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Abstract

The present paper is aimed at studying the entropy of dynamical systems in product

MV-algebras. First, by using the concept of logical entropy of a partition in a product

MV-algebra introduced and studied by Markechová et al. (Entropy 20:129, 2018), we

define the logical entropy of a dynamical system in the studied algebraic structure. In

addition, we introduce a general type of entropy of a product MV-algebra dynamical

system that includes the logical entropy and the Kolmogorov–Sinai entropy as special

cases. It is proved that the proposed entropy measure is invariant under isomorphism

of product MV-algebra dynamical systems.
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1 Introduction

The Shannon entropy [2] is the basic notion of information theory (cf. [3]). If an experi-

ment has n results with probabilities p1,p2, . . . ,pn, then its entropy is the sum
∑n

i=1 s(pi),

where s : [0, 1] → [0,∞) is Shannon’s entropy function defined by equation

s(x) = –x logx (1.1)

for every x ∈ [0, 1] (0 log0 is defined to be 0). Many years later, the Shannon entropy

was used surprisingly in a quite different area of theory as well as in practice, i.e., in

dynamical systems. Recall that a classical dynamical system is a quaternion (Ω ,S,P,T),

where (Ω ,S,P) is a probability space and T : Ω → Ω is a measure preserving map, i.e.,

P(T–1(B)) = P(B),B ∈ S. If B = {B1,B2, . . . ,Bn} is a measurable partition of Ω with prob-

abilities p1,p2, . . . ,pn of the corresponding elements, then its entropy is again H(B) =
∑n

i=1 s(pi) = –
∑n

i=1 pi · logpi. If B = {B1,B2, . . . ,Bn} and C = {C1,C2, . . . ,Cm} aremeasurable

partitions ofΩ , then themeasurable partitionB∨C = {Bi ∩Cj; i = 1, 2, . . . ,n, j = 1, 2, . . . ,m}

represents an experiment consisting of a realization of experiments B and C . Further, by

T–1(B) the measurable partition {T–1(B1),T
–1(B2), . . . ,T

–1(Bn)} is denoted. The entropy

of a dynamical system (Ω ,S,P,T ) has been defined by Kolmogorov and Sinai [4, 5] as the

number H(T) = supH(B,T); B is a finite measurable partition of {Ω}, where H(B,T) =

limn→∞
1
n
H(

∨n–1
i=0 T–i(B)). It is used to measure dynamical complexity of the considered
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dynamical system. The number H(T) is also a useful instrument for distinguishing dy-

namical systems. Namely, if two dynamical systems are isomorphic, then they have the

same entropy. By this way Kolmogorov and Sinai showed that there are non-isomorphic

Bernoulli shifts. Recall that the opposite implication holds, but only for Bernoulli shifts: if

two Bernoulli shifts have the same entropy, they are isomorphic [6, 7].

The successful using of the Kolmogorov and Sinai entropy of dynamical systems has

led to an intensive study of various aspects of alternative entropy measures of dynamical

systems. We note that in the recently published paper [8], the notion of logical entropy

Hl(T) of a dynamical system (Ω ,S,P,T ) was proposed and studied. It has been shown

that by replacing the Shannon entropy function by the logical entropy function l : [0, 1] →

[0,∞) defined by

l(x) = x(1 – x) (1.2)

for every x ∈ [0, 1], we get the results that are analogous to the case of classical

Kolmogorov–Sinai entropy theory. It has been proven that the logical entropy Hl(T) dis-

tinguishes non-isomorphic dynamical systems; so it can be used as an alternative instru-

ment for distinguishing them. Note that some other recently published results regarding

the logical entropy measure can be found, for example, in [9–17].

Actually, all of the above-mentioned studies are possible in the Kolmogorov probability

theory based on the modern integration theory. It gives a possibility to describe and study

some problems of uncertainty. Of course, in 1965, Zadeh presented another approach to

uncertainty in his article [18]. While the Kolmogorov probability applications are based

on objective measurements, the Zadeh fuzzy theory is based on subjective improvements.

Of course, one of the first Zadeh articles on the fuzzy set theory was devoted to proba-

bility on fuzzy sets (cf. [19]). Therefore, the entropy of fuzzy dynamical systems has also

been studied (cf. [20–23]). Recall that the fuzzy set is a mapping f : Ω → [0, 1] (f (ω) is

interpreted as the degree of the element ω ∈ Ω to the considered fuzzy set f ), hence the

fuzzy partition of Ω is a family of fuzzy sets A = {f1, f2, . . . , fn} such that
∑n

i=1 fi = 1. And

again we can meet the Shannon formula: H(A) = –
∑n

i=1 pi logpi, where pi =
∫

Ω
fi dP (cf.

[23]). An overview of publications devoted to the entropy of fuzzy dynamical systems can

be found in [24].

In [25], Atanassov presented a remarkable generalization of fuzzy sets, i.e., intuitionistic

fuzzy sets. An intuitionistic fuzzy set is a pair A = (fA, gA) of fuzzy sets such that fA + gA ≤

1. Here fA is a membership function, gA a non-membership function. If f is a fuzzy set,

then the pair (f , 1 – f ) is an intuitionistic fuzzy set. Also, the probability on families of

intuitionistic fuzzy sets has been studied (cf. [26]).

Anyway, the most useful instrument for describing multivalued processes is an MV-

algebra [27], especially after its Mundici’s characterization as an interval in a lattice or-

dered group (cf. [28]). This algebraic structure is currently being studied by many re-

searchers and it is natural that there are many results also regarding entropy in this struc-

ture; we refer, for instance, to [29, 30]. A probability theory was studied on MV-algebras

as well; for a review, see [31]. Of course, in some problems of probability it is necessary

to introduce a product on an MV-algebra, an operation outside the corresponding group

addition. The operation of a product on an MV-algebra was introduced independently by

Riečan [32] from the point of view of probability and by Montagna [33] from the point of
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view of mathematical logic. Also, the approach from the point of view of a general algebra

proposed by Jakubík in [34] seems to be interesting; see also [35]. We note that the notion

of product MV-algebra generalizes some families of fuzzy sets; an example of product

MV-algebra is a full tribe of fuzzy sets (see, e.g., [24]).

A suitable entropy theory of Shannon and Kolmogorov–Sinai type for the product MV-

algebras has been provided by Petrovičová in [36, 37]. We remark that in our article [38],

based on the results of Petrovičová, we introduced the notions of Kullback–Leibler diver-

gence andmutual information of partitions in a productMV-algebra. The logical entropy,

the logical divergence, and the logical mutual information of partitions in a product MV-

algebra were studied in [1]. In the present paper, we extend the study of logical entropy of

partitions in product MV-algebras to the case of product MV-algebra dynamical systems.

Moreover, we introduce a general type of entropy of a dynamical system in a productMV-

algebra. The proposed definition is based on the concept of the sub-additive generator ϕ

introduced by the authors in [39].

The rest of the article is organized as follows. Section 2 contains basic definitions, nota-

tions, and some known facts that will be used in the paper. Our results are presented in the

succeeding two sections. In Sect. 3, we define and study the logical entropy of a dynamical

system in a product MV-algebra and examine its properties. In Sect. 4, a general type of

entropy of a dynamical system in a product MV-algebra is introduced. It is proved that

the proposed entropy measure is invariant under isomorphism of product MV-algebra

dynamical systems. It is shown that the logical entropy and the Kolmogorov–Sinai en-

tropy of a dynamical system in a product MV-algebra can be obtained as special cases of

the proposed general scheme. It follows that the isomorphic product MV-algebra dynam-

ical systems have the same logical entropy and the same Kolmogorov–Sinai entropy. We

illustrate the results with examples. Finally, the last section provides brief closing remarks.

2 Basic definitions and related works

We start by reminding the definitions of basic terms and some of the known results that

will be used in the article. We mention some works related to the subject of this article, of

course, without claiming completeness.

Several different (but equivalent) axiom systems have been used to define the term of

MV-algebra (cf., e.g., [32, 40, 41]). In our article, we apply the definition of MV-algebra

in accordance with the definition given by Riečan in [42], which is based on the Mundici

representation theorem. Based onMundici’s theorem [28] (see also [43]),MV-algebras can

be viewed as intervals of an abelian lattice-ordered group (shortly l-group). We remind

that by an l-group (cf. [44]) we understand a triplet (G, +,≤), where (G, +) is an abelian

group, (G,≤) is a partially ordered set being a lattice, and x≤ y �⇒ x + z ≤ y + z.

Definition 2.1 ([42]) AnMV-algebra is an algebraic structureA = (A,⊕,∗, 0,u) satisfying

the following conditions:

(i) There exists an l-group (G, +,≤) such that A = [0,u] = {x ∈G; 0 ≤ x≤ u}, where 0 is

the neutral element of (G, +) and u is a strong unit of G (i.e., u ∈G such that u > 0

and to every x ∈G there exists a positive integer n with the property x ≤ nu);

(ii) ⊕,∗ are binary operations on A satisfying the following identities:

x⊕ y = (x + y)∧ u,x ∗ y = (x + y – u)∨ 0.
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Definition 2.2 ([31]) A state on an MV-algebra A = (A,⊕,∗, 0,u) is a mapping µ : A →

[0, 1] with the following two properties:

(i) µ(u) = 1;

(ii) If x, y ∈ A such that x + y≤ u, then µ(x + y) = µ(x) +µ(y).

Definition 2.3 ([42]) A product MV-algebra is an algebraic structure (A,⊕,∗, ·, 0,u),

where (A,⊕,∗, 0,u) is an MV-algebra and · is an associative and abelian binary operation

on A with the following properties:

(i) For every x ∈ A,u · x = x;

(ii) If x, y, z ∈ A such that x + y ≤ u, then z · x + z · y≤ u, and z · (x + y) = z · x + z · y.

For brevity, we will write (A, ·) instead of (A,⊕,∗, ·, 0,u). A relevant probability theory

for the product MV-algebras was developed by Riečan in [45], see also [46, 47]; the en-

tropy theory of Shannon and Kolmogorov–Sinai type for the product MV-algebras was

proposed in [36, 37]. The logical entropy of a partition in a product MV-algebra (A, ·) was

defined and studied in [1]. We present the main idea and some results of these theories

that will be used in the following text.

By a partition in a product MV-algebra (A, ·), we understand any n-tuple X = (x1,x2, . . . ,

xn) of elements of A with the property x1 + x2 + · · · + xn = u. In the system of all partitions

in a given product MV-algebra (A, ·), we define the refinement partial order ≻ in a stan-

dard way (cf. [1]). If X = (x1,x2, . . . ,xn) and Y = (y1, y2, . . . , ym) are two partitions in (A, ·),

then we write Y ≻ X (and we say that Y is a refinement of X), if there exists a partition

{I(1), I(2), . . . , I(n)} of the set {1, 2, . . . ,m} such that xi =
∑

j∈I(i) yj, for i = 1, 2, . . . ,n. Fur-

ther, we put X ∨ Y = (xi · yj; i = 1, 2, . . . ,n, j = 1, 2, . . . ,m). Since
∑n

i=1

∑m
j=1 xi · yj = (

∑n
i=1 xi) ·

(
∑m

j=1 yj) = u · u = u, the system X ∨ Y is a partition in (A, ·); it represents an experiment

consisting of a realization of X and Y .

Later we shall need the following assertions:

Proposition 2.1 Let X = (x1,x2, . . . ,xn) be a partition in a product MV-algebra (A, ·) and

µ : A→ [0, 1] be a state. Then, for any element y ∈ A, it holds µ(y) =
∑n

i=1 µ(xi · y).

Proof The proof can be found in [1]. �

Proposition 2.2 If X,Y ,Z are partitions in a product MV-algebra (A, ·), then it holds X ∨

Y ≻ X, and Y ≻ X implies Y ∨ Z ≻ X ∨ Z.

Proof The proof can be found in [1]. �

Proposition 2.3 Let X,Y ,V ,Z be partitions in a product MV-algebra (A, ·) such that Y ≻

X and Z ≻ V . Then Y ∨ Z ≻ X ∨V .

Proof Assume that X = (x1,x2, . . . ,xn),Y = (y1, y2, . . . , ym),V = (v1, v2, . . . , vp),Z = (z1, z2, . . . ,

zq),Y ≻ X,Z ≻ V . Then there exists a partition {I(1), I(2), . . . , I(n)} of the set {1, 2, . . . ,m}

such that xi =
∑

j∈I(i) yj for i = 1, 2, . . . ,n, and there exists a partition {J(1), J(2), . . . , J(p)} of

the set {1, 2, . . . ,q} such that vr =
∑

k∈J(r) zk for r = 1, 2, . . . ,p. Put I(i, r) = {(j,k); j ∈ I(i),k ∈
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J(r)} for i = 1, 2, . . . ,n, r = 1, 2, . . . ,p. We get

xi · vr =

(

∑

j∈I(i)

yj

)

·

(

∑

k∈J(r)

zk

)

=
∑

(j,k)∈I(i,r)

yj · zk

for i = 1, 2, . . . ,n, r = 1, 2, . . . ,p, which means that Y ∨ Z ≻ X ∨V . �

Definition 2.4 Letµ be a state on a productMV-algebra (A, ·).We say that partitionsX,Y

in (A, ·) are statistically independent with respect toµ ifµ(x ·y) = µ(x) ·µ(y) for every x ∈ X

and y ∈ Y .

The following definition of entropy of Shannon type was introduced in [36].

Definition 2.5 Let X = (x1,x2, . . . ,xn) be a partition in a product MV-algebra (A, ·), and

µ : A → [0, 1] be a state. Then the entropy of X with respect to µ is defined by Shannon’s

formula:

Hµ
s (X) =

n
∑

i=1

s
(

µ(xi)
)

, (2.1)

where s : [0, 1] → [0,∞) is the Shannon entropy function defined by Eq. (1.1). If X =

(x1,x2, . . . ,xn) and Y = (y1, y2, . . . , ym) are two partitions in (A, ·), then the conditional en-

tropy of X given Y is defined by

Hµ
s (X/Y ) = –

n
∑

i=1

m
∑

j=1

µ(xi · yj) · log
µ(xi · yj)

µ(yj)
. (2.2)

In Eq. (2.2), it is assumed that 0 · log 0
x
= 0 if x ≥ 0. The entropy and the conditional

entropy of partitions in a product MV-algebra satisfy all properties corresponding to the

properties of Shannon’s entropy of measurable partitions in the classical case; for more

details, see [36]. In particular, it holdsH
µ
s (X∨Y )≤ H

µ
s (X)+H

µ
s (Y ) for every partitionX,Y

in (A, ·). The equality holds if and only if X,Y are statistically independent partitions with

respect to µ. This means that Shannon’s entropy of partitions in a product MV-algebra

has the property of additivity and also the property of sub-additivity.

The definition of logical entropy of a partition in a product MV-algebra was introduced

in [1] as follows.

Definition 2.6 Let X = (x1,x2, . . . ,xn) be a partition in a product MV-algebra (A, ·), and

µ : A→ [0, 1] be a state. Then the logical entropy of X with respect to µ is defined by

H
µ

l (X) =

n
∑

i=1

l
(

µ(xi)
)

, (2.3)

where l : [0, 1] → [0,∞) is the logical entropy function defined by Eq. (1.2). If X =

(x1,x2, . . . ,xn) and Y = (y1, y2, . . . , ym) are two partitions in (A, ·), then the conditional logi-
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cal entropy of X given Y is defined by

H
µ

l (X/Y ) =

n
∑

i=1

m
∑

j=1

µ(xi · yj)
(

µ(yj) –µ(xi · yj)
)

. (2.4)

The basic properties of the logical entropy of partitions in a product MV-algebra were

derived in [1]. Specifically, this entropy measure has been shown to have the property

of sub-additivity, but it does not have the property of additivity. It satisfies the following

property: if X,Y are statistically independent partitions in a product MV-algebra (A, ·),

then:

1 –H
µ

l (X ∨ Y ) =
(

1 –H
µ

l (X)
)

·
(

1 –H
µ

l (Y )
)

.

Moreover, the proposed logical entropy measure has the following properties: (L1) for

every partition X,Y in (A, ·), it holds H
µ

l (X ∨Y ) =H
µ

l (X) +H
µ

l (Y /X); (L2) for every parti-

tion X,Y in (A, ·) such that Y ≻ X, it holds H
µ

l (Y )≥ H
µ

l (X).

3 The logical entropy of dynamical systems in product MV-algebras

In this section, we extend the definition of logical entropy of a partition in a product MV-

algebra to the case of dynamical systems and prove basic properties of this measure of

information. The known Kolmogorov–Sinai theorem on generators is a useful instrument

to compute the entropy of a dynamical system. In the final part of this section we provide

a logical version of this theorem for the studied case of product MV-algebra.

Definition 3.1 ([37]) By a dynamical system in a product MV-algebra (A, ·), we under-

stand a system (A,µ,U), where µ : A → [0, 1] is a state, and U : A → A is a map such that

U(u) = u,and, for every x, y ∈ A, the following conditions are satisfied:

(i) if x + y≤ u, then U(x) +U(y)≤ u and U(x + y) =U(x) +U(y);

(ii) U(x · y) =U(x) ·U(y);

(iii) µ(U(x)) = µ(x).

Remark 3.1 For the sake of brevity, we say also a product MV-algebra dynamical system

instead of a dynamical system in a product MV-algebra.

Example 3.1 Let (Ω ,S,P,T ) be a classical dynamical system. Put A = {χB;B ∈ S}, where

χB :Ω → {0, 1} is the characteristic function of the set B ∈ S. The family A is closed under

the product of characteristic functions, and it is a special case of product MV-algebras.

If we define the mapping µ : A → [0, 1] by µ(χB) = P(B),B ∈ S, then µ is a state on the

productMV-algebra (A, ·). In addition, let us define themappingU : A→ A by the equality

U(χB) = χB ◦ T = χT–1(B),χB ∈ A. Then the system (A,µ,U) is a dynamical system in the

considered product MV-algebra (A, ·). A measurable partition B = {B1,B2, . . . ,Bn} of Ω

can be considered as a partition in the product MV-algebra (A, ·); it suffices to consider

χBi instead of Bi.

Example 3.2 Let (Ω ,S,P,T ) be a classical dynamical system. Let A be a family of all S-

measurable functions f : Ω → [0, 1],the so-called full tribe of fuzzy sets (cf. [24]). The
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family A is closed also with respect to the natural product of fuzzy sets, and it is an im-

portant case of product MV-algebras. If we define the state µ : A → [0, 1] by the equal-

ity µ(f ) =
∫

Ω
f dP for any element f of A, and the mapping U : A → A by the equality

U(f ) = f ◦ T , f ∈ A, then it is easy to verify that the system (A,µ,U) is a dynamical sys-

tem in the considered product MV-algebra (A, ·). The notion of a partition in the product

MV-algebra (A, ·) coincides with the notion of a fuzzy partition.

Let (A,µ,U) be a dynamical system in a productMV-algebra (A, ·), andX = (x1,x2, . . . ,xn)

be a partition in (A, ·). Put U(X) = (U(x1),U(x2), . . . ,U(xn)). Since x1 + x2 + · · ·+ xn = u, ac-

cording to Definition 3.1, we have U(x1) + U(x2) + · · · + U(xn) = U(x1 + x2 + · · · + xn) =

U(u) = u, which means that U(X) is also a partition in (A, ·).

Proposition 3.1 Let (A,µ,U) be a dynamical system in a product MV-algebra (A, ·), and

X,Y be partitions in (A, ·). Then

(i) U(X ∨ Y ) =U(X)∨U(Y );

(ii) Y ≻ X implies U(Y )≻ U(X).

Proof (i) Suppose that X = (x1,x2, . . . ,xn),Y = (y1, y2, . . . , ym). By condition (ii) from Defi-

nition 3.1, we have

U(X)∨U(Y ) =
(

U(x1),U(x2), . . . ,U(xn)
)

∨
(

U(y1),U(y2), . . . ,U(ym)
)

=
(

U(xi) ·U(yj); i = 1, 2, . . . ,n, j = 1, 2, . . . ,m
)

=
(

U(xi · yj); i = 1, 2, . . . ,n, j = 1, 2, . . . ,m
)

=U(X ∨ Y ).

(ii) Suppose that X = (x1,x2, . . . ,xn),Y = (y1, y2, . . . , ym),Y ≻ X. Then there exists a par-

tition {I(1), I(2), . . . , I(n)} of the set {1, 2, . . . ,m} such that xi =
∑

j∈I(i) yj for i = 1, 2, . . . ,n.

Therefore, by condition (i) from Definition 3.1, we have

U(xi) =U

(

∑

j∈I(i)

yj

)

=
∑

j∈I(i)

U(yj) for i = 1, 2, . . . ,n.

However, this means that U(Y )≻ U(X). �

Define U2 = U ◦ U , and put Uk = U ◦ Uk–1 for k = 1, 2, . . . , where U0 is the identical

mapping. It is obvious that themapUk : A→ A satisfies the conditions fromDefinition 3.1.

Hence, for any non-negative integer k, the system (A,µ,Uk) is a dynamical system in a

product MV-algebra (A, ·).

Theorem3.1 Let (A,µ,U) be a dynamical system in a productMV-algebra (A, ·), and X,Y

be partitions in (A, ·). Then, for any non-negative integer k, the following equalities hold:

(i) H
µ

l (U
k(X)) =H

µ

l (X);

(ii) H
µ

l (U
k(X)/Uk(Y )) =H

µ

l (X/Y ).

Proof Suppose that X = (x1,x2, . . . ,xn) and Y = (y1, y2, . . . , ym).

(i) Since for any non-negative integer k and i = 1, 2, . . . ,n, it holds µ(Uk(xi)) = µ(xi), we

obtain

H
µ

l

(

Uk(X)
)

=

n
∑

i=1

l
(

µ
(

Uk(xi)
))

=

n
∑

i=1

l
(

µ(xi)
)

=H
µ

l (X).
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(ii) Based on the same argument, we get

H
µ

l

(

Uk(X)/Uk(Y )
)

=

n
∑

i=1

m
∑

j=1

µ
(

Uk(xi · yj)
)

·
(

µ
(

Uk(yj)
)

–µ
(

Uk(xi · yj)
))

=

n
∑

i=1

m
∑

j=1

µ(xi · yj)
(

µ(yj) –µ(xi · yj)
)

=H
µ

l (X/Y ).
�

Theorem 3.2 Let (A,µ,U) be a dynamical system in a product MV-algebra (A, ·), and X

be a partition in (A, ·). Then, for n = 2, 3, . . . , the following equality holds:

H
µ

l

(

n–1
∨

k=0

Uk(X)

)

=H
µ

l (X) +

n–1
∑

i=1

H
µ

l

(

X
/

i
∨

k=1

Uk(X)

)

.

Proof We use proof by mathematical induction on n, starting with n = 2. For n = 2, the

statement holds by property (L1). We suppose that the statement holds for a given integer

n > 1, and we will prove that it is true for n+1. By property (i) from the previous theorem,

we get

H
µ

l

(

n
∨

k=1

Uk(X)

)

=H
µ

l

(

U

(

n–1
∨

k=0

Uk(X)

))

=H
µ

l

(

n–1
∨

k=0

Uk(X)

)

.

Therefore, using (L1) and our inductive hypothesis, we get

H
µ

l

(

n
∨

k=0

Uk(X)

)

=H
µ

l

((

n
∨

k=1

Uk(X)

)

∨X

)

=H
µ

l

(

n
∨

k=1

Uk(X)

)

+H
µ

l

(

X
/

n
∨

k=1

Uk(X)

)

=H
µ

l

(

n–1
∨

k=0

Uk(X)

)

+H
µ

l

(

X
/

n
∨

k=1

Uk(X)

)

=H
µ

l (X) +

n–1
∑

i=1

H
µ

l

(

X
/

i
∨

k=1

Uk(X)

)

+H
µ

l

(

X
/

n
∨

k=1

Uk(X)

)

=H
µ

l (X) +

n
∑

i=1

H
µ

l

(

X
/

i
∨

k=1

Uk(X)

)

.

In conclusion, the statement holds by the principle of mathematical induction. �

In the following, we will define the logical entropy of a dynamical system (A,µ,U). First,

we define the logical entropy of U relative to a partition X in (A, ·). Then we remove the

dependence on X to get the logical entropy of a dynamical system (A,µ,U). We will need

the following proposition.

Proposition 3.2 Let (A,µ,U) be a dynamical system in a productMV-algebra (A, ·).Then,

for any partition Xin(A, ·), there exists the following limit:

lim
n→∞

1

n
H

µ

l

(

n–1
∨

k=0

Uk(X)

)

.
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Proof Put cn =H
µ

l (
∨n–1

k=0 U
k(X)) for n = 1, 2, . . . . Then the sequence {cn}

∞
n=1 is a sequence of

non-negative real numbers satisfying the condition cr+s ≤ cr + cs for every r, s ∈N. Indeed,

by means of sub-additivity of logical entropy and property (i) from Theorem 3.1, we can

write

cr+s =H
µ

l

(

r+s–1
∨

k=0

Uk(X)

)

≤ H
µ

l

(

r–1
∨

k=0

Uk(X)

)

+H
µ

l

(

r+s–1
∨

k=r

Uk(X)

)

= cr +H
µ

l

(

Ur

(

s–1
∨

k=0

Uk(X)

))

= cr +H
µ

l

(

s–1
∨

k=0

Uk(X)

)

= cr + cs.

This property guarantees (in view of Theorem 4.9, [48]) the existence of limn→∞
1
n
cn.�

Definition 3.2 Let (A,µ,U) be a dynamical system in a product MV-algebra (A, ·), and X

be a partition in (A, ·). Then we define the logical entropy of Urelative to X by

H
µ

l (U ,X) = lim
n→∞

1

n
H

µ

l

(

n–1
∨

k=0

Uk(X)

)

.

Remark 3.2 Consider any dynamical system (A,µ,U) in a productMV-algebra (A, ·). If we

put E = (u), then E is a partition in (A, ·) such that X ≻ E for any partition X in (A, ·), and

with the logical entropy H
µ

l (E) = 0. Evidently,
∨n–1

k=0 U
k(E) = E, hence H

µ

l (U ,E) = 0.

Theorem 3.3 Let (A,µ,U) be a dynamical system in a product MV-algebra (A, ·), and X

be a partition in (A, ·). Then, for any non-negative integer r, the following equality holds:

H
µ

l (U ,X) =H
µ

l

(

U ,

r
∨

i=0

U i(X)

)

.

Proof Using Definition 3.2, we can write

H
µ

l

(

U ,

r
∨

i=0

U i(X)

)

= lim
n→∞

1

n
H

µ

l

(

n–1
∨

k=0

Uk

(

r
∨

i=0

U i(X)

))

= lim
n→∞

r + n

n
·

1

r + n
H

µ

l

(

r+n–1
∨

k=0

Uk(X)

)

= lim
n→∞

1

r + n
H

µ

l

(

r+n–1
∨

k=0

Uk(X)

)

=H
µ

l (U ,X).
�

Theorem3.4 Let (A,µ,U) be a dynamical system in a productMV-algebra (A, ·), and X,Y

be partitions in (A, ·) such that Y ≻ X. Then H
µ

l (U ,X)≤ H
µ

l (U ,Y ).

Proof Let Y ≻ X. By Propositions 2.3 and 3.1, we have
∨n–1

k=0 U
k(Y ) ≻

∨n–1
k=0 U

k(X) for n =

1, 2, . . . . Therefore, by property (L2), we get

H
µ

l

(

n–1
∨

k=0

Uk(X)

)

≤ H
µ

l

(

n–1
∨

k=0

Uk(Y )

)

.

Consequently, dividing by n and letting n→ ∞, we get H
µ

l (U ,X)≤ H
µ

l (U ,Y ). �
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Definition 3.3 The logical entropy of a dynamical system (A,µ,U) in a product MV-

algebra (A, ·) is defined by

H
µ

l (U) = sup
{

H
µ

l (U ,X);X is a partition in (A, ·)
}

.

Theorem 3.5 Let (A,µ,U) be a dynamical system in a product MV-algebra (A, ·). Then,

for every natural number k, it holds H
µ

l (U
k) = k ·H

µ

l (U).

Proof Let X be a partition in (A, ·). Then, for every natural number k, we have

H
µ

l

(

Uk ,

k–1
∨

j=0

U j(X)

)

= lim
n→∞

1

n
H

µ

l (

n–1
∨

i=0

(

Uk
)i

(

k–1
∨

j=0

U j(X)

)

= lim
n→∞

1

n
H

µ

l

(

n–1
∨

i=0

k–1
∨

j=0

Uki+j(X)

)

= lim
n→∞

1

n
H

µ

l

(

nk–1
∨

j=0

U j(X)

)

= lim
n→∞

nk

n

1

nk
H

µ

l

(

nk–1
∨

j=0

U j(X)

)

= k ·H
µ

l (U ,X).

Hence we obtain

k ·H
µ

l (U) = k · sup
{

H
µ

l (U ,X);X is a partition in (A, ·)
}

= sup

{

H
µ

l

(

Uk ,

k–1
∨

j=0

U j(X)

)

;X is a partition in (A, ·)

}

≤ sup
{

H
µ

l

(

Uk ,Y
)

;Y is a partition in (A, ·)
}

=H
µ

l

(

Uk
)

.

On the other hand, by Proposition 2.2, we have
∨k–1

j=0 U j(X) ≻ X, and therefore, by Theo-

rem 3.4, we get

H
µ

l

(

Uk ,X
)

≤ H
µ

l

(

Uk ,

k–1
∨

j=0

U j(X)

)

= k ·H
µ

l (U ,X).

It follows from this that

H
µ

l

(

Uk
)

= sup
{

H
µ

l

(

Uk ,X
)

;X is a partition in (A, ·)
}

≤ k · sup
{

H
µ

l (U ,X);X is a partition in (A, ·)
}

= k ·H
µ

l (U). �

In the rest of this section, we formulate a version of the Kolmogorov–Sinai theorem on

generators for the case of the logical entropy of a dynamical system (A,µ,U).

Definition 3.4 Let (A,µ,U) be a dynamical system in a product MV-algebra (A, ·). A par-

tition Z in (A, ·) is said to be a generator of a dynamical system (A,µ,U) if to any partition

X in (A, ·) there exists an integer k > 0 such that
∨k

i=0U
i(Z) ≻ X.

Theorem 3.6 Let Z be a generator of a dynamical system (A,µ,U). Then H
µ

l (U) =

H
µ

l (U ,Z).



Markechová and Riečan Advances in Difference Equations          ( 2019)  2019:9 Page 11 of 17

Proof Let Z be a generator of a dynamical system (A,µ,U), andX be any partition in (A, ·).

Then there exists an integer k > 0 such that
∨k

i=0U
i(Z) ≻ X. Therefore, by Theorems 3.4

and 3.3, we have

H
µ

l (U ,X)≤ H
µ

l

(

U ,

k
∨

i=0

U i(Z)

)

=H
µ

l (U ,Z),

and consequently

H
µ

l (U) = sup
{

H
µ

l (U ,X);X is a partition in (A, ·)
}

=H
µ

l (U ,Z). �

4 General type of entropy of dynamical systems in product MV-algebras

In this section, we introduce, based on the functionϕ : [0, 1] →R, a general type of entropy

of a partition in a product MV-algebra (A, ·) that contains the Shannon entropy and the

logical entropy of a partition in a productMV-algebra (A, ·) as special cases. Subsequently,

using the concept of ϕ-entropy of a partition in (A, ·), where ϕ is a so-called sub-additive

generator [39], we define a general type of entropy of a dynamical system (A,µ,U), so-

called ϕ-entropy of a dynamical system (A,µ,U). We construct for the proposed entropy

measure an isomorphism theory of the Kolmogorov–Sinai type.

Definition 4.1 Let X = (x1,x2, . . . ,xn) be a partition in a product MV-algebra (A, ·), and

µ : A → [0, 1] be a state. If ϕ : [0, 1] → R is a function, then we define the ϕ–entropy of X

with respect to µ as the number

Hµ
ϕ (X) =

n
∑

i=1

ϕ
(

µ(xi)
)

. (4.1)

Example 4.1 If we put ϕ = s, where s : [0, 1] → [0,∞) is the Shannon entropy function

defined by Eq. (1.1), then we obtain the Shannon entropy of X, and putting ϕ = l, where

l : [0, 1] → [0,∞) is the logical entropy function defined by Eq. (1.2), the logical entropy

of X is obtained.

Definition 4.2 ([39]) A function ϕ : [0, 1] → [0,∞) is said to be a sub-additive generator if

the following condition is satisfied: if cij ∈ [0, 1], i = 1, 2, . . . ,n, j = 1, 2, . . . ,m,
∑m

j=1 cij = ai, i =

1, 2, . . . ,n,
∑n

i=1 cij = bj, j = 1, 2, . . . ,m, and
∑n

i=1 ai = 1,
∑m

j=1 bj = 1, then

n
∑

i=1

m
∑

j=1

ϕ(cij) ≤

n
∑

i=1

ϕ(ai) +

m
∑

j=1

ϕ(bj).

Remark 4.1 In [39] we have shown that the Shannon entropy as well as the logical en-

tropy functions are sub-additive generators. Moreover, a sub-additive generator different

from these entropy functions was found; it was proven that the function k : [0, 1] → [0,∞)

defined by

k(x) = x
(

1 – x2
)

, (4.2)

for every x ∈ [0, 1], is a sub-additive generator. The function k will be called the quadratic

logical entropy function.
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Remark 4.2 Consider any product MV-algebra (A, ·) and the partition E = (u) in (A, ·). If

ϕ : [0, 1] →R is a function with the property that ϕ(1) = 0 (it is evident that all of the above

three entropy functions satisfy this condition), then Hµ
ϕ (E) = 0.

Theorem4.1 Letµ be a state on a productMV-algebra (A, ·), and ϕ be a sub-additive gen-

erator.Then, for any partitions X,Y in a productMV-algebra (A, ·), the following inequality

holds:

Hµ
ϕ (X ∨ Y ) ≤ Hµ

ϕ (X) +Hµ
ϕ (Y ).

Proof Suppose that X = (x1,x2, . . . ,xn) and Y = (y1, y2, . . . , ym). Put cij = µ(xi · yj),ai =

µ(xi),bj = µ(yj) for i = 1, 2, . . . ,n, j = 1, 2, . . . ,m. By Proposition 2.1, we get

ai = µ(xi) =

m
∑

j=1

µ(xi · yj) =

m
∑

j=1

cij and bj = µ(yj) =

n
∑

i=1

µ(xi · yj) =

n
∑

i=1

cij

for i = 1, 2, . . . ,n, j = 1, 2, . . . ,m. Further, according to Definition 2.2 and the definition of a

partition in a product MV-algebra, we have

n
∑

i=1

ai =

n
∑

i=1

µ(xi) = µ

(

n
∑

i=1

xi

)

= µ(u) = 1,

analogously, we get that
∑m

j=1 bj = 1. Hence

Hµ
ϕ (X ∨ Y ) =

n
∑

i=1

m
∑

j=1

ϕ
(

µ(xi · yj)
)

=

n
∑

i=1

m
∑

j=1

ϕ(cij)

≤

n
∑

i=1

ϕ(ai) +

m
∑

j=1

ϕ(bj) =

n
∑

i=1

ϕ
(

µ(xi)
)

+

m
∑

j=1

ϕ
(

µ(yj)
)

=Hµ
ϕ (X) +Hµ

ϕ (Y ). �

To illustrate the result of the previous theorem, we provide the following example.

Example 4.2 Consider the measurable space ([0, 1],B), where B is the σ -algebra of all

Borel subsets of the unit interval [0, 1]. Let A be a family of all Borel measurable func-

tions f : [0, 1] → [0, 1]. If we define in the family A the operation· as the natural product of

fuzzy sets, then the system (A, ·) is a product MV-algebra. We define a state µ : A→ [0, 1]

by the equality µ(f ) =
∫ 1

0
f (x)dx for any element f of A. It is easy to see that the pairs

X = (f1, f2),Y = (g1, g2), where f1(x) = x, f2(x) = 1 – x, g1(x) = x2, g2(x) = 1 – x2,x ∈ [0, 1], are

two partitions in (A, ·) with the state values 1
2
, 1
2
and 1

3
, 2
3
of the corresponding elements,

respectively. The join of partitions X and Y is the system X∨Y = (f1 · g1, f1 · g2, f2 · g1, f2 · g2)

with the state values 1
4
, 1
4
, 1
12
, 5
12

of the corresponding elements. By simple calculations we

get the Shannon entropies H
µ
s (X) = 1,H

µ
s (Y ) =̇ 0.9183,H

µ
s (X ∨ Y ) =̇ 1.8250; the logical

entropies H
µ

l (X) = 0.5,H
µ

l (Y ) =̇ 0.4444,H
µ

l (X ∨ Y ) =̇ 0.6944; and the quadratic logical en-

tropiesH
µ

k (X) = 0.75,H
µ

k (Y ) =̇ 0.6666,H
µ

k (X∨Y ) =̇ 0.6615. It is easy to see that for the sub-

additive generators ϕ = s,ϕ = l, and ϕ = k, it holds Hµ
ϕ (X ∨ Y ) ≤ Hµ

ϕ (X) +Hµ
ϕ (Y ), which is

consistent with the claim of the previous theorem.
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Theorem 4.2 Let (A,µ,U) be a dynamical system in a product MV-algebra (A, ·), and

ϕ : [0, 1] → R be a function. Then, for any partition X in (A, ·) and for any non-negative

integer k, it holds

Hµ
ϕ

(

Uk(X)
)

=Hµ
ϕ (X).

Proof The statement follows immediately from condition (iii) of Definition 3.1. �

Proposition 4.1 Let (A,µ,U) be a dynamical system in a product MV-algebra (A, ·), and

ϕ be a sub-additive generator. Then, for any partition X in (A, ·), there exists the following

limit:

lim
n→∞

1

n
Hµ

ϕ

(

n–1
∨

k=0

Uk(X)

)

.

Proof In view of sub-additivity of ϕ-entropy (Theorem 4.1) and the previous theorem, the

proof can be made similarly as the proof of Proposition 3.2. �

Definition 4.3 Let (A,µ,U) be a dynamical system in a product MV-algebra (A, ·), and ϕ

be a sub-additive generator. Then we define the ϕ-entropy of (A,µ,U) by the formula

Hµ
ϕ (U) = sup

{

Hµ
ϕ (U ,X);X is a partition in (A, ·)

}

,

where

Hµ
ϕ (U ,X) = lim

n→∞

1

n
Hµ

ϕ

(

n–1
∨

k=0

Uk(X)

)

.

Example 4.3 It is clear that putting ϕ = l, where l : [0, 1] → [0,∞) is the logical entropy

function defined by Eq. (1.2), we obtain the logical entropy of a dynamical system (A,µ,U).

If we put ϕ = s, where s : [0, 1] → [0,∞) is the Shannon entropy function defined by

Eq. (1.1), we obtain the Kolmogorov–Sinai entropy of a dynamical system (A,µ,U) de-

fined and studied by Petrovičová in [37].

Definition 4.4 Two product MV-algebra dynamical systems (A1,µ1,U1), (A2,µ2,U2) are

said to be isomorphic if there exists some one-to-one and ontomapψ : A1 → A2 such that

ψ(u1) = u2, and, for every x, y ∈ A1, the following conditions are satisfied:

(i) ψ(x · y) = ψ(x) · ψ(y);

(ii) if x + y≤ u1, then ψ(x + y) = ψ(x) +ψ(y);

(iii) µ2(ψ(x)) = µ1(x);

(iv) ψ(U1(x)) =U2(ψ(x)).

In this case, ψ is called an isomorphism, and we write U1
∼= U2.

Proposition 4.2 Let (A1,µ1,U1),(A2,µ2,U2) be isomorphic product MV-algebra dynami-

cal systems, and ψ : A1 → A2 be an isomorphism between (A1,µ1,U1), (A2,µ2,U2). Then,

for the inverse ψ–1 : A2 → A1, the following properties are satisfied:

(i) ψ–1(x · y) = ψ–1(x) · ψ–1(y) for every x, y ∈ A2;
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(ii) if x, y ∈ A2 such that x + y≤ u2, then ψ–1(x + y) = ψ–1(x) +ψ–1(y);

(iii) µ1(ψ
–1(x)) = µ2(x) for every x ∈ A2;

(iv) ψ–1(U2(x)) =U1(ψ
–1(x)) for every x ∈ A2.

Proof Since ψ : A1 → A2 is bijective, for every x, y ∈ A2, there exist x′, y′ ∈ A1 such

thatψ–1(x) = x′ and ψ–1(y) = y′.

(i) Let x, y ∈ A2. Then we have

ψ–1(x · y) = ψ–1
(

ψ
(

x′
)

· ψ
(

y′
))

= ψ–1
(

ψ
(

x′ · y′
))

= x′ · y′ = ψ–1(x) · ψ–1(y).

(ii) Let x, y ∈ A2 such that x + y ≤ u2. Then x′ + y′ ≤ u1, and

ψ–1(x + y) = ψ–1
(

ψ
(

x′
)

+ψ
(

y′
))

= ψ–1
(

ψ
(

x′ + y′
))

= x′ + y′ = ψ–1(x) +ψ–1(y).

(iii) Let x ∈ A2. Then µ2(x) = µ2(ψ(x′)) = µ1(x
′) = µ1(ψ

–1(x)).

(iv) Let x ∈ A2. Then

ψ–1
(

U2(x)
)

= ψ–1
(

U2

(

ψ
(

x′
)))

= ψ–1
(

ψ
(

U1

(

x′
)))

=U1

(

x′
)

=U1

(

ψ–1(x)
)

.

�

Theorem 4.3 Let ϕ be a sub-additive generator, and (A1,µ1,U1),(A2,µ2,U2) be product

MV-algebra dynamical systems. If U1
∼= U2, then

Hµ1
ϕ (U1) =Hµ2

ϕ (U2).

Proof Let ψ : A1 → A2 be an isomorphism between dynamical systems (A1,µ1,U1), (A2,

µ2,U2). Consider a partition X = (x1,x2, . . . ,xn) in a product MV-algebra (A1, ·). Then x1 +

x2 + · · · + xn = u1, and therefore, by condition (i) of Definition 4.4, it holds ψ(x1) +ψ(x2) +

· · · + ψ(xn) = ψ(x1 + x2 + · · · + xn) = ψ(u1) = u2. This means that the collection ψ(X) =

(ψ(x1),ψ(x2), . . . ,ψ(xn)) is a partition in a productMV-algebra (A2, ·).Moreover, according

to condition (iii) of Definition 4.4, we have

Hµ2
ϕ

(

ψ(X)
)

=

n
∑

i=1

ϕ
(

µ2

(

ψ(xi)
))

=

n
∑

i=1

ϕ
(

µ1(xi)
)

=Hµ1
ϕ (X).

Hence, using conditions (iv) and (i) of Definition 4.4, we get

Hµ2
ϕ

(

n–1
∨

k=0

Uk
2

(

ψ(X)
)

)

=Hµ2
ϕ

(

n–1
∨

k=0

ψ
(

Uk
1 (X)

)

)

=Hµ2
ϕ

(

ψ

(

n–1
∨

k=0

Uk
1 (X)

))

=Hµ1
ϕ

(

n–1
∨

k=0

Uk
1 (X)

)

.

Therefore, dividing by n and letting n→ ∞, we obtain

Hµ2
ϕ

(

U2,ψ(X)
)

= lim
n→∞

1

n
Hµ2

ϕ

(

n–1
∨

k=0

Uk
2

(

ψ(X)
)

)
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= lim
n→∞

1

n
Hµ1

ϕ

(

n–1
∨

k=0

Uk
1 (X)

)

=Hµ1
ϕ (U1,X).

This implies that

{

Hµ1
ϕ (U1,X);X is a partition in (A1, ·)

}

⊂
{

Hµ2
ϕ (U2,Y );Y is a partition in (A2, ·)

}

,

and consequently

Hµ1
ϕ (U1) = sup

{

Hµ1
ϕ (U1,X);X is a partition in (A1, ·)

}

≤ sup
{

Hµ2
ϕ (U2,Y );Y is a partition in (A2, ·)

}

=Hµ2
ϕ (U2).

The converse Hµ2
ϕ (U2) ≤ Hµ1

ϕ (U1) is obtained in a similar way; according to Proposi-

tion 4.2, it suffices to consider the inverse ψ–1 : A2 → A1. �

By combining the previous results, we obtain the following statement.

Corollary 4.1 If U1
∼= U2, then

(i) H
µ1
s (U1) =H

µ2
s (U2);

(ii) H
µ1
l (U1) =H

µ2
l (U2);

(iii) H
µ1
k (U1) =H

µ2
k (U2).

Remark 4.3 It trivially follows from the above theorem that if Hµ1
ϕ (U1) �= Hµ2

ϕ (U2), then

the corresponding dynamical systems (A1,µ1,U1),(A2,µ2,U2) are not isomorphic. This

means that the proposed ϕ-entropy distinguishes non-isomorphic product MV-algebra

dynamical systems.

5 Conclusions

In the paper we have extended the results concerning the logical entropy of partitions in

product MV-algebras provided in [1] to the case of dynamical systems. By using the con-

cept of logical entropy of a partition in a productMV-algebra, we introduced the notion of

logical entropy of a product MV-algebra dynamical system and derived the basic proper-

ties of thismeasure of information. In particular, a logical version of theKolmogorov–Sinai

theorem on generators was provided.

In addition, using the concept of the sub-additive generator ϕ introduced by the authors

in [39], we have defined a general type of entropy of a product MV-algebra dynamical sys-

tem (A,µ,U), the so-called ϕ-entropy of a dynamical system (A,µ,U). The proposed ϕ-

entropy includes the logical entropy and the Kolmogorov–Sinai entropy as special cases:

if we put ϕ = l, where l : [0, 1] → [0,∞) is the logical entropy function defined by Eq. (1.2),

we obtain the logical entropy of a dynamical system (A,µ,U), and putting ϕ = s, where

s : [0, 1] → [0,∞) is the Shannon entropy function defined by Eq. (1.1), we obtain the

Kolmogorov–Sinai entropy of a dynamical system (A,µ,U) defined and studied by Petro-

vičová in [37]. For the proposedϕ-entropyHµ
ϕ (U), we have created an isomorphism theory

of the Kolmogorov–Sinai type. It was shown that the ϕ-entropyHµ
ϕ (U) distinguishes non-

isomorphic productMV-algebra dynamical systems. In this way, we have acquired several

instruments to distinguish non-isomorphic product MV-algebra dynamical systems: the
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logical, the Kolmogorov–Sinai, and the quadratic logical entropy of a dynamical system

(A,µ,U).

As mentioned above (see Example 3.2), the full tribe of fuzzy sets represents a special

case of productMV-algebras; the obtained results can therefore be immediately applied to

this significant family of fuzzy sets. From the point of view of applications, it is interesting

that to a given family F of intuitionistic fuzzy sets can be constructed an MV-algebra A

such that F can be embedded toA. Also, product on F can be introduced by such a way

that the corresponding MV-algebra is an MV-algebra with product. Hence all results of

our paper can be applied also to the case of intuitionistic fuzzy sets.
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10. Markechová, D., Riečan, B.: Logical entropy of fuzzy dynamical systems. Entropy 18, Article ID 157 (2016).

https://doi.org/10.3390/e18040157

11. Mohammadi, U.: The concept of logical entropy on D-posets. J. Algebraic Struct. Appl. 1, 53–61 (2016)

12. Ebrahimzadeh, A.: Logical entropy of quantum dynamical systems. Open Phys. 14, 1–5 (2016)

13. Ebrahimzadeh, A.: Quantum conditional logical entropy of dynamical systems. Ital. J. Pure Appl. Math. 36, 879–886

(2016)
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39. Riečan, B., Markechová, D.: ϕ-Entropy of IF-partitions. Notes IFS 23, 9–15 (2017)

40. Gluschankof, D.: Cyclic ordered groups and MV-algebras. Czechoslov. Math. J. 43, 249–263 (1993)

41. Cattaneo, G., Lombardo, F.: Independent axiomatization for MV-algebras. Tatra Mt. Math. Publ. 15, 227–232 (1998)
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