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Abstract. Cryptographic algorithms play a key role in computer security and the formal analysis of

their robustness is of utmost importance. Yet, logic and automated reasoning tools are seldom used

in the analysis of a cipher, and thus one cannot often get the desired formal assurance that the cipher

is free from unwanted properties that may weaken its strength.

In this paper, we claim that one can feasibly encode the low-level properties of state-of-the-

art cryptographic algorithms as SAT problems and then use efficient automated theorem-proving

systems and SAT-solvers for reasoning about them. We call this approach logical cryptanalysis.

In this framework, for instance, finding a model for a formula encoding an algorithm is equivalent

to finding a key with a cryptanalytic attack. Other important properties, such as cipher integrity or

algebraic closure, can also be captured as SAT problems or as quantified boolean formulae. SAT

benchmarks based on the encoding of cryptographic algorithms can be used to effectively combine

features of “real-world” problems and randomly generated problems.

Here we present a case study on the U.S. Data Encryption Standard (DES) and show how to

obtain a manageable encoding of its properties.

We have also tested three SAT provers, TABLEAU by Crawford and Auton, SATO by Zhang, and

rel-SAT by Bayardo and Schrag, on the encoding of DES, and we discuss the reasons behind their

different performance.

A discussion of open problems and future research concludes the paper.

Key words: cipher verification, Data Encryption Standard, logical cryptanalysis, propositional satis-

fiability, quantified boolean formulae, SAT benchmarks.

1. Introduction

Providing computer security in large open networks such as the Internet is one of

the frontiers of computer science today [2, 38, 35]. Yet, providing security is not

so simple, and many technical challenges need to be solved to provide the high

assurance that such an enterprise requests. These challenges are sketched in the

excellent introduction by Anderson and Needham [2] and require the use of partic-

⋆ This is a longer and revised version of [30]. It contains also some of the experimental data

reported in [31] for rel-SAT. Further details, problem instances, and the encoder program can be

found at the URL: http://www.dis.uniromal.it/∼massacci/cryptoSAT.
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ular security protocols for communication [1, 19, 45] and advanced cryptographic

techniques [45]. Notwithstanding the amount of research and development work,
the literature is full of “how to break a secure...” examples [10, 28, 43]. A protocol

can be proven formally secure [39] and still be broken because the cipher used for

its implementation has unwanted algebraic properties [43].

So, the use of logical encodings and automated reasoning tools for the analysis

of cryptographic algorithms seems to be the next step toward greater assurance of

security. Yet, in contrast with the large literature on formal verification of cryp-

tographic protocols (see, e.g., [10, 39, 28, 34]), we find little or no use of logics

and automated reasoning tools in the proper cryptographic literature. Sophisti-

cated and successful techniques such as linear cryptanalysis [33, 32] or differential

cryptanalysis [7] use only statistical tools for solving cryptanalysis problems. The

presence or absence of algebraic properties that may substantially weaken a ci-

pher, such as algebraic closure, is often determined by ad hoc methods or huge

experiments [12, 26, 45].

In the absence of formal verification, the properties of many cryptographic algo-
rithms are subject to intense debates and speculations.⋆ Cryptographic key search

has become THE search problem for many governments and large corporations,

and the (lack of) resistance to key search is often the main concern behind the

licensing of a cipher [23].

Thus, a new field of potential applications comes to mind:

– Can we encode low-level properties of ciphers into logic?

– Can we do it in such a way that finding a model of the encoded formula is

equivalent to finding a key so that AI search techniques can be used to validate

the strength of an algorithm?

– Can we do it in such a way that other problems, such as cipher integrity or

existence of trapdoors, can also be formally verified by complete automatic

reasoning tools?

– Last, but not least, can we do it by using a feasible encoding, which might
give hard-to-analyze formulae but not overwhelming?

In this paper we claim that propositional logic and automated reasoning tools

can be efficiently used to model and verify state-of-the-art cryptographic algo-

rithms such as the (U.S.) Data Encryption Standard.

Among the various possibilities, we have chosen to encode cryptographic prop-

erties as SAT problems for a number of factors that are well summarized by Sel-

man, Kautz, and McAllester [47]:

First new algorithms were discovered, including ones based on stochastic local

search as well as systematic search, that have better scaling properties than

⋆ See, e.g., [45, Chapter 12] for a survey of the long-lived debate on whether the Data Encryption

Standard has hidden trapdoors that would allow the U.S. National Security Agency to decrypt all

traffic.
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the basic Davis–Putnam algorithm. Second, improvement in machine speed,

memory size and implementations extended the range of the algorithms. Third,
researchers began to develop and solve prepositional encodings of interesting,

real-world problems such as planning and diagnoses, with others on the horizon

[. . .].

Between 1991 and 1996 the size of hard satisfiability problems grew from ones
involving less than 100 variables to ones involving over 10,000 variables.

As we shall see, a number of interesting and challenging cryptographic problems

are now at the border of tractability for SAT-based approach.

1.1. CONTRIBUTIONS OF THIS PAPER

In a nutshell, we show how to encode the abstract, functional properties of a cryp-
tographic algorithm⋆ in a suitable logic so that, for instance, finding a model of the

corresponding formulae is equivalent to recovering a key in a cryptanalytic attack.

Once the properties of the algorithm are represented as (propositional) formulae,

we can use efficient and effective automatic (SAT) reasoning tools for the analysis

and the verification of the algorithm. We call this approach logical cryptanalysis.

To make our claims concrete, we show that by combining clever reverse engi-

neering, advanced CAD minimization, and propositional simplification, it is pos-

sible to encode in propositional logic the properties of the U.S. Data Encryption

Standard, DES for short, [36, 45].

The Data Encryption Standard, designed by IBM and NSA in the 1970s, is

the current U.S. government standard, has been adopted for many financial and

banking institutions, and is the recommended standard of the international banking

transaction services. Although DES is currently under review [37], its widespread

use and the fact that its security has been the subject of an intense scrutiny since
its inception [7, 12, 33, 32] make the case study significant. For many years DES

has been (and still is) the algorithm on which cryptanalysts tested the final success

of their techniques (see [45, pages 285–294] or Section 2 for a discussion and fur-

ther references). Even partial successes with AI techniques might be of substantial

industrial relevance.

The encoding of the properties of DES that we have been able to generate is at

the border of tractability for current search techniques: it is hard but not impossible.

For example, the encoding of a cryptographic attack with a known plaintext (where

finding a model is equivalent to finding a key) for the commercial version of DES

requires slightly more than 60,000 clauses and 10,000 variables (out of this only

56 are independent control variables, the key bits).

⋆ We refer only to the analysis of the algorithm itself and not to the verification of the program,

software code, or hardware circuit that implements it. Thus, we are not interested in software verifi-

cation and in showing that an implementation matches a specification. We are interested in showing

that the specification itself does not imply hidden, unwanted properties.
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To check the effectiveness of AI techniques on this problem, we have used state-

of-the-art SAT provers for cryptographic key search with our encoding. Here we
focus on complete algorithms⋆ based on the Davis–Putnam (DPLL) procedure [18,

17] and in particular on

– TABLEAU, by Crawford and Auton [15], a reference implementation of the

DPLL procedure,

– SATO, by Zhang [51], which uses a sophisticated trie data structure for speed-

ing up unit propagation,

– rel-SAT, by Bayardo and Schrag [5], a combination of the traditional DPLL

procedure with back-jumping and learning.

In the experiments on the Data Encryption Standard, we didn’t expect to be

immediately competitive with twenty years of advanced cryptanalysis techniques,

especially because AI labs are not equally well funded to afford a specialized

hardware machine of 250.000 USD, or the exclusive use of a network of 12 work-

stations for 50 days, which have been used to break DES in the last few years

[16, 32]. Still, we were pleasantly surprised by the result: a general-purpose search

algorithm such as rel-SAT using off-the-shelf hardware (Sparcs and Pentium II)

can solve limited versions of DES without being told any information on the struc-

ture of the problem. Yet, there is a lot of research work that needs to be done,

since the commercial version is still out of reach for SAT-based systems, and on

intermediate versions we cannot fully compete⋆⋆ with the performance of advanced

cryptographic techniques based on statistical analysis [3, 7, 32].

Still, we believe that this approach might be beneficial for both the automated
reasoning and the computer security communities.

For the automated reasoning community, it provides a set of challenging prob-

lems of industrial relevance ranging from satisfiability and validity in propositional

logic to validity in quantified boolean logic. Thus we claim that this problem could

be one of the reference benchmarks for propositional reasoning and search. We

should not see such applications as tools for “electronic criminals”. Verification

and cryptanalysis of ciphers are the common practice of institutions responsible

for international standards and of cryptographic research.‡ After all, before recom-

mending an algorithm for encoding bank transactions, one may want to thoroughly

test and verify it.

Moreover, the encoding of Feistel-type ciphers like DES has the same char-

acteristics of challenging hard problems such as the hidden parity bit problem

mentioned in [47]: defined and independent variables, a hierarchical and regular

⋆ Local search algorithms such as GSAT and Walk-SAT do not seem to perform well on this

problem. See Massacci [31] for further details.
⋆⋆ Note, however, that these cryptographic methods require large amount of data to be effective.

See further in Section 2.
‡ Most security firms offer cash prizes for those who are able to break their ciphers.
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structure, and large affine subproblems (i.e., formulae with exclusive or). As we

shall see, such encodings give the possibility of generating as many random in-
stances as one wants, and still each instance is as “real-world” as any instance that

can be met in commercial cryptographic applications.⋆

Thus, we believe that it can be a first step toward an answer to the last SAT

challenge proposed by Selman, Kautz, and McAllester [47]. It is also an answer to

the problem of generating hard solved instances discussed by Cook and Mitchell in

their DIMACS survey [14]. As our experiments shows, our encoding can be used

to generate solved instances which are hard to solve, in contrast with the standard

generation methods for solved instances. We exploit the fact that cryptographic

algorithms are designed to be hard to crack. Our proposal follows the spirit of

Cook and Mitchell [14], where it was proposed to use RSA for generating hard

solved instances.

For the security community, the formalization of the property of a cipher using

logic might offer a simple solution to many issues regarding the strength of a

cryptographic algorithm. Consider the hot debate about the existence of trapdoors
or key escrow schemes. The formal proof that there is no universal key to escrow

a cipher might be provided together with the algorithm. The proof might then be

quickly machine checked for correctness by suspicious users. Even if finding the

proof takes a long time, this can be done off-line once and for all. Also, to verify

the strength of a cipher, one may test it for resistance against SAT solvers and thus

possibly avoid the risk of becoming the subject of a “how to break a secure. . .”

paper at the next crypto conference.

1.2. PLAN OF THE PAPER

In the rest of the paper we recall at first some basic things about cryptography, how

the Data Encryption Standard works, and some of the main approaches used for

the cryptanalysis of DES (Section 2).

Then we present the general idea behind logical cryptanalysis, and how different

properties can be captured by this approach once we have encoded the functional

description of a cipher into propositional logic (Section 3). The details of the en-

coding of the Data Encryption Standard are presented in Section 4, where we also

presents some experimental data on the size and structure of the corresponding

SAT-problem.
Third, we present some preliminary experiments on the performance of the

automated reasoning tools TABLEAU, SATO, and rel-SAT for the simplest crypto-

graphic problem that we can encode as a SAT problem (cryptographic key search

⋆ This contrast, with the most common benchmarks for propositional reasoning and search, which

either are totally random such as the Random 3-SAT CNF [48] or are fixed but have industrial

relevance such as the IFIP benchmark for hardware verification [13]. Our proposal follows the line

of the work by Gomes et al. on generating structured CSP problems using quasi-group problems

[21, 22].
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on a limited version of DES) and discuss the reason behind their different perfor-

mances (Section 5).
We conclude the paper with some topics for future research (Section 6).

2. Basics of Cryptography

At high level (for a comprehensive introduction to the subject, see [45]), a cryp-

tographic algorithm transforms a sequence of bits into another sequence of bits
with certain (desirable) properties. So, if we denote three vectors of bits by P (the

plaintext), C (the ciphertext), and K (the secret key) we have

C = EK(P).

The important property of this transformation, called encryption, is that it must be

difficult to recover P from C if one does not know K.

In most cases we have another transformation (decryption) that maps back C

into P using K or another sequence of bits K−1, which is related to K.

C = DK−1(P).

If K can also be used for decryption, we have a symmetric cipher.

The first thing a cryptanalyst may wish to do is to search for a key which

produced a given ciphertext. This can be done by using only the ciphertext, or a

number of known pairs of plaintext and ciphertext (known plaintext attack). This

latter attack is not so impossible as one might expect: there are lot of standard parts

in encrypted messages and files. In some cases it makes sense to assume that the

cryptanalyst could choose such pairs (chosen plaintext attack). The cryptographic

techniques we sketch in Section 2.2 can be classified along these lines.

There are other, more sophisticated properties that are more interesting though
harder to analyze. The basic one regards the existence of trapdoors in a cipher.

For instance, we may wonder if there is an universal key to decrypt any message

encrypted with DES. As we already noted, this has been the subject of an intense

debate till the recent past [45, Section 12.3].

Almost all algebraic properties of a cipher that distinguish it from a pseudo-

random permutation affect (weaken) its strength. A fairly simple property is the

existence of weak keys, i.e., of keys K such that P = EK(EK(P)). There is little

sense in encrypting things twice with a weak key. For instance, DES has an handful

of weak keys [45, p. 280].

Even if no weak key exists, we may wish to know whether a cipher is closed

[26, 45, 12]; that is, for any plaintext P and for any two key K1 and K2 we can

always find a third key K3 such that encrypting a plaintext with the first key and

then with the second key is perfectly equivalent to encrypting it is just once with

the third key. In other words we want to know whether EK2(EK1(P)) = EK(P) for
a suitable key K. In general we may wish to find a key K that is independent from

the plaintext and just dependent on the other two keys.
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Figure 1. A round of DES.

If a cipher is closed, this means that we cannot improve its security by en-

crypting things twice with different keys. Even worse, the cipher is vulnerable to

particular attacks that make it possible to reduce the search space of brute force

attacks to half of the key bits [26]. Proving that a cipher is closed is equivalent to

proving that the encryption transformations form a group. For instance, it has been

proved with a huge number of cyclic experiments that DES is not a group [12].

Another interesting combination of encryption with different keys is Tuchman’s

triple encryption scheme, which is an encryption of the plaintext with one key, its

decryption with a different key, and its final re-encryption with a third key. Again,

we wish to known whether we are better off than by using a simple encryption, i.e.,

whether

EK3(DK2(EK1(P))) 6= EK(P)

for all plaintexts P and all keys K.

As a final example, we may wish to know whether a cipher is faithful [26],

i.e., if different keys can be used to generate the same plaintext-ciphertext pair.

In symbols we may ask whether EK(P) = EK′(P) implies that K = K′. This is

important if we want to use the data as court evidence.

2.1. THE DATA ENCRYPTION STANDARD

As the reader might now want to know how DES works, we start by saying that

DES is a block cipher, which enciphers blocks of 64 bits (the plaintext) into blocks

of 64 bits (the ciphertext) using a key of 56 bits.⋆ We give here only a simple

presentation to make the paper self-contained; the interested reader is referred to

[36] or [45, Chap. 12] for more details.

⋆ The key is usually expressed as a 64-bit number, in which every eighth bit is used for parity

checks and is ignored by the algorithm.
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DES and many other popular symmetric ciphers such as RC5 are built following

a common architecture which is due to Feistel and his group [20]. After some initial
preprocessing, the following operations are executed:

1. break the plaintext in two halves,

2. combine one half with the key using a clever function f ,

3. XOR the combination with the other half, and

4. swap the two parts.

The combination of these operations is called a round. Figure 1 exemplifies the

construction.

In the case of DES there are 16 rounds (i.e., the above operations are “repeated”
16 times), which are almost identical except for the keys: for each round a different

subset of the 56 key bits is selected and combined with the input of the previous

round. The strength of the cipher depends on the way this combination function is

designed and on the number of rounds. This design is, to quote Ron Rivest, “part

art, part science”.

Following the notation introduced at the beginning of the section, we use super-

scripts to distinguish two different vectors of bits and subscripts to represents the

single element within a vector. So, in L1, L2, and as or, Li is the ith vector and not

the ith component. The j th component of the ith vector Li is represented as Li
j .

After an initial permutation, whose purpose is to mix the input bits, the plaintext

is divided in two halves, a left one and a right one. The 16 rounds in which the right

part of the data is combined with the key can be described as follows:

Li = Ri−1, (1)

Ri = Li−1 ⊕ f (Ri−1, Ki), (2)

where we indicate by A ⊕ B the xor of the j th component of the vector A with the

j th component of the vector B. After the 16th round, the right and left halves are

joined, and a final permutation (the inverse of the initial permutation) finishes the

algorithm.

For each of the 16 rounds of DES a 48 bits subkey is generated. These subkeys,

Ki , are generated according a particular scheduling algorithm. Initially we divide

the 56 bits key in two 28 bits blocks, C0 and D0, and, during the generic iteration,
Ci−1 and Di−1 are circularly shifted left of one or two bits based on the round i.

This produces two blocks, Ci and Di , that are joined and permuted to produce the

48 bits subkey Ki .

The round function f , which DES uses to mix up the key bits with the output

of the previous round, takes as arguments the right half Ri from the previous

round and the subkey from the actual round. Then the 32 bits that compose Ri

are permuted and expanded to 48 bits and then xored together with the key bits:

Xi = E(Ri−1) ⊕ Ki.

The 48-bit block Xi is then divided in eight subblocks of 6 bits each. Each subblock

specifies an entry in a substitution matrix called S-box. Every matrix has six input
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Figure 2. The round function f of DES.

bits and four output bits; therefore it has four rows and sixteen columns. The six

input bits specify in which row and column to see to find the four output bits. From

the S-boxes we obtain eight 4-bit numbers that form a 32-bit block.

The pictorial representation in Figure 2 should make it clearer.

Substitution and permutation operations realize the properties that Shannon [49]

named confusion⋆ and diffusion⋆⋆ and that give a cipher its strength. So the S-boxes

represent the most critical step that gives DES its strength [45, pp. 284 and 294].

2.2. EXISTING CRYPTANALYTIC APPROACHES

The simplest approach is exhaustive search: try different keys until the right one is

found. Testing 255 keys on average is not easy unless one has specialized hardware

or a large network of machines. This has proved to be finally successful in 1998:

a specialized machine costing 250.000 US$ broke the DES challenge posted by

RSA Security in 56 hours [16]. Although the search strategy exploited some of the

algebraic properties of DES to cut the size of the search space, we can substantially

classify it as exhaustive search.

Differential cryptanalysis was introduced in the early 1990s by Biham and

Shamir [7]. It considers ciphertext and plaintext pairs presenting particular fixed

differences. Then, it analyzes the evolution of these differences as the plaintexts

pass through the rounds of DES. Using the differences appearing in the actual

ciphertexts, different probabilities can be assigned to different keys. Considering

⋆ Confusion is created using operations that make an output sequence non-linearly dependent on

an input bits sequence.
⋆⋆ With diffusion an output bit is made dependent on a great number of input bits.
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an increasing number of ciphertext and plaintext pairs, a key will emerge as the

most probable.
Using this approach Biham and Shamir found a chosen plaintext attack that is

more efficient than exhaustive search. For a few rounds this approach is still feasi-

ble, although it requires larger and larger amounts of data as the number of rounds

increase. For instance, DES up to 8 rounds can be broken within few minutes on

a PC if a sufficiently large pool of chosen plaintexts (50,000) is available [7, p.

6]. However, for the full DES with 16 rounds, this attack is only theoretical since

it requires too many resources. To get the key, it uses 247 chosen plaintext. The

time complexity of the data analysis is about 237 DES equivalent operations. If

this approach is converted in a known plaintext attack, its efficiency is worse than

exhaustive search.

Matsui’s linear cryptanalysis [32, 33] works better. This method uses linear

approximations (xor) to describe the behavior of a block cipher. By xoring together

some plaintext bits with some ciphertext bits, one can get a bit that is the xor of

some key bits. This is a linear approximation of a round that is correct with a certain
probability. Using an increasing number of plaintext and related ciphertexts, it is

possible to guess the value of some key bits. If more data is analyzed, the guess is

more reliable.

To identify a good linear approximation for DES, it is necessary to find good

linear approximations for each round, and then join them together. The base attack

uses the best linear approximations for 16-rounds DES, and 227 known plaintexts,

returning two key bits. A refinement of this method uses the linear approximations

of 14 rounds and then guesses the input and output values of the first and last rounds

of DES. It can find 26 key bits and for the remaining bits uses exhaustive search.

An experimental analysis by Matsui [32] showed that is possible to get the key of

the full version of DES in 50 days using a network of workstations.

Davie (unpublished) proposed a potential attack on DES based on the non-

uniformity of the distribution of the output of pairs of adjacent S-boxes. This

attack is theoretical and requires 256.6 known plaintexts to discover two key bits.
The improved Davie’s attack [6] finds 24 key bits by applying the analysis twice,

one considering the odd rounds and the other considering the even rounds. The

remaining 32 bits can be found by exhaustive search. The improved version is able

to break DES faster than exhaustive search.

3. Logical Cryptanalysis

The main intuition behind logical cryptanalysis is that we should view each bit

sequence P, C, K as a sequence of propositional variables P,C,K, in which every

variable is true when the corresponding bit is 1 and false when it is 0.

Then we simply need to encode the properties of the cryptographic algorithm

with a logical formula E(P,K,C), which is true if and only if for the correspond-

ing sequences of bits we have that C = EK(P) holds. Propositional logic is the
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straightforward choice, but other logics (such as temporal logic) might give a more

compact encoding.
The intuition behind logical cryptanalysis is as simple as that. Once we have the

formula describing the cipher, the cryptanalysis problems we have described can

be easily formalized.

However, before going forward to the examples, we need to notice that if

E(P,K,C) holds there is no guarantee that E(C,K,P ) holds too. E(C,K,P )

does not model the fact that we can obtain P by decrypting C using K. Even for

symmetric ciphers, where the same key is used for encryption and decryption, the

algorithm used for decryption is slightly different from the algorithm used for en-

cryption (e.g., in DES we need to change the key scheduling). This slight difference

is sufficient to make the formula D(C,K,P ) slightly different from E(C,K,P ).

To model key search, let vC be the truth values (true/false) of the available

ciphertext. To find a key with a ciphertext only-attack, it is enough to find a model

of E(P,K, vC). In a known plaintext attack, we also know the values vP of the

propositional variables P . So, we only need to search for a model of E(vP ,K, vC).
For reason of space efficiency we may need to introduce more variables in

E(P,K,C) besides C,P and K to make use of abbreviations and definitions.

Indeed, this is what we have done in the encoding of DES in Section 4. Still, if

the encoding is well made, then K,C, and P should be the only control variables

of the problem; i.e., fixing their values should determine the values of all other

variables. Thus, in E(vP ,K, vC) the interesting variables are only K. For instance,

in the case of the DES encoding we have only 56 control variables.

If we have n plaintext and ciphertext pairs, we can constrain the search further

by conjoining the corresponding formulae

n
∧

i=1

E(vi
P ,K, vi

C).

We can thus encode cryptographic key search as a satisfiability problem.

In this way we can generate easily solved instances that might be very hard to

solve: we generate randomly a key K and a plaintext P. Then we use the crypto-

graphic algorithm itself to generate C = EK(P). Finally we substitute in E(P,K,C)

the corresponding Boolean values vP and vC that we have so far generated. Then

the pair 〈vK ,E(vP ,K, vC)〉 gives a solved instance of the satisfiability problem.

If the encoding is well designed, one could also use E(vP , vK , C) and unit prop-

agation to obtain vC . Our encoding satisfies this property, but using the original

encryption algorithm is much faster.

Finding a model (vK or another assignment) is then equivalent to break the

cipher with a known plaintext attack that uses only one or few plaintext/ciphertext

pair. Since the ciphers are designed to be hard to break, this will provide us with

the hard solved instances asked for by Cook and Mitchell [14].
For the analysis of the strength of a cipher, we are often interested in other

important properties that can be encoded as SAT problems or at worst as quantified
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Boolean formulae (QBF) [9, 11]. For instance, if we use QBF, finding a key would

correspond to a constructive proof of

∃K.

(

n
∧

i=1

E(vi
C,K, vi

P )

)

.

The simplest property (but for importance) that can be encoded as a SAT prob-

lem is the property that a cipher is faithful [26]: for any pair of plaintext and

ciphertext there is only one key that could have produced them. This property is

captured by the following formula:

E(P,K,C) ∧ E(P,K ′, C) ⇒

(

∧

i

Ki ⇔ K ′
i

)

.

In the case of DES, by analyzing the algorithm it is possible to detect some (six)

key pairs K and K ′ that do not satisfy this property. They are called semi-weak

keys.⋆ It is not known whether they are the only ones (see, e.g., [45, p. 281]).

In some cases (e.g., when discussing the value of encrypted evidence in a court

case), we may be interested in knowing whether a semi-weak key exists for given

plaintexts and ciphertexts. This problem is just a slightly harder variant of the key

search problem: we want to know whether E(vP ,K, vC) has a unique solution.

Another problem that can be expressed as a SAT problem is the (non) existence

of weak keys: we want to prove that EK(EK(P)) 6= P for all values of P. If we

denote the result of the first encryption by C, this property can be captured by the

propositional formula below:

E(P,K,C) ⇒ ¬E(C,K,P ).

If the formula above is propositionally valid, then no weak key exists for all values

of the plaintext. We can restrict it further by looking at particular instances of vP or

vK , if we suspect vK to be a weak key. Since DES has few weak keys, this problem

has a known answer. It might be interesting to see whether SAT-based approaches

can find other weak keys automatically.

If the strong property above is not valid, we can weaken it by using a 2-QBF

formula. Now we just require that for every key there is at least a plaintext that is

not mapped into itself.

¬∃K.∀P.(E(P,K,C) ⇒ E(C,K,P )).

Notice that we do not need to quantify over C: it should be uniquely determined

by the values of K and P if the encoding is well designed.

If we want to prove that a cipher is not closed, the formula we have to prove is

slightly more complicated. Recall that we have to prove that for any pair of keys

⋆ For instance, including the parity bits (every eighth bit), the keys 01FE 01FE 01FE 01FE and

FE01 FE01 FE01 FE01 are a pair of semi-weak keys.
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K1 and K2 we can never find a third key K such that EK2(EK1(P)) = EK(P). If

we denote by C1 the result of the first encryption and by C the result of the final
encryption, we get the following formula:

(

E(P,K1, C1) ∧ E(C1,K2, C)
)

⇒ ¬E(P,K,C).

If this formula is valid, then the cipher is not closed: encrypting twice (with differ-

ent keys) is better than encrypting once.

Notice that this property has never been formally proven for DES. There is only

an indirect proof based on cyclic experiments [12] of the weaker property that the

encryption with DES does not form a group, which is equivalent to the following

one:

∃K1∃K2.∀K∃P.
(

E(P,K1, C1) ∧ E(C1,K2, C)
)

∧ ¬E(P,K,C).

Proving that Tuchman’s triple encryption is stronger than single encryption can

also be done by proving the following formula:

(

E(P,K1, C1) ∧ D(C1,K2, C2) ∧ E(C2,K3, C)
)

→ ¬E(P,K,C).

This property can also be weakened using QBF.

The existence of universal keys which can decrypt all traffic can be characterized

by a QBF formula. If we denote by C the result of the encryption, we have

∃Ku.∀K.∀P.
(

E(P,K,C) ⇒ D(C,Ku, P )
)

.

Of course, we might be more interested in the negation of this formula, i.e., in

proving that no universal key exists. It is easy to check that if a cipher is faithful,

then no universal key exists.
Among these problems, we believe that the encoding of key search as a SAT

problem deserves particular attention as a SAT benchmark. The main advantage

behind our proposal is the combination of the seemingly contrasting needs of using

“real-world” problems (possibly with a lot of structures) and of generating a huge

number of instances which can only be (pseudo) randomly generated.

Real problems are important because solving them is what one expects from

SAT solvers. Yet, dealing with them is not simple [5]:

Care must be taken when experimenting with real world instances because the

number of instances available for experimentation is often limited.

Crawford and Auton [15] noted that working with random instances might be

preferable because

[. . .] random problems are readily available in any given size and virtually

inexhaustible numbers. For example, . . .[their experiments] required several
million problems and it is hard to imagine collecting that many problems any

other way.
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Our main point is that by changing the plaintext and the key we can generate

as many solved instances as we want. If we encode the full-fledged version of
the cryptographic algorithm (such as the Data Encryption Standard), each instance

would be identical to an actual plaintext and ciphertext used by a bank, financial

institution, or government department. In the case of the Data Encryption Standard

we can generate 256 × 264 instances that are fairly enough. Indeed, if we consider

the encryption of binary or compressed data, we can substantially span the whole

message space. If we restrict ourselves to ASCII plaintexts, the number of different

plaintexts shifts from 264 to 256, since every 8th bit of the 64 message bits will be

fixed.

To generate unsatisfiable instances, it is sufficient to generate a plaintext and

ciphertext pair and then give it to the encoder together with a wrong ciphertext

(by randomly flipping few bits). Our experimental analysis (Section 5) on the Data

Encryption Standard shows that few rounds or few plaintext and ciphertext pairs

are sufficient to constraint the search to only one model. Changing one bit of the

ciphertext would make the problem unsatisfiable.
Of course, the hard part is getting a manageable translation. We have done this

for the Data Encryption Standard.

4. Encoding the Data Encryption Standard

The generation of the formula E(C,K,P ) that describes the logical characteristics
of DES has been a substantial operation of reverse “logical” engineering.

The straightforward approach would be describing the VLSI circuit implement-

ing DES and transforming the circuit into a logical formula. Unfortunately, the

resulting formula is too big to be of any use.

Our basic idea is to walk through the DES algorithm, generating along the

way the formulae corresponding to each operation that DES performs, with a

clever trick. The trick to obtain manageable formulae is that not all stages of

DES should be explicitly represented by a circuit and then encoded as formulae.

Whenever possible, operations should be executed directly on the propositional

variables representing the input bits. For instance, a permutation is not encoded;

rather we execute the permutation of the input bits and provide as output the

permuted propositional variables.

Intuitively, to generate the encoding our programs must

– transform into Boolean formulae the fixed matrix operations corresponding to

the round function f (Figure 2), and minimize them off-line using state-of-the-

art CAD tools;

– encode each bit of the ciphertext, the plaintext and the key as a propositional

variable;

– simulate the DES algorithm, and generate formulae corresponding to each DES

operation on the way by
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• encoding complex transformations (previously minimized off-line);

• encoding exclusive or and equivalences;

• calculating simple operations and permutations;

– if requested, read from files the known values of the plaintext and ciphertext and

substitute the corresponding Boolean values in the formula;

– finally, simplify the formula, propagate and eliminate Boolean values, equiva-

lences, duplicate variables, tautological or inessential clauses, and so furth.

This process can be logically divided in three parts, one dealing with the general

structure of Feistel-like ciphers, one dealing with the permutations and the key

scheduling, one treating the S-boxes.

4.1. ENCODING THE GENERAL FEISTEL ARCHITECTURE

The encoding of the general Feistel-like structure of DES is straightforward. For

every round i of the algorithm we generate the formulae

Li
j ⇔ Ri−1

j , j = 1, . . . , 32,

Ri
j ⇔ Li−1

j ⊕ F i
j , j = 1, . . . , 32,

Xi
j ⇔ E(Ri−1)j ⊕ K i

j , j − 1, . . . , 48,

F i
j ⇔ P(Si)j , j = 1, . . . , 32.

In the previous formulae, the expression E(Ri−1) represents a permutation and an

extension from 32 to 48 bits of the initial vector of 32 propositional variables repre-

sented by Ri−1. In practice this means that some variables in Ri are duplicated. The

expression P(Si) represents the permutation of the S-boxes outputs. The vector of

variables F i is the output of the f function. The vector of propositional variables

K i represents the ith subset of the initial key that is chosen by the algorithm for

each round.

In the future we plan to study some possibility of off-line minimization for

these formulae, using the CAD minimization tool we have used for the generation

of the S-boxes in Section 4.3, since they are common to many other ciphers and

are repeated for many rounds.

4.2. ENCODING PERMUTATIONS AND THE KEY SCHEDULING

The “encoding” of the permutations and the generation of the subkeys K i have

been the subject of the trick we mentioned at the beginning of the section.

So, let M be a permutation matrix and A the vector of propositional variables

to be permuted. If mj is the element j in the matrix M, then the variable Mj

representing the element j of the matrix M will be equal to the variable Amj

representing the element mj of the vector A. Then we can simply consider the

permuted variables as the input of the next stage of the algorithm.
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To generate the subkey K i we consider a 64-element vector in which every

element is an integer representing the index of the variable that locates a particular
key bit. The DES algorithm applies a permutation (the one that eliminates eight

parity bits) and reduces these elements to 56. These 56 elements are divided in

two halves, and the shift operation is performed for each round. The two shifted

parts are then joined and permuted again to give the subkey. To encode the shift

operation, suppose that the number of shifts that have to take place at round i is

denoted by si . Then, for each element in the vector to be shifted we calculate the

position pj with (j = 1, . . . , 28) that each element occupies in the shifted vector.

The new positions can be obtained using the following algorithm:

1. p′
j = (j − si).

2. If p′
j 6 0

then pj = 28 − |p′
j |

else pj = p′
j .

With the new positions, the shift can be encoded as a permutation.

For instance, suppose that the processed round is the first round. Then si is

equal to 1, and one of the two vectors containing half of the key bits to be shifted

is C0: [57 49 41 33 . . . 52 44 36].

Using the previous criteria it is possible to see that

j = 1 ⇒ p′
1 = 1 − 1 = 0 ⇒ p1 = 28

j = 2 ⇒ p′
2 = 2 − 1 = 1 ⇒ p2 = 1

...

j = 28 ⇒ p′
28 = 28 − 1 = 27 → p28 = 27

In this way we have obtained a permutation vector that has to be applied to C0.
Performing this permutation we obtain the shifted vector C1: [49 41 33 . . . 52 44

36 57]. In the final formula, rather than adding a formula corresponding to the

permutation relating the input variables K1,K2, . . . ,K64 and the output variables

of the permutation circuit K2
1 ,K2

2 , . . . ,K2
64 and then using the output variables

K2
1 ,K i

2, . . . in the rest of the circuit, we use the corresponding permuted variables

K49,K41, etc. This is the twist that makes the encoding feasible.

4.3. ENCODING THE S-BOXES

The fundamental problem in processing the S-boxes is to determine a represen-

tation that is adequate to translate these matrices into formulae. The simplest ap-

proach is to use programmable logic arrays (PLAs) since these matrices are ad-

dressed by bits and their entries are bits too. Once every S-box is represented as a

PLA, we get formulae of this kind:

M i
kh ⇔

48
∧

j=1

±Xi
jkh, k = 1, . . . , max Mih
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Si
h ⇔

max Mih
∨

j=k1

M i
kj h, h = 1, . . . , 32,

where M i are the minterms generated in the round i, the vector of propositional

variables Si represents the 32 output bits of the S-boxes for the round i, and

max Mih is the number of minterms generated in the round i for the hth output

bit of the S-boxes.

If we do this translation without using minimization techniques, we introduce a

lot of redundant minterms, which make the search harder.

To minimize the PLAs representing the S-boxes, we used a CAD program for

PLA minimization [42, 41] named Espresso, a minimization tool for two-level

binary functions and multiple-valued logic functions. Espresso accepts as input

a two-level description of a Boolean function. This function is represented as a
character matrix with keywords embedded in the input to specify the size of the

matrix and the logical format of the input function. In our case we automatically

generate the inputs for Espresso from the standard S-box descriptions.

We tried two different approaches to minimization. In the first one every S-box

was considered as a single PLA with multiple valued outputs. In the second one

we modeled each output bit of each S-box as a separate PLA and minimized each

PLA independently. The rationale behind the first choice is that we expected to

have minterms common to different outputs.

In the first case we have 8 PLAs with six input variables and four output vari-

ables. After the minimization, the entries of the matrixes are reduced from 64 to 52

(51 for the eighth S-box). The distribution is presented in the first four columns of

Table I. The column represents each S-box outputs.

Considering each output bit of an S-box as a single output we got 32 PLAs

with six input variables and one output variable. With this kind of minimization we
obtain a further improvement in terms of the number of minterms associated with

each output and the average number of variables associated with each minterm.

The distribution of the number of minterms is presented in the last four columns of

Table I.

As for the number of variables, we note that in the first case we have on av-

erage 5.4–5.6 variables per minterm and in the second case 4.8–5.0 variables per

minterm.

Clearly, we have chosen the second approach for the final generation.

4.4. BUILDING THE FINAL FORMULA

After every step of DES has been encoded, we obtain a set of formulae whose

conjunction is exactly the formula E(C,K,P ) that characterizes DES. To give

an intuitive feeling of how it looks we present a sketch in Figure 3. For sake of
readability, we have dropped the subscript corresponding to single bits and use

only the superscript i to indicate the ith round of DES.
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Table I. Number of minterms per output.

S-box Multiple Outputs Single Outputs

o1 o2 o3 o4 o1 o2 o3 o4

S1 20 20 21 22 17 16 19 20

S2 25 23 22 22 19 18 18 14

S3 25 24 25 23 22 17 18 18

S4 23 23 22 23 18 17 17 18

S5 22 24 23 21 17 23 17 17

S6 23 24 25 22 17 22 22 16

S7 23 22 24 26 19 16 18 23

S8 22 22 20 21 19 17 15 18

Li = Ri−1,

Ri = Li−1 ⊕ F i,

F i = P(Si),

Si =
∨

M i,

M i =
∧

±Xi,

Xi = E(Ri−1) ⊕ K i .

Figure 3. Formulae encoding DES.

At this point, if we are interested in a known plaintext attack, it is necessary

to introduce the values of particular (plaintext, ciphertext) pairs. This is done by

setting each variable in L0, R0, Lr , and Rr to true or false, where r represents the

total number of rounds considered.

Then a simplification phase composed by two operations starts:

1. A substitution of the variables defined by atomic equivalences⋆ with the cor-

responding values to reduce the number of variables in other formulae, and to

introduce the truth values.

2. A propositional simplification of the formulae using the rules listed in Table II.

Propositional simplification may introduce other atomic equivalences, and there-

fore the overall process is iterated until there are changes.

The formulae in Figure 4 are the result of the elimination of equivalences,

and we have given some emphasis to the plaintext and the ciphertext, represented

respectively by the values of the first and last rounds of the algorithm.

In a known plaintext-attack this formula can be simplified further, since L0, R0,
Lr , and Rr are known, and we obtain the results in Figure 5.

⋆ We define an atomic equivalence as a formula of the form V ⇔ F , where V is a variable and F

is either another variable or a truth value.
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Table II. Propositional simplification rules.

Initial Fml Simplified Initial Fml Generated Fml

A ⇔ X ∧ X A ⇔ X 1 ⇔ A ∧ B A ⇔ 1; B ⇔ 1

A ⇔ X ∧ 0 A ⇔ 0 0 ⇔ A ∨ B A ⇔ 0; B ⇔ 0

A ⇔ X ∧ 1 A ⇔ X 0 ⇔ A ⊕ B A ⇔ B

A ⇔ X ∧ X A ⇔ 0 1 ⇔ A ⊕ B A ⇔ B

A ⇔ X ∨ X A ⇔ X A ⇔ A ⊕ B B ⇔ 0

A ⇔ X ∨ 0 A ⇔ X A ⇔ A ⊕ B B ⇔ 1

A ⇔ X ∨ 1 A ⇔ 1

A ⇔ X ∨ X A ⇔ 1

A ⇔ X ⊕ X A ⇔ 0

A ⇔ X ⊕ X A ⇔ 1

A ⇔ X ⊕ 0 A ⇔ X

A ⇔ X ⊕ 1 A ⇔ X

R1 = L0 ⊕ S1,

R2 = R0 ⊕ S2,

Ri = Ri−2 ⊕ Si, j = 3, . . . , r − 2,

Rr−1 = Rr−3 ⊕ Sr−1,

Rr = Rr−2 ⊕ Sr ,

Si =
∨

M i, i = 1, . . . , r,

M i =
∧

±Xi, i = 1, . . . , r,

X1 = R0 ⊕ K1,

Xi = Ri−1 ⊕ K i, i = 2, . . . , r − 1,

Xr = Rr−1 ⊕ Kr .

Figure 4. DES formulae for r rounds.

The final outcome of the encoder is a formula that represents the logical re-

lations between the key bits, the known plaintext, and the known ciphertext. Its

structure is shown in Figure 6.

4.5. EXPERIMENTAL DATA

Since it makes no sense to do this encoding by hand, a program⋆ has been designed

and implemented to generate formulae encoding DES in an entirely modular and

automatic way.

⋆ More details on the encoder can be found in [29] and at the cited Web site.
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R3 = ±S1 ⊕ S3,

R4 = ±S2 ⊕ S4,

Ri = Ri−2 ⊕ Si, i = 5, . . . , r − 4,

Si =
∨

M i, i = 1, . . . , r,

±Sr−1 = Rr−5 ⊕ Sr−3,

±Sr = Rr−4 ⊕ Sr−2,

M1 =
∧

±K1,

M i =
∧

±Xi, i = 2, . . . , r − 1,

Mr =
∧

±Kr ,

X2 = ±S1 ⊕ K2,

X3 = ±S2 ⊕ K3,

Xi = Ri−1 ⊕ K i, i = 4, . . . , r − 3,

Xr−2 = ±Sr−1 ⊕ Kr−1,

Xr−1 = ±Sr ⊕ Kr .

Figure 5. DES formulae for r rounds with known plaintext and ciphertext.

Definitions

M i ⇔
∧

±Xi, 2 6 i 6 r − 1,

Si ⇔
∨

M i, 2 6 i 6 r,

Xi+1 ⇔ Si ⊕ K i, 1 6 r − 1.

Constraints

M1 ⇔
∧

±K,

Mr ⇔
∧

±Kr ,

±Sr−1 ⇔
⊕

i S
i, i even,

±Sr ⇔
⊕

i S
i, i odd.

Figure 6. The final encoding of the data encryption standard.

We can easily generate the formulae describing DES-like cryptosystems for any

number of rounds up to 16, for any key and any pair of plaintext and ciphertext. All

the permutation and substitution matrices (S-boxes) are read from external files

so that one can change them according to one’s wishes. In this manner one can

evaluate the strength of DES when the number of rounds and the values of the

matrices vary.
The use of Espresso [42] to generate minimal covers for the S-boxes is the

only part in our approach where human intervention is necessary: due to interface
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problems, Espresso must be run on the input files using shell commands. Once

Espresso files are generated (and this happens only once for each S-box), our
encoder program reads directly from Espresso output files.

As output we can produce a textual representation using AND, OR, etc., to be

used by BDD-like algorithms, a set of clauses to be used by CNF-based provers

[25], and the TPTP non-clausal format [50].

We have made some tests to get information about execution times and use of

memory. These tests were made on a Workstation UltraSparc using Solaris, and

on a Pentium II 300 MHz using Windows 98 and Linux. Here we report only the

data on Solaris and Windows 98, the data using Linux being somehow intermediate

between the other two.

Execution times were better on the Pentium. In particular for the full 16-rounds

version of DES,

1. to generate the generic circuit are needed almost 25.96 seconds;

2. to generate the simplified circuit are needed almost 71 seconds.

It is also possible to use the algorithm to verify that we are indeed encoding a solved

instance; i.e., we generate the simplified circuit, read plaintext, key and ciphertext

and verify that everything simplifies to true. This took approximately 197 seconds.

Proportionately smaller timings and memory requirements were found for reduced

variant of DES. For instance one or two rounds can be done within one second.

Memory usage for the three previous cases is fairly substantial and is substan-

tially smaller for the Unix machines:

1. to generate the generic formulae are needed 130 MB (167 MB for Windows 98);

2. to generate the simplified formulae are needed 136 MB (175 MB for Windows

98);

3. to verify the formulae are needed 137 MB (175 MB for Win 98).

These memory requirements are likely due to a poor (say nonexistent) memory

management of our algorithm. With better memory management it could also

probably take much less time because it would not have to use the swap space.

Beside memory and time we have collected a substantial amount of quanti-
tative data regarding the size and nature of the final encoded formula. To this

extent we have concentrated on the generation of solved instances of the SAT

problem, according to the methodology that we have presented in Section 3. Thus

our algorithm for the generation of the benchmark suite worked as follows:

1. fix the number of rounds of DES we are interested in;

2. generate randomly a key K (the solution vK of the SAT problem);

3. generate randomly 400 blocks of plaintext P (a block is 64 bits);

4. encrypt the plaintext with the key using DES limited to the requested number

of rounds and generate the ciphertext C = EK(P);

5. encode the limited version of DES as a formula E(P,K,C) and substitute the

values of the plaintext vP and ciphertext vC .
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Table III. Occurrences of formulae per single plaintext/ciphertext pair.

Round Equiv Xor And Or Clauses Vars

1 520 0 504 16 1,645 243

2 1,042 0 1,010 32 3,304 489

3 1,738 48 1,609 80 9,064 1,430

4 2,432 96 2,208 128 14,811 2,368

5 3,096 176 2,760 160 18,738 3,032

6 3,760 256 3,312 192 22,665 3,696

7 4,424 336 3,864 224 26,592 4,360

8 5,088 416 4,416 256 30,519 5,024

9 5,752 496 4,968 288 34,446 5,688

10 6,416 576 5,520 320 38,373 6,352

11 7,080 656 6,072 352 42,300 7,016

12 7,744 736 6,624 384 46,227 7,680

13 8,408 816 7,176 416 50,154 8,344

14 9,072 896 7,728 448 54,081 9,008

15 9,736 976 8,280 480 58,008 9,672

16 10,400 1,056 8,832 512 61,935 10,336

Each block of plaintext and ciphertext gives a (satisfiable) formula E(vP ,K, vC).

We repeated the process for five randomly generated keys.

Table III reports the arithmetic mean of the number of equivalences, exclusive

or, conjunctions, and disjunctions present in a formula E(vP ,K, vC) for the various

rounds of DES. For instance the fourth row shows that if we limit DES to four
rounds (1st column) then E(vP ,K, vC) is made (on average) by the conjunction of

2,432 equivalences out of which 96 contain exclusive or, 2,208 contain (multiple)

conjunctions and 128 contain disjunctions. See again Figure 5 or Figure 6 for an

intuitive idea of their shape.

The last two columns of Table III show the number of variables occurring in

the formula that are different from the variables representing the key bits and the

number of clauses that is generated when E(vP ,K, vC) is translated into clausal

normal form.

Note that the data in Table III are given per single pair of plaintext and ci-

phertext, and therefore the total number of the formulae, clauses, and so forth is

obtained by multiplying those numbers by the number of plaintext and ciphertext

pairs. For instance, the clauses corresponding to 4 blocks of plain/ciphertext for

DES limited to 2 rounds are over 13,000 (3,304 × 4) and the variables over 1,900

(489 × 4).
The variance of these numbers is not shown here because it is fairly small as

we move beyond the fourth round. A simple explanation is that the known values
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Table IV. Occurrences of key bits per single plain-

text/ciphertext pair.

Round Avg Max Round Avg Max

1 40.99 57 9 89.03 115

2 82.01 113 10 90.79 115

3 84.79 112 11 91.64 119

4 85.64 111 12 92.5 118

5 86.50 115 13 93.36 119

6 87.36 112 14 94.21 118

7 88.21 113 15 95.07 118

8 89.07 116 16 95.93 126

of the plaintext and the ciphertext do not propagate through the rounds as soon as

exclusive or starts to appear.

The clause length varies quite widely, and therefore the mean clause length

is not a good indicator. However, if one looks at the way in which clauses are

generated, more information can be obtained:

– for every equivalence containing an exclusive or we obtain 8 clauses of length 3;

– for every equivalence containing a conjunction we obtain a number of binary

clauses (usually less than 5–6) and a large clause with 5–6 literals;

– for every equivalence containing a disjunction we obtain a number of binary

clauses (as for conjunctions) and one large clause.

So, there is an overwhelming component of binary clauses with ternary clauses

starting to appear as soon as exclusive or starts to appear.

For these formulae, the clause over variable ratio (the standard indicator of the

hardness of random 3-SAT formulae [48]) does not explain well the hardness of

the problem. Indeed, consider the case of the commercial version of DES, whose

ratio clauses over variables can be identified by the following formula (where b is

the number of blocks, i.e., plaintext/ciphertext pairs, and k the number of key bits):

c/v =
61, 935 × b

k + 10, 336 × b
.

The number of key bits is less and less relevant as the number of blocks increases.

With an infinite number of blocks, it converges to a fixed value. However, even if

we add an infinite number of blocks, after 3 rounds the shift in the clause/variable

ratio would be less than 1–2%. This seems to imply that adding more blocks

should make the problem neither much easier nor much harder. As we shall see

in Section 5, the experimental data contradict this hypothesis.
Table IV contains the average number of variables representing the key bits

occurring in the formulae generated for each round.



188 F. MASSACCI AND L. MARRARO

Let 6 be a set of clauses using variables in V .

– if 6 is empty return SAT;

– if 6 contains an empty clause return UNSAT;

– (Unit Propagation) if 6 contains a unit clause {l}

then assign l the value true and call recursively DPLL

on the simplified set of clauses;

– (Splitting Rule) Select a variable v in V , assign

v a truth value and call recursively DPLL on the

simplified set of clauses. If DPLL returns SAT then

return SAT; otherwise assign v the opposite truth
value and return the result of DPLL on the simplified

set of clauses.

Figure 7. Davis–Putnam–Longemann–Loveland algorithm.

Not shown here is the fact that there are between 40 (1 round) and 90 (16

rounds) occurrences of each key bit. Moreover, key bits occur in approximately

17% of the total number of clauses and are the most frequently occurring variables,

since other variables occur always in less than 100 formulae.

This means that almost all SAT heuristics, which are usually variants of “choose

the literal with most occurrences such that X”, will select almost only key bits in

the search process.

5. Experimental Cryptanalysis with Theorem Provers

To test the ability of a generic ATP to cope with cryptographic problems, we have

chosen three state-of-the-art provers for propositional logic:

– TABLEAU by Crawford and Auton [15], because it is a reference implementation

of the Davis-Putnam procedure and because it has been extensively tested on the

random 3-SAT benchmark;

– SATO by Zhang [51, 53], because it uses the trie data structure to boost the speed

of the unit propagation phase and because it has been successfully used on the

encoding of semi-groups problems;

– rel-SAT by Bayardo and Schrag [5], because it combines the Davis–Putnam

algorithm with back-jumping and learning of CSP algorithms and because it

has been successfully used on “real-world” problems in scheduling.

The backbone algorithm used by all three provers is the Davis–Putnam–Longe-
mann–Loveland (DPLL) algorithm [18, 17] which we only sketch for reference

in Figure 7. For the particular implementation details of each prover we refer to
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corresponding paper. We recall that a literal is either a propositional variable or a

negated propositional variable and that a clause is a set of literals. A unit clause is
a clause with only one literal.

Among the various possibilities described in Section 3 we have focused on key

search assuming a known plaintext attack because it is the simplest problem avail-

able among the SAT-problems we can generate, and because it generates solved

instances. To generate the benchmark suite, we have followed the same methodol-

ogy that we have presented in Section 4. The only difference here is that we have

also grouped together the formulae corresponding to different plaintext using the

same key. In other words we have tested the provers on the formulae

E(vC,K, vP )

2
∧

i=1

E(vi
C,K, vi

P ) . . .

n
∧

i=1

E(vi
c,K, vi

P )

for n = 1, 2, 4, 8 to test whether increasing the number of constraints can lead to

an increase of performance (i.e., decrease of running time) in the same fashion of

what happens in random 3-CNF problems [15]. Indeed, having large quantities of

plaintext is necessary for all standard cryptanalytic approaches that do not rely on

exhaustive search.

All tested ATP systems admit different settings, and we have tried to stick to

the recommended standards, eventually experimenting with heuristics. This was

one of the main aims of the experiment: we wanted to see how a generic ATP

system performed without being told any information on the problem, i.e., whether

SAT-solvers were able to automatically detect and exploit the underlying hidden

properties of DES which have been the subject of intense cryptographic research.

Indeed the SAT-based approach make sense only if we just need to specialize our

SAT-algorithm at the level of heuristics or just add features (such as reasoning with
affine subproblems) that are of general interest.

In this framework, the only reasonable re-engineering of the heuristics is the

limitation of the branching search variables to the known independent control vari-

ables, i.e., to the 56 bits of the key. We have explored this possibility with the

various provers but without great successes. This contrasts with other applications

of SAT-based encodings, such as planning, where branching on a restricted set of

variables, the others being implied, considerably improves the performance [47].

We discuss this issue later in this section.

The tests have been run on SUN UltraSparcs running Solaris with 64 M RAM

and on a Pentium II with the same memory and we obtained qualitatively the same

results (to avoid normalization problems we only report here the CPU running time

on the SUN machines).

For each prover, we report the results as follows: for each class of instances,

characterized by the number of rounds of DES and by the number of blocks (i.e.,
number of E(vi

C,K, vi
P ) formulae that are conjoined together) we report the per-

centage of success in finding a solution and the mean time in seconds necessary
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to find a solution. For mean time we intend the arithmetic mean⋆ over the total

number of instances of the class (see Section 4). We also report the mean number
of branches explored during the search, with the caveat that each algorithm has a

slightly different notion of what constitute a branch. Hence, comparison of number

of branches across different provers should only be made w.r.t. scaling rather than

w.r.t. absolute values.

Since we didn’t know whether the encoding of a plaintext and ciphertext pair

would have admitted different models, i.e., keys,† whenever a model was found it

was compared with the “original key” used to generate the instance. The average

number of matching key bits (arithmetic mean over all instances) is then reported

in the tables for each benchmark class.

To be fully complete, our experiments should have also explored another source

of randomness: varying the keys, i.e., the solutions of the SAT instances, while

keeping the plaintexts fixed (recall that in the bulk of the experiments the key is

randomly generated but stay fixed for all the 400 plaintexts we have generated). We

have investigated this possibility only for one of the algorithm (i.e., rel-SAT), and
we have not found any significant pattern (although our experiments were limited

to 50 different keys). Since cryptography research has also investigated key patterns

without much results, whereas plaintexts and ciphertexts analysis has led to sub-

stantial attacks, we have postponed the analysis of key randomness to future works.

A further general observation concerning the organization of the experiments is

the use of normalization: since all chosen ATP systems require clausal normal form

we have used the CNF generation facilities provided by the encoder. Before using

the clause file as input for the search algorithms, a preprocessing step was necessary

to “compact” the integer values used for representing variables⋆⋆ since the encoding

was so sparse that we exceeded the maximum number of atoms readable by the

ATP systems. The running time of this auxiliary algorithm is not included in the

running time of the provers.

The results are reported in separate subsections for each prover, and a final part

with general observations concludes this section.

5.1. TABLEAU ON DES

Table V contains the running time of TABLEAU for the limited version of DES

for which it could solve some problems. TABLEAU has been run with the standard

setting, and eventually with purity disabled.

⋆ We have used the mean time rather than the median time because the running times do not show

the big outliers exhibited by random 3-SAT [15, 48].
† Recall that if we have more than one key for the same pair, the cipher is not faithful, and we have

semi-weak keys. See again Section 2 for details.
⋆⋆ Our encoder used a redundant and sparse encoding so that one could detect from which round

and which pair of ciphertext and plaintext a variable came.
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Table V. Performance of TABLEAU.

Rounds Blocks % Success Keybits Branches Mean Time (sec)

1 1 100% 33.7 1,8,325 12.96

1 2 100% 48.2 189,170 204.05

1 4 100% 50.7 64,813 117.95

2 1 100% 54.0 61,979 99.14

2 2 100% 55.8 80,133 222.07

2 4 100% 56.0 8,033 36.43

Table VIa. Performance of SATO searching for at least 2 models.

Rounds Blocks % Success Models Keybits Branches Time

1 1 22% 2 32.8 71 0.04

1 2 2% 2 40.5 75 0.07

1 4 48% 1 (75%) 50.8 63 0.12

1 8 100% 1 (100%) 52.0 19 0.10

2 1 72% 1 (30%) 53.9 641 0.54

2 2 88% 1 (84%) 56.0 150 0.25

2 4 98% 1 (98%) 56.0 29 0.16

2 8 100% 1 (100%) 56.0 6 0.15

Note that the problem becomes easier as we add more ciphertext and plaintext

pairs. We stopped at 8 blocks because the formulae could not be read by TABLEAU:

there were too many variables (see again Section 4 for the size of the problem). The

running times had very limited variance, which is not shown for readability.

Yet, it is not all so easy: TABLEAU could not solve 3 rounds of DES in two

hours, no matter the number of blocks. Increasing the time limit before timeout has

been also tried (up to one day) but to no avail. Increasing the number of rounds did

not lead to any solution either.

Re-engineering TABLEAU to branch only on key bits was too hard a task (be-

cause of the poor documentation of the program), so we have relied on an alter-

native implementation using the same heuristics which have been used for finding

minimal models [27]. This further experimental analysis was again not conclusive:
by restricting to independent variables we do not seem to gain much. In particular

we are still not able to crack DES with three rounds.
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Table VIb. Performance of SATO searching for 1 model.

Rounds Blocks % Success Keybits Branches Time

2 1 76% 53.3 458 0.36

2 2 96% 55.6 118 0.19

2 4 100% 56 18 0.10

2 8 100% 56 9 0.14

3 8 50% 56 269,804 2,192.73

5.2. SATO ON DES

The timings of SATO are shown in Table VIb and Table VIa. At the beginning we

have tried SATO with the standard setting and then with different options (such as

searching for more than one model) and search heuristics. Table VIa refers to the

standard settings, but we stopped the search after the second model has been found

(or the search space exhausted). Table VIb is generated by stopping the search after

the first model has been found.

Since we have not limited the search to the first model, this explains the greater

running time and number of branches in comparison with TABLEAU. In the column

“Models” we show between brackets the number of instances on which only one

model was found. Also in this case the variance of the running time was limited,

and it suggests that the running time distribution of the problem does not exhibit a

heavy tail behavior.

Most of SATO’s failures are due to virtual memory failure rather than the two

hours timeout. Thus, we have decided to run SATO on a Pentium II with 64 M
but with a swap space of over 628 M. It turned out that if we let SATO run on

three rounds of DES without time limit we could solve all instances within few

minutes of actual CPU time. Yet, if we looked at “real” time, it took over 12 hours

for a single instance to be solved. In practice, the time is spent by swapping the

trie data structure in and out main memory and then performing very few quick

operations on each part of the trie. Therefore, we have decided not to include these

latest running times into the table: they may give a wrong idea of the computational

resources needed by SATO.

For the case of one round and eight blocks, the strange results that we get are

for only one model, and yet only 52 out of 56 bits can be explained by the fact that

not all key bits occur in the corresponding formulae and SATO has been used with

purity on (that is setting to false any bit that does not occur).

With SATO we have also experimented with different heuristics and a new fea-

ture of the algorithm that makes it possible to generate lemmata corresponding
to closed branches. We have also experimented with a simple list structure rather

than the trie data structure. The worst heuristics for this problem seemed to be that
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proposed by Jeroslow and Wang. Without the trie data structure, SATO offered the

same qualitative performance of TABLEAU.
In this case we also tried to restrict the selection of the branching literals to the

56 independent control variables. The re-engineering of the algorithm was done by

Zhang, and again [52] it led to worse results and was abandoned.

5.3. rel-SAT

In DES rel-SAT is a variant of the Davis–Putnam algorithm, enhanced with conflict

directed back-jumping and learning [5] and is indeed the only algorithm that solves

three rounds of DES within few minutes.

The basic working of the enhanced algorithm is worth repeating:

– unit propagation is applied to the clause set;

– if no contradiction is found, a new literal is selected and added either positively
or negatively to the clause set;

– if a contradiction is found, then the algorithm backtracks to the literal that has

caused the contradiction;

– the clause responsible for the contradiction is resolved with a clause represent-

ing the temporary assignment; the resolvent is learned as a reason to avoid the

corresponding assignment;

– the procedure is iterated until all literals have been assigned (SAT) or no back-

track is possible (UNSAT).

More details and references can be found in [5]. The important parameter is the

learning factor, i.e., the size of the clauses that can be learned during the backtrack

plus resolution stage.

Also in this case, the testing started with the recommend standard: a small
learning factor (4), using relevance-based learning (see Table VIIa). For up to two

rounds of DES rel-SAT is slightly faster but still comparable with the results of

Davis–Putnam-like algorithms such as SATO and TABLEAU or local search algo-

rithm such as Walk-SAT [31]. Again, the performance of the algorithm increases

with the number of blocks (plaintext-ciphertext pairs). Adding more constraints

makes the search for the only (?) existing solution easier. The success rate (100%)

is omitted. The variance of the running times is fairly limited but for the case of 3

rounds of DES and 2 blocks.

Other settings were tried; in particular, we tried both without any learning at all

and with larger learning factors. The analysis shows that with no learning we have

a decrease in performance (see Table VIIb). With too large a learning factor (order

of 20) there is not a big gain in performance. With slightly larger learning factors

(order of 5–6) we get a slight but not substantial increase in performance.

Since rel-SAT has the best readable code of the three ATP systems, we experi-
mented with a small re-engineering in the attempt to exploit the knowledge of the

domain. In the original algorithm, a first selection of potential branching variables
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Table VIIa. Performance of rel-SAT with learning factor 4.

Rounds Blocks Keybits Branches Time

(Mean) (Mean) (Mean) (Variance)

1 1 31.0 28 0.02 0.009

1 2 48.9 105 0.11 0.047

1 4 50.9 104 0.22 0.083

1 8 52.0 83 0.45 0.103

2 1 54.0 231 0.20 0.105

2 2 56.0 111 0.23 0.106

2 4 56.0 68 0.36 0.123

2 8 56.0 57 0.81 0.252

3 1 – – > 1 h –

3 2 56.0 174,612 983.22 1,034.598

3 4 56.0 19,312 159.13 66.894

3 8 56.0 3,596 75.03 32.783

Table VIIb. Performance of rel-SAT with no learning.

Rounds Blocks Keybits Branches Time

(Mean) (Mean) (Mean) (Variance)

1 4 53.6 172 2.38 1.165

1 8 53.0 185 6.18 1.866

2 4 56.0 157 4.98 3.006

2 8 56.0 103 8.00 6.449

3 4 – – > 1 h –

3 8 56.0 8,154 822.35 164.792

is done, and then all variables with a value of the heuristic function lower than a

threshold were discarded. The modified algorithm didn’t check the threshold if

the selected variable was a keybit. In this way the algorithm gives preferences

to dependent variables with very good properties or independent variables with

medium properties. However, the running time of the algorithm didn’t improve

substantially.

Since this was also the best performing algorithm we have tried, including

BDDs [4] and Walk-SAT [31], we have performed more experiments (on a SUN
with 256 MB) to determine whether the search space of the problem using rel-

SAT was actually smaller than the search space generated by brute force search.⋆

This experiment can show the potential of the CSP/SAT approach to the problem

⋆ This experiment was suggested by an anonymous reviewer and the editors.
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Table VIII. Further experiments with rel-SAT with learning factor 5.

Rnds Blcks Keybits Branches Time Max Stack Depth

(Mean) (Mean) (Mean) (Var) (Mean) (Abs)

1 1 31.6 25 0.02 0.010 22 37

1 2 46.1 83 0.09 0.048 17 26

1 4 51.9 97 0.21 0.059 17 20

1 8 52.0 98 0.50 0.068 17 20

2 1 54.7 238 0.22 0.129 16 20

2 2 55.9 108 0.22 0.091 15 18

2 4 56.0 66 0.34 0.116 14 17

2 8 56.0 45 0.66 0.170 14 19

3 2 56.0 99,908 1,314.94 3,078.913 31 34

3 4 56.0 8,883 105.40 37.255 30 33

3 8 56.0 5,491 142.57 23.067 29 31

if constraint propagation substantially reduces the search space, even in absence of

specific, problem-dependent information.
The results of this new set of experiments, with a slightly larger learning factor

(5), are reported in Table VIII. Beside mean, variance, and number of key bits

found, we also report the absolute maximum depth of the stack during the search

over all instances and the average maximum depth of the stack over all instances

(i.e., for each instance we compute the maximum stack depth and then take the

arithmetic mean over all instances). As we can see we are substantially below the

55 choice points that would have been necessary with brute force search. A caveat

is that the table also suggests a trend of increasing search depth as the number of

rounds increases. This may explain why four rounds cannot be solved by current

SAT tools.

In Table IX we have described the results of the experiments when we keep the

plaintext fixed and change the keys, i.e., the solution of the SAT-problem. Even if

the significance of the data is limited (50 different keys on 10 different plaintexts),

we can observe that there is not a big difference between these data and those
reported in Table VIII.

Given these promising results, we further engineered the algorithm to accept

larger formulae with more variables and tried on 4, 8 and a full 16 rounds of DES,

also using 1, 2, and 4 blocks. The algorithm didn’t return within one day.

5.4. GENERAL OBSERVATIONS

From a cryptanalyst viewpoint these results are not very impressive: three rounds of

DES were cryptanalyzed long ago [3], and linear cryptanalysis [32] or differential
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Table IX. Changing the keys for rel-SAT with learning factor 5.

Rnds Blcks Keybits Branches Time Max Stack Depth

(Mean) (Mean) (Mean) (Var) (Mean) (Abs)

3 4 56.0 8,892 285.37 160.922 29 35

3 8 56.0 3,641 260.14 108.360 28 32

cryptanalysis [7] can do much better for up to eight rounds, although they need far

larger amount of plaintexts than just eight blocks.

What make these results interesting is the fact that the ATP systems do not know

at all that the 56 variables of the key are the only “variables that count”, the only
variables that must be set to find a model. They do not know which of the thousands

of clauses are just definitions in disguise and which are really constraints. With four

blocks of plaintext and two rounds of DES they search in a space of almost 22,000

solutions, and still they find the only one that exists. The constraints present in the

encoding are sufficient to drastically reduce the search space. This is fairly close to

what happens for the DIMACS parity problems, where SAT procedures do manage

to find the independent variables from the much larger set of all variables.

What makes these results puzzling is that knowing which are the “variables that

count” does not seem to help. Moreover, the hardness of the problem exhibits an

abrupt jump: reasonably easy up to two rounds, then moderately hard at three, and

then simply unsolvable.

We can explain the good performance by observing that there are many defined

variables. Thus, few wrong assignments to control variables are enough to provoke

a cascade of assignments to defined variables and then inconsistencies are quickly
found. However, this would imply that formulae encoding more rounds should be

easier and not harder. Indeed, ciphers are designed to exhibit an “avalanche” effect

when the number of rounds is increased: the number of output bits influenced by

the key bits increases in a non-linear fashion. With more rounds the propagation

of inconsistencies should also be boosted. Since this is not the case, it seems the

propagation of assignments is hindered.

We conjecture that the source of the complexity is the particular structure of the

Feistel-ciphers, i.e., the xors that are added at each round. What really hinders state-

of-art SAT solvers is the inability of handling affine subproblems in an efficient

way. Although these problems are themselves polynomially solvable [44], their

presence, such as in the hidden parity bit mentioned in [47], makes the difference

between hard and unsolvable problems.

This would also explain the abrupt jump in complexity: DES at four rounds is

the first problem where exclusive or starts to appear. If we remove those formulae
the resulting formula can be shown to be satisfiable by all ATP systems without

much effort.
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The fact that there is no heavy tail phenomenon as in random 3-SAT can also be

explained: the structure of the problem is fairly regular, and its hardness is well
controlled by the number of blocks of known plaintext, whose increase makes

the problem easier, and the number of rounds of DES, whose increase makes the

problem harder.

What remains to be explained is why “knowing the control variables” does

not help. We have already noted at the end of Section 4 that the key bits are the

variables that occur most often and therefore it may simply be that knowing the

control variables does not help because in this problem the independent variables

are already among the variables preferred by the standard heuristics. An informal

analysis of the stack of choice points of rel-SAT revealed that almost all variables

that are selected by the standard heuristics are key variables. Thus, by giving the

algorithm the full choice on the branching variables we do not give away our bias

toward control variables (because the problem is such that the heuristics will likely

choose them) and still gives the algorithm the possibility of exploiting shortcuts

with defined variables.
A second observation is that branching on control variables alone is what brute

force approaches do. In this respect, looking at linear and differential cryptanalysis

might be instructive. If we set aside the problem of gathering the massive amount

of data they need, we may observe that they can solve the problem better than we

do because

1. they exploit the probability distribution of intermediate results to guess their

value (this corresponds to splitting on defined variables in the SAT-based ap-

proach) without concentrating on key bits only;

2. they make use of the affine subproblems to determine the value of some inde-

pendent variables out of the dependent variables they have set (whereas we are

swamped by them because we perform search on them);

3. only after the first two steps have given an indication of a plausible solution

they start searching on control variables alone.

So, we may conclude this point by observing that our ATP systems have been able

to do the first step almost correctly by using their sophisticated heuristics, without

human intervention, but they have not been able to do the second.

Another interesting point regards the integrity of DES, i.e., the number of keys

that are consistent with the same pair of plaintext and ciphertext. If more than

one key would be consistent with a plaintext and ciphertext pair (even worse that

there was a key consistent with different plaintexts and ciphertexts), we would

have discovered a trapdoor. Since only one key exists (at least for three rounds) this

offers an independent evidence that DES was not designed to have hidden trapdoors

(beside semi-weak keys). Since the number of models actually decreases quickly
to one as the number of rounds or the number of plaintexts increase, this is a strong

evidence that DES is almost faithful. Note that the outcome of the experiment with
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SATO can be easily converted into a proof that for each tested pair there is only

one key which could have generated it.
It is worth noting that a number of extensive tests with BDDs has been also

carried at our Department by Ascione [4], since BDDs are known to perform well

on non-clausal problems [8]. Even on our optimized encoding, BDDs could not

solve key search problems any better than SAT-based approaches [4]: the tests

showed that the BDDs representing the encoded formula reached quickly a million

and over nodes and then crashed the systems for virtual memory failure.

The tests with BDDs were, however, useful for confirming the experimental

data regarding the integrity of DES: when the number of known plaintexts or the

number of rounds increases the final BDD representing E(vP ,K, vC) turns out to

be a chain (i.e., there is only one model).

6. Open Problems and Conclusions

In this paper we have presented an application of propositional reasoning and

search to a key security problem of industrial relevance.

We have shown that the translation of properties of ciphers in logic is doable

(although not simple) and that a number of key properties can be modeled.

The effectiveness of general ATP systems in this framework has also been

preliminarily tested and looks promising, although ATP search strategies need to

be improved to meet the full challenge provided by this benchmark. They seem

promising because only one or few blocks of plaintext and ciphertext are necessary

to identify a unique solution to the cryptographic problem (rather than the few

hundreds or millions required by traditional methods).

Thus, we believe that the whole approach on encoding cryptographic problems

as SAT problems can be a step forward toward the development of generators

“for problem instances that have computational properties that are more similar

to real world instances” [47]. Even if cryptography is a limited application area
(although an important one), the structure of the corresponding SAT problems is

such that a generic ATP system able to cope with them (e.g., able to handle affine

subproblem) will be able to apply its techniques effectively to hard problems from

other application areas.

This approach also offers a solution to the problem discussed by Cook and

Mitchell [14]: how to randomly generate solved instances that are hard to solve.

Still, there is a lot of work to be done, and a good conclusion of this paper may

just be the indication of open problems.

PROBLEM 1. Find a key for the commercial 16 round Data Encryption Standard

in less than 56 hours using off-the-shelf h/w and s/w but enhanced ATP systems.

This is the subject of current investigation and, as we have already mentioned,
our focus is the enhancement of ATP system with rules and techniques to cope with

affine subproblems.
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Further experiments are needed to better understand the structure of the problem

and which heuristics may be better suited to solve it.

PROBLEM 2. Prove formally that the commercial 16 round Data Encryption

Standard is not a group and is not pure, using the encoding and an automated

theorem prover.

This might be an independent way to formally guarantee the experimental evi-

dence obtained in [12] with cycling experiments.

PROBLEM 3. Prove formally that the commercial 16 round Data Encryption

Standard DES is faithful according to the definition in [26], that is, for any pair

of plaintext and ciphertext there is only one key that can generate that pair (setting

semi-weak keys aside).

Notice that this, in contrast with the previous two results, is an open problem for
cryptography. If a solution of this problem could be found, this would have extreme

relevance for the use of a cipher in applications such as electronic commerce where

the impossibility of forging data is essential. This could become an established

method to guarantee that a cipher has such properties.

Other problems involve QBF theorem proving, and this field is still not mature

enough to tackle such hard problems. A preliminary test has been done using the

algorithm in [11], but it didn’t return in one hour even for reduced version of the

algorithm limited to one or two rounds. New tests with an enhanced version of the

algorithm that exploits defined variables are in preparation.

PROBLEM 4. Develop heuristic techniques for propositional reasoning and search

that work with every Feistel-type cipher with data-independent permutations like

DES.

The highly regular structure of these ciphers should be exploited by search

algorithms in two directions: the identification of no-goods that prune a substantial
amount of the search space and the variable selection heuristics. Since the op-

erations are data independent, a certain amount of preprocessing for the internal

rounds could be done off-line. This is a case where knowledge compilation [46]

may entirely pay off. Another algorithm that may work is Stalmark algorithm, since

it uses a data structure that well fits with those of a Feistel-cipher [24].

PROBLEM 5. Find efficient encodings of Feistel-type ciphers with data-dependent

permutations like RC5 [40, 45].
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Of course, a straightforward encoding is always possible: just translate the ci-

pher into a circuit and this into propositional logic. Unfortunately, we have noted
this is already unworkable for DES.

PROBLEM 6. Find efficient encoding into propositional (or any) logic of public-

key cryptographic algorithms for digital signatures based on number theory such

as RSA [45].

This problem has been suggested by Cook and Mitchell [14] and might be the

hardest, since the way in which the algorithm is expressed (number theory) is fairly

remote from propositional logic. Again, one can just encode multipliers and adders

into propositional logic but this might be overwhelming. Moreover, factoring is

known to be hard (see, e.g., [45, p. 256] for related references), and it may be that

SAT-based techniques will be inferior to factoring algorithms.

The coming adoption of a U.S. Advanced Encryption Standard [37] may open

new directions of research.

As for all “real-world” problems, there might be a dark side: the measure of

success might be the “privilege” (!?) of successful automated reasoning tools being

denied export licenses as dangerous weapons.
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