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We introduce the notion of combinatorial vote, where a group of agents (or voters) is

supposed to express preferences and come to a common decision concerning a set of non-

independent variables to assign. We study two key issues pertaining to combinatorial vote,

namely preference representation and the automated choice of an optimal decision. For each

of these issues, we briefly review the state of the art, we try to define the main problems to be

solved and identify their computational complexity.
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1. Introduction

For a few years, AI researchers have been concerned with interaction, cooperation

or negotiation within agent societies. For these problems, it often occurs that the set of

all feasible states has a very large size, due to its combinatorial nature. For this reason,

research has been done so as to develop representation languages aiming at enabling a

succinct representation of the description of the problem, without having to enumerate

a prohibitive number of states. Languages based on propositional logic have been pro-

posed recently for some multi-agent problems, for instance for combinatorial auctions

[8,43,46] and automated negotiation [52].

In this paper we focus on combinatorial vote. Combinatorial vote is located within

the larger class of group decision making problems. Each one of a set of agents (called

voters) initially expresses her preferences on a set of alternatives (called candidates);

these preferences are then aggregated so as to identify (or elect) an acceptable common

alternative in an automated way (without negotiation). Formulated as such, this can be

identified as a vote problem. Vote problems have been investigated by researchers in

social choice theory (see for instance [40] for an overview) who have studied exten-

sively all properties of various families of vote rules, up to an important detail: can-

didates are supposed to be listed explicitly (typically, they are individuals or lists of

individuals, as in political elections), which assumes that they should not be too numer-

ous.

∗ This paper is a revised and extended version of the paper entitled “From preference representation to

combinatorial vote”, Proceedings of the Eighth International Conference on Principles of Knowledge

Representation and Reasoning (KR2002) (Morgan Kaufmann, 2002) pp. 277–288.
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In this paper, we focus on the case where the set of candidates has a combinato-

rial structure, i.e., is a Cartesian product of finite value domains for each one of a set

of variables: this problem will be referred to as combinatorial vote. In this case, the

space of possible alternatives has a size exponential in the number of variables and it is

therefore not reasonable asking the voters to rank all alternatives or evaluate them on a

utility scale.

Consider for example that the voters have to agree on a common menu to be com-

posed of a first course dish, a main course dish, a dessert and a wine, with a choice of

6 items for each. This makes 64 candidates. This would not be a problem if the four

items to choose were independent from the other ones: in this case, this vote problem

over a set of 64 candidates would come down to four independent problems over sets

of 6 candidates each, and any standard vote rule could be applied without difficulty.

Things become more complicated if voters express dependencies between items, such

as “I would like to have risotto ai funghi as first course, except if the main course is a

vegetable curry, in which case I would prefer smoked salmon as first course”, “I prefer

white wine if one of the courses is fish and none is meat, red wine if one of the courses

is meat and none is fish, and in the remaining cases I would like equally red or white

wine”, etc.

Since the preference structure of each voter cannot be expressed explicitly by list-

ing all candidates, what is needed is a compact preference representation language. Such

preference representation languages have been developed within the AI community; they

are often build upon propositional logic, but not always (see for instance utility networks

[1,33] or valued constraint satisfaction [47] – however in this paper we restrict the study

to logical approaches); they enable a much more concise representation of the prefer-

ence structure, while preserving a good readability (and hence a proximity with the way

agents express their preferences in natural language).

Therefore, the first parameter to be fixed, for a combinatorial vote problem, is the

language for representing the preferences of the voters. In section 3, we recall different

logical representation languages proposed in the literature, we discuss their relevance to

combinatorial vote, and discuss their computational complexity.

In section 4, we investigate the problem of electing a candidate; by “candidate”; we

mean here an assignment of a value to each of the variables involved in the problem. We

study the computational complexity of the different problems obtained from the choice

of a given representation language and a given vote rule. In section 5 we evoke other

important issues in combinatorial vote and we mention some possible applications.

2. Preliminaries

In this paper, L is a propositional language built upon a finite set of propositional

variables VAR, the usual connectives, and the symbols ⊤ (tautology) and ⊥ (contradic-

tion). A literal is a propositional variable or its negation. W = 2VAR is the set of all

interpretations for VAR. Elements of W are denoted �x, �y etc. If ϕ ∈ L then Mod(ϕ)

denotes the set of the models of ϕ and Var(ϕ) is the set of propositional variables men-



J. Lang / Logical preference representation and combinatorial vote 39

tioned in formula ϕ. If �x is an interpretation then for(�x) denotes the formula – unique

up to logical equivalence – such that Mod(for(�x)) = {�x}.
The complexity results we give in this paper refer to some complexity classes

which we now briefly recall (see [44] for more details). Given a problem A, we de-

note by A its complement. We assume the reader familiar with the classes P, NP and

coNP and we now introduce the following classes.

– BH2 = (2) is the class of all languages L such that L = L1 ∩ L2, where L1 is in NP

and L2 in coNP. The canonical BH2-complete problem is SAT-UNSAT: 〈ϕ1, ϕ2〉 is a

positive instance of SAT-UNSAT if and only if ϕ1 is satisfiable and ϕ2 is unsatisfiable.

NP(3) is the class of all languages L such that L = L1 ∩ (L2 ∪ L3), where L1

and L2 are in NP and L3 in coNP. The canonical NP(3)-complete problem is SAT-

SAT-UNSAT: 〈ϕ1, ϕ2, ϕ3〉 is a positive instance of SAT-SAT-UNSAT if and only if ϕ1 is

satisfiable and (ϕ2 is unsatisfiable or ϕ3 is satisfiable). Theses classes are members of

the Boolean hierarchy [13].

– �
p

2 = PNP is the class of all languages that can be recognized in polynomial time by

a Turing machine equipped with an NP oracle, where an NP oracle solves whatever

instance of an NP problem in unit time. �
p

2 = �
p

2 [O(log n)] is the class of all

languages that can be recognized in polynomial time by a Turing machine using a

number of NP oracles bounded by a logarithmic function of the size of the input data.

– �
p

2 = NPNP is the class of all languages recognizable in polynomial time by a non-

deterministic Turing machine equipped with an NP oracle telling in unit time whether

a given propositional formula is satisfiable or not.

– �
p

3 = �
p

3 [O(log n)] is the class of all languages that can be recognized in polynomial

time by a Turing machine using a number of �
p

2 oracles bounded by a logarithmic

function of the size of the input data.

– PSPACE is the class of all languages recognizable by a (deterministic or not) Turing

machine working with polynomial space.

Note that the following inclusions hold:

NP, coNP ⊆ BH2 ⊆ NP(3) ⊆ �
p

2 ⊆ �
p

2 ⊆ �
p

2 ⊆ �
p

3 ⊆ PSPACE.

It is strongly believed by researchers in complexity theory that these inclusions are strict.

3. Logical representation of preference

In this section we are concerned with the preferences of a single voter over a finite

set of candidates X . Candidates are denoted by �x, �y, �z etc. – exactly as interpretations

(the reason of this choice will be made clear soon).

3.1. Preference structures

What is a preference structure? In other terms, what is the mathematical model

underlying the preferences that an agent has concerning a set of candidates? There is
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not a unique answer to this important question that has been discussed for long by re-

searchers in decision theory. One may, roughly speaking, distinguish two main families

(not disjoint, however) of preference structures:

– a cardinal preference structure consists of an evaluation function (generally called

utility) u :X → Val, where Val is a set of numerical valuations (typically, N, R,

[0, 1], R
+ etc.).

– a relational preference structure consists of a binary1 relation R on X . R is generally

supposed to be a weak order (i.e., a reflexive and transitive relation); in this case

the preference structure R is ordinal,2 and we then note � instead of R. � is not

necessarily complete (some candidates may not be comparable by a given agent). We

note �x > �y for �x � �y and not (�y � �x) (strict preference of �y over �x), and �x ∼ �y for

�x � �y and �y � �x (indifference).

A candidate �x is said to be non-dominated for a preference relation � (respectively,

a utility function u) if and only if there is no �y such that �y > �x (respectively, such that

u(�y) > u(�x)).

Note that any cardinal preference induces an ordinal preference, namely from a

utility function u we may define the complete weak order �u defined by �x �u �y iff

u(�x) � u(�y).

The explicit representation of a preference structure consists of the data of all can-

didates with their utilities (for cardinal preferences) or the whole relation3 R (for ordinal

preferences). These representations have a spatial complexity in O(|X |) for cardinal

structures and O(|X |2) for ordinal structures, respectively, where |X | = 2|VAR|.

3.2. Principles of logical representation of preference

We now assume that X has a combinatorial nature, namely, X is a set of pos-

sible assignments of each of a certain number of variables to a value of its domain:

X = D1 × · · · × Dn, where Di is the set of possible values for variable vi ; the size of X

is exponentially large in n. Because specifying a preference structure explicitly in such a

case is unreasonable, the AI community has developed several preference representation

languages that escape this combinatorial blow up. Such languages are said to be factor-

ized, or succinct, because they enable a much more concise representation of preference

structures than explicit representations. In the rest of the paper, for simplicity reasons

we make the following two important hypotheses:

1. The representation languages considered are logical (and propositional), i.e., each vi

is a binary variable: D1 = · · · = Dn = {0, 1}. Languages based on propositional

1 More generally, this relation may be fuzzy so as to enable representing intensities of preference. We omit

this eventuality in this paper.
2 See [25] for an extensive discussion on the limits of ordinality in decision making under uncertainty,

multicriteria decision making and social choice.
3 Or possibly a subset of R from which R is drawn by transitive closure – this is only a detail since this

does not enable escaping the combinatorial blow up.



J. Lang / Logical preference representation and combinatorial vote 41

logic are not only compact, but also particularly expressive, thanks to the expressive

power of logic, and therefore they are close to intuition (ideally, a preference rep-

resentation language should be easily obtained from its specification in natural lan-

guage by the agent); moreover, propositional logic benefits from many well-worked

algorithms (especially for satisfiability).

2. The set of possible decisions (candidates) X is identical to the set of physically real-

izable worlds (by the agents), Mod(K), where K is a propositional formula restrict-

ing the set of (physically) feasible worlds. This strong assumption implies that agents

have a full and common knowledge of this set of feasible alternatives.4 It is important

to keep in mind the strong distinction between K, which represents knowledge, and

the formulas that represent goals (confusing both notions leads to “wishful thinking”

[50]).

Now we briefly survey different logical preference representation languages. For

each of these languages we discuss its computational complexity. Since the problem

at hand is not to reason about knowledge but to decide from preferences, the important

problems are not quite the same as for logical languages for knowledge representation.

In particular, inference is not as important, whereas the problems that are particularly

important are the following:

Definition 1 (COMPARISON). Given a logical specification GB (goal base) of the pref-

erences of an agent, and two candidates �x and �y, the COMPARISON problem consists in

determining whether �x �GB �y.

Definition 2 (NON-DOMINANCE). Given a logical specification GB of the preferences

of an agent and a candidate �x, the NON-DOMINANCE problem consists in determining

whether �x is non-dominated for �GB.

Definition 3 (CAND-OPT-SAT). Given a logical specification GB of the preferences of an

agent and a property represented by a formula ψ , the CAND-OPT-SAT problem consists

in determining whether there exists an non-dominated candidate satisfying ψ .

Note that if for a given representation language COMPARISON is in P then NON-

DOMINANCE is in coNP and CAND-OPT-SAT in �
p

2 .

Other relevant problems that could be considered are the search problem associated

with NON-DOMINANCE, i.e., search for one non-dominated candidate, and the (compu-

tationally much harder) function problem determine all non-dominated candidates. For

the sake of simplicity, we focus here on decision problems and leave the latter two prob-

lems for further research.

4 This assumption implies that we study in this paper pure preference representation language only; there-

fore, languages for expressing logically decision making problems under uncertainty are not considered

in this paper as soon as they lose their significance in uncertainty-free environments.
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3.3. A survey and some complexity results

An intuitive way for an agent to express his preferences consists in enumerating

a set of goals (or desires), each of which is represented by a propositional formula,

possibly with extra data such as weights, priorities, contexts or distances. From now

on, Gi and Ci denote propositional formulas and αi is a positive number. GB is a “goal

base” and uGB (respectively �GB) denotes the utility function (respectively the preference

relation) induced by GB.

Some of the complexity results we give are not quite new: indeed, although the

complexity of preference representation languages has not been studied in a specific

way, several of the problems below are very close to similar to problems of knowledge

representation, and although the relevant problems are not quite the same whether it is

a matter of knowledge or preference, some complexity results established in the former

context can induce easily similar results for the latter one. Proofs are in the appen-

dix.

3.3.1. Basic propositional representation

The simplest, or prototypical, logical representation of preference, that we call “ba-

sic” and denote by Rbasic, consists simply in giving a single goal G (i.e. a propositional

formula) (or equivalently, a finite set of propositional formulas, interpreted conjunc-

tively). The utility function uG generated by G is extremely basic: for each possible

world �x ∈ Mod(K), uG(�x) = 1 if �x |= G, uG(�x) = 0 if �x |= ¬G. This representation,

very rough since it does not enable more than a distinction between goal states and non-

goal states (“binary” utility), is of little interest in practice but we will often refer to it

because it provides lower bounds for complexity results.

Proposition 1. For Rbasic:

1. COMPARISON is in P;

2. NON-DOMINANCE is coNP-complete;

3. CAND-OPT-SAT is NP(3)-complete.

There are two straightforward ways of refining the basic representation, which

both consist in considering that GB is a sets of propositional formulas, namely GB =
{G1, . . . ,Gn}. They order candidates according to the number (respectively the set) of

formulas satisfied in GB.

Rcard ucard
GB

(

�x
)

=
∣

∣

{

i | �x |= Gi

}∣

∣,

R⊆ �x �
⊆
GB �y if and only if satGB

(

�x
)

⊇ satGB

(

�y
)

, where satGB

(

�x
)

=
{

i | �x |= Gi

}

.

The partial preorder �
⊆
GB on X generated by GB according to R⊆ is nothing but the

Pareto ordering: indeed, a candidate �x is non-dominated for �
⊆
GB if and only if there is

no candidate �y ∈ Mod(K) satisfying the goals satisfied by �x and at least another one.
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3.3.2. Weighted goals

The refinement Rcard of Rbasic considers all-or-nothing but independent goals, and

enables compensations. This representation can be generalized to Rwg by weighting

goals with numerical valuations. The utility of a candidate is computed by first gathering

the valuations of the goals it satisfies, the valuations of the goals it violated, and then by

aggregating these valuations in a suitable way (see for instance [34]):

GB =
{

〈α1,G1〉, . . . , 〈αn,Gn〉
}

and

u
F1,F2,F3

GB

(

�x
)

= F1

(

F2

({

αi | �x |= Gi

}

, F3

({

αj | �x |= ¬Gj

})))

.

When utility can be considered as a relative notion rather than an absolute one

(which means that only differences of utilities between candidates are relevant), it can

be assumed that only the violated goals count (see for instance [34,51]), which leads to

uF
GB(�x) = F({αi | �x |= ¬Gi}); F has of course to satisfy a number of desirable prop-

erties (see [34]).5 Usual choices for F are, for instance, sum (weights are then usually

called penalties) or maximum (which corresponds to possibilistic logic). The complex-

ity of decision problems for weighted logics can easily be derived from the complexity

of distance-based belief merging [30,39]. Assuming that the aggregation functions F1,

F2 and F3 can be computed in polynomial time, we get the following results as byprod-

ucts from known results, especially the complexity of distance-based belief merging

([39], and especially [30]): COMPARISON is polynomial; NON-DOMINANCE is coNP-

complete; CAND-OPT-SAT is in �
p

2 , and in �
p

2 when the set {uGB(�x) | �x ∈ Mod(K)} can

be computed in polynomial time (and therefore has a polynomial size); CAND-OPT-SAT

is �
p

2 -complete even for the simple representation language Rcard.

3.3.3. Prioritized goals

Instead of weighting formulas by numerical weights, several approaches proceed

by ordering them with a priority relation. Consider GB = 〈{G1, . . . ,Gn},�〉 where � is

a weak order (called a priority relation) on {1, . . . , n}. Let ≻ be the strict order induced

by �, and let nonsatGB(�x) = {1, . . . , n} \ satGB(�x). A common choice (see, e.g., [3,29]),

called the discrimin ordering when � is complete, Rdiscrimin, is the following:

�x �discrimin
GB �y if and only if ∀i ∈ nonsatGB(�x) \ nonsatGB(�y)

∃j ∈ nonsatGB(�y) \ nonsatGB(�x) such that j � i.

Note that Rdiscrimin generalizes R⊆ – namely, it coincided with R⊆ when � is chosen to

be the relation defined by i � j for all i, j . An alternative common way of inducing

preference on candidates from priorities is the representation Rleximin based on leximin

ordering [3]. It generalizes Rcard (and assumes that the priority relation � is complete).

We omit its definition.

It is not hard to show that as soon as �x �GB �y can be decided in polynomial time

from �, which is the case for R⊆, Rdiscrimin and Rleximin, then COMPARISON is polyno-

5 However, this assumption is sometimes not made; in this case, positive preference items (goals) have to

be formally distinguished from negative ones (constraints); see [4].
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mial, therefore NON-DOMINANCE is in coNP and CAND-OPT-SAT in �
p

2 . Moreover,

NON-DOMINANCE is coNP-complete for R⊆. Lastly, from results in [26,41], it can be

easily derived that CAND-OPT-SAT is �
p

2 -complete for R⊆, and from results in [14,27],

that CAND-OPT-SAT is �
p

2 -complete for Rleximin.

A recent approach [10] proposes a preference representation language QCL based

on prioritized goals, where priority is expressed by means of a new connector ×:

ϕ1 ×ϕ2 ×· · ·×ϕn has to be understood as the priority relation: ϕ1 preferred to ¬ϕ1 ∧ϕ2

preferred to ¬ϕ1 ∧ ¬ϕ2 ∧ ϕ3, . . . . Formulas expressed in this language can be translated

into a set of prioritized goals, the preference relation then being based on the leximin

ordering (however the transformation is not polynomial). Therefore the problems as-

sociated with RQCL are at least as hard as with Rleximin and possibly above (we did not

investigate them).

3.3.4. Conditional logics

Each goal Gi is now attached to a context Ci: GB = {C1 : G1, . . . , Cn : Gn},
and C : G is interpreted as C ⇒ G in the simplest conditional logics: � being a

complete weak order on candidates, we say that C : G is satisfied by � if and only if

Max(Mod(C),�) ⊆ Mod(G); this can be interpreted as “ideally G if C” [5]. This

constraint does not fully determine the preference relation induced from D. Several

possibilities exist:

3.3.4.1. Standard preference relation. Rcond,S consists in considering that a candidate

is at least as good as another one if and only if this holds in all models of GB. Formally:

�x �
cond,S
GB �y if and only if for any � satisfying GB we have �x � �y.

Note that �GB is only a partial preoder which is generally very weak, often much

too weak (i.e., does not enable enough comparisons) to be a good candidate for pref-

erence representation, as it can be seen on the following example: let us consider

the propositional language generated by two propositional variables a and b and let

GB = {⊤ : a}. Then, for any �x, �y ∈ {(a, b), (a,¬b), (¬a, b), (¬a,¬b)}, �x �GB �y
holds if and only if �x = �y (and therefore �x >GB �y never holds).

3.3.4.2. Preference relation based on Z-ranking. While Rcond,S considered all models

satisfying a set of conditionals, the approach based on the Z-completion of GB, at work

in System-Z [45] and similar approaches, selects one model and allows much more con-

sequences to be derived. Given a set GB = D of conditional rules φ : ψ and a set of

hard facts, System-Z proceeds by partitioning D into a collection D0 ∪ · · · ∪ Dn; if a

conditional rule ϕ : ψ is in Di then its rank is i. We omit to explain how the ranking

is computed as this is only derivative for the purposes of the paper. Note that ranks in-

tuitively respect specificity relations between rules, i.e., more specific rules are assigned

higher ranks. Now, the ranking function on conditional rules induces a ranking func-

tion κ on candidates: a candidate �x being said to violate a rule ϕ : ψ if and only if

�x |= ϕ ∧ ¬ψ , then for any �x |= K, κGB(�x) = 0 if �x does not violate any rule of D and

κGB(�x) = 1 + max{i | d ∈ Di and �x violates d} otherwise. Note that more preferred
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candidates have lower ranks, henceforth, �
cond,Z
GB is defined by �x �

cond,Z
GB �y if and only if

κGB(�x) � κGB(�y).

Intuitively speaking, �
cond,Z
GB is the preference relation, among those satisfying GB,

maximizing preference world by world [5, p. 79]. The obtained relation �
cond,Z
GB is much

more discriminant (hence much better) than �
cond,S
GB .

Complexity results for Rcond,S and Rcond,Z can be derived as byproducts of com-

plexity results for conditional logics [28] and for conditional knowledge bases [27]:

Proposition 2.

1. For Rcond,S: COMPARISON is coNP-complete.6

2. For Rcond,Z: COMPARISON
cond,Z , NON-DOMINANCE

cond,Z and CAND-OPT-SAT
cond,Z

are �
p

2 -complete.

One drawback of Rcond,Z is that, as for Rcond,S , a so-called “drowning effect” occurs

(some goals are ignored while they should not); this can be remedied for instance by

adding extra constraints expressing that violating a conditional desire induces an explicit

utility loss [36]. This principle is further generalized by introducing numerical strengths

and polarities in [38,51]. We did not investigate complexity issues for these approaches.

3.3.5. Ceteris paribus preferences

C, G and G′ being three propositional formulas and V being a subset of VAR such

that Var(G) ∪ Var(G′) ⊆ V , the ceteris paribus desire C : G > G′[V ] is interpreted by:

“all irrelevant things being equal, I prefer G ∧ ¬G′ to G′ ∧ ¬G”, where the “irrelevant

things” are the variables that are not in V . The definitions proposed in various places

[7,23,24,49] differ somehow. We take as a basis the definition of [23], slightly gener-

alized, in the spirit of [49] but with less complications, by introducing the explicit set

of variables V which expresses, in an explicit way, which variables are referred to when

saying “all other things being equal” (namely, those not in V ). For natural reasons, and to

remain consistent with the origiginal definitions, we impose that Var(G)∪Var(G′) ⊆ V .

This modification is simple, it does not affect significantly the computational aspects of

the framework and answers (to a certain extent) a criticism addressed to ceteris paribus

desires in [2, pp. 545–546], thus giving a little more expressivity to the framework, for

instance by allowing ramifications of the goals to be taken into account (by default, V is

considered to be the set of variables mentioned in G and G′7).

6 As to NON-DOMINANCE and CAND-OPT-SAT, I could not manage to identify exactly their complexity;

the best I can say is that they are BH2-hard and (obviously) in �
p
2

, but since this is not very significant

(the gap between BH2 and �
p
2

being large), I omit the technical details.
7 This could be refined further by considering the variables on which G and G′ do not semantically depend

[37,49]. This is not be considered further in this paper.
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Table 1

COMPARISON NON-DOMINANCE CAND-OPT-SAT

General case PSPACE-comp. coNP-comp. �
p
2 -comp.

Simple desires PSPACE-comp. coNP-comp. �
p

2 -comp.

Definition 4 (RCP). Let GB = 〈K,D〉 with D = {C1 : G1 > G′
1[V1], . . . , Cm : Gm >

G′
m[Vm]} such that for all i, Ci , Gi and G′

i are propositional formulas and Var(Gi) ∪
Var(G′

i) ⊆ Vi ⊆ VAR. For two candidates �x, �y ∈ C, �x is said to dominate �y with respect

to the desire Di = (Ci : Gi > G′
i[Vi]), denoted by �x >Di

�y, if and only if the following

conditions hold:

1. �x |= K ∧ Ci ∧ Gi ∧ ¬G′
i;

2. �y |= K ∧ Ci ∧ ¬Gi ∧ G′
i;

3. �x and �y coincide on all variables that are not in Vi .

Now, the strict order >GB is defined from the above dominance relations by transi-

tive closure, i.e.: for two candidates �x, �y ∈ C, �x >
cp

GB �y if and only if there exists a finite

chain �x0 = �x, �x1, . . . , �xq−1, �xq = �y of candidates such that for all j ∈ {0, . . . , q − 1}
there is an i ∈ {1, . . . , m} such that �xj >Di

�xj+1. Lastly, �GB is defined by �x �GB �y
if and only if �x >GB �y or �x = �y.

For the complexity results we consider not only the general case but also the fol-

lowing restriction (simple desires): each goal Gi is a literal li and G′
i = ¬li .

Proposition 3. The complexity of COMPARISON, NON-DOMINANCE and CAND-OPT-

SAT for ceteris paribus desires is reported in table 1.

The surprising point is that, for the general case, the comparison problem is much

more difficult than the other ones (in contrast to other representation languages). This is

due to possible exponentially long “preference paths” (see the proof in appendix).

As we can see, imposing that goals are literals does not make the problems easier.8

Studying further the complexity of the comparison and the non-dominance problems for

ceteris paribus desires under various assumptions is a promising topic. Some significant

results have been obtained in the resticted case of CP-nets in [20,21], especially tractable

cases (however, the general comparison problem for the restriction of ceteris paribus

desires corresponding to CP-nets is still open).

3.3.6. Distances

Let d be a (pseudo-)distance on X , i.e., a function from Mod(K) × Mod(K) to N

such that (i) d(�x, �y) = 0 if and only if �x = �y and (ii) d(�x, �y) = d(�y, �x). Distance-

based logical representations of preference [31,34,35], denoted by Rd , are based on the

8 This would however be the case with variants of the framework, that we do not consider here for the sake

of brevity.
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intuitive idea that, when expressing a goal G, then ideally, �x must satisfy G, and when

it is no longer the case, then, the “further” �x is from G, the less preferred �x.

Formally, a pair 〈{G}, d〉, where G is a propositional formula and d a pseudo-

distance, induces the utility function

uGB

(

�x
)

= −d
(

�x,G
)

= − min
�y|=G

d
(

�x, �y
)

.

When d is computable in polynomial time, one easily derives from the literature on

the complexity of belief revision [26,42] and of distance-based belief merging [30]

that COMPARISON (which amounts to deciding whether d(�x,G) � d(�y,G)), NON-

DOMINANCE and CAND-OPT-SAT are in �
p

2 (and, in particular, �
p

2 -complete when d is

the Hamming distance).

This principle can be generalized by considering a set of goals, each goal being

associated with a pseudo-distance:

GB =
{

〈G1, d1〉, . . . , 〈Gn, dn〉
}

and uGB

(

�x
)

= F
(

d1

(

�x,G1

)

, . . . , dn

(

�x,Gn

))

,

where F is an aggregation function. This has no strong impact on complexity.

3.3.7. Discussion

These results have a value of their own, since they enable a first comparison of

propositional preference representation from a computational point of view. Now, the

complexity of the key problems COMPARISON and NON-DOMINANCE also have a strong

impact on the rest of the paper, i.e., to the question whether these languages are suitable

for combinatorial vote. Interesting languages are then (in principle) those for which

either COMPARISON is polynomial, or, at least, for which NON-DOMINANCE lays at

the first level of the polynomial hierarchy. The complexity results given in section are

summarized in table 2.9

The problem with weighted goals is the well-known difficulty of eliciting numer-

ical preferences from agents; as to prioritized goals, their lack of expressivity (no com-

Table 2

COMPARISON NON-DOMINANCE CAND-OPT-SAT

Rbasic P coNP-complete NP(3)-complete

Rwg P coNP-complete up to �
p
2

-complete

Rdiscrimin P coNP-complete �
p
2

-complete

Rleximin P coNP-complete �
p
2

-complete

Rcond,S coNP-complete BH2-hard, in �
p
2

BH2-hard, in �
p
2

Rcond,Z �
p
2

-complete �
p
2

-complete �
p
2

-complete

Rcp PSPACE-complete coNP-complete �
p
2

-complete

Rd up to �
p
2

-complete up to �
p
2

-complete up to �
p
2

-complete

9 For Rwg, we assume that aggregation functions are computable in polynomial time; for R≻, that pref-

erence relation between candidates is computable in polynomial time from priorities; and for Rd , that

d(�x, �y) is computed in polynomial time.
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pensation allowed between goals) somewhat limits their range of use. “Ceteris paribus”

preferences are interesting from a cognitive point of view, being rather close to human

intuition and rather easy to elicit. However, they have a high computational complexity

in the general case, and furthermore, from the point of view of expressivity, they are not

very discriminant.10

4. Combinatorial vote

We now assume that a group of p agents (or voters) have to come up with a com-

mon assignment of values to dependent variables. A combinatorial vote problem con-

sists of two steps: first, the agents express their preferences within a fixed (and common)

representation language R, and second, one or several optimal (i.e., non-dominated) can-

didate(s) is (are) determined automatically, using a fixed vote rule.

A preference profile P consists of a preference structure (cardinal or ordinal) for

each of the voters. Social choice theory (see [40] for a good introduction) defines a vote

rule V as a function mapping every preference profile P to an elected candidate or a

subset of X , called the set of elected candidates.11 The set of elected candidates, given

a preference profile P and a vote rule V , will be denoted by SelectV (P ).

Research in social choice theory focuses on the properties of vote rules (and es-

tablishes for instance impossibility results) but does not care about the representation

language and computational complexity, since the preferences are supposed to be ex-

pressed explicitly. However, in combinatorial vote, the representation language is an

important parameter, and the computational properties of a vote rule will both depend of

the rule V itself and of the representation language R chosen.

For any representation language R, one defines a R-profile for p voters as a col-

lection B = 〈GB1, . . . , GBp〉 of goal bases (one for each of the p voters), expressed in

the language R, generating a profile P = InduceR(B), i.e., depending whether prefer-

ences are cardinal or ordinal: InduceR(B) = {uGB1
, . . . , uGBp

} or InduceR(B) = {�GB1
,

. . . ,�GBp
}.

We will now look at several vote rules that are well-known in the social choice

community, and discuss these with respect to two criteria:

1. Relevance for combinatorial vote (i.e., does the vote rule still “mean” something when

the set of candidates has a combinatorial structure?).

2. Computational complexity. Let V be a vote rule and R a representation language; we

consider the following decision problems.

10 However, see [6] for an introduction of numerical utilities in ceteris paribus networks that remedies this

problem, but on the other hand reintroduces the cognitive problem inherent to numerical utilities.
11 For the sake of simplicity we will not distinguish between what is usually called a vote rule, which

selects a unique candidate, and a vote correspondance, which selects a subset of candidates; we will use

the terminology “vote rule” in all cases. The rules that we will consider in the rest of the paper are strictly

speaking correspondances, from which a standard rule can be defined by a tie-breaking rule, either by

giving up neutrality, or by randomly choosing one of the elected candidates.
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Definition 5 (AMONG-WINNERSV,R ). AMONG-WINNERSV,R : given B = 〈GB1, . . . ,

GBp〉 and a candidate �x, determine whether �x ∈ SelectV (InduceR(B))

Definition 6 (ELECT-SATV,R ). ELECT-SATV,R : given B = 〈GB1, . . . , GBp〉 and a for-

mula ψ , determine whether there is a candidate in SelectV (InduceR(B)) satisfying ψ .

The complexity of these problems depends a lot on the complexity of COMPAR-

ISON and NON-DOMINANCE for R. It has been seen that for some of the languages

studied in section 3, COMPARISON and/or NON-DOMINANCE is polynomial; for the rest

of the paper, we focus on these.

4.1. Aggregative rules for cardinal preferences

When preference is cardinal, i.e., P = 〈u1, . . . , un〉, the simplest way consists in

“aggregating before comparing” (see [25]), namely: for each �x, the scores ui(�x) are

synthesized by an aggregation function ∗ : R
p → R into a so-called social welfare func-

tion uB(�x) = ∗{ui(�x) | i = 1, . . . , p} reflecting the satisfaction of the group (see [40]).

Selectagreg(∗)(P ) is then the set of candidates maximizing uB(�x). Classically, the function

∗ is commutative (for guaranteeing the anonymity property) and non-decreasing.

In section 3 it has been seen that the languages that lead to cardinal preference

structures are weighted goals and distance-interpreted goals (note that for the latter the

polynomiality of comparison does not hold except if some restrictions are made).

As a consequence of section 3 and [30] it can be shown that, provided that

ui(�x) is polynomially computable from B, and ∗ is polynomially computable, AMONG-

WINNERSagreg(∗),R is in coNP and ELECT-SATagreg(∗),R is in �P
2 .

The problem with these methods are, again, the difficulty to elicit a numerical

utility function. From now on we focus on rules whose input is an ordinal structure (note

that this ordinal structure may possibly have been induced from a cardinal structure).

4.2. Scoring rules

4.2.1. General principle

Scoring rules consist in translating the preference relation �i of voters into score

functions si(�x), such that the score si(�x) of a candidate �x with respect to voter i is

a function only of its position in the relation �i . The global score s(�x) of �x is then

computed by summing up all scores si(�x) for i = 1 to n. This is particularly clear in the

case where � is a complete order (i.e., no ex-aequos, no incomparabilities), ri(�x) is the

rank of �x in �i (1 if it is the favorite candidate for i, 2 if it is the second favorite etc.),

then si(�x) is a non-increasing function of ri(�x).

The most common choice is the Borda rule (which goes back to the eighteenth cen-

tury mathematician Borda). In the case of a complete order, the Borda score is defined
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by si(�x) = |X |− ri(�x), which can be generalized by: let si(�x) be defined from >i as the

number of candidates that do not dominate �x, i.e.,

si

(

�x
)

=
∣

∣Mod(K)
∣

∣ −
∣

∣

{

�x′ ∈ Mod(K) | �x′ >i �x
}∣

∣.

One may think that scoring rules translate purely ordinal preference into a numer-

ical utility function in a rather arbitrary way, which is true; but on the other hand, these

rules satisfy several desirable properties such as monotonicity and some forms of strate-

gyproofness that are not satisfied by other rules (see [40]).

However, in the context of combinatorial vote, scoring rules present a major draw-

back: being based on a counting of candidates, they are extremely syntax-sensitive, i.e.,

to the choice of propositional symbols used for representing the problem at hand, and

moreover it really makes little sense to use a rule such as Borda on a set of candidates

of cardinality 2n as soon as n does not have a reasonable size. Therefore, most scoring

rules are much more arbitrary in the context of combinatorial vote than in classical vote

contexts. As if it were not enough, their computational complexity, in most cases, is

very high, since candidate counting is required. One may thus advance the following

general principle that a vote rule that requires a counting of candidates is not suitable to

combinatorial vote. This rules out almost all scoring rules; however, a few of them (very

specific) avoid this counting, such as the plurality and the veto rules, that we study now.

4.2.2. Plurality and veto

The plurality rule is the scoring rule obtained by taking si(�x) = 1 if and only if �x
is non-dominated for �i , i.e., iff there is no �y |= K such that �y >i �x. Selectplurality(P )

is therefore the set of candidates maximizing the number of voters for whom �x is non-

dominated (or, in the simple case of a complete order, the number of voters who rank �x
in first position). It is known to be less satisfactory than many other scoring rules, but on

the other hand it is syntax-insensitive and does not require any counting of candidates,

therefore it is relevant for combinatorial vote. We now look at its complexity, when the

preference representation language R varies.

Proposition 4. Let R be a language for which NON-DOMINANCE is in NP or in coNP

(this includes a fortiori languages for which COMPARISON is polynomial).

(1) AMONG-WINNERSplurality,R is in �
p

3 ;

(2) ELECT-SATplurality,R is in �
p

3 ;

(3) for R = Rbasic, AMONG-WINNERSplurality,Rbasic
is coNP-complete and ELECT-

SATplurality,Rbasic
is �

p

2 -complete.

(3) gives a lower complexity bound since Rbasic is the most elementary logical

representation language. The upper bound for ELECT-SAT is reached for instance for

R = R⊆: ELECT-SATplurality,R⊆ is �
p

2 -complete. For Rwg, ELECT-SAT is in �
p

2 .

The veto rule is obtained by letting si(�x) = 1 if and only if there is at least a

candidate �y such that �x >Gi
�y. When >Gi

is a total order, this comes down to count
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the number of voters who do not rank �i last. Complexity results for the veto rule are

similar to those for the plurality rule.

The following example illustrates how scoring rules are applied when preference

is expressed compactly.

Example 1. Let us fix R = Rcard, L the language generated by the propositional vari-

ables {a, b, c} and let the number of voters be 3. Let B be the following triple of goal

bases:

B = 〈GB1, GB2, GB3〉

where

– GB1 = {a, a ∨ b};

– GB2 = {¬a, b ∧ c, a → (b ∨ c)};

– GB3 = {¬b, a ↔ ¬c}.

The preference orderings �GB1
, �GB2

and �GB3
are:

(a, b, c), (a, b,¬c), (a,¬b, c), (a,¬b,¬c)

>GB1
(¬a, b, c), (¬a, b,¬c)

>GB1
(¬a,¬b, c), (¬a,¬b,¬c)

(¬a, b, c)

>GB2
(a, b, c), (¬a, b,¬c), (¬a,¬b, c), (¬a,¬b,¬c)

>GB2
(a, b,¬c), (a,¬b, c)

>GB2
(a,¬b,¬c)

(a,¬b,¬c), (¬a,¬b, c)

>GB3
(a, b,¬c), (¬a, b, c), (a,¬b, c), (¬a,¬b,¬c)

>GB3
(a, b, c), (¬a, b,¬c)

Candidates written on a same line are equally preferred: for instance, for GB1, we

have (a, b, c) ∼GB1
(a, b,¬c) ∼GB1

(a,¬b, c) ∼GB1
(a,¬b,¬c), any of these four

candidates being strictly preferred to both (¬a, b, c) and (¬a, b,¬c) and so on.

Note the role of redundancy in goal bases. Take for instance GB1 = {a, a ∨ b}: the

redundancy between goal a and goal a ∨ b expresses that voter 1 prefers to see a true,

and that in addition to this he has a preference to see a ∨ b satisfied (in particular in the

case where a is false). Therefore, the preference profile of voter 1 can be expressed as

I desire a, and if not possible then b, reflected by the preference relation >GB1
above.

Table 3 shows the Borda, plurality and veto scores of all candidates. Framed scores

correspond to elected candidates.
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Table 3

sB
1

sB
2

sB
3

sB sp sv

(a, b, c) 8 7 2 17 1 2

(a, b, ¬c) 8 3 6 17 1 3

(a, ¬b, c) 8 3 6 17 1 3

(a, ¬b, ¬c) 8 1 8 17 2 2

(¬a, b, c) 4 8 6 18 1 3

(¬a, b, ¬c) 4 7 2 13 0 2

(¬a, ¬b, c) 2 7 8 17 1 2

(¬a, ¬b, ¬c) 2 7 6 15 0 2

4.3. Condorcet-consistent rules

4.3.1. Condorcet winner

A Condorcet winner (CW) for a profile P is a candidate �x such that for any can-

didate �y �= �x, there are strictly more agents preferring �x to �y than agents preferring �y
to �x, i.e., ∀�y ∈ Mod(K), |{i | �x >i �y}| > |{j | �y >i �x}|.12 This notion goes back to

1785 [19] and it is known since then that there are profiles for which there is no CW.

Importantly, when there exists a CW, it is unique.

A first problem is that the usual definition of a CW is not well-suited to combi-

natorial vote. This can be seen easily in the case where R = Rbasic (and holds as well

for more sophisticated representation languages). We easily get that �x is the Condorcet

winner for B = 〈G1, . . . ,Gn〉 if and only if the number of i such that �x |= Gi is max-

imal and no other interpretation than �x maximizes this number of voters whose goal is

satisfied. This has the consequence that there almost never exists a Condorcet winner

in practical cases, because the number of candidates being much larger than the number

of voters, there are generally pairs of worlds upon which all voters are indifferent. For

instance, let L be the propositional language generated by the variables {a, b, c}; let the

numbers of voters be 4, R = Rbasic, and GB = 〈a, a,¬a, b〉. We get that both (a, b, c)

and (a, b,¬c) beat any of the other six candidates by a majority of voters, however nei-

ther of both beats the other one by a majority of voters, therefore there is no Condorcet

winner. Intuitively speaking, we would like not to distinguish �x and �y and to have them

both as winners. For this purpose, we now define near Condorcet winners. Another way

(much more usual) of weakening the notion of Condorcet winner consists in replacing >

by � in the above inequality (candidates satisfying the resulting condition are called

weak Condorcet winners).

Definition 7. Let B = 〈GB1, . . . , GBn〉, and for any two candidates �x, �y ∈ C,

C(�x, �y,B) = |{i | �x >GBi
�y}|.

12 In particular, when � is a complete order, �x is a Condorcet winner if and only if it is preferred to any

other candidate by a majority of voters.
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– �x is a Condorcet winner (CW) for B if and only if for any candidate �y ∈ C s.t.

�y �= �x, we have C(�x, �y,B) > C(�y, �x,B);

– �x is a near Condorcet winner (NCW) for B if and only if ∀�y ∈ C s.t. �y �= �x, we

have either C(�x, �y,B) > C(�y, �x,B) or ∀i = 1, . . . , n, �x ∼GBi
�y;

– �x is a weak Condorcet winner (WCW) for B if and only if ∀�y ∈ C s.t. �y �= �x, we

have C(�x, �y,B) � C(�y, �x,B).13

Note that we have the straightforward properties:

– �x is a CW for B⇒ �x is a NCW for B⇒ �x is a WCW for B;

– the existence of a WCW (and a fortiori of a NCW nor a CW) is not guaranteed; there

is at most a CW (but there may be more than one NCW/WCW);

– let ∼B be the equivalence relation with respect to the goal base B, defined by �x ∼B �y
if and only if for every i = 1, . . . , n, �x ∼GBi

�y; let us denote by [�x] the equiva-

lence class of �x for ∼B , let X /∼B
be the quotient of X by ∼B , and let [�x] �i [�y]

if and only if �x �GBi
�y. Then �x is a NCW if and only if [�x] is a CW for the problem

defined by the set of candidates X/∼B
and the profile {�1, . . . ,�p}.

Let R be a representation language for which COMPARISON is polynomial. We

consider the problem CONDORCET WINNER VERIFICATION (and similarly WEAK and

NEAR CONDORCET WINNER VERIFICATION) the problem of determining whether a

given candidate �x is a CW (and similarly a NCW, a WCW) for a given B; and the prob-

lem CONDORCET WINNER EXISTENCE (and similarly WEAK and NEAR CONDORCET

WINNER EXISTENCE) the problem of determining whether there exists a CW (and sim-

ilarly a NCW, a WCW) for a given B.

Obviously, a CW is a WCW. Noticeably, there are profiles for which there are

several WCWs (in which case there is no CW), profiles for which there is a single WCW

(which is then the CW) and profiles for which there is no WCW.

When P is represented explicitly, the existence of a CW or of a WCW can be

determined in quadratic time. This is much harder when preference are represented in a

succinct language:

Proposition 5. Let R be a language for which COMPARISON is polynomial.

1. CW VERIFICATION, NCW VERIFICATION and WCW VERIFICATION are in coNP;

when R = Rbasic, CW VERIFICATION and NCW VERIFICATION are coNP-complete.14

13 Both definitions of near and weak Condorcet winners could be “mixed”, namely, it is possible to define

an even weaker notion; this is not considered here.
14 When R = Rbasic, there always exists a WCW, therefore WCW VERIFICATION is trivial.
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2. CW EXISTENCE, NCW EXISTENCE and WCW EXISTENCE are all in �
p

2 ; when R =
Rbasic, CW VERIFICATION is in �

p

2 and coNP-hard; NCW VERIFICATION is in �
p

2 and

BH2-hard.15

Since the existence of a CW is not guaranteed, several vote rules have been pro-

posed in social choice theory, which guarantee that each time there exists a CW, it is

elected. These rules are said Condorcet-consistent. Considering now weak Condorcet

winners, it is reasonable to ask for a Condorcet-consistent rule to elect the set of WCWs

when the latter is not empty.

Each Condorcet-consistent rule is thus characterized by its results in the cases

where there are no WCWs.

Two simple Condorcet-consistent rules have received a particular interest, namely

the Copeland and the Simpson rules. The Copeland rule requires to count candidates and

therefore is not well-suited to combinatorial vote; the Simpson rule is more interesting.

4.3.2. The Simpson rule

Let P be a profile, �x and �y two candidates. Let C(�x, �y, P ) be the number of

voters who strictly prefer �x to �y w.r.t. P . The Simpson score S(�x, P ) is defined by

S(�x, P ) = min�y �=�x C(�x, �y, P )−C(�y, �x, P ), and SelectSimpson(P ) is the set of candidates

maximizing S(�x, P ) (the Simpson winners). It is easy to check that when there exists at

most one �x with a strictly positive score, and when such a candidate exists, it is the CW:

the Simpson rule is Condorcet-consistent.

Proposition 6. Let R be a language for which comparison is polynomial.

1. AMONG-WINNERSSimpson,R is in �
p

3 .

2. ELECT-SATSimpson,R in �
p

3 .

3. For R = Rbasic: AMONG-WINNERSSimpson,Rbasic
is coNP-complete and ELECT-

SATSimpson,Rbasic
is �

p

2 -complete.

Example 1 (Continued). In table 4 we give the values of C(�x, �y,B) (�x in column and �y
in row) and then the Simpson scores. We represent candidates by vectors of digits:

(a, b, c) by 111, (a, b,¬c) by 110 and so on.

There are two Simpson winners, namely (a, b, c) and (a,¬b,¬c). None of them

is a near Condorcet winner.

4.4. Discussion

The conclusions are not simple, because several parameters have to be taken into

account. From a strict computational point of view, aggregative rules may be easier to

15 Note that I could not manage to prove �
p
2

-hardness. Moreover, I strongly believe that when R varies,

then the upper bound, i.e., �
p
2

-completeness, is reached for simple languages such as Rcard, but again

I could not find a proof.
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Table 4

↓ �y\�x → 111 110 101 100 011 010 001 000

111 × 0 0 0 0 −1 0 0

110 0 × 0 0 0 −1 1 0

101 0 0 × 0 0 −1 1 0

100 0 0 0 × −1 −1 0 −1

011 0 0 0 1 × −2 −1 −2

010 1 1 1 1 2 × 0 0

001 0 −1 −1 0 1 0 × −1

000 0 0 0 1 2 0 1 ×

S(�x,B) → 0 −1 −1 0 −1 −2 −1 −2

implement than scoring rules or Condorcet-consistent rules, but they require a numerical

input which is often hard to obtain. Note that our complexity results for the Simpson rule

and for the plurality rule almost coincide.16

5. Further related work and perspectives

This paper contains both a survey of several logical languages for preference rep-

resentation proposed so far in the literature, and a very preliminary work about combi-

natorial vote. We have merely shown that it is often hard (from the points of view of

relevance and computational complexity) to import in a straightforward way vote rules

from the area of social choice and to have them work on problems having a heavy combi-

natorial structure. Lots of things remain to be studied. We list here several topics related

to this paper and point to possible directions for further research.

5.1. Compact languages for preference representation: going further

The role of the first half of the paper was to give a survey of logical representation

of preference, especially from a computational point of view. I do not claim that it is

exhaustive, but I tried to refer to most significant approaches. At least three kinds of

languages have not been considered, and I’ll try to explain here why:

– So-called “preferential logics”, developed either in a nonmonotonic reasoning frame-

work ([32,48] and subsequent works), or more recently in a logic programming

framework, are not considered because they do not really deal with (decision-

theoretic) preference representation. The terminology “preference” in the latter ap-

proaches is rather technical (“preference” is used as a synonym of “[weak/strict] or-

der”) and not especially connected to decision-theoretic issues.

16 Actually, they differ in the condition required: for the Simpson rule we required that COMPARISON is

polynomial whereas for plurality we required the weaker condition that NON-DOMINANCE is in NP or

in coNP.
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– Compact languages for preference representation that are not based on logic, such as

utility networks (e.g., [1]) or weighted CSPs (e.g., [47]). I did not study them because

for the sake of brevity I focused on pure logical approaches, but these approaches

are relevant to combinatorial vote. Some of them have a structure close enough to

propositional logic to make me think that the complexity results would not be so far

from those obtained, but again, this is left for further research.

– Logical languages for qualitative decision theory (see next paragraph).

As to complexity results, some are really new (especially those related to ceteris

paribus desires) and some others are byproducts of already existing results. There are

several problems whose complexity was not entirely identified in this paper, such as

finding the upper bound for CW existence problems for simple languages such as Rcard

(proposition 5). Another issue which is lacking here is a study of the representational

complexity [12] of these languages, which would assess precisely their concision power:

see [18].

5.2. Qualitative decision theory

The survey I gave in section 2 differs from Doyle and Thomason’s review [22]

on qualitative decision theory. Qualitative approaches to decision theory and compact,

logical approaches for preference representation are two distinct issues, even if some

papers are concerned with both of them (especially [5]): qualitative decision theory

aims at studying criteria for decision making under uncertainty that refer as little as

possible to numbers (in contrast with the standard expected utility criterion) and it is not

surprising that several approaches are based on non-classical logics whose semantics is

defined by means of orderings (as [5]), or on nonmonotonic logics [9,50]; however the

goal in these approaches is not to describe a pure preference relation on states, and most

of these approaches degenerate when the assumption of perfect knowledge is made.

5.3. Preference elicitation

In this paper we only briefly mentioned the key issue of automated preference

elicitation (i.e., how to interact with a voter so as to obtain her preference relation).

This issue, which has received some attention in the last years, is a necessary upstream

task for combinatorial vote and relationships between both problems should be studied

further. As well, identifying preferential independences between some variables for a

given voter (see [2]) is extremely relevant in this context.

Preference elicitation traditionally focus on one agent; now, the recent paper [17]

considers the elicitation issue is a vote context; given some partial data about the votes of

a number of agents, it studies the complexity of determining which piece of preference

and from which voter in order to be able to determine the winner of the election. We

did not consider this issue in the context of combinatorial vote, and no doubt that it is

extremely relevant to it.
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5.4. Manipulation

It has been known for long in social choice theory that there is no vote rule being

both non-dictatorial and strategyproof (this is the well-known Gibbard–Satterthwhite

theorem); not being strategyproof means that it is not always the interest of the vot-

ers to report their preference truthfully. The vote rules considered in this paper in the

context of combinatorial vote do not escape this; however, manipulation is probably

computationally hard (this is the best we can expect) when the set of candidates has a

strong combinatorial structure;17 demonstrating this formally would be a positive aspect

of combinatorial vote.

5.5. More vote rules; partial vote and negotiation

Fopr the sake of brevity, there are a number of vote rules that we did not consider

in this paper, such as single transferable vote or sequential (several-rounds) rules.

Moreover, the combinatorial structure of the set of candidates offers new perspec-

tives: in some situations, it is not compulsory to assign all variables at once; one may

then try to localize conflicts and look for a partial decision (an assignment of a subset of

the variables of interest) that is both as consensual as possible and as complete as pos-

sible; this decision can then be communicated to the voters, who can then update their

preferences about the remaining variables (possibly after a negotiation phase which is

out of our concern), and the process can then be iterated until all variables have been

assigned. This process requires that vote rules for combinatorial vote be adapted; this is

an issue for further work.

5.6. Electronic vote

A first possible application of combinatorial vote is electronic vote concerning de-

cisions about several dependent variables, that have to be taken in small organizations

(small companies, laboratories, recruiting committees etc.). When the set of candidates

has little or no combinatorial structure (e.g., choosing a person to be recruited), or when

the variables are independent (or almost) from each other, preferences can be aggre-

gated manually, but this is not the case as soon as the former has a strong combinatorial

structure.18

17 Manipulation is already hard when the number of candidates is small, see [15,16].
18 This can be seen for instance on the following real-world problem, concerning a decision to be taken

by a recruiting committee: when not a single, but k individuals (out of n) can be recruited, the space

of possible decisions has a combinatorial structure: a “candidate” is no longer an individual but a set

of k individuals. The problem can be solved manually only if the dependencies between individuals are

ignored, which means that the voters cannot express correlations between individuals, as for instance:

“In the first place I prefer recruiting A, then B, then C, but since A and B work on similar subjects

whereas C works on a complementary subject, the joint recruiting of A and C, or even of B and C,

suits me better than the joint recruting of A and B.” Allowing for the expression of such preference

needs a sophisticated language for preference representation such as those studied in this article, and the

aggregation of such preference is clearly a combinatorial vote problem.
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Appendix: Proofs

Proposition 1. For R = Rbasic:

1. COMPARISON is in P;

2. NON-DOMINANCE is coNP-complete;

3. CAND-OPT-SAT is NP(3)-complete.

Proof. 1. From the definition of �G we get immediately that for any �x, �y ∈ C, we have

�x �G �y if and only if �x |= G or �y |= ¬G, which is obviously checked in polynomial

time;

2. Using the above equivalence, we get that �x ∈ X is non-dominated for �G

if and only if �x |= G or G ∧ K is unsatisfiable, which proves membership of NON-

DOMINANCE to coNP. Hardness comes from the following polynomial reduction from

UNSAT: let ϕ be a propositional formula and let K = ⊤, G = ϕ ∧ p, where p is a new

propositional symbol (i.e., p /∈ Var(ϕ)). Let �x be any candidate such that �x |= ¬p. �x is

undominated for G if and only if �x |= ϕ ∧ p or ϕ ∧ p is unsatisfiable, i.e., if and only if

ϕ is unsatisfiable.

3. There exists an optimal candidate satisfying ψ iff ψ is satisfiable and (K ∧ G is

unsatisfiable or K ∧G∧ψ is satisfiable), which gives the membership part of (3). Hard-

ness comes from the following reduction from SAT-SAT-UNSAT: 〈ϕ1, ϕ2, ϕ3〉 is a positive

instance of SAT-SAT-UNSAT if and only if ϕ1 is satisfiable and (ϕ2 is unsatisfiable or ϕ3

is satisfiable). Assuming without loss of generality that ϕ1, ϕ2 and ϕ3 do not share any

variables, and p being a new variable, we let K = ⊤, G = (ϕ2 ∧ ¬p) ∨ (ϕ2 ∧ ϕ3),

ψ = ϕ1 ∧ p. Let us distinguish four cases:

– ϕ1 is satisfiable and ϕ2 unsatisfiable. In this case, G ≡ ⊥, therefore any candidate

is non-dominated: hence, since ϕ1 is satisfiable, so is ψ , and 〈K,G,ψ〉 is a positive

instance of CAND-OPT-SAT.

– ϕ1 and ϕ3 are both satisfiable. If ϕ2 is unsatisfiable then we are in the above case and

〈K,G,ψ〉 is a positive instance of CAND-OPT-SAT, so assume that ϕ2 is consistent

as well; since ϕ1, ϕ2 and ϕ3 do not share variables, their conjunction ϕ1 ∧ ϕ2 ∧ ϕ3 is

satisfiable, and for the same reason, so is ϕ1 ∧ϕ2 ∧ϕ3 ∧p. Let �x |= ϕ1 ∧ϕ2 ∧ϕ3 ∧p.

We have �x |= G, therefore �x is undominated, and moreover we have �x |= ψ , hence,

〈K,G,ψ〉 is a positive instance of CAND-OPT-SAT.

– ϕ1 is unsatisfiable. In this case, so is ψ , and 〈K,G,ψ〉 is a negative instance of

CAND-OPT-SAT.

– ϕ2 is satisfiable and ϕ3 is unsatisfiable. In this case, K ∧G ≡ (ϕ2 ∧¬p) is satisfiable,

and K ∧ G ∧ ψ ≡ ((ϕ2 ∧ ¬p) ∨ (ϕ2 ∧ ϕ3)) ∧ ϕ1 ∧ p ≡ ⊥ ∨ (ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ∧p),

therefore K ∧G∧ψ is unsatisfiable, and we get that 〈K,G,ψ〉 is a negative instance

of CAND-OPT-SAT.
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Noticing that these four cases cover all possible situations, we get the result that

〈K,G,ψ〉 is a positive instance of CAND-OPT-SAT if and only if 〈ϕ1, ϕ2, ϕ3〉 is a pos-

itive instance of SAT-SAT-UNSAT. �

Proposition 2.

1. For Rcond,S: COMPARISON is coNP-complete.

2. For Rcond,Z: COMPARISON, NON-DOMINANCE and CAND-OPT-SAT are �
p

2 -com-

plete.

Proof. 1a. For Rcond,S , COMPARISON is in coNP. Let us first remark that �x �
cond,S

D
�y

holds iff D ∧ D(for(�y) | for(�x) ∨ for(�y)) is unsatisfiable in the conditional logic

CO∗ [5], whose semantics in namely in terms of complete preorders on worlds (with-

out loss of generality, we identify here a CO∗-model M with its complete preorder

�M): indeed, let M be a CO∗-model; M satisfies the conditional desire D(for(�y) |
for(�x) ∨ for(�y)) if and only if Max(�M, {�x, �y}) ⊆ {�y}, i.e., if and only if �y >M �x.

Therefore, if D ∧ D(for(�y) | for(�x) ∨ for(�y)) is satisfiable then there is a model M

satisfing D such that �y >M �x, and thus �x �
cond,S

D
�y does not hold. Reciprocally, if

D ∧ D(for(�y) | for(�x) ∨ for(�y)) is unsatisfiable then any model M satisfying D is such

that �y �M �x, therefore �x �
cond,S

D
�y holds. Therefore, the comparison problem reduces

to an unsatisfiability test in CO∗. Now, the class of CO∗-models is the class of models

satisfying absoluteness and connectedness in [28]; now, point (a) of theorem 1 of [28]

states that deciding satisfiability for conditional formulas without nested conditional in

the latter logic is NP-complete, hence our comparison problem is in coNP.

1b. For Rcond,S , COMPARISON is coNP-hard. Let us consider the following poly-

nomial reduction from UNSAT: to any propositional formula ϕ over an alphabet VAR, let

F(ϕ) = 〈D, �x, �y〉 where �x and �y are any two distinct candidates (therefore with distinct

valuations), and D = {D(¬for(�y) | for(�x) ∨ for(�y) ∨ ϕ)}. A CO∗-model M satisfies

D if and only if �y /∈ Max(�M, {�x, �y} ∪ Mod(ϕ)). Now, if ϕ is consistent then let �z
such that �z |= ϕ and let then M be a model such that �z >M �y >M �w for all worlds

�w �= �z, �y; M satisfies D and �x �M �y does not hold in M, therefore �x �
cond,S

D
�y does not

hold. Conversely, if ϕ is inconsistent then M |=CO∗ D if and only if �x �M �y, and hence

�x �
cond,S

D
�y holds. We have shown that �x �M �y holds if and only if ϕ is inconsistent,

hence the coNP-hardness of COMPARISON.

2a. For Rcond,Z , COMPARISON, NON-DOMINANCE and CAND-OPT-SAT are in �
p

2 .

Considering GB = 〈K,D〉 as a conditional belief base (in the sense of [27]), we have

that 〈K,D, ψ〉 is a positive instance of CAND-OPT-SAT if and only if GB �|∼ D(¬ϕ|⊤).

Now, determining whether a conditional belief base Z-entails a conditional is �
p

2 -

complete [27], and �
p

2 is closed under complement, therefore CAND-OPT-SAT
cond,Z

is in �
p

2 . Moreover, �x is undominated if and only if 〈K,D, for(x)〉 is a positive instance

of CAND-OPT-SAT
cond,Z , and �x �

cond,Z
GB �y if and only if �x is undominated with respect

to 〈K ∧ (for(�x) ∨ for(�y)),D〉 (the latter holds because �Z is a connected), therefore

COMPARISON
cond,Z and NON-DOMINANCE

cond,Z are in �
p

2 as well.
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Table 5

COMPARISON NON-DOMINANCE CAND-OPT-SAT

General case PSPACE-comp. coNP-comp. �
p
2

-comp.

Simple desires PSPACE-comp. coNP-comp. �
p
2

-comp.

2b. For Rcond,Z, COMPARISON, NON-DOMINANCE and CAND-OPT-SAT are �
p

2 -

hard. We have just seen above that COMPARISON can be polynomially reduced to NON-

DOMINANCE which in turn can be polynomially reduced to CAND-OPT-SAT which in

turn can be polynomially reduced to CAND-OPT-SAT, therefore it is sufficient to prove

that COMPARISON is �
p

2 -hard. In [27], it is shown that Z-entailment is �
p

2 -complete

even once the default rankings have been computed (and therefore are part of the input);

we give here a polynomial reduction from the complement of this problem (deciding

non-entailment given the default rankings – �
p

2 -complete as well, since �
p

2 is closed

under complement) to deciding comparison given the default rankings as well. Let KB =
〈L,D1, . . . ,Dp〉 be a “pre-ranked” conditional belief base, where each Di is a nonempty

set of conditional rules and any let γ , δ be two propositional formulas. Let p and q be

two new variables and let K = ϕ∧(δ → q); let D = 〈�1, . . . ,�p〉 be the ordered list of

sets of conditional rules, defined as follows: �i = {D(ψ |ϕ ∧p) | D(ψ |ϕ) ∈ Di}; lastly,

let �x and �y be any two candidates such that �x |= ¬p ∧ ¬q and �y |= ¬p ∧ q. We have

κK,D(�x) = κKB(ϕ ∧ ¬ψ) and κK,D(�y) = κKB(ϕ), therefore �x �
cond,Z

K,D
�y if and only if

κKB(ϕ ∧ ¬ψ) � κKB(ϕ), i.e., if and only if KB does not entail D(ψ |ϕ). �

Proposition 3. The complexity of COMPARISON, NON-DOMINANCE and CAND-OPT-

SAT for ceteris paribus desires is reported in table 5.

We start by proving the most difficult result.

1. COMPARISON for ceteris paribus preferences is PSPACE-complete.

Proof. The membership proof is the same as the PSPACE-membership proof for plan

existence with deterministic actions represented in STRIPS [11]: the key points are that

(i) the length of a dominance path from �x to �y, if such a dominance path, is bounded

by 2|VAR|−1 19 and (ii) for any two candidates �x1, �x2, checking whether �x1 >C:G>G′[V ] �x2

can be done in polynomial time (it is sufficient to check that �x1 |= C ∧ G ∧ ¬G′, that

�x2 |= C ∧ ¬G ∧ G′, and that �x1 and �x2 coincide in all variables not in V ).

The hardness proof is much more complex. It comes from a polynomial reduction

from plan existence with deterministic actions represented in STRIPS;20 the latter prob-

19 As in [11], the reason for this is that there are |Mod(K)| � 2|VAR| candidates and that if a dominance

path has a length > 2|VAR|−1 then it has at least a candidate appearing twice in it, and the path between

its two occurrences can be safely deleted; repeating this process until no candidate appears twice in the

dominance path gives a dominance path from �x to �y of length � 2|VAR|−1.
20 Note that this connection between CP-desires and STRIPS planning is already mentioned in [7], which

by the way gives an immediate proof of membership to PSPACE of the restriction of CP-desires they
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lem has been shown PSPACE-complete in [11]. We actually exhibit a polynomial reduc-

tion from a restriction (still PSPACE-hard) of propositional STRIPS PLAN EXISTENCE

to COMPARISON: this restriction, called COMPLETE-GOAL-STATE (CGS) STRIPS PLAN

EXISTENCE, is obtained by requiring that the goal is a maximal conjunction of literals, or

in other terms, that there is a single goal state (in the general case, the goal is expressed

by a conjunction G of literals which is not necessarily complete). �

Lemma 1. CGS STRIPS PLAN EXISTENCE is PSPACE-complete.

Proof of lemma 1. PSPACE-hardness is proven by a polynomial reduction from (gen-

eral) STRIPS PLAN EXISTENCE. Let us define an instance I of CGS STRIPS PLAN

EXISTENCE as a 5-uple J = 〈VAR = {v1, . . . , vn}, ACT, E, �x0, �xG〉 where VAR is a

finite set of propositional variables, ACT = {α1, . . . , αm} is a set of (deterministic) ac-

tions, �x0 and �xG are two complete states (i.e., full assignments over VAR) and E is a

STRIPS description of the actions, containing for each αi ∈ ACT a pair 〈prei, posti〉
where prei and posti are consistent conjunctions of literals.21 Consider the following

reduction from general STRIPS PLAN EXISTENCE to CGS STRIPS PLAN EXISTENCE

where to each instance J = 〈VAR = {v1, v2, . . . , vn}, ACT, E, �x0,G〉 of general STRIPS

PLAN EXISTENCE we associate the following instance F(J ) = 〈VAR′, ACT ′, E′, �x′
0, �x′

G〉
of CGS STRIPS PLAN EXISTENCE where VAR′ = VAR ∪ {new}, where new /∈ VAR;

ACT ′ = ACT ∪ {α∗}; E′ consists of adding to E the STRIPS description of α∗, namely:

〈pre = G, post = v1 ∧ · · · ∧ vn ∧ new〉; �x′
0 = �x0 ∧ ¬new; �xG = v1 ∧ · · · ∧ vn ∧ new.

Clearly, π is a valid plan for J if and only if (π;α∗) is a valid plan for F(J ), from

which PSPACE-hardness of COMPLETE-GOAL-STATE STRIPS PLAN EXISTENCE, and

hence PSPACE-completeness, follows.

Coming back to the proof of proposition 3, we now give a polynomial reduction

from CGS STRIPS PLAN EXISTENCE to COMPARISON. Let us consider the following

reduction H from in CGS STRIPS PLAN EXISTENCE to COMPARISON which, to any

instance I = 〈VAR = {v1, . . . , vn}, ACT = {α1, . . . , αm}, E, �x0, �xG〉 of CGS STRIPS

PLAN EXISTENCE associates the following instance H(I) of COMPARISON: H(I) =
〈VAR′,K = ⊤,D, �x, �y〉 where

– VAR′ = {v1, . . . , vn, t1, . . . , tn} = VAR ∪ T ;

– D = {Ci,j , i = 0, 1, . . . , m, j = 1, 2, . . . , n}, where the CP-desires Ci,j ’s are

defined as follows: for each i � 1, let prei \ NEG(posti) be the conjunction of

all literals of prei whose negation is not in posti and let prei ∩ NEG(posti) be the

conjunction of all literals of prei whose negation is in posti . Lastly, for k = 1, . . . , n,

consider.
21 The assumption that each action is described by only one STRIPS effect rule can be done without loss of

generality.
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Table 6

j = 1 j = 2

i = 0 ⊤ : ¬t1 > t1 ⊤ : ¬t2 ∧ t1 > t2 ∧ ¬t1
i = 1 ⊤ : v1 ∧ ¬t1 > ¬v1 ∧ t1 ⊤ : v1 ∧ ¬t2 ∧ t1 > ¬v1 ∧ t2 ∧ ¬t1
i = 2 ⊤ : ¬v1 ∧ ¬t1 > v1 ∧ t1 ⊤ : ¬v1 ∧ ¬t2 ∧ t1 > v1 ∧ t2 ∧ ¬t1
i = 3 ¬v1 : v2 ∧ ¬t1 > ¬v2 ∧ t1 ¬v1 : v2 ∧ ¬t2 ∧ t1 > ¬v2 ∧ t2 ∧ ¬t1
i = 4 v1 : ¬t1 > v2 ∧ t1 v1 : ¬t2 ∧ t1 > v2 ∧ t2 ∧ ¬t1

let ρk = ¬tk ∧ tk−1 ∧ · · · ∧ t1 (in particular, ρ1 = ¬t1) and ξk = tk ∧¬tk−1 ∧ · · · ∧¬t1
(in particular, ξ1 = t1). Then, for each i � 1, Ci,j is the CP-desire

(

prei \ NEG(posti)
)

:
(

prei ∩ NEG(posti)
)

∧ ρj > posti ∧ ξj

and for i = 0, C0,j is the ceteris paribus desire

⊤ : ρj > ξj ;

– �x = �x0 ∧ ¬t1 ∧ · · · ∧ ¬tn;

– �y = �xG ∧ t1 ∧ · · · ∧ tn.

It may help the reader seeing how this reduction works on an example. Let VAR =
{v1, v2}, ACT is the set of 4 actions {α1, α2, α3, α4} described by their respective effects

E = {〈v1,¬v1〉, 〈¬v1, v1〉, 〈¬v1 ∧ v2,¬v2〉, 〈v1, v2〉}, �s0 = (v1, v2), �sG = (¬v1,¬v2).

Then H(I) = 〈{v1, v2, t1, t2},D, �x1 = (v1, v2,¬t2,¬t1), �v2 = (¬v1,¬v2, t2, t1)〉, with

{D = C0,1, C0,2, C1,1, C1,2, C2,1, C2,2, C3,1, C3,2, C4,1, C4,2}, where the ceteris paribus

desires are Ci,j are in table 6.

The role of the variables ti is to ensure the consistency of D. Without them, incon-

sistent sets of ceteris paribus constraints would be introduced when translating reversible

actions such as the two actions α1 and α2: translating the action set above without the

ti’s would give {⊤ : v1 > ¬v1,⊤ : ¬v1 > v1,¬v1 : v2 > ¬v2, v1 : ⊤ > v2〉, which

contains a cycle and therefore is inconsistent.22

We now have to show that I is a positive instance of COMPLETE-GOAL-STATE

STRIPS PLAN EXISTENCE if and only if H(I) is a positive instance of COMPARISON.

The proof is based on the following lemma. First we need the following notations to be

introduced:

22 This problem was pointed to me by Carmel Domshlak (personal communication). Actually, we could

cope with such inconsistent ceteris paribus desires, since the definition of >D is not model-theoretic, so

that the set of desires does not trivialize: for instance, from the inconsistent set of desires D = {⊤ : a >

¬a, ⊤ : ¬a > a, a : b > ¬b}, using definition 4 we get for example the cycle (a, b) > (¬a, b) > (a, b)

but nevertheless there is no way to induce, by transitive closure, the preference (a, ¬b) > (a, b). This

treatment of local inconsistencies in ceteris paribus sets of preferences (see [20] for a discussion in the

more specific framework of CP-nets) has a paraconsistent flavour; this issue is not considered further in

this paper, and we go on assuming that sets of constraints are consistent, i.e., cycle-free.
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– Candidates, i.e. full assignments over VAR ∪ T , are denoted as usually by �x, �x′ etc.

Let �x ∈ 2VAR∪T , then we write �x = (�v, �t) where �v ∈ 2VAR and �t ∈ 2T are the

projections of �x on VAR and T respectively.

– For 0 � k � 2n −1, let γk be the conjunction of literals over the variables {t1, . . . , tn}
corresponding to the expression of the k in base 2: for instance, if n = 4, γ5 =
(¬t4 ∧ t3 ∧ ¬t2 ∧ t3); conversely, to each �t ∈ 2T we let Int(�t) be the integer such that
�t ≡ γInt(t); for instance, Int(¬t4 ∧ t3 ∧ ¬t2 ∧ t3) = 5.

– For �v ∈ 2VAR and α ∈ ACT, next(�v, α) denotes the state obtained after performing α

in state �v according to the STRIPS action description of α in E.

Lemma 2. For any �x = (�v, �t), �x′ = (�v ′, �t ′) ∈ 2VAR∪T and for any i � 1, �x > �x′ is a

direct (i.e., within a single application) consequence of one of the CP-desires Ci,j (for

some j ) if and only if the following two conditions hold:

1. �v ′ = next(�v, αi);

2. K(�t ′) = K(�t) + 1.

Proof of lemma 2. Let i ∈ {1, . . . , p} and j ∈ {1, . . . , n} and let us note �x >Ci,j
�x′ for

“�x > �x′ is a direct consequence of Ci,j”. Then

�x >Ci,j
�x′

⇔










�x |= (prei \ NEG(posti)) ∧ (prei ∩ NEG(posti)) ∧ ρj ∧ ¬(posti ∧ ξj )

�x′ |= (prei \ NEG(posti)) ∧ posti ∧ ξj ∧ ¬((prei ∩ NEG(posti)) ∧ ρj )

�x and �x′ coincide on all variables not in posti, ξj , ρj

⇔










�x |= prei ∧ ρj ∧ (¬posti ∨ ¬ξj )

�x′ |= (prei \ NEG(posti)) ∧ posti ∧ ξj ∧ (¬(prei ∩ NEG(posti)) ∨ ¬ρj )

�x and �x′ coincide on all variables not in posti, ξj , ρj .

Using the fact that ρj ∧ ξj is inconsistent, this is equivalent to (1) and (2) where






�v |= prei

�v ′ |= (prei \ NEG(posti)) ∧ posti
�v and �v ′ coincide on all variables not in posti

(1)

and






�t |= ρj

�t ′ |= ξj

�t and �t ′ coincide on all variables not in ρj , ξj .

(2)

Now, (1) is equivalent to �v ′ = next(�v, αi) and (2) is equivalent to Int(�t) = 2j .k+2j−1−1

for some integer k and Int(�t ′) = Int(�t) + 1. From this we conclude that �x >Ci,j
�x′ for

some j if and only if �v ′ = next(�v, αj ) and K(�t ′) = K(�t)+1, which proves lemma 2. �



64 J. Lang / Logical preference representation and combinatorial vote

Now, assume there is a valid plan from �x0 to �xG w.r.t. ACT; then it is known (see

[11]) that there exists then a valid plan �x0 to �xG w.r.t. ACT, whose length is bounded

by 2n − 1. Then, lemma 2 tells us that there is a dominance chain w.r.t. D from

(�x0,¬t0, . . . ,¬tn) to (�xG, �t) for some �t . Now, applying the constraints C0,j exactly

2n − 1 − K(�t) times (note that for each �t there is one and only one constraint C0,j ap-

plicable), we get then a dominance chain from �x0 to (�vG, t1, . . . , tn). Conversely, if there

is a dominance chain

�x0 >
(

�v1, �t1
)

> · · · >
(

�vG, (t1, . . . , tn)
)

then for each i, either �vi+1 = �vi or �vi+1 = next(�vi, αj ) for some αj ∈ ACT, and the

obtained sequence of actions is a valid plan from �v0 to �vG w.r.t. ACT. Henceforth, H

is a polynomial reduction from COMPLETE-GOAL-STATE STRIPS PLAN EXISTENCE to

COMPARISON, which completes the proof of proposition 3. �

2. COMPARISON is still PSPACE-hard under the restriction that desires are simple.

Proof. This is shown by the following polynomial reduction from the COMPARISON

problem in the general case: let I = 〈VAR,K,D, �x, �y〉 be an instance of COMPARI-

SON, where D = {D1, . . . ,Dm} where Di = (Ci : Gi > G′
i[Vi]). Let J = G(I) =

〈VAR′,K ′,D′, �x′, �y′〉 where

– VAR′ = VAR ∪ {p1, . . . , pm}, where the pi are new variables;

– K ′ = K ∪
∧

{pi ↔ (Gi ∧ ¬G′
i) | i = 1, . . . , m};

– D′ = {D′
1, . . . , d

′
m} where D′

i is Ci ∧ (Gi ↔ ¬G′
i) : pi > ¬pi[Vi];

– �x′ and �y′ are the respective extensions of �x and �y to the alphabet VAR′ (this is unam-

biguous since the values of the new variables pi are completely determined from �x –

and similarly from �y).

Suppose that there is a dominance path �x0 = �x > · · · > �xq = �y. For any i ∈ {0, . . . ,

q −1}, let j be the CP-desire such that �xi >Dj
�xi+1. We have �xi |= Cj ∧(Gj ∧¬G′

j ) and

�xi |= Cj ∧ (¬Gj ∧ G′
j ), therefore, if �x′

i and �x′
i+1 denote the extensions of �x′

i and �x′
i+1 to

VAR′, we have: �x′
i |= Cj ∧ (Gj ↔ ¬G′

j )∧pj ; �xi+1 |= Cj ∧ (Gj ↔ ¬G′
j )∧¬pj ; lastly,

�x′
i and �x′

i+1 coincide on all variables not in Vj . Therefore, we have �xi >D′
j

�xi+1 and �x′
0 =

�x′ > · · · > �x′
q = �y′ is a dominance path from �x′ to �y′. The converse (any dominance

path from �x′ to �y′ induces a dominance path from �x′ to �y′) works exactly in the same

way. This proves the equivalence of the two instances I and G(I) of COMPARISON –

and the latter involves only simple goals. �

3. In the general case, NON-DOMINANCE is in coNP.

Proof. Membership to coNP comes from the following property: �x is dominated

if and only if there is a CP-desire Di = (Ci : Gi > G′
i[Vi]) in D and a �y such that

�y >Di
�x. Given �y, checking that �y >Di

�x, i.e., that (1) �x |= K ∧ Ci ∧ ¬Gi ∧ G′
i ,

(2) �y |= K ∧ Ci ∧ Gi ∧ ¬G′
i and (3) �x and �y coincide on Vi , can be done in polynomial

time; hence the membership of NON-DOMINANCE to coNP. �
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4. Under the restriction that desires are simple, NON-DOMINANCE is coNP-hard.

Proof. coNP-hardness comes from the fact that the preference representation language

based on simple desires generalizes the basic representation (and recall that NON-

DOMINANCE is coNP-complete for Rbasic). Indeed, it is straightforward to verify that

any instance of NON-DOMINANCE for Rbasic defined by a set of variables VAR, two for-

mulas K,G and a candidate �x is equivalent to the instance of NON-DOMINANCE for Rcp

defined by VAR, K, the single CP-desire G > ¬G[VAR] and �x. �

5. In the general case, CAND-OPT-SAT is in �
p

2 .

This comes immediately from the fact that NON-DOMINANCE is in coNP.

6. Under the restriction that desires are simple, CAND-OPT-SAT is �
p

2 -hard.

Proof. �
p

2 -hardness is shown by the following polynomial reduction from standard

base revision (inclusion-based and without priorities): let B = {φ, . . . , φn} be a set of

propositional formulas (a belief base) then β ∈ K ⋆ α if and only if for any subset B ′ of

B such that B ′ ∧α is consistent and there is no strict subset B ′′ of B ′ such that B ′ ∧α, we

have B ′ ∧ α |= β. Now, we map 〈B, α, β〉 to the following instance of CAND-OPT-SAT

for Rcp: let p1, . . . , pn be n new propositional symbols, let V = Var(K)∪Var(α)∪Var(β);

K = α ∧
∧

{pi ↔ φi | i = 1, . . . , n}; D = {⊤ : p1 > ¬p1[V ], . . . ,⊤ : pn > ¬pn[V ]}
and ψ = β. �x is undominated for D if and only if �x satisfies a maximal consistent subset

of {φ1, . . . , φn}, which enables us to conclude. �

Proposition 4. Let R be a language for which NON-DOMINANCE is in NP or in coNP.

1. AMONG-WINNERSplurality,R is in �
p

3 ;

2. ELECT-SATplurality,R is in �
p

3 ;

3. For R = Rbasic, AMONG-WINNERSplurality,Rbasic
is coNP-complete and ELECT-

SATplurality,Rbasic
is �

p

2 -complete.

Proof.

AMONG-WINNERSplurality,R is in �
p

3 . Let ScoreB(�x) =
∑n

i=1 si(�x) = |{i, �x undomina-

ted for GBi}|. Since si(�x) = 1 if and only if �x is undominated for GBi (and si(�x) = 0

otherwise), and since NON-DOMINANCE is in NP or in coNP, computing si(�x) amounts

to an NP oracle. Therefore, ScoreB(�x) can be computed within n NP oracles. Given

an integer k, the problem (P) of determining whether there exists a candidate �x such

that ScoreB(�x) � k is in �
p

2 . Now, let S∗ = max�y∈C ScoreB(�y); since 0 � S∗ �

n, S∗ can be computed by dichotomy by solving ⌈log2 n + 1⌉ problems (P). Now, �x
is a plurality winner for B if and only if ScoreB(�x) = S∗. The following algorithm

then determines whether �x is a plurality winner for B: 1. compute S∗; 2. check that

ScoreB(�x) = S∗. Step 1 requires a logarithmic numbers of calls to �
p

2 oracles, and

step 2 is in �
p

2 , therefore in �
p

2 . This shows membership of AMONG-WINNERSplurality,R

to �
p

3 .
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ELECT-SATplurality,R is in �
p

3 . The following algorithm determines whether there exists

a plurality winner �x for B satisfying ψ :

1. Compute S∗ = max�y∈C ScoreB(�y);

2. Guess �x;

3. Check that ScoreB(�x) = S∗;

4. Check that �x |= ψ . Steps 3–4 require a polynomial number of NP oracles, hence,

steps 2–4 amount to an oracle �
p

2 ; step 1 requires a logarithmic numbers of calls

to �
p

2 oracles; therefore 1–4 requires a logarithmic numbers of calls to oracles �
p

2 ,

which shows membership to �
p

3 .

AMONG-WINNERSplurality,Rbasic
is coNP-complete. Let B = 〈G1, . . . ,Gn〉. Let

NB(�x) = |{i | �x |= Gi}|. We have ScoreB(�x) = NB(�x) + |{i | Gi unsatisfiable}|;
therefore, �x is a plurality winner for B if and only if ∀�y ∈ C, NB(�x) � NB(�y); since

NB(�x) is computed in polynomial time, determining whether �x is a plurality winner for

B is in coNP. coNP-hardness comes from the following polynomial reduction from UN-

SAT: for any propositional formula ϕ , let B = {ϕ ∧ p} where p is a new propositional

symbol, and let �x be any candidate such that �x |= ¬p. We have NB(�x) = 0. If ϕ is

satisfiable then for any �y such that �y |= ϕ ∧ p (and there exist some, since ϕ is satisfi-

able and so is ϕ ∧ p) we have NB(�y) = 1, therefore �x is not a plurality winner. If ϕ is

unsatisfiable then ∀�y ∈ C, NB(�y) = 0 and thus �x is a plurality winner. This shows that

�x is a plurality winner for B if and only if ϕ is unsatisfiable.

ELECT-SATplurality,Rbasic
is �

p

2 -complete. Both membership and hardness come easily

from the �
p

2 -complete problem CARDINALITY-MAXIMIZING BASE REVISION [42], ab-

breviated in CMBR. There is a plurality-winner satisfying ψ if and only if ψ ∈ B ⋆c ⊤,

where B is considered as a belief base (without priorities) in the sense of [42], and

⋆c denotes cardinality-maximizing base revision; this shows membership to �
p

2 . As to

hardness, to any triple 〈B, ϕ,ψ〉 we associate F(B, ϕ,ψ) = 〈K,B,ψ ′〉 where K = ϕ,

(B = B), and ψ ′ = ¬ψ . (B, ϕ,ψ) is a positive instance of ELECT-SAT if and only if

there exists �x such that NB(�x) is maximal in Mod(K) and �x |= ψ , i.e., if and only if

there is a B ′ ⊆ B, such that (i) B ′ ∧ ϕ is consistent, (ii) there is no B ′′ ⊆ B such

that B ′′ ∧ ϕ is consistent and |B ′′| � |B ′|, and (iii) B ′ ∧ ¬ψ is consistent. This is

equivalent to ψ /∈ B ⋆c ϕ. Now, CMBR being �
p

2 -complete and �
p

2 being closed under

complement, CMBR is also �
p

2 -complete. Now, since 〈B, ϕ,ψ〉 is a negative instance of

CMBR if and only if F(B, ϕ,ψ) is a positive instance of ELECT-SAT, the latter problem

is �
p

2 -hard. �

Proposition 5. Let R be a language for which COMPARISON is polynomial.

1. CW VERIFICATION, NCW VERIFICATION and WCW VERIFICATION are in coNP;

when R = Rbasic, CW VERIFICATION and NCW VERIFICATION are coNP-complete.
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2. CW EXISTENCE, NCW EXISTENCE and WCW EXISTENCE are all in �
p

2 ; when R =
Rbasic, CW VERIFICATION is in �

p

2 and coNP-hard; NCW VERIFICATION is in �
p

2 and

BH2-hard.

Proof. Verification problems, general case. Since COMPARISON in R is polynomial,

C(�x, �y,B) can be computed in polynomial time; therefore, the verification that �x is a

CW, which amounts to checking that there is no �y such that C(�x, �y,B) � C(�y, �x,B),

is in coNP. This is very similar with WCW (replacing � by > in the latter inequality).

As to NCW, checking that �x ∼GBi
�y can also be done in polynomial time because

COMPARISON is polynomial, and by similar considerations as above, the verification

that �x is a NCW for B is in coNP.

Verification problems, R = Rbasic. coNP-hardness for cw verification is shown by

exhibiting a polynomial reduction from UNSAT. For any propositional formula ϕ we

let F(ϕ) = 〈K,B, �x〉 where p1, p2 are two propositional variables not appearing in ϕ;

K = ⊤; �x is any candidate satisfying p2 ∧ ¬p1; B = 〈G1,G2〉 with G1 = ϕ ∧ p1 and

G2 = for(�x). Let �y �= �x. We have

C
(

�x, �y,B
)

− C
(

�x, �y,B
)

=

{

0 if �y |= ϕ ∧ p1

+1 if �y |= ¬(ϕ ∧ p1).

Therefore, �x is a CW for B if and only if there is no �y such that �y |= ϕ ∧ p1, i.e.,

if and only if ϕ is inconsistent. This proves that CW VERIFICATION for R = Rbasic is

coNP-hard (and therefore coNP-complete). The very same reduction also shows coNP-

hardness for ncw verification: �x is a CW for B if and only if there is no �y such that

(1) C(�x, �y,B) − C(�x, �y,B) � 0 or (2) �y ∼GBi
�x holds for i = 1, 2; now, (2) cannot be

verified by any �y �= �x, since �x is the unique model of G2; therefore, �x is a NCW for B

if and only if it is a CW for B, i.e., if and only if ϕ is inconsistent.

Existence problems, general case. The �
p

2 -membership result comes directly from

the membership of the verification problem to coNP: it suffices to guess a candidate and

show that it is a CW (respectively NCW, WCW) for B.

CW existence problems, R = Rbasic. Let B = {G1, . . . ,Gn} and N(�x,B) = |{i |
�x |= Gi}|. �x is a CW for B if and only if there is no �y �= �x such that N(�y,B) � N(�x,B)

– in other words, if �x is the unique candidate maximizing the number of formulas of B

satisfied. Recall now that the maximal number of formulas from {G1, . . . ,Gn} that are

simultaneously satisfiable is in �
p

2 can be computed using O(log n) NP oracles.23 Now,

verifying that �x is a CW for B can be done by the following algorithm:

1. Compute the maximal number k of simultaneously satisfiable formulas in {G1,

. . . ,Gn}.

2. Guess �x.

23 It is actually well-known result that the considered problem is F�
p
2

-complete – see for instance [44] –

this is due to the fact that the problem of determining whether there is a candidate �x such that �x satisfies at

least k formulas in {G1, . . . ,Gn} is in NP: therefore, the maximum number of simultaneously satisfiable

formulas can be computed by dichotomy on {0, . . . , N}.



68 J. Lang / Logical preference representation and combinatorial vote

3. Check that N(�x,B) = k.

4. Check that there are no two distinct candidates �y, �z such that N(�y,B) =
N(�z, B) = k.

Step 1 requires a logarithmic NP oracles; step 2 requires a single NP oracle; step 3

can be done in polynomial time; step 4 is a problem in coNP and need thus a single

NP oracle. Hence the membership to �
p

2 . coNP-hardness comes from this polynomial

reduction from UNSAT: for any given ϕ we consider K = ⊤ and B = 〈G1〉 with

G1 = (ϕ ∧ ¬p) ∨ for(�x) where p is a new propositional symbol and �x any candidate

satisfying p. Since �x |= G1, if there exists a CW for B, this is �x; now, �x is a CW

for B if and only if G1 has no other model than �x, which is the case if and only if ϕ is

unsatisfiable.

NCW existence problems, R = Rbasic. �x is a NCW for B if and only if �x maxi-

mizes N(�x,B) and for any candidate �y �= �x such that N(�y,B) = N(�x,B), we have

{i, �y |= Gi} = {i, �x |= Gi}. Therefore, there is a NCW for B if and only if there is a

unique consistent subset of B of maximum cardinality (let us call such a subset a max-

card consistent subset of B). Now, the membership proof is similar to the one for CW

existence, the last step being replaced by

4′. check that there are no two distinct candidates �y, �z such that N(�y,B) = N(�z, B) = k

and �y �∼B �z.

BH2-hardness is shown by the following polynomial reduction from SAT-UNSAT: for any

pair 〈ϕ,ψ〉 we let G(〈ϕ,ψ〉) = B = 〈ϕ∨p, ϕ∨¬p,ψ∧q,ψ∧¬q〉. If both ϕ and ψ are

satisfiable then B has two maxcard consistent subsets, namely {ϕ ∨ p, ϕ ∨ ¬p,ψ ∧ q}
and {ϕ ∨ p, ϕ ∨ ¬p,ψ ∧ ¬q}. If ϕ is satisfiable and ψ is unsatisfiable then B has a

unique maxcard consistent subset, namely {ϕ ∨ p, ϕ ∨ ¬p}. If ϕ is unsatisfiable and

ψ is satisfiable then B has four maxcard consistent subsets, namely {ϕ ∨ p,ψ ∧ q},
{ϕ∨p,ψ∧¬q}, {ϕ∨¬p,ψ∧q},{ϕ∨¬p,ψ∧¬q}. If ϕ and ψ are both unsatisfiable then

B has two maxcard consistent subsets, namely {ϕ ∨ p} and {ϕ ∨ ¬p}. Therefore, B has

a unique maxcard consistent subset if and only if ϕ is satisfiable and ψ is unsatisfiable,

i.e., if and only if 〈ϕ,ψ〉 is an instance of SAT-UNSAT. �

Proposition 6. Let R be a language for which COMPARISON is polynomial.

1. AMONG-WINNERSSimpson,R is in �
p

3 .

2. ELECT-SATSimpson,R in �
p

3 .

3. For R = Rbasic: AMONG-WINNERSSimpson,Rbasic
is coNP-complete and ELECT-

SATSimpson,Rbasic
is �

p

2 -complete.

Proof. Let S(�x,B) = min�y �=�x C(�x, �y,B) − C(�y, �x,B).

AMONG-WINNERSSimpson,R is in �
p

3 . C(�x, �y,B) is computed in polynomial time,

therefore the problem of determining whether S(�x,B) � k, which is equivalent to the

non-existence of a �y such that C(�x, �y,B) � k, is in coNP. Since −n � S(�x,B) � n,
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S(�x,B) can be computed using ⌈log2(2n)⌉ oracles NP. The following algorithm then

determines whether �x is a Simpson winner for B:

1. Compute S∗ = max�z∈C S(�z, B).

2. Check that S(�x,B) = S∗.

Then, by similar considerations as those used for plurality winners, we conclude that

AMONG-WINNERSSimpson,R is in �
p

3 .

ELECT-SATSimpson,R is in �
p

3 . Similar to the proof of �
p

3 -membership of ELECT-

SATplurality,R.

AMONG-WINNERSSimpson,Rbasic
is coNP-complete and ELECT-SATSimpson,Rbasic

is

�
p

2 -complete. Let B = 〈{G1}, . . . , {Gn}〉. For any two candidates �x and �y, we have

C(�x, �y, , B) = N(�x, , B) − N(�y,B), where N(�z, B) = |{i | �z |= Gi}|, and therefore

S(�x,B) = min�y∈C(N(�x,B) − N(�y,B)) = N(�x,B) − min�y∈C N(�y,B). Therefore, �x
is a Simpson winner for B if and only if it maximizes N(�x,B), i.e., if and only if it is a

plurality winner for B. The results are therefore corollaries of point 2 of proposition 6. �
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