in Computer
Science, pages 44–52. Springer, 1997.

[4] Alan Cobham. The intrinsic computational difficulty of functions. In Yehoshua
Bar-Hillel, editor, Proceedings of the International Congress for Logic, Methodol-
ogy and Philosophy of Science, pages 24–30. North-Holland, 1964.

[5] S. A. Cook. CSC 2429S: Proof Complexity and Bounded Arithmetic. Course
notes, URL: ”http://www.cs.toronto.edu/∼sacook/csc2429h”, Winter 2002.

[6] Stephen Cook and Neil Thapen. The strength of replacement in weak arithmetic.
In Harald Ganzinger, editor, LICS04, pages 256–264. IEEE Computer Society,
July 2004.

[7] Stephen A. Cook. Theories for complexity classes and their propositional transla-
tions. In Jan Kraj́ıček, editor, Complexity of Computations and Proofs, volume 13
of Quaderni di Matematica, pages 175–227. Seconda Università di Napoli, 2004.

[8] Martin Dowd. Propositional Representation of Arithmetic Proofs. PhD thesis,
University of Toronto, 1979.

[9] A. Grzegorczyk. Some classes of recursive functions. Rozprawy Matematyczne,
4:1–46, 1953.

[10] Juris Hartmanis. The collapsing hierarchies. Bulletin of the EATCS, 33, Septem-
ber 1987.

[11] R. W. Ritchie. Classes of predictably computable functions. Transactions of the
American Mathematical Society, 106:139–173, 1963.

[12] Alan Skelley. A third-order bounded arithmetic theory for PSPACE. In Jerzy
Marcinkowski and Andrzej Tarlecki, editors, CSL04, volume 3210 of Lecture Notes
in Computer Science, pages 340–354. Springer, 2004.

[13] Alan Skelley. Theories and Proof Systems for PSPACE and the EXP-Time Hi-
erarchy. PhD thesis, University of Toronto, 2005. Available from ECCC in the
‘theses’ section.

On Inner Constructivizability of Admissible
Sets⋆

Alexey Stukachev

Sobolev Institute of Mathematics, Novosibirsk, Russia
aistu@math.nsc.ru

Abstract. We consider a problem of inner constructivizability of ad-
missible sets by means of elements of a bounded rank. For hereditary
finite superstructures we find the precise estimates of the rank of inner
constructivizability: it is equal to ω for superstructures over finite struc-
tures and less than or equal to 2 otherwise. We also introduce examples
of hereditary finite superstructures with ranks 0, 1, 2. It is shown that
hereditary finite superstructure over the field of reals has rank 1.

Notations and terminology used below are standard and corresponds to [3,
1]. We denote the domains of a structure M and KPU-model A by M and A
respectively. Further on, for simplicity reasons and without loss of generality, we
will consider only structures and KPU-models with relational signatures.

Let M be a structure of computable relational signature 〈Pn0
0 , . . . , Pnk

k , . . .〉,
and let A be a KPU-model, i.e. a structure of signature containing symbols
U1,∈2, which is a model of the system of axioms KPU. Following [3], M is
called Σ-definable (constructivizable) in A if there exists a computable sequence
of Σ-formulas

Φ(x0, y), Ψ(x0, x1, y), Ψ∗(x0, x1, y), Φ0(x0, . . . , xn0−1, y),

Φ∗
0(x0, . . . , xn0−1, y), . . . , Φk(x0, . . . , xnk−1, y), Φ∗

k(x0, . . . , xnk−1, y), . . .

such that for some parameter a ∈ A, and letting

M0 ⇌ ΦA(x0, a), η ⇌ ΨA(x0, x1, a) ∩M2
0

one has that M0 �= ∅ and η is a congruence relation on the structure

M0 ⇌ 〈M0, P
M0
0 , . . . , PM0

k , . . .〉,

where PM0

k ⇌ ΦA
k (x0, . . . , xnk−1) ∩Mnk

0 , k ∈ ω,

Ψ∗A(x0, x1, a) ∩M2
0 = M2

0 \ ΨA(x0, x1, a),

⋆ This work was supported by the INTAS YSF (grant 04-83-3310), the Program ”Uni-
versities of Russia” (grant UR.04.01.488), the Russian Foundation for Basic Research
(grant 05-01-00481a) and the Grant of the President of RF for Young Scientists
(grant MK.1239.2005.1).

262 Alexey Stukachev

Φ∗A
k (x0, . . . , xnk−1, a) ∩Mnk

0 = Mnk

0 \ ΦA
k (x0, . . . , xnk−1)

for all k ∈ ω and the structure M is isomorphic to the quotient structure M0	η.
In this case we say that the above sequence of formulas together with the pa-
rameter a are Σ-defining M in A.

In the present setting, however, it would be more convenient to use an equiva-
lent approach based on the notion of A-constructivizability [3]. An onto mapping
(numbering) ν : B → M is called an A-constructivization of a structure M if
B ⊆ A is a Σ-definable subset of A, and the numbering equivalence relation

ην = {〈b0, b1〉|b0, b1 ∈ B, M |= (ν(b0) = ν(b1))}

as well as the sets

{〈k, 〈b0, . . . , bnk−1〉〉|k ∈ ω, b0, . . . , bnk−1 ∈ B,M |= Pk(ν(b0), . . . , ν(bnk−1))}

are Δ-definable subsets of A. We will say that a structure is A-constructivizable
if it has an A-constructivization. It is known (see [3]) that a structure M is
Σ-definable in a KPU-model A if and only if M is A-constructivizable.

Let A be a KPU-model of signature σA and let Θ be a Σ-formula of the same
signature. For arbitrary Σ-formula Φ of the signature σA, the relativization ΦΘ

of formula Φ by formula Θ is defined inductively:
– if Φ is an atomic formula then ΦΘ ⇌ Φ;
– if Φ = ¬Ψ then ΦΘ ⇌ ¬(ΨΘ);
– if Φ = (Ψ1 ∗ Ψ2) , ∗ ∈ {∧,∨,→}, then ΦΘ ⇌ (ΨΘ

1 ∗ ΨΘ
2);

– if Φ = (Qx ∈ y)Ψ , Q ∈ {∀,∃}, then ΦΘ ⇌ (Qx ∈ y)ΨΘ;
– if Φ = ∃xΨ then ΦΘ ⇌ ∃x(Θ(x) ∧ ΨΘ).
It is clear that ΦΘ is a Σ-formula of signature σA.

Definition 1. Let A be a KPU-model of computable relational signature σA =
〈U1,∈2, Pn0

0 , . . .〉, and let B ⊆ A be a transitive Σ-subset defined in A by some
Σ-formula Θ of the signature σA, which contains parameters only from B. A is
said to be constructivizable inside B if there is a computable sequence Φ(x̄0, ȳ),
Φ=(x̄0, x̄1, ȳ), Ψ=(x̄0, x̄1, ȳ), Φ∈(x̄0, x̄1, ȳ), Ψ∈(x̄0, x̄1, ȳ), ΦU (x̄0, ȳ), ΨU (x̄0, ȳ),
ΦP0

(x̄0, . . . , x̄n0−1, ȳ), ΨP0
(x̄0, . . . , x̄n0−1, ȳ), . . . of Σ-formulas (all tuples x̄0,

x̄1 ... are supposed to be of the same length k – a dimension of the construc-
tivization, tuple ȳ has length l), and a tuple of parameters b̄ ∈ Bl such that
{ā ∈ A|A |= ΦΘ(ā, b̄)} ⊆ Bk and the sequence of the relativized formulas
〈ΦΘ, (Φ=)Θ, (Ψ=)Θ, (Φ∈)Θ, (Ψ∈)Θ, (ΦU)Θ, (ΨU)Θ, ΦΘ

P0
, ΨΘ

P0
, . . .〉 with parame-

ters b̄ are Σ-defining the KPU-model A in A.

The above notion could also be reformulated in terms of constructivizations,
so we will usually speak about A-constructivizations of M inside B. Note also
that because of the requirement on parameters to be elements from B we could
not, in general, replace in the above definition a tuple b̄ by a single b ∈ B.

In the same way, under the same conditions for B, we call a subset C ⊆ A
to be Σ-definable in A inside B, if C is defined in A by means of ΦΘ for some
Σ-formulas Φ and Θ with parameters from B.

On Inner Constructivizability of Admissible Sets 263

Suppose now that A is an admissible set, i.e. a KPU-model in which the set
of ordinals is well-founded (see [3]). If, for any a ∈ A, rnk(a) denotes the rank
of a, we can define a notion of rank for arbitrary subset B ⊆ A in the following
way: rnk(B) = sup{rnk(b)|b ∈ B}.

Definition 2. The rank of inner constructivizability of an admissible set A is
the ordinal

cr(A) = inf{rnk(B)|A is constructivizable inside B}.

The next theorem gives the precise estimates of the rank of inner construc-
tivizability for hereditary finite superstructures.

Theorem 1. Suppose M is a structure of computable signature. Then
1) if M is finite then cr(HF(M)) = ω,
2) if M is infinite then cr(HF(M)) � 2.

We now begin the proof. Assume as usual that, for any n ∈ ω, HFn(M) is
the set of all elements from HF(M) with rank less or equal to n. It is easy to
see that in case when M is finite, HFn(M) is finite for all n ∈ ω, and hence it is
clear that, for any n ∈ ω, HF(M) is not constructivizable inside HFn(M), thus
the first statement is true. The second statement comes from the following

Theorem 2. If M is infinite then the hereditary finite superstructure HF(M)
is constructivizable inside HF2(M).

Proof. First, we construct an HF(M)-constructivization ν of the standard model
of arithmetic N = 〈ω,≤,+, ·, s, 0〉 inside HF2(M). For this we will use a cardinal
presentation of natural numbers on the set M : with any n ∈ ω we connect the
collection of all subsets of M containing exactly n elements, i.e.

ν−1(n) ⇌ {a ⊆M | card(a) = n}.

The numeration ν defined in this way is called a cardinal numeration. Relative to
this numeration, any two subsets of M represent the same natural number if and
only if there exists a bijection from one subset onto another. We will represent
functions whose domains and ranges are finite subsets of M by means of elements
of HF(M) with rank 2. Namely, any function f = {〈u0, v0〉,. . . , 〈un, vn〉}, where
u0, . . . , un, v0, . . . , vn ∈M , is represented by any element (of rank 2) of the form

{w0, . . . , wn, {u0, w0}, . . . , {un, wn}, {u0, v0, w0}, . . . , {un, vn, wn}},

where w0, . . . , wn ∈M \ {u0, . . . , un, v0, . . . , vn} are pairwise different (such ele-
ments do exist since M is infinite). Let Cf be the set of all such presentations
of f , and let

C = ∪{Cf | f is a finite function with dom(f) ⊆M and rng(f) ⊆M}.

It is clear that C ⊆ HF2(M) and, moreover, C is Δ0-definable in HF(M). It
is also easy to write down Δ0-formulas defining, for any element c ∈ C which

264 Alexey Stukachev

represents some finite function fc, the sets dom(fc) and rng(fc) — the domain
and the range of fc respectively, and a Δ0-formula which is true if and only if
fc is a bijection. So it follows that the numeration equivalence relation for the
cardinal numeration ν is Σ-definable inside HF2(M): for any finite a, b ⊆M ,

ν(a) = ν(b) ⇐⇒ ∃c ∈ C ((fc is a bijection)
∧(dom(fc) = a) ∧ (rng(fc) = b)).

In the same way, for the natural order relation ≤ we have

ν(a) ≤ ν(b) ⇐⇒ ∃a′ ∈ HF1(M) ((ν(a′) = ν(a)) ∧ (a′ ⊆ b)),

ν(a) < ν(b) ⇐⇒ ∃a′, b′ ∈ HF1(M) ((ν(a′) = ν(a)) ∧ (b = a′ ∪ b′)
∧(a′ ∩ b′ = ∅) ∧ (b′ �= ∅)),

hence, since ν(a) �= ν(b) iff ((ν(a) < ν(b)) ∨ (ν(b) < ν(a))), we get that both
the numbering equivalence relation and the order relation are Δ-definable inside
HF2(M).

For the operations of addition and multiplication we have that

ν(a) + ν(b) = ν(c) ⇐⇒ ∃a′, b′ ∈ HF1(M) ((ν(a′) = ν(a)) ∧ (ν(b) = ν(b′))
∧(c = a′ ∪ b′) ∧ (a′ ∩ b′ = ∅)

ν(a) · ν(b) = ν(c) ⇐⇒ ∃c′ ∈ HF2(M) ((∪c′ = c) ∧ (“c′ = {a′1, . . . , a′ν(b)}”)

∧(“a′i ∩ a′j = ∅ then i �= j”)
∧(“ν(a′i) = ν(a) for all i”)),

where “c′ = {a′1, . . . , a′ν(b)}” denotes the formula

∃c′′ ∈ HF1(M) ((ν(c′′) = ν(b)) ∧ ∀a′ ∈ c′∃!x ∈ a′(x ∈ c′′)).

Thus, relative to the cardinal numbering ν, the operations of additions and
multiplication of natural numbers are Δ-definable inside HF2(M).

Recall that, for arbitrary structure M, a coding scheme [5] C consists of a set
NC ⊆M and a linear order <C on NC such that

〈NC , <C〉 ≃ 〈ω,<〉,

and an injective mapping πC from the set of all finite sequences of elements
of M into M . For a given coding scheme C we will denote by 0̇, 1̇, 2̇, . . . the
corresponding elements of NC , relative to <C . Together with C, we will also
consider the predicate SeqC(x) on M, which is true in case then x = πC(∅) or
x = π(〈m0, . . . ,mn〉) for some m0, . . . ,mn ∈M , and functions lhC(x), prC(x, ṁ),
which gives correspondingly the length and the m-th element of the tuple with
code x, and gives 0̇ in case of mismatch of the arguments. A structure M is
called acceptable [5] if it has a coding scheme C such that functions and relations
NC , <C , SeqC , lhC , prC are definable in M.

We introduce the (multivalued) coding scheme C∗ for coding finite sequences
of elements from M by elements from HF2(M), such that NC∗ = ν−1(ω), and

On Inner Constructivizability of Admissible Sets 265

SeqC∗ , lhC∗ and prC∗ are Δ-definable in HF(M) inside HF2(M). The set of codes
of a tuple 〈m0, . . . ,mk〉 ∈Mk+1 in the coding scheme C∗ is equal, by definition,
to the set of all elements of the form

{{m0, u0}, . . . , {mk, u0, . . . , uk}, u0, . . . , uk},

there u0, . . . , uk are pairwise different elements from M such that {u0, . . . , uk}∩
{m0, . . . ,mk} = ∅. It is easy to see that the relation SeqC∗ and the functions
lhC∗ and prC∗ are Δ-definable inside HF2(M).

Having a cardinal HF(M)-constructivization of the standard model of arith-
metic N , the coding scheme C∗, and some fixed constructivization γ (in sense
of the classical theory of constructive models) of the admissible set HF(N), we
construct the HF(M)-constructivization ν∗ of HF(M) inside HF2(M) in the fol-
lowing way. Suppose a ∈ HF(M); we let (ν∗)

−1(a) to be equal to the set of all
elements of the form

{aκ , {m0, u0}, . . . , {mk, u0, . . . , uk}, u0, . . . , uk},

where κ ∈ HF (ω) and m0, . . . ,mk ∈M are such that a = κ(m0, . . . ,mk) in the
notations of [3], the set aκ ⊆M satisfies the condition ν(aκ) = γ−1(κ), and ele-
ments u0, . . . , uk from M are pairwise different and {u0, . . . , uk}∩{m0, . . . ,mk} =
{u0, . . . , uk} ∩ aκ = {m0, . . . ,mk} ∩ aκ = ∅.

The numeration ν∗ defined in such way is, in fact, a constructivization of
HF(M) inside HF2(M). Indeed, the equality relation and the membership rela-
tion are defined by mutual recursion in the following way:

κ1(m̄1) ∈ κ2(m̄2) ⇐⇒ ∃κ′ ∈ κ2(κ1(m̄1) = κ′(m̄2)),

κ1(m̄1) ⊆ κ2(m̄2) ⇐⇒ ∀κ′ ∈ κ1∃κ′′ ∈ κ2(κ
′(m̄1) = κ′′(m̄2)),

κ1(m̄1) = κ2(m̄2) ⇐⇒ (κ1(m̄1) ⊆ κ2(m̄2)) ∧ (κ2(m̄2) ⊆ κ1(m̄1)).

Since the recursive part of this definition corresponds to the preimage of the set
of natural numbers ν−1(ω), there exist Σ-formulas which define the numeration
equivalence relation and the preimage of the membership relation for ν∗ inside
HF2(M).

Examples of structures M, for which cr(HF(M)) = 2, are infinite models of
empty signature, dense linear orders, and, more interesting, the structure 〈ω, s〉
of natural numbers with successor function. Indeed, if we denote by ThWM (M)
the theory of a structure M in the language of weak monadic second order logic,
then the following lemma is true.

Lemma 1. If M is infinite and ThWM (M) is decidable then cr(HF(M)) = 2.

Proof. Suppose, for a contradiction, that cr(HF(M)) < 2. Then, in particular,
the standard model of arithmetic N is HF(M)-constructivizable inside HF1(M),
hence N is interpretable in M by means of weak monadic second order logic. So
Th(N) ≤m ThWM (M), and so decidability of ThWM (M) implies decidability of
the elementary theory of the standard model of arithmetic, a contradiction.

266 Alexey Stukachev

From the Büchi result [2] about decidability of ThWM (〈ω, s〉) and the previ-
ous lemma we get that cr(HF(〈ω, s〉)) = 2.

An example of structure M for which cr(HF(M)) = 0 is, obviously, the stan-
dard model of arithmetic N . An example of structure for which the hereditary
finite superstructure has rank of inner constructivizability 1, is the field R of real
numbers. First, we establish one general result.

Lemma 2. If P is a field of characteristic 0 then the standard model of arith-
metic is constructivizable in HF(P) inside HF1(P).

Proof. We build an HF(P)-constructivization μ of the standard model of arith-
metic 〈ω,≤,+, ·, s, 0〉 inside HF1(P). Since P is a field of characteristic 0, the
set N = {0, 1, 1 + 1, . . .} is a subset of P. As the requested constructivization we
take a mapping μ : N → ω defined as follows: μ−1(n) = 1 + . . . + 1︸ ︷︷ ︸

n

for all n ∈ ω.

The set of “natural numbers” N ⊆ P is Σ-definable in HF(P) inside HF1(P):
for t ∈ P we have

t ∈ N ⇐⇒ HF(P) |= ∃a ((a ⊆ P) ∧ (0 ∈ a) ∧ ∀x ∈ a
(x �= 0 → ∃y ∈ a(x = y + 1)) ∧ (t = max(a)),

where t = max(a) denotes the formula (t ∈ a) ∧ ¬(t + 1 ∈ a). The numeration
equivalence relation for μ coinsides with the equality relation on N, the order
relation is Δ-definable in HF(P) inside HF1(P): for n,m ∈ N

μ(n) ≤ μ(m) ⇐⇒ HF(P) |= ∃a∃b ((a = {0, 1, . . . , n})
∧(b = {0, 1, . . . ,m}) ∧ (a ⊆ b)),

μ(n) �≤ μ(m) ⇐⇒ μ(m) < μ(n) ⇐⇒ (μ(m) ≤ μ(n)) ∧ (n �= m)).

The operations of addition and multiplication on N are induced by the corre-
sponding operations of the field P, and so they are Δ-definable in HF(P) inside
HF1(P).

Corollary 1. If P is a field of characteristic 0, then the weak monadic second
order theory ThWM (P) is undecidable. In particular, weak monadic second order
theories ThWM (R), ThWM (Qp) and ThWM (C) are undecidable.

Theorem 3. cr(HF(R)) = 1.

Proof. By Lemma 2, the standard model of arithmetic is constructivizable in
HF(R) inside HF1(R). For the existence of a constructivization of HF(R) inside
HF1(R), a necessary and sufficient condition is the existence of a Σ-definable
inside HF1(R) coding scheme for finite sequences of reals.

We introduce the coding scheme for finite sequences of reals by the pairs of
finite sets of reals. A tuple 〈a0, . . . , an−1〉 ∈ Rn is represented by the set of pairs
〈{a0, . . . , an−1}, {q0, . . . , qn−1}〉, where elements q0, . . . , qn−1 ∈ R are defined in
the following way: we find the least distance d = min{|ai−aj | |i, j < n, ai �= aj}
between distinct elements of the tuple and let qi = ai + d

2i+2 for all i < n

On Inner Constructivizability of Admissible Sets 267

(under this assumption q0, . . . , qn−1 are pairwise different even in case then
some of a0, . . . , an−1 are equal. The set of pairs coding finite sequences of re-
als is Σ-definable inside HF1(R) since there exists the corresponding construc-
tivization of natural numbers. The projecting function is Δ-definable inside
HF1(R): ai = pr(〈{a0, . . . , an−1}, {q0, . . . , qn−1}〉, μ−1(i)) if and only if there
exists qi ∈ {q0, . . . , qn−1} such that |ai − qi| = d

2i+2 . In the same way it is easy
to show that the function lh in the described coding scheme is also Δ-definable
inside HF1(R).

We define a constructivization μ∗ of the admissible set HF(R) inside HF1(R)
in the following way. Suppose a ∈ HF(R); we let (μ∗)

−1(a) to be equal to the
set of all triples of the form

〈μ−1(γ(κ)), {a0, . . . , an}, {q0, . . . , qn}〉,

where elements κ ∈ HF (ω), a0, . . . , an ∈ R are such that a = κ(a0, . . . , an),
γ : ω → HF (ω) is a constructivization of the admissible set HF(N), and the
pair 〈{a0, . . . , an}, {q0, . . . , qn}〉 is coding the tuple 〈a0, . . . , an〉 in the coding
scheme described above.

The mapping μ∗ thus defined is a constructivization (of dimension 3) of the
admissible set HF(R) inside HF1(R).

From Theorem 1, in particular, could be derived some constructive analogs
of some results (namely, of Theorems 18, 19, 20) from [4] about the definability
in multisorted languages, where the type of a variable describes the rank of its
possible values.

References

1. J. Barwise: Admissible Sets and Strucrures. Springer-Velag. Berlin. (1975)
2. J.R. Buchi: Weak second order arithmetic and finite automata. Z. Math. Logik

Grundl. Math.6 (1960) 66-92
3. Yu.L. Ershov: Definability and Computability. Plenum. New York. (1996)
4. R. Montague: Recursion theory as a branch of model theory. Proceedings of the

Third International Congress for Logic, Methodology and Philosophy of Science.
Amsterdam. (1967) 63-86

5. Y.N. Moschovakis: Elementary induction on abstract structures. Amsterdam.
(1974)

A Sharp Phase Transition Threshold for
Elementary Descent Recursive Functions

Arnoud den Boer and Andreas Weiermann

Fakulteit Bètawetenschappen
Departement Wiskunde

P.O. Box 80010
3508 TA Utrecht
The Netherlands

avdenboer@gmail.com,weierman@math.uu.nl

Abstract. Harvey Friedman introduced natural independence results
for the Peano axioms via certain schemes of combinatorial well-founded-
ness. We consider here parameterized versions of this scheme and classify
exactly the threshold for the transition from provability to unprovability
in PA. For this purpose we fix a natural bijection between the ordi-
nals below ε0 and the positive integers and obtain an induced natural
well ordering ≺ on the positive integers. We classify the asymptotic of
the associated global count functions. Using these asymptotics we clas-
sify precisely the phase transition for the parameterized hierarchy of
elementary descent recursive functions and hence for the combinatorial
well-foundedness scheme. Let CWF(g) be the assertion

(∀K)(∃M)(∀m0, . . . , mM)[∀i ≤ M(mi ≤ K+g(i)) → ∃i < M(mi � mi+1)].

Let fα(i) := iF
−1
α (i) where F−1

α denotes the functional inverse of the α-th
function from the fast growing hierarchy. Then

PA ⊢ CWF(fα) ⇐⇒ α < ε0.

Keywords: proof theory, phase transition, elementary descent recursive functions,
multiplicative number theory

1 Introduction

The Peano Axioms were originally designed hoping that every true statement
in the language for natural numbers is a consequence of these axioms. It has
therefore been a great surprise when Gödel showed in 1931 that there are true
statements about the natural numbers which do not follow from the Peano Ax-
ioms (PA). The example Gödel came with, was somewhat artificial and thus
not completely satisfying. (It looked like the sentence ’this sentence is true but
unprovable’).

Since then logicians have therefore been searching for mathematically rele-
vant examples for independent statements. A breakthrough has been obtained

A Sharp Phase Transition Threshold 269

in 1977 by Paris and Harrington [7] who showed that a slight modification of
the finite Ramsey theorem is unprovable in PA.

Around 1980 H. Friedman established further striking natural examples for
independent statements. He showed that the miniaturization of Kruskal’s the-
orem is not provable in predicative analysis. Moreover he introduced principles
of combinatorial well-orderedness and combinatorial well-quasi-orderedness as
paradigms for independent assertions [9].

In 1995 he studied jointly with Sheard [5] combinatorial well-orderedness
principles with respect to abstract elementary recursive ordinal notation systems.
In this article we fix a concrete example for an elementary recursive ordinal
notation system for ε0 which goes back to Schütte 1977.

For this specific natural well-ordering we are able to classify exactly the phase
transition from provability to unprovability for the underlying principle of com-
binatorial well-orderedness. This is part of a general research program on phase
transitions in logic and combinatorics initiated by the second author (See, for
example, [11–13]). This type of phase transition is different from phase transi-
tions known for random graphs or the satisfiability problem where a probabilistic
setting is assumed. In some sense it is closer to the situation in physics where
phase transition is a type of behaviour wherein small changes of a parameter of a
system cause dramatic shifts in some globally observed behaviour of the system,
such shifts being usually marked by a sharp ‘threshold point’. An everyday life
example of such thresholds are ice melting and water boiling temperatures.

The results of this paper reflect specific properties of the natural well-odering
of ε0, in particular numbertheoretic aspects of the coding. The approach is re-
lated to Arai’s investigation on the slowly well-orderedness of ε0 [1] but instead
of a norm based approach we work directly with natural number codes for or-
dinals. We therefore had to employ methods from multiplicative number theory
(Dirichlet series, Rankin’s method) instead of additive methods to obtain the
asymptotic of the count functions. Nevertheless in the unprovability part we
make essential use of Arai’s result. In particular we do not obtain the threshold
for unprovability by an iteration of a renormalization operator as in the additive
setting.

Moreover, we adapt parts of Arai’s treatment to the current situation. It
is still quite mysterious why this is possible and it seems that this problem is
closely related to Burris central problem 12.21 [4] on finding general principles
to explain why local additive results lift to global multiplicative results. In our
situation we have a lift from an additive independence result to a multiplicative
one.

1.1 Notation and definitions

With N we denote the natural numbers, starting at 0. Let (pi)i≥1 enumerate the
prime numbers in increasing order. Let P be the set of all primes. By primitive
recursion let us define the following linear ordering on N:

m ≺ n :⇔
(
m �= n&

(
n = 0 ∨m = 1 ∨ [

m

gcd(m,n)
= pm1

· . . . · pmk

270 Arnoud den Boer and Andreas Weiermann

&
n

gcd(m,n)
= pn1

· . . . · pnl
&∀i ≤ k∃j ≤ l(mi ≺ nj]

))
.

Then 〈N \ {0},≺〉 ≃ 〈ε0, <〉. The corresponding isomorphism ϕ : N \ {0} → ε0

is defined as follows. Assume that α = ωβ + γ is in Cantor normal form. Then
ϕ(α) := pϕ(β) ·ϕ(γ). Then additive indecomposable ordinal numbers are mapped
onto multiplicative indecomposable natural numbers and surjectivity of the map
follows by representing numbers by their associated prime factor decomposition.

This obersation gives rise to consider multiplicative number systems in the
sense of Burris [4]. A multiplicative number system 〈A,P, ·, 1,M〉 is a countable
free commutative monoid 〈A, ·, 1〉 with P the set of indecomposable elements
(’primes’), and M a multiplicative norm on A, that is a function M : A → N
such that M(a) = 1 ⇔ a = 1, such that M(a · b) = M(a) ·M(b) for all a, b ∈ A
and such that for every n ≥ 2 the set {a ∈ A : M(a) = n} is finite. Let q1 := p2

and qk+1 := pqk
for k ≥ 1. Thus qk has order type ωk an iterated tower of

omega’s of hight k. If we put q0(d) := d and qk+1(d) := pqk(d) for k ≥ 1 then
qk(d) has order type ωk(d), an iterated tower of omega’s of hight k with a finite
number d on the top. So qk+1(d) is the d-th member of the fundamental sequence
for qk+2.

For K ≥ 1, let

QK := {m ∈ N : m ≺ qK}

and define a norm M on QK simply by putting M(n) := n.
Then 〈QK ,P ∩QK , · ↾ (QK ×QK), 1,M ↾ QK〉 is a multiplicative system. Let

CQK
(n) := #{a ∈ QK : M(a) ≤ n}

be its global count function.

For technical reasons we introduce a notation for iterated exponentiation. We
write a1 := a, ak+1 := aak , a0(d) := d, ak+1(d) := aak(d) for a, d ∈ R, k ∈ N. In
[3] the following lower- and upperbounds are proven via multiplicative number
theory. The basic idea was to apply Rankin’s method to appropriate Dirichlet
generating series.

Lemma 1. (a) Let e = 2.71828 . . . denote the Euler number. Let K ≥ 3 and

T (K) := max{ee3
4 , eK}.

Then

CQK
(n) ≥ exp

(
22−K ln(n)

lnK−1(n)

)

for all n ≥ T (K).

(b) For all K ≥ 3 there is a constant V such that for all n

CQK
(n) ≤ exp

(
V

ln(n)

lnK−1(n)

A Sharp Phase Transition Threshold 271

Furthermore we conjecture

ln(CQK
(n)) ∼ π2

6 ln(2)

(
ln(n)

lnK−1(n)

)
(1)

for K ≥ 3.
It is also natural to consider ordinal segments as additive number systems in

the sense of Burris [4]. An additive number system 〈A,P, ·, 1, N〉 is a countable
free commutative monoid 〈A, ·, 1〉 with P the set of indecomposable elements,
and with N an additive norm on A, that is a function N : A → N such that
N(a) = 0 ⇔ a = 1, such that N(a · b) = N(a) + N(b) for all a, b ∈ A and such
that such that for every n ≥ 1 the set {a ∈ A : N(a) = n} is finite. In our
situation it is natural to consider the following norm. Let N(1) := 0 and

N(Πi∈Ip
mi

i) :=
∑

i∈I

mi · (N(i) + 1).

Then obviously N is an additive norm.
Let cQK

(n) := #{a ∈ QK : N(a) = n} be the local count function.
Bounds for the local count function have already been obtained in the literature
on additive number theory, and even the asymptotic behaviour. For example a
famous theorem of Hardy and Ramanujan says

cQ2
(n) ∼

exp
(
π
√

2
3n
)

4
√

3n

Related results for the set QK for K ≥ 3 have been obtained by Yamashita in
[14]. One has, for example,

ln (cQ2
(n)) ∼ π2

6

(
n

lnK−2(n)

)

for K ≥ 3. Not the analogy with conjecture (1).

1.2 Summary of the result

For any limit ordinal λ < ε0, let (λ[n])n∈N be the canonical fundamental sequence
for λ. Thus if λ = ωα1 + . . . + ωαk > α1 ≥ . . . ≥ αk = β + 1, then λ[n] =
ωα1 + . . . + ωαk−1 + ωβ · n and if λ = ωα1 + . . . + ωαk > α1 ≥ . . . ≥ αk ∈ Lim,
then λ[n] = ωα1 + . . . + ωαk−1 + ωαk[n].
For all ordinals α ≤ ε0 we define function Fα : N → N as follows
F0(x) := 2x, Fα+1(x) := Fx+1

α (x), where the upper index denotes the number of
iterations, and Fλ(x) := Fλx if λ is a limit.

A basic result is that PA proves the totality of Fα iff α < ε0. Thus PA does
not prove the assertion (∀x)(∃y)[Fε0(x) = y]. See, e.g., [5] for a proof. Of course
the inverse function F−1

ε0 is provably recursive in PA. [Let us briefly indicate the
argument since we need if for stating the next theorems. It is well known that

272 Arnoud den Boer and Andreas Weiermann

the graph of Fε0 elementary recursive (see, e.g., the appendix of [2] for a proof
of this folklore result). Then F−1

ε0 (x) is the smallest z ≤ x such that Fε0(z) > x.]
In this article we establish the following result.

Theorem 1. (a) If α = ε0 then

PA � (∀K)(∃M)
(
(∀m0, · · · ,mM−1)

(∀i < M)[mi ≤ K + i
|i|

F
−1
α (i)] ⇒ (∃i < M − 1)[mi < mi+1]

)
.

(b) If α < ε0 then

PA ⊢ (∀K)(∃M)
(
(∀m0, · · · ,mM−1)

(∀i < M)[mi ≤ K + i
|i|

F
−1
α (i)] ⇒ (∃i < M − 1)[mi < mi+1]

)
.

So if we define the function:

D(K,h) := max{M : (∃m0 ≻ · · · ≻ mM−1)(∀i < M)[mi ≤ K + i|i|h(i)]}

our theorem is equivalent to

PA ⊢ (∀K)(∃M)M = D(K,F−1
α) ⇐⇒ α < ε0.

This theorem is the multiplicative analogue of the following result of Arai [1]
and Weiermann [11]:

Theorem 2. (a) If α = ε0 then

PA � (∀K)(∃M)
(
(∀m0, · · · ,mM−1)

(∀i < M)[N(mi) ≤ K + |i| · |i|F−1
α (i)] ⇒ (∃i < M − 1)[mi < mi+1]

)

(b) If α < ε0 then

PA ⊢ (∀K)(∃M)
(
(∀m0, · · · ,mM−1)

(∀i < M)[N(mi) ≤ K + |i| · |i|F−1
a (i)] ⇒ (∃i < M − 1)[mi < mi+1]

)

Or, with

L(K,h) := max{M : (∃m0 ≻ · · · ≻ mM−1)(∀i < M)[N(mi) ≤ K + |i| · |i|h(i)]}

our theorem is equivalent to

PA ⊢ (∀K)(∃M)[M = L(K,F−1
α)] ⇐⇒ α < ε0.

So by replacing the additive norm N with the multiplicative norm M , and

replacing the function K + |i| · |i|F−1
a (i) with K + i

|i|
F
−1
α , we get again an indepen-

dence result. The first is obtained by using bounds on the local countfunction

A Sharp Phase Transition Threshold 273

cQK
, the latter by using bounds on the global count function CQK

. This suggests
the existence of a relation between local additive and global multiplicative. In
fact, this parallelism is stated as an open problem (12.21) in the book of Burris
[4].

In [1] it is shown that, with l(i) = |i|2, Fε0 is bounded by K �→ L(2K +16, l).
Therefore the latter function is not provably total in PA. In Section 3 of this
paper we show that Fε0 is also bounded by a function which involves D. This
yields the unprovability assertion.
For the provability result, Section 2, we show that for α < ε0, D is bounded
from above by a function which is primitive recursive in Fα. This implies that
D is provable recursive in PA.

Of course, we also need to show that the assertion about which the in-
dependence result is retrieved, is true indeed. This is a simple consequence
of König’s Lemma (every finitely-branched infinite tree has a path), and the
fact that an descending chain of ordinals cannot be infinite. Remember that
〈N \ {0},≺〉 ≃ 〈E ≤ ε0, <〉
Lemma 2. Let || || be any norm and let f : N → N be any function . Then
the assertion

(∀K)(∃M)∀α0, . . . , αM (∀i ≤M : ||αi|| ≤ K + f(i) ⇒ ∃i : αi < αi+1)

is true in the standard model.

Proof. Let

b := {< α0, . . . , αM >: (∀i ≤M)[||αi|| ≤ K + f(i)]&α0 ≻ . . . ≻ αM}.

Suppose the Lemma is false. Then (∃K)(∀M)[∃ < α0, . . . , αM >∈ b].
Then b is an infinite tree. b is also finitely branched, for suppose < α0, . . . , αM >∈
b. If < α0, . . . , αM+1 >∈ b then ||αM+1|| ≤ K +f(m+1), so there are only finite
possible succesors.
By König’s Lemma, there is a path f : N → N, (∀i)[< f(0), f(1), . . . , f(i) >∈ b].
But then f(0), f(1), . . . are isomorph with an infinite descending chain of ordi-
nals, which is impossible.

2 The provability assertion

With |x| we denote the binary length of x. Thus |0| := 0 and |x| := ⌈log2(x+1)>
for x > 0. We call a function h : N → N unbounded if h is weakly increasing and
limx→∞ h(x) = ∞. If h is unbounded, we let h−1(x) := min{n ∈ N : x < h(n)}.
We call an unbounded function h log-like if (∀x > 0)[h(x−1) < h(x) ⇒ (∃y)[x =
2y]]. We call an unbounded function h exp-like if (∀x)[h(x) ∈ {0}∪{2y : y ∈ N}].
For n ≥ 1 let ln1(n) := max{(1, ln(n)} and lnk+1(n) := max{1, ln1(lnk(n))}.
Lemma 3. (a) If x ≥ 4 then x2 ≤ 2x.
(b) If x ≥ 3 then 3n(x) ≤ 2n(2x).

274 Arnoud den Boer and Andreas Weiermann

(c) |2K(y)|K ≥ y.
(d) 2K−1(|N + 1|K) ≤ N + 1 for all K ≥ 4, N + 1 ≥ 2K−1(K − 2).
(e) If K ≥ 4 and 1 ≤ m0 ≤ K + 1 then m0 < qK−1.
(f) If h is loglike thenh−1 is explike.
(g) If F is explike then F−1 is loglike.

Proof. Assertions (a) and (b) are contained in Proposition 14 from [1].
Assertion (c) is proved by induction on K. If K=1 then

|21(y)| = ⌈log2(2
y + 1)> ≥ ⌈log2(2

y)> = y.

Further |2K+1(y)|K+1 = | |21(2K(y))| |K ≥ |2K(y)|K ≥ y.
For proving assertion (d) we first show that it is true for N + 1 = 2K−1(K − 2)
by using induction on K ≥ 4.
K = 4 : 24−1(|24−1(4− 2)|4) = 24 = N + 1.
K > 4 : 2K(|N + 1|K+1) = 21(2K−1(||N + 1||K) ≤ 21(|N + 1|).
Take N + 1 = 2K−1(K − 2). Then

2K(|2K−1(K−2)|K+1) ≤ 21(|2K−1(K−2)|) = 21(2K−2(K−2)) = 2K−1(K−2).

Since 2K−1(|N + 2|K) − 2K−1(|N + 1|K) ≤ 1, the assertion follows for all
N + 1 ≥ 2K1

(K − 2)
Proof of assertion (e). For K = 4 it is checked by hand.
For K ≥ 5 we prove the assertion by induction on m0.
Suppose that m0 ≻ qK−1.
If qK−1|m0 then, since m0 �= qK−1, K+1 ≥ m0 > qK−1 > K+1. Contradiction.
Thus qK−1 is not a divisor of m0. Since qK−1 is a prime number this implies that
gcd(m0, qK−1) = 1. Then by definition of≺ there is a prime pj |m0 s.t. qK−1 ≺ pj ,
i.e. pqK−2

≺ pj , i.e. qK−2 ≺ j. (Here we use the fact that ∀a, b �= 0, 1 a ≺ b iff
pa ≺ pb, which follows easily from the definition of ≺.)
But j < m0 ≤ K + 1, and thus j ≤ K. Since K − 1 ≥ 4 we obtain j < qK−2 by
induction hypothesis. Contradiction.
For a proof of assertion (f) assume that h is loglike. h−1(x) = min{n ∈ N :
h(n) > x}. Suppose h−1(x) = m �= 0. Then h(m) > x and h(m− 1) ≤ x, hence
h(m) > h(m− 1). Hence there exists a y such that m = 2y.
Thus (∀x)h−1(x) ∈ {0}⋃{2y : y ∈ N}, hence, h−1 is exp-like.
(g): Let F be exp-like. F−1(x) = min{n ∈ N : F (n) > x}. Let x > 0 be arbi-
trary.
Suppose m = F−1(x) > F−1(x − 1) = m′. If F (m′) > x then m = F−1(x) ≤
m′ = F−1(x− 1) but we assumed m > m′.
Also impossible is F (m′) < x because then x− 1 < F (m′) < x which is contra-
dictory.
Hence, F (m′) = x, hence, x = 2y for some y.

Theorem 3. Let h be the log-like function h = F−1
α (i) for some α < ε0. Let

K ≥ 4 and let V be as in assertion (b) of Lemma 1 where we assume that V is
a positive integer. Then D(K,h) ≤ max{2Fα(K), 2K(K − 2), 2K+1(5V)}

A Sharp Phase Transition Threshold 275

Proof. Fix K ≥ 4 and let N1 := max{2 · Fα(K), 2K(K − 2), 2K+1(5V)}.
W.l.o.g. choose an arbitrary sequence m0, . . . ,mn−1 s.t. m0 ≻ · · · ≻ mn−1

and mi ≤ K + i(|i|h(i)) for all i = 0, · · · , n− 1. We need to show n ≤ N1.
We proof this by contradiction. Assume n > N1.

The function h is log-like, so Fα = h−1 is exp-like. From this fact together
with K ≥ 4, it follows that there exists an N ≥ 4 such that N1 = 2N+1.
We have K ≥ 4 and m0 ≤ K + 0|0|h(0) ≤ K + 1, so by Lemma 3.5 m0 < qK−1.
By transitivity of <, mi ≺ qK−1 for all i = 0, · · · , n− 1.
Since n > N1 = 2N+1 we thus have m2N , · · · ,m2N+1−1 ∈ QK−1.

The function h is log-like so h(i) = h(2N) for all i ∈ [2N , 2N+1 − 1].

Let k := K + (2N+1 − 1)|2
N+1−1|

h(2N) . Then we have mi ≤ K + (i)|i|h(i) ≤ k for
all i ∈ [2N , 2N+1 − 1]. Hence CQK−1

(k) ≥ card([2N , 2N+1 − 1]) = 2N .

By assertion (b) of Lemma 1 we also have CQK−1
(k) ≤ exp(V ln1(k)

lnK−2(k)).

To reach a contradiction we’ll show that exp(V ln1(k)
lnK−2(k)) < 2N , which is equiva-

lent to

V
ln1(k)

N
< lnK−2(k) ln(2). (2)

Step one: ln1(k)
N ≤ ln(2) · (1 + 2|N + 1|K)

Proof of step one:
By definition N1 ≥ 2Fα(K), therefore 2N ≥ Fα(K) = h−1(K).
By definition we have h−1(K) = min{n : K < h(n)}, so K < h(h−1(K)).
We have 2N ≥ h−1(K) thence h(2N) ≥ h(h−1(K)) > K (since h is weakly
increasing) and hence K ≤ h(2N)− 1.
Thus

|N + 1|h(2N)−1 ≤ |N + 1|K . (3)

An easy induction on K shows 2K(K − 2) ≥ 2K+1, hence

2N+1 = N1 ≥ 2K(K − 2) ≥ 2K+1,

and thus N ≥ K.
For k we have using (3)

k = K + (2N+1 − 1)|2
N+1−1|

h(2N)

≤ K + (2N+1)|N+1|
h(2N)−1

= K + 2(N+1)|N+1|
h(2N)−1 < N + 2(N+1)|N+1|K

≤ 2N+1 · 2(N+1)|N+1|K

(since N + y ≤ y · 2N+1 for all y ≥ 1.)
Hence

ln1(k) ≤ ln(2N+1 · 2(N+1)|N+1|K) = (N + 1)(|N + 1|K + 1) ln(2)

276 Arnoud den Boer and Andreas Weiermann

And thus

ln1(k)

N
≤ (N + 1)

N
(|N + 1|K + 1) ln(2) ≤

(
5

4
|N + 1|K +

5

4

)
ln(2)

(since N ≥ 4)

≤ (
5

4
|N + 1|K + 1 +

1

4
· |N + 1|K) ln(2)

(since |N + 1|K ≥ 1)
≤ (2|N + 1|K + 1) ln(2).

Step two: V · (1 + 2|N + 1|K) ≤ lnK−2(k)
(This together with step one proves (2) and hence the contradiction.)
Proof of step two:
Let x := V (1 + 2|N + 1|K). We’ll show eK−2(x) ≤ k.
From N1 ≥ 2K+1(5V) we conclude N + 1 ≥ 2K(5V) and obtain

|N + 1|K ≥ |2K(5V)|K ≥ 5V.

The last inequality holds by assertion (c) of Lemma 3. The assertion follows from
5V ≥ 5 > 4 which holds because V is a positive integer. This gives

2x = 2V (1 + 2|N + 1|K) < 4V + 4V |N + 1|K
< |N + 1|KV + 4V |N + 1|K = 5V |N + 1|K
≤ (|N + 1|K)2.

Hence we get
eK−2(x) ≤ 3K−2(x) ≤ 2K−2(2x)

by assertion (b) of Lemma 3. Further

2K−2(2x) ≤ 2K−2((|N + 1|K)2) ≤ 2K−1(|N + 1|K)

by applying assertion (a) of Lemma 3. |N +1|K ≥ 4 yields (|N +1|K)2 ≤ 2|N+1|K

hence 2K−2((|N + 1|K)2) ≤ 2K−2(2
|N+1|K) = 2K−1(|N + 1|K).

Using assertion (d) of Lemma 3 we obtain

eK−2(x) ≤ 2K−1(|N + 1|K) ≤ N + 1 < k

and we have reached a contradiction.
(The last inequality N + 1 < k is true because

k = K + (N1 − 1)|N1−1|
h(2N)

≥ (N1 − 1)|N1−1|
h(2N)

≥ (N1 − 1)1 = 2N+1 − 1 > N + 1).

Corollary 1. If α < ε0 then PA ⊢ (∀K)(∃M)M = D(K,h)

Proof. D(K,h) is bounded by a function which is primitive recursive in Fα,
hence provably total in PA.

A Sharp Phase Transition Threshold 277

3 The unprovability assertion

Define the functions g1, g, r as follows:
r(n) := 2n + 16,
g1(n) := max{2n+2(n + 1), 21(21(21)− 1), 2T (n+3)},
where T is the function from assertion 2 of Lemma 1.
g(n) := 621(3n+20)−1 · 221(3n+20) · 2g1(n),
l(i) := |i|2

Lemma 4. (a) 2(|i|−1) ≤ i ≤ 2|i| − 1.

(b) If i > g1(n) then l(|i|) ≥ n + 3 + r(n).

(c) i > g1(n) then (|i| − 1) ≥ 8l(|i|)2.
(d) qm+r(n) · 2g1(n) ≤ g(n).

(e) N(qn) = n + 1.

(f) If m ≻ qn then N(m) > n + 1.

Proof. Proof of assertion (a). |i| = α yields 2α ≤ i ≤ 2α+1−1 hence 2|i|−1 ≤ i ≤
2|i| − 1.
Proof of assertion (b). i > g1(n) ≥ 2n+2(n + 1) yields

l(|i|) ≥ ||2n+2(n+ 1)||2 = |2n+1(n+ 1) + 1|2 ≥ |2n+1(n+ 1)|2 = (2n(n+ 1) + 1)2

For n = 1 we obtain (21(1 + 1) + 1)2 = 25 > 22 = 3n + 19.
For n > 1 observe that (2n(n + 1) + 1)2 grows faster in n then 3n + 19.
Proof of assertion (c). If γ ≥ 21 then 2γ > 8(γ + 1)4.

From β ≥ 8 · 224 we conclude (1
8β)

1
4 − 1 ≥ 21 hence

2(1
8β)

1
4 −1 > 8((

1

8
β)

1
4 − 1 + 1)4 = β.

Applying assertion 1 to |i| gives 2(||i||−1) ≤ |i| ≤ 2||i||−1, and applying assertion

1 again to these bounds gives 22(||i||−1)−1 ≤ i ≤ 22||i||−1 − 1.
From i ≥ 21(21(21) − 1) we conclude ||i|| ≥ 22 hence 8l(|i|)2 = 8||i||4 ≥ 8 · 224.

Hence 2(1
88||i||4)

1
4 −1 > 8||i||4, therefore 2||i||−1 > 8l(|i|)2 and thus

|i| − 1 ≥ 2||i||−1 − 1 ≥ 8||i||4.

Proof of assertion (d). Put m := n + 3 and z(n) := 6n ln1(n). Note that z
is increasing in n and that pn ≤ z(n) . This last property follows from pn ≤
n(ln1(n) + ln1 ln1(n)− 1

2) for n ≥ 20, which is proven in [8].

By repeated application we get qk ≤ z(k)(2),
and thus qm+r(n) · 2g1(n) ≤ z(m+r(n))(2) · 2g1(n) ≤ z(3n+20)(2) · 2g1(n).
We claim

z(k)(n) ≤ 621(k)−1 · n21(k).

278 Arnoud den Boer and Andreas Weiermann

This follows by induction: z(1)(n) ≤ 6n2 and

z(k+1)(n) = z(z(k)(n))

≤ z(621(k)−1 · n21(k))

≤ 6(621(k)−1 · n21(k))2

= 621(k+1)−1 · n21(k+1).

So we arrive at

qm+r(n) · 2g1(n) ≤ z(3n+20)(2) · 2g1(n) ≤ 621(3n+20)−1 · 221(3n+20) · 2g1(n) = g(n).

Assertion (e) is obvious. Assertion (f) is proved by main induction on n and
subsidiary induction on N(m). Assume that m ≻ qn. Then m = ps · t. If ps = qn
then necessarily t �= 1 and the assertion follows. Assume that qs ≻ qn. If n = 1
then N(qs) > 2 and we are done. If n > 1 then s ≻ qn−1 and the induction
hypothesis yields N(s) > n and the assertion follows immediately.

Theorem 4. Let h be the log-like function h(i) = F−1
εo

(i), with inverse h−1 =
Fε0 . Then D(g(n), h) ≥ Fε0(n) for all n.

Proof
Let m := n + 3. Recall l(i) := |i|2 and

L(r(n)), l) = max{M : (∃m0 ≻ . . . ≻ mM−1)(∀i)[N(mi) ≤ r(n) + |i| · |i|l(i)]}.

Choose a sequence
l0 ≻ . . . ≻ lM0

with N(li) ≤ r(n) + |i| · |i|l(i) for all i, and such that M0 is maximal (i.e. M0 =
L(r(n), l)− 1).
Since |i|2 ≥ 1 we obtain |i||i|2 ≤ |i| hence |i| · |i|l(i) = |i| · |i||i|2 ≤ |i| · |i| = l(i).
And thus N(li) ≤ r(n) + l(i) for all i.

From this sequence, we’ll construct a sequence

m0 ≻ . . . ≻ mh−1(n)

with mi ≤ g(n) + i|i|h(|i|) for all i. This will prove the assertion.
First we observe that l0 = qr(n).

For suppose otherwise. Then either l0 ≺ qr(n) or l0 ≻ qr(n). In the first case we
have 0 ≻ qr(n) ≻ l0 ≻ . . . ≻ lM0

. Since N(qn) = n + 1 holds for all n we obtain
N(qr(n)) = r(n) + 1 = r(n) + |0| · |0|l(0) hence

N(li) ≤ r(n) + |i| · |i|l(i) ≤ r(n) + |i + 1| · |i + 1|l(i+1).

Hence M0 is not maximal. Contradiction.
In the case that l0 ≻ qr(n), we either have that ∃α > 1 l0 = qr(n) · α and

then

N(l0) = N(qr(n)) + N(α) > N(qr(n)) = r(n) + 1 = r(n) + |0| · |0|l(0).

A Sharp Phase Transition Threshold 279

Contradiction.
Or we have that ∃β > r(n)&∃γ l0 = qβ · γ and then assertion (f) of Lemma 4
yields

N(l0) > N(qβ) = β + 1 > r(n) + 1 = r(n) + |0| · |0|l(0).
Contradiction.

For 0 ≤ i ≤ g1(n) we put

mi := qm+r(n) · 2g1(n)−i.

Then obviously 0 ≻ m0 ≻ . . . ≻ mg1(n). Further mi ≤ g(n) follows by assertion
(d) of by Lemma 4.
For g1(n) < i ≤ h−1(n) we define

k(i) := 2(|i|−1)(|i|h(i)−1)

and

Qm(≤ k(i)) := {l ≺ qm : l ≤ k(i)}
Further let enumQm(≤k(i)) be the enumeration function of Qm(≤ k(i)) with re-
spect to ≺.
(So enumQm(≤k(i))(2

|i|−i) is the (2|i|−i)-th element of the set {l ≺ qm : l ≤ k(i)}
ordered by ≺. Below we show that such an element indeed exists).
We put

mi := qm(l|i|) · enumQm(≤k(i))(2
|i| − i).

Observe that l|i| is welldefined since |i| ≤ i ≤ h−1(n) ≤ L(r(n), l) where the last
inequality is proven in [1].
For all i > g1(n) we have

mg1(n) = qm+r(n) = qm(qr(n)) = qm(l0) ≻ qm(l|i|)

since l0 ≻ l|i|. And thus mi ≺ mg1(n) for all i > g1(n).
If |i| = |i + 1| then k(i) = k(i + 1) and qm(l|i|) = qm(l|i+1|) and

enumQm(≤k(i))(2
|i| − i) ≻ enumQm(≤k(i+1))(2

|i+1| − (i + 1)).

Thus

mi ≻ mi+1.

If |i| < |i + 1| then l|i| ≻ l|i+1| thence qm(l|i|) ≻ qm(l|i+1|).
Also

enumQm(≤k(i))(2
|i| − i) ≺ qm(l|i|)

and

enumQm(≤k(i+1))(2
|i+1| − (i + 1)) ≺ qm(l|i|).

Therefore

mi ≻ mi+1.

280 Arnoud den Boer and Andreas Weiermann

So we have shown mg1(n) ≻ mg1(n)+1 ≻ . . . ≻ mh−1(n).

Now we have to show that mi ≤ g(n) + i|i|h(i) holds for those i.

In [3] it is proven by induction on N(m) that m ≤ 22·N(m)2 for all m ≥ 1.
Using this we obtain

mi ≤ qm(l|i|) · k(i) ≤ 22(N(qm(l|i|)))
2 · k(i)

= 22(m+N(l|i|))
2 · k(i) ≤ 22(m+r(n)+l(|i|))2 · k(i).

Using assertion (a) of Lemma 4 and assertions (b) and (c) of 4, we get

mi ≤ 22(2l(|i|))2 · k(i)

= 28l(|i|)2+(|i|−1)(|i|h(i)−1)

≤ 2(|i|−1)+(|i|−1)(|i|h(i)−1)

= (2(|i|−1))|i|h(i)

≤ i|i|h(i) ≤ i|i|h(i) + g(n)

We still had to show that the (2|i|−i)-th element of Qm(≤ k(i)) exists. Adressing
this we’ll show that

#Qm(≤ k(i)) ≥ 2|i| − 1.

Note that h−1(n) ≥ i yields h(i) ≤ n. From i > g1(n) ≥ 2T (m) we conclude
k(i) = 21((|i| − 1)(|i|h(i) − 1)) ≥ 21((|i| − 1)(|i|n − 1)) ≥ 21(|i| − 1) ≥ T (m). So
by assertion (a) of Lemma 1,

CQm
(k(i)) ≥ exp(22−m ln(k(i))

lnm−1(k(i))
).

The inequality i > g1(n) ≥ 2n+2(n+ 1) implies 22−m(|i|n− 1) ≥ lnm−1(21((|i| −
1)2)), since the lefthandside grows faster in i than the righthandside, and for
i = 2n+2(n + 1) the lefthandside is greater than the righthandside.
Hence

22−m(|i|n − 1) ≥ lnm−1(21((|i| − 1)2)),

thus

22−m(|i|h(i) − 1) ≥ 22−m(|i|n − 1)

≥ lnm−1(21((|i| − 1)(|i|h(i) − 1))

= lnm−1(k(i))

thence

22−m ln(k(i)) = 22−m(|i|h(i) − 1)(|i| − 1) ln(2)

≥ (|i| − 1) ln(2) lnm−1(k(i))

= ln(2|i|−1) lnm−1(k(i))

so 22−m ln(k(i))
lnm−1(k(i)) ≥ ln(2|i|−1) and

CQm
(k(i)) ≥ exp(22−m ln(k(i))

lnm−1(k(i))
) ≥ 2|i|−1.

A Sharp Phase Transition Threshold 281

Corollary 2. PA � (∀K)(∃M)M = D(K,F−1
ε0)

Proof. Fε0 is not provably total in PA, hence D(g(n),F−1
ε0) is not provably total

in PA, and the assertion follows.

References

1. Toshiyasu Arai: On the slowly well-orderedness of ε0. Mathematical Logic Quar-
terly 48 (2002) 125-139.

2. Lev Beklemishev: Proof-theoretic analysis by iterated reflection. Archive for Math-
ematical Logic 42 (6), 515-552 (2003)

3. Arnoud den Boer: An independence result of PA using multiplicative num-
ber theory. Preprint, University of Utrecht 2006. Available via WWW at:
http://www.math.uu.nl/people/weierman/

4. S.N. Burris: Number Theoretic Density and Logical Limit Laws. Mathematical
Surveys and Monographs 86. American Mathematical Society 2001.

5. Harvey Friedman and Michael Sheard: Elementary descent recursion and proof
theory. Annals of Pure and Applied Logic 71 (1995), 1-45.

6. J.R. Norris, Markov Chains, Cambridge University Press, Cambridge, 1997
7. J. Paris and L. Harrington: A mathematical incompleteness in Peano arithmetic,

Handbook of Mathematical Logic (J. Barwise, ed.), North-Holland, Amsterdam,
1977, 1133-1142.

8. Rosser, J. Barkley, Schoenfeld, Lowell. Approximative formulas for some functions
of prime numbers. Illinois J. Math. 6, 64-94, 1962.

9. Rick L. Smith: The consistency strength of some finite forms of the Higman and
Kruskal theorems. In Harvey Friedman’s Research on the Foundations of Mathe-
matics, L. A. Harrington et al. (editors), (1985), pp. 119–136.

10. K. Schütte: Proof Theory. Springer, Berlin 1977.
11. Andreas Weiermann. An application of graphical enumeration to PA. To appear

in the Journal of Symbolic Logic.
12. A. Weiermann, Analytic Combinatorics, proof-theoretic ordinals and phase transi-

tions for independence results, Ann. Pure Appl. Logic, 136 (2005), 189–218.
13. A. Weiermann: Phase transition thresholds for some natural subclasses of the com-

putable functions. This proceedings.
14. M. Yamashita: Asymptotic estimation of the number of trees, Trans. IECE Japan,

62-A (1979), 128-135 (in Japanese).

Some Reflections on the Principle of Image
Collection

Albert Ziegler1

Ludwig-Maximilian’s University, Munich 81673, Germany

Abstract. This article considers two alternative and formally weaker
forms of Fullness, one of the axioms of constructive Zermelo–Fraenkel set
theory. The relation to other axioms is analysed and some results that
previously invoked Fullness are shown to be provable with the weaker
forms too, sometimes even more easily.

1 Introduction

To study sets in and create a formal system for constructive mathematics, Aczel
[2, 3] introduced the constructive Zermelo-Fraenkel set theory CZF.

In contrast to classical ZF, intuitionistic logic is used and some axioms are
replaced by more constructive versions. Firstly, Separation is only allowed for
bounded formulas1 adhering to the goal of predicativeness. Bounded Seperation
is equivalent to asserting the existence of binary intersections of arbitrary sets.
Secondly, Replacement is strengthened to Strong Collection, an axiom construct-
ing not only images of sets under functions (like Replacement) but under total
relations. It states for every formula θ and each set a that if the formula defines
a total class-relation on a, i.e. if ∀x ∈ a∃yθ(x, y), then there is a set b whose
elements stand in bitotal relation to those of a via that relation. This means
that:

∀x ∈ a∃y ∈ b θ(x, y) ∧ ∀y ∈ b∃x ∈ a θ(x, y).

Thirdly, Foundation is reduced to the (classically equivalent) principle of Set
Induction which states the truth of a formula for all sets if the truth for each
set follows from the truth for all of its elements. In short, this allows proving a
statement for all sets by induction over the ∈-relation. Finally, CZF omits the
impredicative Powerset Axiom in favour of the axiom of Subset Collection. This
complex looking axiom states that for each formula θ and for all A, B there is a
C such that:
∀x ∈ A∃y ∈ Bθ(x, y)→ ∃z ∈ C(∀x ∈ a∃y ∈ zθ(x, y) ∧ ∀y ∈ z∃x ∈ a θ(x, y))
In presence of the other axioms of CZF, including Strong Collection, this is
equivalent to the following axiom of Fullness, which plays an important role in
this article. For A and B sets, mv(A,B) denotes the class of all total relations
from A to B, often thought of as multivalued functions. The class mv(A,B)

1 Recall that a formula is called bounded in case it contains only restricted quantifiers
∀a ∈ b or ∃a ∈ b

Some Reflections on the Principle of Image Collection 283

does not have to be a set, but Fullness demands that it has got a subset such
that every total relation contains a total relation in the subset. Such a set will
then be called full in mv(A,B).

The remaining axioms of ZF, Extensionality, Pairing and Union, remain un-
changed. Thus the full list of Axioms is:
Extensionality, Pairing, Union, Seperation for bounded formulas, Strong Collec-
tion, Subset Collection, Set Induction.

Choice principles are not included in CZF. In particular, full AC should not
be added, as it implies the law of excluded middle for bounded formulas [6].
However, the addition of weaker versions of AC is often considered, such as
countable or dependant choice or often Aczel’s Presentation Axiom.

The fragment of CZF without Subset Collection and Set Induction and where
only Replacement instead of Strong Collection is included is called CZF0. We
would like to work in the theory CZF without Subset Collection, but in fact
mostly use only CZF0 and will indicate the one occasion when we use more.

2 The Principle of Image Collection

In [5], Crosilla, Ishihara and Schuster proposed the principle of Refinement, being
a formally weaker principle than Fullness. It demands for every set A and B a set
D collecting subsets of A, so that each r ∈ mv(A,B) contains an f ∈ mv(A,B)
from A to B such that the fibre of every element of B is an element of D. So
Refinement(A,B) means:

∃D∀r ∈ mv(A,B)∃f ⊆ r : f ∈ mv(A,B) ∧ ∀b ∈ Bf−1(b) ∈ D

where f−1(b) stands for {a ∈ A|(a, b) ∈ f}, just as f(a) in the following means
{b ∈ B|(a, b) ∈ f}, the set of all values of f at the point a. The name of the
axiom stems from the quasi-topological intuition of mv-functions from A to B
as coverings of A indexed by B. The set D then collects subsets of A such that
each covering has a refinement to a covering using only sets in D. I will now
consider the dual principle that I would like to call Image Collection. It states
that the sets of images under these f ’s for each element in A can be collected in
a set E of subsets of B. So ImageColl(A,B) means:

∃E∀r ∈ mv(A,B)∃f ⊆ r : f ∈ mv(A,B) ∧ ∀a ∈ Af(a) ∈ E

Like Refinement this is a consequence of Fullness:

Proposition 1. Fullness(A,B) → Image Collection(A,B)

Proof. Such a set E can be obtained from the full set C and the set A by defining

E := {f(a)|f ∈ C ∧ a ∈ A}

This is a set by Replacement, and every r ∈ mv(A,B) contains an f such that
f ∈ C so that all f(a) for a ∈ A are in E.

284 Albert Ziegler

Analogous to the view of Refinement as stating that every covering of A
indexed by B can be refined to a covering such that the sets covering A all
belong to a collection D, it states the following: There is a collection E such
that not the sets covering, but the sets containing for an a ∈ A the indices of
covering sets that cover a can be found in a collection E for a suitable refinement
independent of a. Loosely speaking, E contains the possibilities for the pile of
the covering sets above each a ∈ A. Although the dual statement about the
fibres has found more applications as yet, this view is not completely artificial:
for example in formal topology, it means that if X is a set, then the αx-sets of
refinements (in the sense of a refinement of a topology) of set-induced (in the
sense that the relation ‖− is given by a set) ct-space-structures on X with fixed
index set S can all be collected in a set E (for definitions, confer [1]). Here the
mv-functions from X to S are the ”‖−” relations.

Although AC is not accepted as constructive2 and its addition to CZF de-
stroys the constructive content of the theory, a lot about Image Collection can
be understood considering the Axiom of Choice (AC). AC states that every re-
lation contains a function, for which the image collection would be the trivial
collection of all singleton sets of elements of B. Thus we get:

Proposition 2. AC(A,B) → ImageColl(A,B)

This severely handicaps the potential of Image Collection to prove results, as
they are limited to those that already follow from AC. In this vein, one is lead to
the following description of the impact of Image Collection(A,B) on the other
principles of CZF except Subset Collection: The more AC(A,B) is violated,
the more mv-relations exist which do not reduce to functions but only to more
complex relations, the more complex subsets of B have to be contained in E,
the less the Powerset axiom is violated. So Image Collection states, very laxly
speaking, that the violation of the Powerset axiom and the Axiom of Choice
together isn’t too big.

The fact that it follows from AC is both a blessing and a curse for the ap-
plicability of Image Collection. It is a curse because there cannot be too many
consequences, for each consequence has to follow from AC. For example, although
it is something of a substitute for fullness, it does not guarantee any uncountable
set and thus should perhaps at least be combined with other (weak) principles
that see to this to get interesting results. Yet finding consequences of AC that
only need Image Collection is of course an important accomplishment. And in
some way it is also a blessing, for it can now be seen very quickly what conse-
quences Image Collection doesn’t have: For example it does not imply that the
detachable subsets of a given set can be integrated in one set, because if it did,
even AC would do this. Yet AC implies excluded middle for bounded formulas
and thus also that every subset is detachable, so it would imply the existance of
the powerset of the given set, which it clearly does not do (even in ZF without
the Powerset Axiom). In particular Image Collection does not imply its dual,

2 At least when viewed as an axiom about extensional sets. It is however even derivable
in Martin-Loef type theory.

Some Reflections on the Principle of Image Collection 285

Refinement, which in turn does imply that the detachable subsets of any set
form a set [5]. And of course it is seen that Image Collection is a real weakening
of Fullness, i.e. it doesn’t imply Fullness.

Yet Image Collection is not wholly without consequences; in particular, it
is not trivial. The exponentiation axiom, whose single instances are denoted by
Exp(A,B), claims that for every pair (A,B) of sets, the functions with domain
A and range included in B form a set. Exponentiation alone does not prove
Fullness, as Lubarsky has shown [7]. But under the principles of CZF without
Subset Collection or in the theory CZF0 we get:

Theorem 1. If E is an image collection for A and B and Exp(A,E) holds, then
Fullness(A,B) follows.

In particular we have: ImageColl + Exp → Fullness

Proof. This is dual to the analogous statement about Refinement, and even the
proof goes along similar lines (confer [5]): It is to show that the class C of mv-
functions f with f(a) ∈ E for all elements a ∈ A is a set, so it suffices to show
that the class C ′ of all relations f with f(a) ∈ E for all elements a ∈ A is a set.
However, for each f : A → E let rf =

⋃{{a} × f(a)|a ∈ A}. Let the set C ′′,
contain the rf for all f : A→ E. Now this C ′′ is equal to the class C ′ and a set
by Replacement (which is entailed by Strong Collection). So C, which is full in
mv(A,B), is a set.

It is interesting to note that although Fullness is not a consequence of Expo-
nentiation, it doesn’t seem to take much to go from Exponentiation to Fullness.
For example Image Collection, Refinement and the Presentation Axiom all do
the trick.

If A is countable, Image Collection(A,B) is a consequence of countable
choice. Perhaps most applications of Image Collection, should these be found,
will view the principle as a weakening of AC rather than as a reduction of Full-
ness (and thereby of the powerset axiom).

3 The Principle of Big Image Collection

An interesting variation seems to be the following:

Definition 1. We define BigImageColl(A,B) to hold iff

∃F∀r ∈ mv(A,B)∃f ⊆ r : f ∈ mv(A,B) ∧ f [A] ∈ F

where f [A] =
⋃

a∈A f(a) = {b ∈ B|∃a ∈ A : (a, b) ∈ f}. The assertion of
BigImageColl(A,B) for all sets A and B will be called Big Image Collection.

The content of this statement is not reduced to nil by the presence of AC,
as here F collects the whole images of the relations, and even functions can
have interesting images. The intuituion that Big Image Collection might be a
consequence of Image Collection (just ’fuse together’ the images of the different

286 Albert Ziegler

arguments under the same relation) proves false, as the results below will show.
Of course it is still a consequence of fullness, for if C is full in mv(A,B), then
we can obtain a big image collection by defining F = {f [A]|f ∈ C}.

Big Image Collection is not only a direct a consequence of Fullness, it can
also be seen as a special single instance of the Subset Collection scheme. Take
θ(x, y, u) to be the simple formula (x, y) ∈ u to get Big Image Collection.

Even if only one single instance, Big Image Collection is not without conse-
quences:

Proposition 3. BigImageCollection(B,B∪{B}) → {S ⊆ B|S detachable} is a
set.

Proof. To see this, for each detachable S consider the function which is the
identity on S and constantly B on the rest; its image contains S and perhaps
{B}. So after purging {B} from every set of the Big Image Collection, the result
is a set containing the set of detachable subsets of B. The part ”{B}” could also
have been replaced by any other set disjoint from B and that it really is disjoint
requires Set Induction. Of course, if B is bijective to B ∪ {B}, which is often
the case, for example if B = ω, the antecedent could also have been Big Image
Collection(B,B), which looks nicer.

The consequence that the detachable subsets form a set is, by the way, equiv-
alent to the instance of Exponentiation Exp(B,2) or to Exp(B, Y) for all discrete
Y as was shown in [4]. So even simple instances of Big Image Collection imply
the existance of quite a lot of uncountable sets.

Some results that previously invoked Fullness may be proved instead by only
using Big Image Collection, sometimes even in an easier way. An example is the
Main Lemma in [1], Appendix 2, which states that the strongly adequate subsets
form a set. This result can be used to show, for example, that the formal points
of a locally compact regular formal topology form a set.

Theorem 2. Let S be a set with two binary set relations ≺ and ≈ on S, then:
BigImageCollection(W,S) → {B ⊆ S|B strongly adequate for W} is a set

Proof. Let W be the set giving the ≺ relation. Recall that a subset α of S is
called strongly adequate iff

b, c ∈ α→ b ≈ c

a ∈ α→ ∃b ∈ αb ≺ a

b ≺ a→ ∃c ∈ α(b ≈ c→ c = a)

The proof given in [1] doesn’t need to be altered a lot so that it only requires
Big Image Collection and not the whole of Fullness, but it becomes easier in that
it doesn’t need the extra Lemma 54 from [1]:

It will be shown that the class of strongly adequate subsets, A, is a subset
of E, the big image collection of W and S. So take any α ∈ A. Then Rα =

Some Reflections on the Principle of Image Collection 287

{((a, b), c) ∈W ×S|c ∈ α∧ (b ≈ c→ c = a)} ∈ mv(W,S). This is total for every
adequate α, thus by virtue of Big Image Collection there is a R ∈ mv(W,S) with
R ⊆ Rα for which R[W] ∈ E. But thanks to Lemma 56 in [1], which states that
if R is a total subrelation of Rα, then R[W] = α, we get α = R[W] ∈ E, which
finishes the proof.

However, the principle of Big Image Collection as a whole is even equivalent
to that of Fullness:

Proposition 4. BigImageColl(A,A×B)→ Fullness(A,B)

Proof. Every total relation r from A to B corresponds to a relation r’ from A
to A × B assigning to every a ∈ A the pairs (a, b) such that (a, b) ∈ r. By the
antecedent some total subrelation f of this has an image contained in the big
image collection of A and A×B - but this image itself is a total subrelation of
r ⊆ A×B. Thus the big image collection of A and A×B is full in mv(A,B).

But although as a principle Big Image Collection is equivalent to fullness,
its single instances, like the one invoked for the previous result, need not be
equivalent to any instance of Fullness. So on the level of single instances Big
Image Collection still seems to be a proper weakening of Fullness, and when
proving results it is interesting to note when only the former is needed.

The principle of Big Image Collection should not be confused with the con-
cept of fullness in [8]. The latter does not allow to go for a subrelation and so
implies the Powerset axiom, as was shown in [3]. Indeed, most variations of Full-
ness that omit the transition to the subrelation are equivalent to the Powerset
axiom, even the modified Image Collection’ stating that for every mv-function
the images of all elements can be collected in a set.

4 Conclusions

Fullness means that all total relations contain total relations that are gathered in
a single set C. This can be weakened by collecting only pointwise preimages (fi-
bres) or dually pointwise images. It can also be formally weakened by collecting
complete images (right projections) or dually complete preimages (left projec-
tions). The corresponding axioms are Refinement, which has many consequences
as shown in [5], dually Image Collection, which is also implied by AC and yields
Fullness in the presence of Exponentiation, Big Image Collection, which is even
equivalent to Fullness, and its dual that has not been graced by attention here, as
it is of course trivial: The domain of any total relation from A to B is obviously
the whole of A.

References

1. Aczel, P.: Aspects of general topology in constructive set theory. Ann. Pure Ap-
pli. Logic bf 137 (2006) 3–29

288 Albert Ziegler

2. Aczel, P.: The type theoretic interpretation of constructive set theory. Logic Col-
loquium ’77, North–Holland, Amsterdam (1978) 55–66

3. Aczel, P., Rathjen, M.: Notes on Constructive Set Theory. Institut Mittag–Leffler
Preprint 40(2000/01)

4. Aczel, P., Crosilla, L., Ishihara, H., Palmgren, E., Schuster, P.: Binary refinement
implies discrete exponentiation. Typoscript

5. Crosilla, L., Ishihara, H., Schuster, P.: On constructing completions. J. Symbolic
Logic 70, iss. 3 (2005) 969–978

6. Diaconescu, R.: Axiom of choice and complementation. Proc. Amer. Math. Soc 51
(1975) 176–178

7. Lubarsky, R.: Independence results around constructive ZF Ann. Pure Appl. Logic
132 (2005), 209–225

8. Troelstra, A.S., van Dalen, D.: Constructivism in Mathematics. North Holland,
Amsterdam (1988)

289

Information Content and Computability in the
n-C.E. Hierarchy

Bahareh Afshari

Department of Pure Mathematics, School of Mathematics
University of Leeds, Leeds LS2 9JT, UK

In 1944, Post [9] set out to relate computational structure to its underlying
information content. Since then, many computability-theoretic classes have been
captured, in the spirit of Post, via their relationships to the lattice of computably
enumerable (c.e.) sets. In particular, we have Post’s [9] characterisation of the
non-computable c.e. Turing degrees as those of the simple, or hypersimple even,
sets; Martin’s Theorem [6] showing the high c.e. Turing degrees to be those
containing maximal sets; and Shoenfield’s [10] characterisation of the non-low2

c.e. degrees as those of the atomless c.e. sets (that is, of co-infinite c.e. sets
without maximal supersets).

In this talk, and in Afshari, Barmpalias and Cooper [1], we initiate the ex-
tension of Post’s programme to computability-theoretic classes of the n-c.e. sets.

For basic terminology and notation, see Cooper [4], Soare [11], or Odifreddi
[7].

References

1. B. Afshari, G. Barmpalias and S. B. Cooper, Characterising the highness of hyper-
hyperimmune d.c.e. sets, in preparation.

2. G. Barmpalias, Hypersimplicity and Semicomputability in the Weak Truth Table
Degrees, Archive for Math. Logic Vol.44, Number 8 (2005) 1045–1065.

3. G. Barmpalias and A. Lewis, The Hypersimple-free c.e. wtt degrees are dense in the
c.e. wtt degrees, to appear in Notre Dame Journal of Formal Logic.

4. S. B. Cooper, Computability Theory, Chapman & Hall/ CRC Press, Boca Raton,
FL, New York, London, 2004.

5. A. H. Lachlan, On the lattice of recursively enumerable sets, Trans. Am. Math. Soc.
130 (1968), 1–37.

6. D. A. Martin, Classes of recursively enumerable sets and degrees of unsolvability,
Z. Math. Logik Grundlag. Math. 12 (1966), 295–310.

7. P. Odifreddi, Classical recursion theory Vols. I,II Amsterdam Oxford: North-
Holland, 1989, 1999.

8. J. C. Owings, Recursion, metarecursion and inclusion, Journal of Symbolic Logic
32 (1967), 173–178.

9. E. L. Post, Recursively enumerable sets of positive integers and their decision prob-
lems, Bull. Am. Math. Soc. 50 (1944), 284–316.

10. J. R. Shoenfield, Degrees of classes of r.e. sets, J. Symbolic Logic 41 (1976), 695–
696.

11. R. I. Soare, Recursively enumerable sets and degrees, Springer-Verlag, Berlin, Lon-
don, 1987.

290

Computing with Newtonian Machines

Edwin Beggs and John V Tucker

University of Wales Swansea

The talk will consider to what extent machines operating under Newton’s
laws can compute more than a Turing machine. Various examples will be given,
and their advantages and drawbacks discussed. The examples will be studied
using a methodology to analyse and classify the physical sub-theories allowing
the computations and hyper-computations. The work is part of our programme
to discover just what pieces of classical mechanics are necessary to ensure that
machines can only compute what a Turing machine can compute.

References

1. E J Beggs and J V Tucker, Computations via experiments with kinematic
systems, http://www-compsci.swan.ac.uk/~csjvt/JVTPublications/Bagatelle%
28PreprintMarch04%29.pdf, Technical Report 5-2004, Department of Computer
Science, University of Wales Swansea, March 2004.

2. E J Beggs and J V Tucker, Embedding infinitely parallel computation in Newtonian
kinematic systems, http://www-compsci.swan.ac.uk/~csjvt/JVTPublications/

infinite%20parallelism.pdf, Applied Mathematics and Computation, accepted.
3. E J Beggs and J V Tucker, Can Newtonian systems, bounded in space, time, mass

and energy compute all functions?, Theoretical Computer Science, accepted.

291

Infinite Time Turing Computation

Barnaby Dawson

Mathematics Department
Bristol University

Infinite time Turing computation is a generalisation of Turing computation
to computers with infinite tapes and an infinite amount of time to work on
those tapes. The implementation of such a computer will be described and the
implications of the assumption that all sequences can be viewed as the output of
such a computer shall be elucidated. In particular links with the axiom of choice
and the coninuum hypothesis will be shown.

292

On a Problem of J. Paris

C. Dimitracopoulos1⋆ and A. Sirokofskich2

1 Department of History and Philosophy of Science, University of Athens, GR-157 71
Zografou, Greece, cdimitr@phs.uoa.gr

2 Department of Mathematics, University of Athens, GR-157 84 Zografou, Greece,
asirokof@math.uoa.gr

A question asked by J. Paris (see Problem 34 in the list in [1]) is whether or
not Δn induction implies Σn collection. We sketch alternative proofs of results of
T. Slaman ([3]) and N. Thapen ([4]) concerning this problem, especially for the
case n = 1. Our proofs depend on results of C. Dimitracopoulos and J. Paris ([2])
concerning relationships between Σn collection and (versions of) Σn pigeonhole
principle.

References

1. P. Clote and J. Kraj́ıček: Open problems, Oxford Logic Guides, 23, Arithmetic,
proof theory, and computational complexity (Prague, 1991), 1–19, Oxford Univ.
Press, New York, 1993.

2. C. Dimitracopoulos and J. Paris: The pigeonhole principle and fragments of arith-
metic, Z. Math. Logik Grundlag. Math. 32 (1986), 73–80.

3. T. A. Slaman: Σn-bounding and Δn-induction, Proc. Amer. Math. Soc. 132 (2004),
2449–2456.

4. N. Thapen: A note on Δ1 induction and Σ1 collection, Fund. Math. 186 (2005),
no. 1, 79–84.

⋆ Research co-funded by the European Social Fund and National Resources -
(EPEAEK II) PYTHAGORAS II

293

Risk Management in Grid Computing

Odej Kao1 and Karim Djemame2

1 PC2 - University of Paderborn, 33102 Paderborn, Germany
2 School of Computing, University of Leeds, Leeds LS2 9JT, UK

The Grid [1] offers scientists and engineering communities scalable, secure,
high-performance mechanisms for discovering and negotiating access to compu-
tational, storage and network resources in a seamless virtual organisation. It
promises to make it possible for scientific collaborations to share resources on an
unprecedented scale, and for geographically distributed groups to work together
in ways that were previously impossible.

Grid technologies have reached a high level of development, but Grid adopters
underline core shortcomings related to security, trustworthiness, and depend-
ability of the Grid for commercial applications and services. End-users require
application execution with the desired priority and quality, and Service Level
Agreements (SLAs) negotiation to define all aspects of the business relationship
with Grid providers. Nevertheless, providers are still cautious on adoption as
agreeing on SLAs including penalty fees is a business risk: for example a system
failure can lead to SLA violation. Providers need risk assessment methods as
decision support for accepting/rejecting SLAs, price/penalty negotiation, acti-
vating fault-tolerance actions, and for capacity and service planning. Grid end-
users need the estimation and aggregated confidence information for provider
selection and fault-tolerance/penalty negotiations.

The Risk Assessment and Management for Grids research project (Assess-
Grid) [2], recently funded by the European Commission, brings together various
academic and industrial partners to address Grid risk awareness and consid-
eration in SLA negotiation, self-organising fault-tolerant actions, and capacity
planning. It will develop and integrate methods for risk management in all Grid
layers. The corner stones are risk management scenarios reflecting the perspec-
tive of Grid end-users, resource brokers, and resource providers. The results will
support all Grid actors by increasing the transparency, reliability, and trustwor-
thiness as well as providing an objective foundation for planning and manage-
ment of Grid activities. Thus, this research will supply Next Generation Grids
with additional innovative and required components to close the gap between
SLAs as concept and accepted tool for commercial Grid uptake.

References

1. Berman, F., Cox, G.C., Hey, A.J.G.: Grid Computing - Making the Global Infras-
tructure a Reality. Wiley, 2003

2. AssessGrid: Risk Assessment and Management for Grids.
http://www.assessgrid.org/, 2006

294

Some Mathematical Properties of Propositional
Input Resolution Refutations with

Non-Tautological Resolvents

Annelies Gerber⋆

University Paris 6, Department of Computer Science, 75013 Paris, France
agerber03@yahoo.co.uk, Annelies.Gerber@univ-rouen.fr

Abstract. The question of whether or not a given set S of initial propo-
sitional clauses possesses a resolution proof is far from trivial. We aim
to geometrically reproduce all necessary information encoded in propo-
sitional resolution proofs. Here, we give a mathematical characterisation
of propositional input resolution refutations with non-tautological resol-
vents based on notions from Euclidean geometry. For a particular class
of such proofs we develop a method to check whether or not a given set
S of initial clauses admits such proofs. We comment on possible gener-
alisations of this approach.

⋆ This work is supported by the Holcim Foundation, Switzerland

295

NdE - Normalization During Extraction

Mircea-Dan Hernest1

Laboratoire d’Informatique (LIX)
École Polytechnique

F-91128 Palaiseau - FRANCE
danher@lix.polytechnique.fr

We present a methodology for improving the implementation of the NbE
(Normalization by Evaluation) normalization algorithm [1, 2] in call-by-value
functional programming languages like SCHEME [3]. Such optimizations are
meant to heavily (at least from an empirical, observational viewpoint) decrease
the run-time complexity of the NbE-normalization of long sequences of nested
term applications (tn..(t2(t1t0))..). A situation of this kind occurs for example
in the case of the extraction of a modulus of uniform continuity for a closed term
t of Goedel’s T of type (IN→ IN) → (IN→ IN). The aforementioned extraction
is by means of Kohlenbach’s Monotone functional “Dialectica” Interpretation
[4] and proceeds from a proof of the hereditarily extensional equality of t to
itself. This example was implemented in the MINLOG proof-system [5], hence
a machine DEMOnstration will be available for the NdE optimization of the
call-by-value NbE-normalization.

References

1. Berger, U., Eberl, M., Schwichtenberg, H.: Normalization by evaluation. In Möller,
B., Tucker, J., eds.: Prospects for Hardware Foundations. Volume 1546 of LNCS.
Springer Verlag (1998) 117–137

2. Berger, U., Eberl, M., Schwichtenberg, H.: Term rewriting for normalization by eval-
uation. Information and Computation 183(1) (2003) 19–42 International Workshop
on Implicit Computational Complexity (ICC’99).

3. Cadence Research Systems: Chez Scheme. http://www.scheme.com (2006)
4. Kohlenbach, U.: Analysing proofs in Analysis. In Hodges, W., Hyland, M., Stein-

horn, C., Truss, J., eds.: Logic: from Foundations to Applications, Keele, 1993.
European Logic Colloquium, Oxford University Press (1996) 225–260

5. Schwichtenberg, H., Others: Proof- and program-extraction system MinLog. Free
code and documentation at http://www.minlog-system.de (2006)

296

A Similarity Criterion for Proofs⋆

Stefan Hetzl

Institut für Computersprachen (E-185),
TU-Vienna, Favoritenstraße 9,

1040 Vienna, Austria
hetzl@logic.at

Abstract. This talk is about the “characteristic clause sets” of sequent
calculus proofs (for first-order classical logic) and about their expressive-
ness as a similarity criterion for proofs.
The characteristic clause sets have first been introduced in order to study
cut-elimination: They are used as the main tool of the cut-elimination
method Ceres (Baaz,Leitsch 2000).
In this talk we present recent results and work in progress 1) on the class
of proofs having the same characteristic clause sets and 2) on proofs
having strongly related (in the sense of subsumption) clause sets.
We show that the characteristic clause sets are invariant under a number
of syntactic transformations of sequent calculus proofs that are generally
perceived not to change the character of the mathematical argument
underlying the proof (e.g. NNF-Transformation, rule permutations,...).
Furthermore we will give a comparison to other techniques used for an-
alyzing the questions of equality and similarity of proofs.

⋆ supported by the Austrian Research Fund (project no. P17995)

297

On Real Primitive Recursive Functions and
Differential Algebraicity

Akitoshi Kawamura

Tokyo Institute of Technology

In 1996 Moore introduced a class of real-valued “recursive” functions by anal-
ogy with Kleene’s formulation of the classical recursion theory. While his concise
characterization of the class offers unique insight into continuous-time computa-
tion and has inspired numerous subsequent works, technically it seems to suffer
some gaps. In this informal talk I focus on his “primitive recursive” functions
and try to specify the problem. In particular, I discuss possible attempts to re-
move the ambiguity in the behavior of the primitive recursion operator on partial
functions. Different modifications keep different parts of the original claims, but
it turns out that in any case the purported relation to differential algebraicity,
and hence to Shannon’s GPAC model, needs fix.

298

Non-unitary Quantum Walks: Exploring the
Space Between Classical and Quantum

Computing.

Viv Kendon

School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
V.Kendon@leeds.ac.uk

Abstract. Quantum versions of random walks have markedly different
properties from classical random walks, such as faster mixing or spread-
ing. These properties have been exploited to create several quantum algo-
rithms. It has also been observed that making the quantum walk slightly
less than perfectly quantum can actually improve the useful behaviour,
such as even faster mixing to the uniform distribution. In this talk I will
explain how to generalise a quantum walk into a non-unitary dynamics
that can interpolate between classical and quantum behaviours by tun-
ing a single parameter. In this way, the transition between quantum and
classical behaviour can be located and characterised.

For a review of non-unitary behaviour in quantum walks, see [1]. As an exam-
ple of typical behaviour, figure 1 shows the mixing time of the coined quantum
walk on cycles of sizes 48 to 52, as a function of the applied decoherence rate.
The mixing time decreases to a sharp minimum, then rises again to the clas-
sical value. The optimal behaviour from a computational point of view is thus
intermediate between quantum and classical.

Fig. 1. Numerical data for the mixing time on cycles of size N = 48 to N = 51, for
decoherence applied to coin only (dotted), position only (dashed) and both (solid).
1. Kendon, V.: Decoherence in quantum walks – a review. In preparation. (2006)

299

Logical Characterization of the Counting
Hierarchy

Juha Kontinen

Department of Mathematics and Statistics
University of Helsinki, Finland
juha.kontinen@helsinki.fi

The counting hierarchy CH is the analogue of the polynomial hierarchy PH, the
building block being probabilistic polynomial time PP instead of NP. We show
that the extension of first-order logic by second-order majority quantifiers of all
arities describes exactly the problems in the counting hierarchy.

This result is based on definability results which show that using the k-ary
Majority quantifier and first-order logic, the relativized k-ary Majority quanti-
fier (for k > 1) and the k-ary second-order existential quantifier are uniformly
expressible. This characterization holds on all structures, i.e., without ordering
or any numeric predicates. However, assuming ordering and predicates for + and
×, we get exact correspondence between the levels CkP of CH and sentences of
quantifier-rank k, where the rank depends on the majority quantifiers only.

We also discuss the possibility of replacing the majority quantifiers by general
proportional quantifiers saying “more than an r-fraction of relations”, where
0 < r < 1, for this result to remain valid.

300

Gödelian Foundations of Non-Computability and
Heterogeneity In Economic Forecasting and

Strategic Innovation

Sheri M. Markose

Economics Department and Centre for Computational Finance and Economic Agents
(CCFEA), University of Essex, Wivenhoe Park Colchester C04 3SQ, UK.

E-mail:scher@essex.ac.uk

Abstract. The lack of effective procedures to determine winning strate-
gies cleverly identified by Brian Arthur (1994) in an informal statement
of this problem in a stock market game called the Minority or El Farol
game results in the adoption of a multiplicity of meta- models for fore-
casting and strategizing by agents. The presence of contrarian payoff
structures or hostile agents in a game theoretic framework are shown to
result in the fundamental non-computable fixed point that corresponds
to Gödel’s undecidable proposition. Any best response function of the
game which is constrained to be a total computable function then rep-
resents the productive function of the Emil Post (1944) set theoretic
proof of the Gödel Incompleteness result. The productive function im-
plements strategic innovation and objects of novelty or ’surprise’ result
in undecidable structure changing dynamics in the system. Oppositional
or contrarian structures, self-reflexive calculations and the necessity to
innovate to out-smart hostile agents are ubiquitous in economic systems.
However, as first noted in Binmore (1987) and Spear (1987), extant game
theory and economic theory cannot model the strategic and logical neces-
sity of Gödelian indeterminism in economic systems. This paper reports
on some formal results developed in Markose (2002, 2004, 2005) on the
implications of the Gödelian incompleteness result for economics.

Arthur, W.B., (1994). ”Inductive Behaviour and Bounded Rationality”, Amer-
ican Economic Review, 84:406-411.
Binmore, K. (1987), ”Modelling Rational Players: Part 1”, Journal of Eco-
nomics and Philosophy, 3:179-214.
Markose, S.M, 2005 , ”Computability and Evolutionary Complexity : Markets
as Complex Adaptive Systems (CAS)”, Economic Journal, 115:F159-F192.
Markose, S.M, 2004, ”Novelty in Complex Adaptive Systems (CAS): A Com-
putational Theory of Actor Innovation”, Physica A: Statistical Mechanics and
Its Applications, 344:41- 49. Details in Essex, Econ.Dept. DP No. 575.
Post, E.(1944). ”Recursively Enumerable Sets of Positive Integers and Their
Decision Problems”, Bulletin of American Mathematical Society, 50:284-316.
Spear, S.(1989), ”Learning Rational Expectations Under Computability Con-
straints”, Econometrica , 57:889-910.

301

Sequent Calculi and the Identity of Proofs

Richard McKinley

University of Bern

Abstract. Until recently, no satisfactory denotational semantics for clas-
sical logic existed, and hence no satisfactory answer to the question
“when are two proofs equal?” Recently, several independent approaches
to this question have arisen: each gives a class of models which captures
the equalities on proofs required to perform cut-reduction in a particular
formalism.
This presentation will show that such approaches are heavily dependent
on the particular variant of the sequent calculus one chooses. Taking the
additive and multiplicative presentations of the classical sequent calculus
as examples, we show that what is an evident equality of proofs in one
presentation is decidedly unclear in the other. We examine how these two
separate notions of proof equality might be synthesized by examining
Hughes’ Hybrid logic (which has rules which are simultaneously additive
and multiplicative) and Bruennler’s SKS (a deep inference calculus for
classical logic).

302

The Key to the Universe, Part 2

Robert K Meyer

Automated Reasoning Group
Computer Science Lab

Research School of Information Sciences & Engineering
Australian National University

The key to the universe is the magnificent accord between Curry-style com-
binators and matching relational postulates for the semantics of a wide range of
logics. This key works most impressively in the filter models of lambda calculus
in intersection type theory developed with Barendregt by Coppo, Dezani and
the Torino school. I examine in the present talk the degree to which the further
logical modelling of Boolean complementation can be added to this picture.

303

Questions Concerning the Usefulness of Small
Universal Systems.

Liesbeth De Mol

Centre for Logic and Philosophy of Science
University of Gent, Blandijnberg 2, 9000 Gent, Belgium

In the fifties and sixties of the 20th century, there seemed to have been a
small hype for finding the smallest possible Universal Turing machine. The last
few years interest in this subject was triggered again, partly due to the highly
criticized book by Stephen Wolfram, which, in its turn, gave rise to another kind
of hype. Given this and related work the question concerning the significance of
finding shortest universal systems should at least be taken into consideration
again. It will be shown that it is far from trivial to investigate the “behaviour”
of universal systems within a reasonable time and space, especially if one wants to
consider other systems than CA. It will be argued that finding (short) universal
systems might be interesting iff. a certain condition is fulfilled: when it is possible
to generate non-trivial “behaviour” for practically feasible initial conditions.
This discussion will be related to some preliminary research of the author on the
possibility of universal binary tag systems.

304

Basic Model Theory for Bounded Theories

Morteza Moniri

Department of Mathematics, Shahid Beheshti University, Iran

Preservation theorems for some special classes of first-order formulas (e.g.
existential formulas) are well-known in classical model theory. Notions like quan-
tifier elimination or model completeness are also well studied in model theory.
We define similar notions and prove similar theorems for bounded formulas of
bounded theories (i.e. theories axiomatizable by bounded formulas). We nat-
urally define when a bounded theory has bounded quantifier elimination, is
bounded model complete, or has bounded model companion. We also prove some
basic theorems on these notions. These provide natural extensions of questions
like P=NP or NP=coNP in the context of bounded theories. We also study
applications of these general results on some well-known theories of classical
bounded arithmetic like PV and CPV, and some intuitionistic versions of them
(via Kripke models). These results are based on a paper to appear in AML, and
also a work in progress.

305

The Method Of Approximation In Real
Computation

Kerry Ojakian

Instituto Superior Técnico (Lisbon)

Campagnolo, Costa, and Moore [2002] found connections between discrete
complexity classes and analog classes defined on the reals. Building on these
ideas Bournez and Hainry [2005] found function algebra descriptions of classes
of functions defined via computable analysis. We develop a general collection of
tools which allow us to nicely compare different classes of functions via a notion
of “approximation” We apply these general tools to obtain some previous results
and prove new ones, along the lines of the aforementioned authors.

References

[2002] M. Campagnolo, C. Moore, J. Costa: An analog characterization of the Grze-
gorczyk hierarchy. Journal of Complexity 18 (2002) 977–100

[2005] O. Bournez, E. Hainry, Elementarily Computable Functions Over the Real Num-
bers and R-Sub-Recursive Functions. Theoretical Computer Science 348 (2005)
130–147

306

Long Games with a Short Memory:
The Church Synthesis Problem over Countable

Ordinals

Alexander Rabinovich and Amit Shomrat

Sackler Faculty of Exact Sciences
Tel-Aviv Univ., Israel 69978.

{rabinoa, shomrata}@post.tau.ac.il

Two fundamental results of automata theory are the decidability of the
Monadic second-order Logic of Order (MLO) over ω and the computability of
the Church synthesis problem over ω. In their classical paper [BL], Büchi and
Landweber reduce the Church synthesis problem to ω-length two-person games
of perfect information, where the winning condition is definable by an MLO-
formula (the so called “regular” games). Their main theorem states:

Theorem (Büchi-Landweber).

1. In every such game, one of the players has a winning strategy.
2. The winning player has a winning strategy that is definable by a finite au-

tomaton with output.
3. There exists an algorithm that, given such a game (that is, a formula defining

the winning condition), determines which of the two players has a winning
strategy and constructs a finite-automaton defining such a strategy.

Büchi generalized the concept of an automaton to allow automata to “work” on
a countable ordinal and used this to show that the MLO-theory of any countable
ordinal is decidable (see [BS]). Büchi and Landweber state that their result could
also be generalized to all countable ordinals [BL]. However, we show:

Theorem. The Büchi-Landweber theorem holds for a countable ordinal α iff
α < ωω. In particular, there is a regular game of length ωω in which none of the
players has a finite-state winning strategy.

Our proof uses both game theoretical techniques and the “composition method”
developed by Feferman-Vaught, Shelah and others (see e.g. [Sh]).

We will also discuss the decidability of the Church synthesis problem over a
given countable ordinal and an exact characterization of games (i.e., formulas)
in which one of the players has a finite-state winning strategy.

References

[BL] J. R. Büchi, L. H. Landweber, Solving Sequential Conditions by Finite-State
Strategies, Transactions of the AMS, Vol. 138 (Apr. 1969), pp. 295-311.

[BS] J. R. Büchi, D. Siefkes, The Monadic Second-order Theory of all Countable
Ordinals, Springer Lecture Notes 328 (1973), pp. 1-126.

[Sh] S. Shelah, The Monadic Theory of Order, Annals of Mathematics, Ser. 2, Vol.
102 (1975), pp. 379-419.

307

Extensions of the Semi-Lattice of the
Enumeration Degrees

Ivan N. Soskov⋆

Faculty of Mathematics and Computer Science,
Sofia University,

5 James Bourchier Blvd.,
1164 Sofia, Bulgaria,

soskov@fmi.uni-sofia.bg

For every recursive ordinal α a reducibility on all sequences of sets of natural
numbers of length α is defined. The induced equivalence classes are called α-
enumeration degrees. The 1-enumeration degrees coincide with the enumeration
degrees and for all α < β there exists a natural embedding of the α-enumeration
degrees into the β-enumeration degrees which is proper.

In the talk we discuss several properties of the α-enumeration degrees. Ana-
logues of the Selman’s Theorem, The Minimal Pair Theorem, The Exact Pair
Theorem and the existence of Quasi-minimal degrees are demonstrated.

A jump operation on α-enumeration degrees is defined and the respective
Jump inversion theorem is proved. We show also that the Σ0

2 , ω-enumeration
degrees are dense.

⋆ Research partially supported by the Sofia University Science Fund

308

Genericity and Nonbounding

Mariya Ivanova Soskova⋆

University of Leeds

The structure of the semi lattice of the enumeration degrees has been in-
vestigated from many aspects. One aspect is the bounding and nonbounding
properties of the enumeration degrees.

Definition 1. Let a and b be two enumeration degrees. We say that a and b
form a minimal pair in the semi-lattice of the enumeration degrees if:

1. a > 0 and b > 0.
2. For every enumeration degree c (c ≤ a ∧ c ≤ b→ c = 0).

In [2] Cooper, Sorbi, Lee and Yang proved that every Δ0
2 degree bounds a

minimal pair, but there exists a Σ0
2 degree that does not bound a minimal pair.

Definition 2. A set A is n-generic if for every Σ0
n set X of strings

∃τ ⊂ A(τ ∈ X ∨ ∀ρ ⊇ τ(ρ /∈ X))

Copestake on the other hand proved in [1] that the degree of every 2-generic
set bounds a minimal pair and conjectured that in contrast to the Turing case
where every 1-generic degree bounds a minimal pair as proved in [5] there is a
1-generic set whose enumeration degree does not bound a minimal pair. Using
the infinite injury priority method we construct a Σ0

2 1-generic set, whose enu-
meration degree does not bound a minimal pair, generalizing the former result
and proving Copestake’s longstanding conjecture.

Theorem 1. There exists a 1-generic enumeration degree a, that does not bound
a minimal pair in the semi-lattice of the enumeration degrees.

References

1. K. Copestake, 1-genericity in the enumeration degrees, J. Symbolic Logic 53 (1988),
878–887.

2. S. B. Cooper, Andrea Sorbi, Angsheng Li and Yue Yang, Bounding and nonbounding
minimal pairs in the enumeration degrees, to appear in the J. Symbolic Logic.

3. R. I. Soare, Recursively enumerable sets and degrees, Springer-Verlag, Heidelberg,
1987.

4. S. B. Cooper, Computability Theory, Chapman & Hall/CRC Mathematics, Boca
Raton, FL, 2004.

5. P. G. Odifreddi, Classical Recursion Theory, Volume II, North-Holland/Elsevier,
Amsterdam, Lausanne, New York, Oxford, Shannon, Singapore, Tokyo 1999.

⋆ Research partially supported by the Marie Curie Early Training Site MATHLO-
GAPS (MEST-CT-2004-504029)

Author Index

Abdul Rauf, Rose Hafsah2
Afshari, Bahareh 289
Andréka, Hajnal 12
Arslanov, Marat 15

Beggs, Edwin . 290
Blanck, Jens . 24
Bruni, Riccardo 37

Costa, Jose Felix 47
Cotogno, Paolo .58

Dawson, Barnaby 291
De Mol, Liesbeth 303
den Boer, Arnoud 268
Dimitracopoulos, Costas 292
Djemame, Karim293

Elbl, Birgit .68

Fouche, Willem L.78

Gaßner, Christine 85, 95
Gavryushkin, Alexander 105
Gerber, Annelies 294
Gerhardy, Philipp 109
Gordeev, Lev . 119

Harman, Neal A.129
Hernest, Mircea-Dan 295
Hetzl, Stefan . 296
Hirata, Kouichi 140
Hirowatari, Eiju140
Hodges, Andrew .1

Kalimullin, Iskander 150
Kao, Odej . 293
Kawamura, Akitoshi 297
Kendon, Viv . 298
Koepke, Peter .160
Komendantskaya, Ekaterina 170
Kontinen, Juha 299

Li, Chung-Chih 182
Longley, John . 193
Lopez-Valdes, Maria 206

Markose, Sheri 300
McKinley, Richard 301
Meyer, Robert K. 302
Miyahara, Tetsuhiro 140
Moniri, Morteza 304
Mycka, Jerzy . 47

Nagy, Benedek 216

Ojakian, Kerry 305

Potgieter, Petrus Hendrik 226
Puzarenko, Vadim 236

Rabinovich, Alexander 306

Seda, Anthony 170
Selivanov, Victor 241
Shomrat, Amit 306
Siders, Ryan . 160
Sirokofskich, Alla 292
Skelley, Alan . 251
Soskov, Ivan N. 307
Soskova, Mariya Ivanova 308
Stukachev, Alexey 261

Tucker, John V.290

Vályi, Sándor . 216

Weiermann, Andreas 268

Ziegler, Albert 282

