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Abstract. There is a gap between the theory and practice of distributed systems

in terms of the use of time. The theory of distributed systems shunned the notion

of time, and introduced “causality tracking” as a clean abstraction to reason about

concurrency. The practical systems employed physical time (NTP) information

but in a best effort manner due to the difficulty of achieving tight clock syn-

chronization. In an effort to bridge this gap and reconcile the theory and practice

of distributed systems on the topic of time, we propose a hybrid logical clock,

HLC, that combines the best of logical clocks and physical clocks. HLC captures

the causality relationship like logical clocks, and enables easy identification of

consistent snapshots in distributed systems. Dually, HLC can be used in lieu of

physical/NTP clocks since it maintains its logical clock to be always close to the

NTP clock. Moreover HLC fits in to 64 bits NTP timestamp format, and is mask-

ing tolerant to NTP kinks and uncertainties. We show that HLC has many benefits

for wait-free transaction ordering and performing snapshot reads in multiversion

globally distributed databases.

1 Introduction

1.1 Brief history of time

Logical clock (LC). LC [15] was proposed in 1978 by Lamport as a way of timestamp-

ing and ordering events in a distributed system. LC is divorced from physical time (e.g.,

NTP clocks): the nodes do not have access to clocks, there is no bound on message

delay and on the speed/rate of processing of nodes. The causality relationship captured,

called happened-before (hb), is defined based on passing of information, rather than

passing of time [15]. While being beneficial for the theory of distributed systems, LC

is impractical for today’s distributed systems: 1) Using LC, it is not possible to query

events in relation to physical time. 2) For capturing hb, LC assumes that all communi-

cation occurs in the present system and there are no backchannels. This is obsolete for

today’s integrated, loosely-coupled system of systems.

In 1988, the vector clock (VC) [9,22] was proposed to maintain a vectorized version

of LC. VC maintains a vector at each node which tracks the knowledge this node has

about the logical clocks of other nodes. While LC finds one consistent snapshot (that

with same LC values at all nodes involved), VC finds all possible consistent snapshots,

which is useful for debugging applications. In Figure 1, while LC would find (a,w) as

a consistent cut, VC would also identify (b,w), (c,w) as consistent cuts. Unfortunately,

the space requirement of VC is on the order of nodes in the system, and is prohibitive,

and it stays prohibitive with optimizations (e.g., [25]) that reduce the size of VC.



(a) LC and VC timestamping (b) Inconsistent snapshot in TT

Fig. 1. LC/VC timestamping and TT timestamping

Physical Time (PT). PT leverages on physical clocks at nodes that are synchronized

using the Network Time Protocol (NTP) [23]. Since perfect clock synchronization is

infeasible for a distributed system [24], there are uncertainty intervals associated with

PT. While PT avoids the disadvantages of LC by using physical time for timestamping,

it introduces new disadvantages: 1) When the uncertainty intervals are overlapping,

PT cannot order events. NTP can usually maintain time to within tens of milliseconds

over the public Internet, and can achieve one millisecond accuracy in local area net-

works under ideal conditions, however, asymmetric routes and network congestion can

occasionally cause errors of 100 ms or more. 2) PT has several kinks such as leap

seconds [16, 17] and non-monotonic updates to POSIX time [10] which may cause the

timestamps to go backwards.

TrueTime (TT). TrueTime is proposed recently by Google for developing Spanner [2],

a multiversion distributed database. TT relies on a well engineered tight clock synchro-

nization available at all nodes thanks to GPS clocks and atomic clocks made avail-

able at each cluster. However, TT introduces new disadvantages: 1) TT requires special

hardware and a custom-build tight clock synchronization protocol, which is infeasible

for many systems (e.g., using leased nodes from public cloud providers). 2) If TT is

used for ordering events that respect causality then it is essential that if e hb f then

tt.e < tt.f . Since TT is purely based on clock synchronization of physical clocks, to

satisfy this constraint, Spanner delays event f when necessary. Such delays and reduced

concurrency are prohibitive especially under looser clock synchronization.

HybridTime (HT). HT, which combines VC and PT clocks, was proposed for

solving the stabilizing causal deterministic merge problem [13]. HT maintains a VC

at each node which includes knowledge this node has about the PT clocks of other

nodes. HT exploits the clock synchronization assumption of PT clocks to trim entries

from VC and reduces the overhead of causality tracking. In practice the size of HT at

a node would only depend on the number of nodes that communicated with that node

within the last ✏ time, where ✏ denotes the clock synchronization uncertainty. Recently,

Demirbas and Kulkarni [3] explored how HT can be adopted to solve the consistent

snapshot problem in Spanner [2].

1.2 Contributions of this work

In this paper we aim to bridge the gap between the theory (LC) and practice (PT) of

timekeeping and timestamping in distributed systems and to provide guarantees that

generalize and improve that of TT.

– We present a logical clock version of HT, which we name as Hybrid Logical Clocks

(HLC). HLC refines both the physical clock (similar to PT and TT) and the logical



clock (similar to LC). HLC maintains its logical clock to be always close to the

NTP clock, and hence, HLC can be used in lieu of physical/NTP clock in several

applications such as snapshot reads in distributed key value stores and databases.

Most importantly, HLC preserves the property of logical clocks (e hb f ) hlc.e <

hlc.f ) and as such HLC can identify and return consistent global snapshots without

needing to wait out clock synchronization uncertainties and without needing prior

coordination, in a posteriori fashion.

– HLC is backwards compatible with NTP, and fits in the 64 bits NTP timestamp.

Moreover, HLC works as a superposition on the NTP protocol (i.e., HLC only

reads the physical clocks and does not update them) so HLC can run alongside

applications using NTP without any interference. Furthermore HLC is general and

does not require a server-client architecture. HLC works for a peer-to-peer node

setup across WAN deployment, and allows nodes to use different NTP servers.1

In Section 3, we present the HLC algorithm and prove a tight bound on the space

requirements of HLC and show that the bound suffices for HLC to capture the LC

property for causal reasoning.

– HLC provides masking tolerance to common NTP problems (including nonmo-

notonous time updates) and can make progress and capture causality information

even when time synchronization has degraded. HLC is also self-stabilizing fault-

tolerant [4] and is resilient to arbitrary corruptions of the clock variables, as we

discuss in Section 4.

– We implement HLC and provide experiment results of HLC deployments under

various deployment scenarios. In Section 5, we show that even under stress-testing,

HLC is bounded and the size of the clocks remain small. These practical bounds

are much smaller than the theoretical bounds proved in our analysis. Our HLC im-

plementation is made available in an anonymized manner at https://github.

com/AugmentedTimeProject

– HLC has direct applications in identifying consistent snapshots in distributed da-

tabases [2, 14, 18, 19, 27, 29]. It is also useful in many distributed systems proto-

cols including causal message logging in distributed systems [1], Byzantine fault-

tolerance protocols [11], distributed debugging [26], distributed filesystems [21],

and distributed transactions [30]. In Section 6, we showcase the benefits of HLC for

snapshot reads in distributed databases. An open source implementation of Span-

ner [2] that uses HLC is available at https://github.com/cockroachdb/

cockroach.

2 Preliminaries

A distributed system consists of a set of nodes whose number may change over time.

Each node can perform three types of actions, a send action, a receive action, and a

local action. The goal of a timestamping algorithm is to assign a timestamp to each

event. We denote a timestamping algorithm with an all capital letters name, and the

timestamp assigned by this algorithm by the corresponding lower case name. E.g., we

use LC to denote the logical clock algorithm by Lamport [15], and use lc.e to denote

the timestamp assigned to event e by this algorithm.

1 HLC can also work with ad hoc clock synchronization protocols [20] and is not bound to NTP.



The notion of happened before hb captures the causal relation between events in

the system. As defined in [15], event e happened before event f (denoted by e hb f )

is a transitive relation that respects the following: e and f are events on the same node

and e occurred before f , or e is a send event and f is the corresponding receive event.

We say that e and f are concurrent, denoted by e||f , iff ¬(e hb f) ^ ¬(f hb e). Based

on the existing results in the literature, the following are true:

e hb f ) lc.e < lc.f

lc.e = lc.f ) e||f
e hb f , vc.e < vc.f

3 HLC: Hybrid Logical Clocks

In this section, we introduce our HLC algorithm starting with a naive solution first.

We then prove correctness and tight bounds on HLC. We also elaborate on the useful

features of the HLC for distributed systems.

3.1 Problem statement

The goal of HLC is to provide one-way causality detection similar to that provided by

LC, while maintaining the clock value to be always close to the physical/NTP clock.

The formal problem statement for HLC is as follows.

Given a distributed system, assign each event e a timestamp, l.e, such that

1. e hb f ) l.e < l.f ,

2. Space requirement for l.e is O(1) integers,

3. l.e is represented with bounded space,

4. l.e is close to pt.e, i.e., |l.e � pt.e| is bounded.

The first requirement captures one-way causality information provided by HLC.

The second requirement captures that the space required for l.e is O(1) integers. To

prevent encoding of several integers into one large integer, we require that any update

of l.e is achieved by O(1) operations. The third requirement captures that the space

required to represent l.e is bounded, i.e., it does not grow in an unbounded fashion. In

practice, we like l.e to be the size of pt.e, which is 64 bits in the NTP protocol.

Finally, the last requirement states that l.e should be close to pt.e. This enables us to

utilize HLC in place of PT. To illustrate this consider the case where the designer wants

to take a snapshot at (physical) time t. Given that physical clocks are not perfectly

synchronized, it is not possible to get a consistent snapshot by just reading state at

different nodes at time t as shown in Figure 1. On the other hand, using HLC we can

obtain such a snapshot by taking the snapshot of every node at logical time t. Such a

snapshot is guaranteed to be consistent, because from the HLC requirement 1 we have

l.e= l.f ) e||f . In Section 6, we discuss in more detail how HLC enables users to take

uncoordinated a-posteriori consistent snapshots of the distributed system state.



3.2 Description of the Naive Algorithm

Given the goal that l.e should be close to pt.e, in the naive algorithm we begin with the

rule: for any event e, l.e � pt.e. We design our algorithm as shown in Figure 2. This

algorithm works similar to LC. Initially all l values are set to 0. When a send event,

say f , is created on node j, we set l.f to be max(l.e+1, pt.j), where e is the previous

event on node j. This ensures l.e < l.f . It also ensures that l.f � pt.f . Likewise, when

a receive event f is created on node j, l.f is set to max(l.e + 1, l.m + 1, pt.j), where

l.e is the timestamp of the previous event on j, and l.m is the timestamp of the message

(and, hence, the send event). This ensures that l.e < l.f and l.m < l.f .

Initially lc.j := 0

Send or local event

l.j := max(l.j + 1, pt.j)
Timestamp with l.j

Receive event of message m

l.j := max(l.j + 1, l.m + 1, pt.j)
Timestamp with l.j

Fig. 2. Naive HLC algorithm for node j Fig. 3. Counterexample for Naive Algorithm

It is easy to see that the algorithm in Figure 2 satisfies the first two requirements in

the problem statement. However, this naive algorithm violates the fourth requirement,

which also leads to a violation of the third requirement for bounded space representa-

tion. To show the violation of the fourth requirement, we point to the counterexample in

Figure 3 which shows how |l.e � pt.e| grows in an unbounded fashion. The messaging

loop among nodes 1, 2, and 3 can be repeated forever, and at each turn of the loop the

drift between logical clock and physical clock (the l�pt difference) will keep growing.

The root of the unbounded drift problem is due to the naive algorithm using l to

maintain both the maximum of pt values seen so far and the logical clock increments

from new events (local, send, receive). This makes the clocks lose information: it be-

comes unclear if the new l value came from pt (as in the message from node 0 to node 1)

or from causality (as is the case for the rest of messages). As such, there is no suitable

place to reset l value to bound the l � pt difference, because resetting l may lead to

losing the hb relation, and, hence, a violation of requirement 1.

Note that the counterexample holds even with the requirement that the physical

clock of a node is incremented by at least one between any two events on that node.

However, if we assume that the time for send event and receive event is long enough

so that the physical clock of every node is incremented by at least one, then the coun-

terexample on Figure 3 fails, and the naive algorithm would be able to maintain |l� pt|



Initially l.j := 0; c.j := 0

Send or local event

l0.j := l.j;
l.j := max(l0.j, pt.j);
If (l.j = l0.j) then c.j := c.j + 1

Else c.j := 0;
Timestamp with l.j, c.j

Receive event of message m

l0.j := l.j;
l.j := max(l0.j, l.m, pt.j);
If (l.j = l0.j = l.m)

then c.j := max(c.j, c.m)+1
Elseif (l.j = l0.j) then c.j := c.j + 1
Elseif (l.j = l.m) then c.j := c.m + 1
Else c.j := 0

Timestamp with l.j, c.j

Fig. 4. HLC algorithm for node j

Fig. 5. Fixing the Counterexample in Figure

3 with Algorithm in Figure 4

bounded. However, instead of depending upon such assumption, we show how to prop-

erly achieve correctness of bounded HLC, next.

3.3 HLC Algorithm

We use our observations from the counterexample to develop the correct HLC algo-

rithm. In this algorithm, the l.j in the naive algorithm is expanded to two parts: l.j and

c.j. The first part l.j is introduced as a level of indirection to maintain the maximum of

pt information learned so far, and c is used for capturing causality updates only when l

values are equal.

In contrast to the naive algorithm where there was no suitable place to reset l without

violating hb , in the HLC algorithm, we can reset c when the information heard about

maximum pt catches up or goes ahead of l. Since l denotes the maximum pt heard

among nodes and is not continually incremented with each event, within a bounded

time, either one of the following is guaranteed to occur: 1) a node receives a message

with a larger l, and its l is updated and c is reset to reflect this, or 2) if the node does not

hear from other nodes, then its l stays the same, and its pt will catch up and update its

l, and reset the c.

The HLC algorithm is as shown in Figure 4. Initially, l and c values are set to 0.

When a new send event f is created, l.j is set to max(l.e, pt.j), where e is the previous

event on j. Similar to the naive algorithm, this ensures that l.j � pt.j. However, because

we have removed the “+1”, it is possible that l.e equals l.f . To deal with this, we utilize

the value of c.j. By incrementing c.j, we ensure that hl.e, c.ei < hl.f, c.fi is true with

lexicographic comparison.2 If l.e differs from l.f then c.j is reset, and this allows us to

2 (a, b) < (c, d) iff ((a < c) _ ((a = c) ^ (b < d)))



guarantee that c values remain bounded. When a new receive event is created, l.j is set

to max(l.e, l.m, pt.j). Now, depending on whether l.j equals l.e, l.m, both or neither,

c.j is set.

Let’s reconsider the counterexample to the naive algorithm. This example replayed

with the HLC algorithm is shown in Figure 5. When we continue the loop among nodes

1, 2, 3, we see that pt at nodes 1, 2 and 3 catches up and exceeds l=10 and resets c to

0. This keeps the c variable bounded at each node.

To prove the correctness of the HLC algorithm as well as to prove that it satisfies

requirement 4 (closeness between HLC value and PT), we present the following two

theorems, whose proofs follow trivially from HLC implementation. (Proofs of other

theorems is presented in [12].)

Theorem 1. For any two events e and f , e hb f ) (l.e, c.e) < (l.f, c.f) ut

Theorem 2. For any event f , l.f � pt.f ut

Theorem 3. l.f denotes the maximum clock value that f is aware of. In other words,

l.f > pt.f ) (9g : g hb f ^ pt.g = l.f)

Physical clocks are synchronized to be within ✏. Hence, we cannot have two events

e and f such that e hb f and pt.e > pt.f +✏. Hence, combining this with Theorem 3,

we have

Corollary 1. For any event f , |l.f � pt.f |  ✏

Finally, we prove requirement 3, by showing that c value of HLC is bounded as well.

To this end, we extend Theorem 3 to identify the relation of c and events created at a

particular time. As we show in Theorem 4, c.f captures information regarding events

created at time l.f .

Theorem 4. For any event f ,

c.f = k ^ k > 0
) (9g1, g2, · · · , gk :

(8j : 1  j < k : gi hb gi+1) ^ (8j : 1  j  k : l.(gi) = l.f) ^ gk hb f )

From Theorem 4, the following corollary follows.

Corollary 2. For any event f c.f  |{g : g hb f ^ l.g = l.f)}|.

Theorem 5. For any event f , c.f  N ⇤ (✏ + 1)

We note that the above bound is almost tight and can be shown to be so with an

example similar to that in Figure 3. However, if we assume that message transmission

delay is large enough so that the physical clock of every process is increased by at least

d, where d is a given parameter, we can reduce the bound on c further. For reasons of

space, the proof of this claim is relegated to [12].



3.4 Properties of HLC

HLC algorithm is designed for arbitrary distributed architecture and is also readily ap-

plicable to other environments such as the client-server model.

We intentionally chose to implement HLC as a superposition on NTP. In other

words, HLC only reads the physical clock but does not update it. Hence, if a node

receives a message whose timestamp is higher, we maintain this information via l and

c instead of changing the physical clock. This is crucial in ensuring that other programs

that use NTP alone are not affected. This also avoids the potential problem where clocks

of nodes are synchronized with each other even though they drift substantially from real

wall-clock. Furthermore, there are impossibility results showing that accepting even tiny

unsynchronization to adjust the clocks can lead to diverging clocks [8]. Finally, while

HLC utilizes NTP for synchronization, it does not depend on it. In particular, even when

physical clocks utilize any ad hoc clock synchronization algorithm [20], HLC can be

superposed on top of such a service, so can also be used in ad hoc networks.

4 Resilience of HLC

4.1 Self-stabilization

Here we discuss how we design self-stabilizing [4] fault-tolerance to HLC, which en-

ables HLC to be eventually restored to a legitimate state, even when HLC is per-

turbed/corrupted to an arbitrary state.

Stabilization of HLC rests on the superposition property of HLC on NTP clocks.

Since HLC does not modify the NTP clock, it does not interfere with the NTP correct-

ing/synchronizing the physical clock of the node. Once the physical/NTP clock stabi-

lizes, HLC can be corrected based on observations in Theorem 2 and Corollaries 5 and

2. These results identify the maximum permitted value of l�pt and the maximum value

of c. In the event of extreme clock errors by NTP or transient memory corruption, the

application may reach a state where these bounds are violated. In that case, we take the

physical clock as the authority, and reset l and c values to pt and 0 respectively. In other

words the stabilization of HLC follows that of stabilization of pt via NTP clock.

In order to contain the spread of corruptions due to bad HLC values, we have a rule

to ignore out of bounds messages. We simply ignore reception of messages that cause

l value to diverge too much from pt. This prevention action fires if the sender of the

message is providing a clock value that is significantly higher suggesting the possibility

of corrupted clock. In order to contain corruptions to c, we make its space bounded, so

that even when it is corrupted, its corruption space is limited. This way c would in the

worst case roll over, or more likely, c would be reset to an appropriate value as a result

of l being assigned a new value from pt or from another l received in a message.

Note that both the reset correction action and the ignore out-of-bounds message ac-

tion are local correction actions at a node. If HLC fires either of these actions, it also logs

the offending entries for inspection and raises an exception to notify the administrator.



4.2 Masking of synchronization errors

In order to make HLC resilient to common NTP synchronization errors, we assign suf-

ficiently large space to l � pt drift so that most (99.9%) NTP kinks can be masked

smoothly. While Theorem 2 and Corollaries 5 and 2 state that l � pt stay within ✏ the

clock synchronization uncertainty (crudely two times the NTP offset value), we set a

very conservative value, �, on the l � pt bound. The bound � can be set to a constant

factor of ✏, and even on the order of seconds depending on the application semantics.

This way we tolerate and mask common NTP clock synchronization errors within nor-

mal operation of HLC. And when � bound is violated, the local reset correction action

and the ignore message prevention action fire as discussed in the previous subsection.

Using this approach, HLC is robust to stragglers, nodes with pt stuck slightly in

the past. Consider a node that lost connection to its NTP server and its clock started

drifting behind the NTP time. Such a straggler can still keep up with the system for some

time and maintain up-to-date and bounded HLC time: As long as it receives messages

from other nodes, it will learn new/higher l values and adopt them. This node will

increment its c by 1 when it does not adopt a new l value, but this does not cause the

c rise excessively for the other nodes in the system. Even if this node sends a message

with high c number, the other nodes will have up-to-date time and ignore that c and

will use c = 0. Similarly, HLC is also robust to the rushers, nodes with pt slightly

ahead of others. The masking tolerance of HLC makes it especially useful for last write

wins (LWW) database systems like Cassandra [10, 17]. We investigate this tolerance

empirically in the next section.

5 Experiments

5.1 AWS deployment results

The experiments used Amazon AWS xlarge instances running Ubuntu 14.04. The ma-

chines were synchronized to a stratum 2 NTP server, 0.ubuntu.pool.ntp.org.

In our basic setup, we programmed all the instances to send messages to each other

continuously using TCP sockets, and in a separate thread receive messages addressed

to them. The total messages sent range from 75,000 to 425,000.

Using the basic setup (all nodes are senders and sending to each other) within the

same AWS region, we get the following results. The value “c” indicates that the value of

the c component of the HLC at the nodes. The remaining columns show the frequency:

the percentage of times the HLC at the nodes had the corresponding c values out of the

total number of events. For each setup, we collected data with two different NTP syn-

chronization levels, indicated by the average offset of nodes’ clocks from NTP. When

we allow the NTP daemons at the nodes more time (a couple hours) to synchronize, we

get lower NTP offset values. We used “ntpdc -c loopinfo” and “ntpdc -c kerninfo” calls

to obtain the NTP offset information at the nodes.

The experiments with 4 nodes show that the value of c remains very low, less than

4. This is a much lower bound than the worst case possible theoretical bound we proved

in Section 3. We also see that the improved NTP synchronization helps move the c

distribution toward lower values, but this effect becomes more visible in the 8 and 16



node experiments. With the looser NTP synchronization, with average offset 5 ms, the

maximum l � pt difference was observed to be 21.7 ms. The 90th percentile of l � pt

values correspond to 7.8 ms, with their average value computed to be 0.2 ms. With the

tighter NTP synchronization, with average offset 1.5 ms, the maximum l�pt difference

was observed to be 20.3 ms. The 90th percentile of l � pt values correspond to 8.1 ms,

with their average value computed to be 0.2 ms.

The experiments with 8 nodes highlights the lowered c values due to improved NTP

synchronization. For the experiments with average NTP offset 9ms, the maximum l�pt

difference was observed to be 107.9 ms. The 90th percentile of l�pt values correspond

to 41.4 ms, with their average value computed to be 4.2 ms. For the experiments with

average NTP offset 3ms, the maximum l�pt difference was observed to be 7.4 ms. The

90th percentile of l�pt values correspond to 0.1 ms, with their average value computed

to be 0 ms.

Using 4 m1.xlarge nodes

c offset=5ms offset=1.5ms

0 83.90 % 83.66 %

1 12.12 % 12.03 %

2 3.37 % 4.09 %

3 0.24 % 0.21 %

Using 8 m1.xlarge nodes

c offset=9ms offset=3ms

0 65.56 % 91.18 %

1 15.39 % 8.82 %

2 8.14 % 0 %

3 5.90 %

4 2.74 %

5 1.39 %

6 0.56 %

7 0.20 %

8 0.08 %

9 0.03 %

Using 16 m1.xlarge nodes

c offset=16ms offset=6ms

0 66.96 % 75.43 %

1 19.40 % 18.51 %

2 7.50 % 3.83 %

3 4.59 % 1.84 %

4 1.76 % 0.32 %

5 0.61 % 0.06 %

6 0.14 % 0.01 %

7 0.02 %

The 16 node experiments also showed very low c values despite all nodes sending to

each other at practically at the wire speed. For the experiments with average NTP offset

16ms, the maximum l � pt difference was observed to be 90.5 ms. The 90th percentile

of l� pt values correspond to 25.2 ms, with their average value computed to be 2.3 ms.

For the experiments with average NTP offset 6ms, the maximum l � pt difference was

observed to be 46.8 ms. The 90th percentile of l� pt values correspond to 8.4 ms, with

their average value computed to be 0.3 ms.

WAN deployment results. We deployed our HLC testing experiments on a WAN

environment as well. Specifically, we used 4 m1.xlarge instances each one located at

a different AWS region: Ireland, US East, US West and Tokyo. Our results show that

with 3ms NTP offset, the c = 0 values constitute about 95% of the cases and c =
1 constitute the remaining 5%. These values are much lower than the corresponding

values for the single datacenter deployment. The maximum l � pt difference remained

extremely low, about 0.02 ms, and the 90th percentile of l � pt values corresponded

to 0. These values are again much lower than the corresponding values for the single

datacenter deployment.

The reason for seeing very low l � pt and c values in the WAN deployment is

because the message communication delays across WAN are much larger than the ✏,



the clock synchronization uncertainty. As a result, when a message is received, its l

timestamp is already in the past and is smaller than the l value at the receiver which is

updated by its pt. Since the single cluster deployment with short message delays is the

most demanding scenario in terms of HLC testing we focused on those results in our

presentation.

5.2 Stress testing and resilience evaluation in simulation

To further analyze the resiliency of HLC, we evaluated it in scenarios where it will

be stressed, e.g., where the event rate is too high and where the clock synchronization

is significantly degraded. In our simulations, we considered the case where the event

creation rate was 1 event per millisecond and clock drift varies from 10ms to 100ms.

Given the relation between l and pt from Theorem 2, the drift between l and pt is limited

to the clock drift. Hence, we focus on values of c for different events.

In these simulations, a node is allowed to advance its physical clock by 1ms as long

as its clock drift does not exceed beyond ✏. If a node is allowed to advance its physical

clock then it increases it with a 50% probability. When it advances its clock, it can send

a message with certain probability (All simulations in this section correspond to the

case where this probability is 100%). We deliver this message at the earliest possible

feasible time, essentially making delivery time to be 0. The results are as shown in

Figure 6. As shown in these figures, the distribution of c values was fairly independent

of the value of ✏. Moreover, for more than 99% of events, the c value was 4 or less. Less

than 1% of events had c values of 5-8.

To evaluate HLC in the presence of degraded clock synchronization, we added a

straggler node to the system. This node was permitted to violate clock drift constraints

by always staying behind. We consider the case where the straggler just resides at the

end of permissible boundary, i.e., its clock drift from the highest clock is ✏. We also

consider the case where straggler violates the clock drift constraints entirely and it is

upto 5✏ behind the maximum clock. The results are as shown in Figures 7 and 8. Even

with the straggler, the c value for 99% events was 4 or less. However, in these simu-

lations, significantly higher c values were observed for some events. In particular, for

the case where the straggler remained just at the end of permissible boundary, events

with c value of upto 97 were observed at the straggler node. For the case where the

straggler was permitted to drift by 5✏, c value of upto 514 was observed again only at

the straggler node. The straggler node did not raise the c values of other nodes in the

system.

We also conducted the experiments where we had a rusher, a node that was exces-

sively ahead. Figures 9 and 10 demonstrate the results. The maximum c value observed

in these experiments was 8. And, the number of events with c value greater than 3 is

less than 1%.

As a result of these experiments we conclude that the straggler node affects the

c value more than the rusher node, but only for itself. In our experiments, each node

selects the sender randomly with uniform distribution. Hence, messages sent by the

rusher node do not have a significant cumulative effect. However, messages sent by all

nodes to the straggler node causes its c value to grow.



Fig. 6. c value distribution for varying ✏

Fig. 7. c value distribution with ✏ straggler Fig. 8. c value distribution with a 5✏ straggler

Fig. 9. c value distribution with a ✏ rusher Fig. 10. c value distribution with a 5✏ rusher

6 Discussion

In this section, we discuss application of HLC for finding consistent snapshots in dis-

tributed databases, compact representations of l and c, and other related work.

6.1 Snapshots

In snapshot read, the client is interested in obtaining a snapshot of the data at a given

time. HLC can be used to perform snapshot read similar to that performed by TrueTime.

In other words, with HLC, each process simply needs to choose the values with a given



timestamp (as described below) to obtain a consistent snapshot. Unlike approaches with

VC where checking concurrency of the chosen events is necessary, the events chosen

by our approach are guaranteed to be concurrent with each other. Moreover, unlike TT ,

there is no need to delay any transaction due to uncertainty in the clock values.

To describe our approach more simply, we introduce the concept of virtual dummy

events. Let e and f be two events on the same node such that l.e < l.f . In this case,

we introduce dummy (internal) events whose l value is in the range [l.e + 1, l.f ] and

c.f = 0. (If c.f = 0 then the last event in the sequence is not necessary.) Observe

that introducing such dummy events does not change timestamps of any other events

in the system. However, this change ensures that for any time t, there exists an event

on every node where l value equals t and c value equals 0. With the virtual dummy

events adjustment, given a request for snapshot read at time t, we can obtain the values

at timestamp hl= t, c=0i.3 Our adjustment ensures that such events are guaranteed to

exist. And, by the logical clock hb relationship mentioned in requirement 2, we have

hlc.e = hlc.f ) e||f and so we can conclude that the snapshots taken at this time are

consistent with each other and form a consistent global snapshot. Moreover, based on

Theorem 3 and Corollary 2, this snapshot corresponds to the case where the global time

is in the window [t � ✏, t]. We refer the reader to Figure 11 for an example of finding

consistent snapshot read at time t = 10.

Fig. 11. Consistent snapshot for t=10 in HLC trace

6.2 Compact Timestamping using l and c

NTP uses 64-bit timestamps which consist of a 32-bit part for seconds and a 32-bit part

for fractional second. (This gives a time scale that rolls over every 232 seconds—136

years— and a theoretical resolution of 2−32 seconds—233 picoseconds.) Using a single

64-bit timestamp to represent HLC is also very desirable for backwards compatibility

with NTP. This is important because many distributed database systems and distributed

key-value stores use NTP clocks to timestamp and compare records.

There are, however, several challenges for representing HLC as a single 64-bit

timestamp. Firstly, the HLC algorithm maintains l and c separately, to differentiate be-

tween increases due to the physical clock versus send/receive/local events. Secondly,

by tracking the pt, the size of l is by default 64-bits as the NTP timestamps.

3 Actually we can obtain snapshot reads for any hl= t, c=Ki and not just at hl= t, c=0i



We propose the following scheme for combining l and c and storing it in single 64

bit timestamp. This scheme involves restricting l to track only the most significant 48

bits of pt in the HLC algorithm presented in Figure 4. Rounding up pt values to 48 bits l

values still gives us microsecond granularity tracking of pt. Given NTP synchronization

levels, this is sufficient granularity to represent NTP time. The way we round up pt is

to always take the ceiling to the 48th bit. In the HLC algorithm in Figure 4, l is updated

similarly but is done for 48 bits. When the l values remain unchanged in an event, we

capture that by incrementing c following the HLC algorithm in Figure 4. 16 bits remain

for c and allows it room to grow up to 65536, which is more than enough as we show

in our experiments in Section 5.

Using this compact representation, if we need to timestamp (message or data item

for database storage), we will concatenate c to l to create the HLC timestamp. The

distributed consistent snapshot finding algorithm described above is unaffected by this

change to the compact representation. The only adjustment to be made is to round up

the query time t to 48 bits as well.

6.3 Other related work

Dynamo [28] adopts VC as version vectors for causality tracking of updates to the

replicas. Orbe [5] uses dependency matrix along with physical clocks to obtain causal

consistency. In the worst case, both these solutions require large timestamps. Cassandra

uses PT and LWW-rule for updating replicas. Spanner [2] employs TT to order dis-

tributed transactions at global scale, and facilitate read snapshots across the distributed

database. In order to ensure e hb f ) tt.e < tt.f and provide consistent snapshots,

Spanner requires waiting-out uncertainty intervals of TT at the transaction commit time

which restricts throughput on writes. However, these “commit-waits” also enable Span-

ner to provide a stronger property, external consistency (a.k.a, strict serializability): if a

transaction t1 commits (in absolute time) before another transaction t2 starts, then t1’s

assigned commit timestamp is smaller than t2’s.

HLC does not require waiting out the clock uncertainty, since it is able to record

causality relations within this uncertainty interval using the HLC update rules. HLC

can also be adopted for providing external consistency and still keeping the throughput

on writes unrestricted by introducing client-notification-wait after a transaction ends.

An alternate approach for ordering events is to establish explicit relation between

events. This approach is exemplified in the Kronos system [7], where each event of

interest is registered with the Kronos service, and the application explicitly identifies

events that are of interest from causality perspective. This allows one to capture causal-

ity that is application-dependent at the increased cost of searching the event dependency

relation graph. By contrast, LC/VC/PT/HLC assume that if a node performs two con-

secutive events then the second event causally depends upon the first one. Thus, the

ordering is based solely on the timestamps assigned to the events.

Clock-SI [6] work considers the snapshot isolation problem for distributed data-

bases/data stores. In contrast to the conventional snapshot isolation implementations

that use a centralized timestamp authority for consistent versioning, Clock-SI proposes

a way to use NTP-synchronized clocks to assign snapshot and commit timestamps to

transactions. HLC improves the Clock-SI solution if it is used instead of NTP-clocks



in Clock-SI. HLC avoids incurring the clock-uncertainty wait-out delay in Figure 1 of

Clock-SI work [6], because HLC also uses hb information as encoded in HLC clocks.

7 Conclusion
In this paper, we introduced the hybrid logical clocks (HLC) that combines the benefits

of logical clocks (LC) and physical time (PT) while overcoming their shortcomings.

HLC guarantees that (one way) causal information is captured, and hence, it can be

used in place of LC. Since HLC provides nodes a logical time that is within possible

clock drift of PT, HLC is substitutable for PT in any application that requires it. HLC is

strictly monotonic and, hence, can be used in place of applications in order to tolerate

NTP kinks such as non-monotonic updates.

HLC can be implemented using 64 bits space, and is backwards compatible with

NTP clocks. Moreover, HLC only reads NTP clock values but does not change it.

Hence, applications using HLC do not affect other applications that only rely on NTP.

HLC is highly resilient. Since its space requirement is bounded by theoretical anal-

ysis and is shown to be even more tightly bounded by our experiments, we use this as a

foundation to design stabilizing fault tolerance to HLC.

Since HLC refines LC, HLC can be used to obtain a consistent snapshot for a snap-

shot read. Moreover, since the drift between HLC and physical clock is less than the

clock drift, a snapshot taken with HLC is an acceptable choice for a snapshot at a

given physical time. Thus, HLC is especially useful as a timestamping mechanism in

multiversion distributed databases. For example in Spanner, HLC can be used in place

of TrueTime (TT) to overcome one of the drawbacks of TT that requires events to

be delayed/blocked in the clock synchronization uncertainty window. An open source

implementation of Spanner that uses HLC is available at https://github.com/

cockroachdb/cockroach.
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