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Abstract
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1 Introduction

The problem of inference is fundamental in Artificial Intelligence, AI. The role of inference is
central in various applications such as data bases, expert systems, decision support systems,
and logic programming. The process of inference determines whether a given proposition is
implied by a massive collection of data (rules) and, furthermore, whether a proof procedure
and answer extradian can be drawn from these data to answer a padicular question.

Different models for the representation of knowledge inference systems are known. For
example directed and acyclic networks are used as a syntactic device for representing facts
in a first order logic system [Nil 80]. Directed networks are also used to represent belief·
networks and probabilistic dependencies [Pea 86]. Petri nets are chosen Lo model logical
inference because Petri nets are themselves good models for describing parallelism, nonde­
terminism and asynchronous characteristics; in addition, there is a well-developed net theory.
Transforming logical inference into Petri net models and using existing Petri net analysis
methods to handle logical inference enhance the chance of treating problems of inference in
an efficien t manner.

Petri nets have been proposed to represent first order propositional logic [Rei 85], modal
logic [Cen 79], predicate calculus [Gio 85], and linear logic [GuG 89]. For modeling logical
inference Lautenbach [Lau 85], Sinachopoulos [Sin 87], and Murata and his co-workers [PeM
89] give the transformation procedure from a set of clauses to a Petri net model, and a nec­
essary net theoretical condition for a set of clauses and a sufficient net theoretical condition
for a set of Horn clauses to be unsatisfiable. It is shown that the goal transition of the
Petri net model of a set of Horn Clauses is potentially firable jff there exists a non-negative
T-invariant which includes the goal transition in its support.

The focus of this paper is the treatment of Horn clauses. Horn clauses are an important
subset of clausal form because any problem which can be expressed in logic can be re­
expressed by means of Horn clauses [Kow 79]. A contribution of this paper is to show that the
inference methods for the Horn clauses have their counterparts in the structural methods used
to analyze Petri net models. The main motivation of this work is to provide new insights for
computation of T-invariants for logical inference in Petri net models and to reveal analogies
among logical inference and T-invariants methods in Petri net analysis. These relationships
show that various techniques can be applied to solve large inference problems and they can
lead to fast inference methods. The linear representation and invariant techniques of Petri
net plays a central role in logical inference models and inference methods as described in
this paper.

This paper is organized as follows. A brief review of Petri nets, Petri net models of
propositional logic, and the mapping of a set of Horn clauses to the incidence matrix of a
Petri net are the topics of Section 2. The application of the logical concepts of resolution,
one-literal, pure-literal and splitting in computing T-invariants of first order predicate logic
models are covered in Section 3. Section 4 discusses High Level Petri Net models of first
order predicate logic. An algorithm for computing T~invariants in High Level Petri nets,
HLPNs, models of predicate logic is introduced in Section 5. Section 6 concludes the paper
and discusses future research directions.
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2 Petri Nets and Models of Propositional Logic

Petri nets and related concepts, such as marking, incidence matrix and T-invariants are
introduced. Then Horn clauses and their representation as Petri nets are discussed. In this
paper N denotes the set of natural numbers and Z the set of integers.

2.1 Definitions and Terminology

Definition 2.1. A tuple PN = (S,TjF,Mo1 W) is called a Petri net iff:

(a) (S,TjF) is a finite net with S the set of places, T the set of transitions, F the set of
arcs. The following properties hold:

- S n T = ¢ (duality between places and transitions)j

. F ~ (S x T) U (T x S) (the flow relation holds only between places and transition
or vice versa);

- S # 0 and T # 0 (no empty net);

- Dom(F) U Cod(F) = S U T (no isolated elements).

(b) Mo : S -+ N is the initial marking.

(e) W: F --+ {l} is a weight function associated with each arc of the net.

Let X = S U T be the set of elements of the net. The pre-set (post-set) of an element
x E X is denoted by 'x = (yly E X, (y,x) E F) (x' = {yly E X, (x,y) E F}).

Definition 2.2. (Marking, Follower Marking and Firing Sequences). Let PN = (S, T; F, Mo,W)
be a Petri net.

(a) A marking M of PN is a mapping M S -10 N, for all 8 E S. It represents the
distribution of tokens over places.

(b) A transition t E T is enabled at marking M iff 'Is E' t, M(8) ~ W(8, t).

(c) If t E T is enabled at marking M and t fires, we call M' the follower marking of M,
denoted by M[t > M' iff for eacb 8 E S,M'(8) = M(8) - W(8,t) +W(t,8).

(d) A firing sequence u =< til, ti2"" I tin> is said to be executable from Mo ift;t is fireable
from Mo and leads to the follower marking M I , then ti2 is firable from M1 and leads
to M 2 , and so on, for all transitions in u.

Definition 2.3. (Incidence Matrix). Let PN = (S,T;F,Mo,W) be it, Petri net with n
transitions and m places. A matrix C = [Gj,] is it, n x m matrix of integers so that Gi ; =
W(t jl 8j) - W(5j, t i ), where tj represents transition i and 5j is place j. C jj is the weight of
the arc from transition i to place j minus the weight of the arc from place j to transition i.
C is called Ute incidence matrix of P N. C T is the transpose of the incidence matrix.
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Denote the t 1h row of C by G(t) and note that G(t) is associated with transition t. The
definition of the follower marking can be rewritten as

M'(s) = M(s) +eltl .

Definition 2.4. (T-invariants). Let C be the incidence matrix of a net. An n~vector of
integers X, is called a T-invariant if CT X = o. The i!h entry of a vector X is denoted
by X(i). The support of a T-invariant X, denoted by IlXII, is the set of transitions whose
components in X are strictly positive. A support is minimal iff it does not contain the
support of another invariant except itself and the empty set. A T-invariant X ~ 0, is said
to be executable from marking M if there exists a firing sequence u executable from the
marking M, such that its firing count vector a = X. Since CT X = 0, it follows that an
n-vedor X ~ 0 is a T-invariant iff there exist a marking M and a fidng sequence u from M
back to M such that u = X.
Definition 2.5. (Multisets, Sequences, Parikh mapping of a ffiultiset). A multi-set (or a
bag) pi is a function defined on a non-empty set P, pi E [P -j. N] where [P -j. N] is
the space of all functions from P to N. Intuitively, a multi-set is a set which can contain
multiple occurrences of the same element. For example, B = {a,c,c} is a rnultiset over the
domain {a, b, c}. Call #(a, B) the number of occurrences, of the element a in the muliiset B.
Then in the previous example #(a, B) = 1 and #(c, B) = 2. An ordered multiset is called
a sequence. A sequence a can be converted to corresponding multiset B by B = Bag(a).

The Parikh mapping of a multiset B is denoted by 1JJ(B) and is defined by

,p(B) = (#(t"B), ... ,#(t.,B)

where {ttl ... ,tnl is the domain for Band #(t j ,B) is the number of t j in the multiset B.
-rp(Bag(a)) the Parikh mapping of a firing sequence u is denoted bya.

2.2 Modeling Horn Clauses

A Horn clause of propositional logic has the form

This notation means that holding of all conditions At to An implies the conclusion B. Logical
connectiveness is expressed using the +- (implication) and 1\ (conjunction) symbols. A Horn
clause is a clause in which the conjunction of zero or more conditions implies at most one
conclusion. There are four different forms of Horn clauses. The Petri net representation of
Horn clauses are:

1. The Horn clause with non-empty condition(s) and conclusion

For example, the clause C +- A 1\ B is represented by the Petri net in Figure lao
When the conditions A and B are true, the corresponding places A and B hold tokens,
transitions t fires, and a token is deposited in place G, i.e., the conclusion G is true.
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A

B

t c

Figure la. A Horn clause with two condition and a conclusion.

2. The Horn clause with empty condWon(s)

This type of Horn clause is interpreted as an assertion of facts. A fact B can be
represented in a Petri net model as a transition system with a source transition, as
shown in Figure lb.

B

Figure lb. A Horn clause with no condition.

The source transition t is always enabled and this means that the formula B is always
true.

3. The Horn clause with empty conclusion

This type of Horn clause is interpreted as the goal statement which is in the negation
form of what is to be proven. In a Petri net model a condition like'Al and Az' is
represented as a goal transition system with a sink transition, as shown in Figure Ie.
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At A,

~---L_ t

Figure Ie. A Horn clause with empty conclusion.

4. The null clause, which is interpreted as a contradiction. There is no representation of
such clause, the empty net is not defined in the net theory, see Definition 2.1.

2.3 Mapping of a Set of Horn Clauses into a Petri Net

Given a set of Horn clauses consisting of n clauses and m distinct symbols, the n x m
incidence matrix C = [ei;] of a Petri net corresponding to the set of clauses can be obtained
by the following procedure given by Murata and Zhang [MuZ 88].

Step 1: Denote the n clauses by tll .•. ,in' The clause ti represents the i th row of C.
Step 2: Denote the m predicate symbols by PI, ... 'Pm' The symbol Pj represents the

ph column of C.

Step 3: The (i,j)th entry of C , CU, is the sum of the arguments in the i Lh clause and
the ph symbo1. The sum is taken over all the ph symbols appearing in the i th clause. All
the arguments to the len hand side of the (- operator are taken as positive, and all the
arguments to the right hand side of it are taken as negative. Thus the elements Gij can be
either '0" or '1' or '_I'.

The following example shows the translation procedure.
Example 1: (b..ed on [peM 89]).

Given the following set of Horn clauses represented in the conventional way

I) A
3) A A B --> C
5) D --> A

2) B
4) CAB --> D
6) D --> C

To prove that D 1\ C is true, one can apply the satisfiability principle. Let S be a set of
first order formula and G be a first order formula. G is a logic consequence of S iff S U (-,G)
is unsatisfiable. The following result is obtained by adding the negation of D 1\ C to the set
of clauses

I) A
3) CV ~AV~B

5) A V ~D

7) ~D V ~C

2) B
4) DV~B V~C

6) CV ~D

The Pehi net representation of this set of Horn clauses and its incidence matrix are shown
in Figure 2.
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t,

ABeD
t, 100 0 B
t, 0 100
t3 -1 -1 1 0 t,
t, o-1 -1 1 - C t3
t, 1 0 0-1
t, o 0 1-1
17 o 0 -1 -1

Figure 2. The Incidence Matrix and the Petri Net for the set of Horn clauses in Example 1.

3 An Algorithm for Logical Inference in a Petri Net
Model of Propositional Logic

Sinachopoulos [Sin 87], Lantenbach (Lan 85) and Murata [PeM 891 have investigated the
necessary and sufficient conditions for a set of Horn clauses to contain a contradiction based
on analysis of the Petri net model of such a clauses. These conditions are:

Theorem 3.1 [Sin 87]. A necessary net theoretical condition for a set of clauses J, to be
unsatisfiable is that the net representation of J has a non-negative T-invariant.

Theorem 3.2 [Sin 87J. A sufficient net theoretical condition for a set of Horn clauses J, to
be unsatisfiable is that J contains at least one source transition, at least one sink transition,
and has a non-zero T-invariant.

Theorem 3.3. Let PN:;:: (S,TjF,Mo, W) be a Petri net representation of a set of Horn
clauses. Let t g be a goal transition in T. There exists a firing transition sequence which
reproduces the empty marking (M = 0) and fires the goal transition t g in PN iff PN has a
T-invariant X such that X ;::: 0 and X(tg ) 'f O. X is a vector and the value of its t~h element
is given by X(lg ).

The algorithm for computing the T-invariants of a Petri net due to Martinez and Silva
[MaS 82) is discussed next. Consider a net with n transitions and m places. The algorithm
starts with a n X (n+m) matrix consisting of an n xn identity matrix and the n Xm incidence
matrix. The algorithm consists of m steps. At each step one colomn of the incidence matrix
is eliminated by performing a set of linear combinations. If the colomn has n+ positive
and n- negative elements then n+ +n- rows are eliminated and n+ x n- rows are created
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at that particular step of the algorithm. If the algorithm computes the minimum support
invariants then every time a new row is created a test is performed to determine if the new
row is covered by a previous one. If it is then the new row is omitted. When the algorithm
completes, the n x n left sub-matdx contains the T-invariants of the net or the minimum
support T-invariants of the net.

Algorithm 1 (Martinez-Silva): Let C be the incidence matrix of a Petri net and L~ be the
identity matrix.

1. A := Cj D := In (n is the number of transitions);

2. Repeat for i = 1 until i = m (m is the number of places);

2.1 Append to the matrix [DIAJ every row resulting as a non-negative linear combi~

nation of row pairs from [DIAl that annul the i1h column of A.

2.2 Eliminate from [DIAl the rows in which the i fh column of A is non null.

The algodthm is applied to the net in Example 1 as shown in Figure 2. For instance,
column A of the incidence matdx has terms 1 and -1. Linear combinations of rows tJ and t3

and of rows t3 and t s annul the elements in column A of the incidence matrix. The two new
rows are added to the matrix and rows t l , t3 and ts are removed.

A B C D
B C D'1 1 0 0 0 0 0 0 1 0 0 0

tl + t3 1 0 1 0 0 0 0 -1 1 0
'2 0 1 0 0 0 0 0 0 1 0 0

" 0 0 1 0 0 0 0 -1 -1 1 0
t3 + ts 0 0 1 0 1 0 0 -1 1 -1

" 0 0 0 1 0 0 0 0 -1 -1 1 '2 0 1 0 0 0 0 0 1 0 0=>

" 0 0 0 1 0 0 0 -1 -1 1

" 0 0 0 0 1 0 0 1 0 0 -1

" 0 0 0 0 0 1 0 0 1 -1

" 0 0 0 0 0 1 0 0 0 1 -1
t, 0 0 0 0 0 0 1 0 -1 -1t, 0 0 0 0 0 0 1 0 0 -1 -1

C D
t l + t2 +t3 1 1 1 0 0 0 0 1 0
tZ+t3+ tS 0 1 1 0 1 0 0 1 -1

=> tz + tot 0 1 0 1 0 0 0 -1 1
t, 0 0 0 0 0 1 0 1 -1
t, 0 0 0 0 0 0 1 -1 -1

D
tl +2tz +t3 + t4 1 2 1 1 0 0 0 1
2t2 +t3+ t4+ tS 0 2 1 1 1 0 0 0

t2+ t4+ tO 0 1 0 1 0 1 0 0=>
tl+t2+ t3+ t7 1 1 1 0 0 0 1 -1
t2+ t3+ tS+ t7 0 1 1 0 1 0 1 -2

ts + t7 0 0 0 0 0 1 1 -2

8



2t2+t3+t4+ts 0 2 1 1 1 0 0 X,
t2+t.t+ tS 1 0 1 0 1 0 0 X,

=> 2h + 3t2 + 2t3+t7 2 3 2 1 0 0 1 X 3

2t1+ 5t2 + 3t3 + 2t4 +ts + t, 2 4 2 2 0 1 1 X,
2tl + 4t2 + 3t3 + 2t4 + ts + t, 2 5 3 2 1 0 1 X,

The set of clauses (1) to (6) implies D A C because the T-invariants X J , X4 and Xs
contain the goal transition i7 .

Consider the interpretation of resolution in terms of the algorithm presented above. The
process of row combination, row removal and row addition corresponds directly to the process
of resolution. A non-negative linear combination of row pairs to cancel the element of the
i th column is in effect the cancellation rule of resolution. For example, initially the i l row is
A and t3 row is ...,A V ...,B V ...,C. The result of a non~negative linear combination of i l + t3

is the same M the one obtained by the resolution rule. For instance the clause ...,B V C is
derived from two separate disjunctive clauses A and ...,A V ...,B V C .

The mapping from a set of Horn clauses to a Petri net proposed in [PeM 89] is based
upon a. one to one mapping from the set of clauses to the set of transition vectors (rows of the
incidence matrix). A refinement of this method, namely to transform a set of inference rules
into a set L' such that IL'I < [LI,L' has fewer inference rules is proposed in this paper. The
method presented reduces the effort to compute the T-invadants and the resulting algorithm
is susceptible to parallelization.

Inference rules to reduce the effort to compute T-invariants are discussed next. A strategy
to reduce the size of the incidence matrix is presented in [MuM 88]. This method is refined
here and applied to the previous algorithm for computing T-invariants using the following
three rules [DaP 60].

Let J be a set of Horn clauses in propositional logic.

1. One-Literal1'ule. This rule applies when the set J of clauses contains a. single literal say
L. J' is obtained by deleting the clauses of J containing L. J is inconsistent iff J' is
inconsistent. In example 1, i l is a unit clause and row is can be deleted before starting
the procedure for determining the T-invariants, because i l is a unit clause containing
literal A and is also contains A.

2. Pure-liteml nde. A literal L is called pure if the literal ...,L does not appear in J. If a
literal L is pille in J, then J' is obtained by deleting all clauses containing L. If J' is
empty, J is consistent. J is inconsistent iff J' is inconsistent. For example the column
P2 of the following matrix contains two 1's in rows t l and i 2 . The pure-literal rule can
be applied to get matrix C' by deleting rows t l and t 2 and column P2.

P, P, P3 P,
t, 0 1 -1 0 P, P3 P,
t, -1 1 1 0 t3 ( 1

-1

-Dc= t, 1 0 -1 1 => C'= t, 0 1
t, 0 0 1 -1 t, 0 1
t, 0 0 1 1
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From Algorithm 1 it is known that the T-invariants, including support X(t l ) or support
X(t2 ) cannot be obtained. If rows t l and t2 and column Pz are deleted before computing
the T-invariants, the computational effort is reduced.

3. Splitting rule. This rule can be used when neither the one-literal rule nor the pure­
literal rule apply. J can be written as

(A , V ~L) II ... II (Am V ~L) II (B, V L) II ... II (Bn V L) II G

where Ai and Bj are literals or disjunctions of literals, G is a set of clauses, and
L is a literal. It is required that Ai, B j and G contain neither L nor -,L. Obtain
J1 = Al /\ ... /\ Am 1\ G and Jz = B1 1\ ... A Bn 1\ G. J is inconsistent iff both J1 and
Jz are inconsistent. In Example 1 after applying the one -literal rule I the matrix C l is
obtained from matrix C.

(

A
t, 1

C/-tz 0
2 - t3 -1

(

A
t, 1
t, 0
t3 -1
t6 0

C z =

ABC D
1 0 0 0
o 1 0 0

-1 -1 1 0
o -1 -1 1
o 0 1-1
o 0 -1 -1

t ,
t,
t3C1 =
t,
t6
t7

1J) ~

1;(1 '~) ,1'(~1~)C3 = ~~ g -J -1 =? C3 = t~ 0-1

The choice to delete column C and split the remaining matrix into two matrices Cz and
C3 such that C z consists of rows having 1 or 0 in column C I C3 consists of rows having -1
or 0 in column C, was made.

The one-literal rule and the pure-literal rule are applied to the matrices C z and C3 to
obtain the matrices C; and C~. After applying Algorithm 1, two T-invariants Xl and X z
are obtained separately from C; and C~.

The T-invariants for the incidence matrix C are obtained from the T-invariants for the
matrices Cz and C3 following the sequence of steps described below. Let A be a place and let
II X, (i) II, and II X,(i) II be the two subsets of transitions in the preset of A, °A, and in the
postse! of A, AO, respectively. Let a =I:UI X, (i) for all II X, (i) II~ °A and let b= I:(,)X,(i)
for aliI! X 2(i) II~ AO. Let d be the least common multiple of a and b. X', a T-invariant of
the initial matrix C is given by X' = d/u * Xl + d/b * Xz

As an example consider the place C in Figure 2. °C = {t3 , t6 } and Co = {t'll t7 }. In this
case a = 2:Xl(i) = 1, b = 2:Xz (i) = 2 and d = 2. Call X~ and X~ the extended versions
of Xl and X 2 .

X'1
t ,

<1
t7

0> X',
It

<0
/7

1>
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Then

it tz t3 t4 is t 6 t 7

X' = dl"* X{ + dlbo X; = < 2 3 2 1 0 0 1 >

The T-invariant X' is identical with XJ obtained from Algorithm 1. By reducing the size
of the matrices, the splitting rule reduces not only the computational effort, but also the
memory requirements for computing the T-invariants of a set of Horn clauses. Note also that
the algorithm which exploits the splitting rule is susceptible to paraUelization, the invariants
for C 2 and C 3 can be computed in parallel [MaB 91J.

Algorithm 2 in now introduced. The algorithm takes advantage of the three rules dis­
cussed above. It uses two new procedures called Procedure 2 and Procedure 3 to reduce
the size of the incidence matrix based upon the one· literal rule and the pure-literal rule
respectively and calls Procedure 1 which implements the original algorithm for computing
place or transition invariants (Algorithm 1).
Procedure 2: given an n x m incidence matrix C as input, a n x m output matrix C' is
produced.

procedure2 (C,C')

1. Repeat for k := 1 until k = n. H row k of matrix C consists of G's and a unique non­
zero entry 1 (or -1), say in the column Pi, then mark all rows whose value in column
Pi is 1 (or -1) except row k itself.

2. Delete all rows marked and update as follows n ::;:: n - the number of rows marked.

endprocedure2

Procedure 3: given an n x m incidence matrix C as input, an output matrix C' with a
reduced number of rows and columns is produced.

procedure3(C,C')

1. z ::::: m

2. Repeat for k::;:: 1 until k:;:: i. If column k consists of l's and G's or -l's and G'S, then

begin

delete all rows having a non-zero entry in column k and set
n := n - the number of rows deleted;
delete the column k and set m ::;:: m - 1;

end

endprocedure3

Algorithm 2: given an n x m incidence matrix A as input I the T-invariants are produced

11



I. call procedure2(A,C);

2. call procedure3(C,C');

3. choose column Pi of C' with a minimum number of D'Si

4. delete column Pi and split C f into C 1 and C 2 so that C 1 consists of rows having 1 or
oin the column Pi, and C 2 consists of rows having -lor 0 in the column Pi;

5. call procedure2(C1 ,C1 ')j

6. call procedure3(C1' ,C1
1I)j

7. call procedure 1 to compute Ji,l ~ j ~ a, the T-invariants of C1";

8. call procedure2(Cz,C2 ')j

9. call procedure3(Cz',Cz")j

10. call procedure 1 to compute X k , 1 :::; k ::::; b, the T-invariants of C 2"j

11. combine T-invariants of GIll and Cz/l); for 1 :$ j :::; a, 1 < k < b. If 3}j(1) #
oA 1IY;(I)1I ~ °P; and 3X,(h) # 0 A IIX,(h)1I ~ Pt, then

begin for VIIY;(I)1I E °P; EY;(I) = d;

for VIIX,(h)1I E P; EX,(h) = q;
Obtain the least common multiple of d and q, say e =:: lcm(d,g)j
X = ~y. + ~Xk'd J q I

delete lj and Xki

end

For the sake of clarity the input and the output of different algorithms and procedures
presented above are explicit. In an actual program the output may overwrite the input data
structures.

Every T-invariant of a Petri net can be expressed as a linear combination of minimum
support T-invariants with positive coefficients [MaS 82]. Only minimal support T-invariants
which include the goal transition in their support are of interest in this paper. For instance, in
Example 1, only the T-invariant Xa is needed. Xl and X 2 are minimal support T-invariants
but do not contain the goal transition t7 in their support. X4 and Xs include the goal
transition in their support but they are non-minimal support invariants.

4 High Level Petri Net Models of First Order Predi­
cate Logic

The following definition of High Level Petri Nets, (HLPNs) is based upon [Jen 86] and
[Gen 86J.

Definition 4.1. A HLPN is an 8-tuple H = (5, TjF,A, V,X, W,Mo) where:

12



• N = (S, T; F) is the underlying net of H.

• A is a finite set of atomic colors. Ak denotes the set of all k-tuples < al, ... ,ak >,
with aj E A.

• V is a finite set of variable over A. V k denotes the set of all k-tuples < VI, .•. I Vk >,
with Vi E V.

• X: S -l' UO<k<nAk with AO = {<>} and T ---+ UO<k<n (V +- Al is called a coJor fUDC-- - - -
tiOD. n is a given maximal arity of predicates. XeS) represents the set of predicates.
X attaches to each place a set of possible token colofs. X(T) represents the set of
transition colors. X attaches to each transition a set of possible occurrence colors, i.e.,
Vt E T, X(t) is the set of substitutions of all variables appearing free in the arc labels
connected t.

• W: F --+ [Uo<k<n(A U V)'" --+ N] is an arc label function. It indexes a family of
multi-sets over-U~$'$n(A U V)', i.e., v(x,y) E F, Wx.,: [(A U V)' ~ N].

• Mo is initial marking of H. Marking M is an S-indexed family of multi-sets over X(S):
'18 E S, M(s): X(s) ~ Z.

In a HLPN, each place is a predicate which describes a relation among individuals, i.e.,
Vs E S, s has a certain subset of Ak . Each < al," .. ,ak >E AI< has a value of either true or
false. An arc label specifies a variable extension of a predicate to which the arc is connected.
A transition defines a logical implication among its input and its output predicates. When
the input predicates are satisfied, the output predicate yields a prescribed conclusion.

Let (J be a transition color and W""y(a) be the multi-set obtained from W:&"y by substitut­
ing the free variables by atomic colors according to (J. For instance, if a = (u +- b, v +- a)
and WX,II =< a,u > + < U,V >, then W;r;,y(O") =< a,b> + < b,a >.
Definition 4.2. The incidence matrix of a HLPN is the matrix C = (CL,8) for all t E T,
s E S with Ct ,8 defined as

Thns C", E [A U V)' ~ Z].
Definition 4.3. The transition t is enabled at marking M iff 30" E X(t), such that 'V8 e t,
W",(o') :s; M(8).

We will say that a step (t,O'), rather than transition t, is enabled if a transition color
function 0" exists, i.e., 30' E X(t). The step (t,a) is not enabled if a colors function 0' does
Dot exist.

Definition 4.4. When a step (t,O') is enabled at M, it can fire and transform M into a
directly reachable marking M' defined for 'Vs E S by

M'(s) = M(8) - W",(o') +W,.,(o').

Or
M'(8) = M(8) + C'(o').
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Any HLPN with a finite set of colors, admits an equivalent Place/Transition net obtained
through unfolding each place s into the set of places {(s,a)la E X(s)) and unfolding each
transition t into the set of transitions {(t,a)la C X(t)).

A Horn clause is defined as

B <- A, A A" ... , AAn (4.1)

A first order predicate logic atomic formula is f(all" .,ak) where f is a k-element predicate
symbol and at, ... , ak are terms. A term is defined inductively as follows: a variable is a
term, a constraint is a term, if f is an n-ary function symbol and it, t2 , ..• ,i" are terms,
then j(ill i2, ... , i,,) is a term.

If there are variables Xt, ... Xj in (4.1), it is to be interpreted as ufor all Xt. ••. ,Xj, if A1

and ... , and An then Bn. The transformation procedure from the first order predicate logic
to the incidence matrix of HLPN is almost the same as the procedure in Section 2. The only
difference is that an entry of the matrix Ci,j is the formal sum of arguments in the jlh clause
and in the ph predicate symbol where the sum is taken over, all the lh predicate symbols
appearing in the i th clause.

Example 2: Consider the following set of Horn clauses from [PeM 89].
C1: ancestor (x,y): +- parent (x,y)
C2: ance::ltor (x,y): +- parent (x,z) 1\ ancestor (z,y)
C3: parent (D, J): <-

C4: parent (J,M): <-

IT a query (or a goal statement) to the set of clauses is as follows:
C5: <- ancestor (x, M)

then the HLPM net model and the incidence matrix for the set of clauses and the query are
obtained through the transformation procedure shown in Figure 3.

ancestor(a) parent(P)

tt <x,y> - <x,y
t2 <x,y>-<z,y> -<x,z>

C= t3 1> <D,J>
t, 1> <J,M>
is - < x,M > 4J

A set of clauses can be represented as a HLPN. The main problem is that a pair of unifiable
literals is not explicitly represented in the set of clauses when the resolution rule is applied.
So we cannot explicitly obtain the colors function X.

5 Algorithms for Logical Inference in a HLPN Model
of First Order Predicate Logic

To discuss inference in first order logic, the concept of unification is needed. In order to
represent unifiable relations explicitly, a unifiable relation set U(p) for each place p is intro­
duced. A member of U(p), u(O) = (H'ti,Pl Wp,tj' 0) represents a unifiable pail' (liJft"p, J.Yp,tj)
with a mgu (most general unifier) () where W'i.P is the label on the input arc to p and Wp,tj is
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-.--- t,
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<x,M>

ancestor

< X,V >

< X,V >

t3 -'-----

parent

< X,Z >

Figure 3. The High Level Petri Net for Example 3
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(1)

the label on the output arc from p to the transition tj. In special cases, the label is a formal
sum of multi-atomic formulas. Multiple labels are needed in a unifiable pair. In Example
2, W~ICI = < x,y > - < z,y >. In this example, Wt1lIl , Wt5 ,a and Wt~,a can be in one
unifiable pail', WtJ,a and M't,!"a are in another unifiable pair. To facilitate the resolution rule
(non-negative linear combination of row pairs), unification can only be carried out. between a
pair of complementary signed occurrences. In Figure 3, dashed lines among the occurrences
indicate all the unification possibilities. In fact, the unifiable pairs show the possible paths
of the token flow.

The following unifiable relation sets for Example 2 can be obtained.

U(parent) = {01 = «D,J>,<x,y>,(Dfx,Jfy)),
0, = « D,J >, < x,z >,(Dfx,Jfz)),
03 = « J,M >,< x,y >,(Jfx,Mfy)),
0, = « J,M >,< x,z >,(Jfx,Mfz)))

U (ancestor) - {Os = « x,y >,< x,M >,(Mfy))
O. «(< x,y >, < x,M »,« x,y >,< z,y »(Mfy,zfx)))

An algorithm for computing the T-invariants of HLPNs is now discussed. Each element in
a T-invariant vector of a HLPN generally consists of two components: one is the coefficient
which denotes the number of firing in the firing sequence; another is the substitution which
is related to the transition colors.

The algorithm for S-invariants of HLPNs (LiM 91J is updated and the following proposi­
tion for T-invariants of HLPNs is derived.

Proposition 1. Let T' = (Zt,elt E T, 8 is a substitution in the unifications) be a solution of

Vs E S, Vu(O) E U(s) then L: Z"e(O) * Ct ,. = 0
tET

The corresponding T·invariant is an n vector T

T = [Zt, (J1d, . .. ,Z"(J1n)]

where Pi is a constant 'I' or a substitution or a composition of multiple substitutions ac­
cording to the connection between Zt,O and 8.

Intuitive Explanation of Proposition 1. The n vector T satisfies CTT = 0 because each
possible unification of any column in the incidence matrix C is zero.

Applying Proposition 1 to Example 2, the following equation groups are obtained:

{
Z,.,e, * < J,M >+Z",o, * (- < x,y >: (Jfx,Mfy)) = 0
Z",e, * « x,y >. (Mfy)) +Z",e, * (- < x,M » - 0

Z,.,e, * < J,M > +Z",o, * (- < x,y >: (Jfx,Mfy)) = 0
Z",e, * « x, y >: (zfx, Mfy)) +Z",e,(- < x,M »

+Z"'o, * «(< x,y > - < z,y »: (Mfy)) = 0

Z",e, * (- < x,y >: (Dfx,Jfz)) + Z"'o, * < D,J >= 0

The two equation groups can be written as
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(1')

(2')

Solving (1 '),

Ztl Zt2 Zt3 Zt4 Zt5

1 0 0 1 1

From Ztj,03 and Z!1I0el it follows that 131 = (JaBs = (J/x,M/y). The term ZI, does not
need a substitution. 135 is identical with fA, i.e.) f3s = (Jjx) since Zs and Z!j appear In one
equation.

Finally, aT-invariant T1 is obtained

Z" Z" Z" T
"

Z"
TI = 1 0 0 1 1

(J/x,M/y) (J/x)

Solving (2'), the T-invariant n is obtained

Z" Z" Z" 1;, Z"
T2 = 1 1 1 1 1

(J/x,M/y) (D/x,J/z,M/y) (D/x)

Algorithm 1 can be extended to have a uniform way to compute T-invariants for various
classes of Petri net models. The "non-negative combination of row pairs" in Step (2.1) of
Algorithm 1 becomes "non-negative combination of unifiable row pairs in the i,th column".
In addition, the unifier is attached to each row of the row pairs.

Algorithm 3: Let C be the incidence matrix of a HLPN and In be the identity matrix.

1. A := Cj D := In (n is the number of transitions)

2. Repeat for i = 1 unti i = m (m is the number of places)

2.1 Append to the matrix [DIAl every row which resulted from a non-negative linear
combination of unifiable row pairs in the i 1h column from [D IA] that annul the
i th column of A and attach the corresponding unifier to each row of the pair.

2.2 Eliminate the rows in which the i!h column of A is non null from (DIA].

The T-invariants for Example 2 are now computed using Algorithm 3.

A P
t, 1 0 0 0 0 < x,y > - < x,y >
t2 0 1 0 0 0 <x,y>-<z,y> - < x,z >
t3 0 0 1 0 0 0 < D,J>
t, 0 0 0 1 0 0 <J,M>
t5 0 0 0 0 1 - <x,M > 0
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JJ.
A

'I(Jlx, Mly) +', (Jlx,MlY) 0 0 1 0 <J,M>
,,(Jlx,Mlx)+', 0 (Jlx,Mlz) 0 1 0 <J,y>-<M,y>
,,(Dlx,JlY) +'3 (Dlx,Jly) 0 1 0 0 <D,J>
,,(Dlx,JIZ) + '3 0 (Dlx,Jlz) 1 0 0 <D,y> -<J,y>

" 0 0 0 0 1 - <x,M >
JJ.

'I(Jlx,Mly)+,,+,,(Jlx) [(JIX,MIY)
,,(Jlx, Mly) +', + ,,(Dlx, JIz)(MIY) (JIx,MIy)

+'d,,(Dlx)
,,(Dlx,JIY)+', (Dlx,JIY)
',(Jlx,MlY) +', 0

Two T-invariants are obtained:

o
(Dlx,Jlz)(Mly)

o
(Jlx,Mlz)

o 1 (Jlx)
1 1 (Dlx)

1 0 0
o 1 0

A

o )o

< D,J>
< J,y > - < M,Y >

1
o

T, = 0
1
1

(J/x,M/y)

(Jlx)

1
1

T, = 1
1
1

(Jlx,Mly)
(D/x, J/z, M/y)

(D/x)

Two T-invariants finally yield two solutions for the querry: 11 J is an ancestor of M" and llD
is an ancestor of M" .

The unifier is identified when the non-negative linear combination is computed. The
unifier leads to the variants being replaced uniformly by constants.

In computing a HLPN model of a first order predicate logic inference rules can be used to
reduce the computations required by the algorithm. The basic idea is to delete rows which
are not unifiable. Due to the limited space, this is not described in detail.

6 Conclusions

This paper studies Petri net models for the Horn clause form of propositional logic and first
order predicate logic. The paper proposes an algorithm for finding the T-invariants of a
Petri net model of a Horn clause system. This algorithm is based on the idea of resolution
and exploits the presence of one-literal, pure-literal and splitting clauses to lead to faster
computation. The algorithm is then extended for computing T-invariants of High Level Petri
net models of predicate logic.

This paper does not provide a quantitative analysis of the new algorithms. The com­
putational complexity of Petri net analysis algorithms is a neglected area of research. Only
qualitative arguments supporting the advantages of the algorithms proposed in this paper can
be given. Reducing the size of the incidence matrix always reduces the storage requirements
and may reduce the computations required by structural analysis.

Another neglected area of research in Petri nets is the investigation of parallel algorithms
and methods in net analysis. The size of the Petri net models of realistic applications makes
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the sequential analysis algorithms impractical in terms of storage and computing time. A
parallel algorithm to compute place and transition invariants and its implementation on a
distributed memory multiprocessor system is discussed in [MaB 91].

As a future research agenda at the top of our list is extending the applications of Petri
net methods, such as computation of T-invariants to the domain of non-monotonic logic
systems. Non-monotonic logic systems are coming to play an increasingly important role in
artificial intelligence research. We are exploring the idea of using a Petri net formalism with
inhibitor arcs and mu1ti~valued logic as a means of representation of such systems.
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