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Abstract

Data-processing tasks are commonly managed using data-oriented workflows, in which

input data sets are processed by a graph of transformations to produce output data.

In data-oriented workflows, it can be useful to track data provenance (also some-

times called lineage), which describes where data came from and how it has been

manipulated and combined.

We begin by giving a new general definition of provenance, introducing the notions

of correctness, precision, and minimality. We then:

1) Describe a wrapper-based approach for capturing provenance in workflows in

which all transformations are either map or reduce functions

2) Describe a provenance-based approach for selectively refreshing one or more ele-

ments in the output data, i.e., computing the latest values of particular output

elements based on modified input data

3) Show how logical provenance, i.e., provenance information stored at the trans-

formation level, can often capture precise provenance relationships in a compact

fashion

4) Describe our prototype system called Panda (for Provenance And Data) that

supports refresh in data-oriented workflows, as well as debugging and drill-down

using logical provenance

Overall, our work provides a comprehensive foundation, set of algorithms, and pro-

totype system for provenance in data-oriented workflows.
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Chapter 1

Introduction

To perform data-processing tasks such as analyzing scientific data [13, 23, 37] or gov-

ernment statistics [1, 3], users often execute a number of processing steps, including

data extraction, integration of multiple sources, aggregation, and ad-hoc transforma-

tions and queries. Such analyses are commonly managed using data-oriented work-

flows, in which input data sets are processed by a graph of transformations to produce

output data.

In data-oriented workflows, it can be useful to track data provenance (also some-

times called lineage). In its most general form, provenance describes where data came

from, how it was derived, manipulated, and combined, and how it has been updated

over time. Provenance can serve a number of important functions:

• Explanation. Users may be particularly interested in specific portions of a de-

rived data set. Provenance supports “drilling down” to examine the sources and

evolution of data elements of interest, enabling a deeper understanding of the

data.

• Verification. Output data may appear suspect—due to possible bugs in data

processing and manipulation, because the data may be stale, or even due to

maliciousness. Provenance enables auditing how data was produced, either for

verifying its correctness, or for identifying the erroneous or outdated source data

or transformations that are responsible for erroneous or outdated output data.

1
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CS 
IC 

Extract
 

JoinAgg
 

Filter
 

LaptopProfit 

IP 

CustData 

ItemData CalcPro2it
 

Figure 1.1: Profit calculation workflow example.

• Recomputation. Having found outdated or incorrect source data, or transfor-

mations that are buggy or have been modified, we may want to propagate correc-

tions or changes to all “downstream” data that are affected. Provenance helps us

recompute only those data elements that are affected by corrections.

1.1 Running Example

We present a contrived running example crafted for illustrative purposes. This ex-

ample appears on and off throughout the thesis. Consider “WebShop,” an online

reseller. WebShop periodically runs a workflow, shown in Figure 1.1, to calculate the

total profits generated from sales for items that WebShop sells. The workflow’s input

data sets are:

• CustData(cust-id, country, activity log), where activity log is a free-text field con-

taining customer activity such as clicks and purchases.

• ItemData(item-id, brand, type, price, supplier info), where supplier info is a free-text

field containing information, including cost, from the item’s supplier.

The workflow involves the following transformations:

• Transformation Extract extracts from the activity log attribute in CustData the

items that each customer purchased, producing table CustSales(cust-id, country,

item-id, quantity), abbreviated CS.

• Transformation CalcProfit calculates from the price and supplier info attributes,

for each item in ItemData, the profit made per item sold, producing table

ItemProfit(item-id, brand, type, profit per item), abbreviated IP.
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CustData
cust-id country activity log

C1 France <free text> (1)
C2 Germany <free text> (2)
C3 France <free text> (3)

CustSales (CS)

cust-id country item-id quantity

C1 France I1 5 (1)
C1 France I3 7 (2)
C2 Germany I1 6 (3)
C2 Germany I2 4 (4)
C3 France I3 8 (5)

ItemData
item-id brand type price supplier info

I1 HP laptop 700 <free text> (1)
I2 Sony tablet 550 <free text> (2)
I3 Sony laptop 800 <free text> (3)

ItemProfit (IP)

item-id brand type profit per item

I1 HP laptop 120 (1)
I2 Sony tablet 200 (2)
I3 Sony laptop 10 (3)

ItemCountryProfit (IC)

item-id country brand type profit

I1 France HP laptop 600 (1)
I1 Germany HP laptop 720 (2)
I2 Germany Sony tablet 800 (3)
I3 France Sony laptop 150 (4)

LaptopProfit (LP)

item-id country brand profit

I1 France HP 600 (1)
I1 Germany HP 720 (2)
I3 France Sony 150 (3)

Figure 1.2: Profit calculation workflow, sample data.
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• Transformation JoinAgg joins tables CustSales and ItemProfit on attribute item-

id, aggregating for each (item-id, country) pair the total profit from the item’s

sales in that country, producing table ItemCountryProfit(item-id, country, brand,

type, profit), abbreviated IC.

• Finally, transformation Filter filters ItemCountryProfit, selecting tuples with type

equal to ‘laptop’, producing table LaptopProfit(item-id, country, brand, profit), ab-

breviated LP.1

Figure 1.2 shows sample input data sets along with all intermediate data, and finally

output table LaptopProfit.

We use this workflow example to illustrate the applications of provenance intro-

duced earlier. Provenance itself is discussed next in Section 1.2.

• Explanation. Suppose a WebShop analyst runs the workflow and then wants to

learn more about the profits on sales of the laptop I1 in Germany. By tracing the

provenance of LaptopProfit element (2) back through the workflow to CustSales,

the analyst can identify the WebShop customers in Germany who have purchased

the item.

• Verification. Suppose the analyst finds that French profits on sales of the laptop

I3 are surprisingly low. Noticing this anomalous result, the analyst would like to

find out why these profits were so low. Tracing the provenance of LaptopProfit

element (3) back through the workflow to ItemData, the analyst discovers that the

profit per laptop (10, which seems low) was extracted from the free-text field in

ItemData element (3), suggesting that either the free-text field contains erroneous

data or that the transformation CalcProfit has a bug. Upon further investiga-

tion, the analyst discovers that ItemData element (3) is indeed out of date and

updates this element with the latest profit data. Note that both verification and

explanation involve “drilling down” to understand how the output data was pro-

duced. While explanation simply allows a deeper understanding of the output

data, verification can identify the erroneous source data responsible for errors in

the output.

1We assume intermediate data set ItemCountryProfit may be processed by other transformations
as well; otherwise the workflow would of course filter for laptops much earlier.
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• Recomputation. Having updated the data in ItemData element (3), the analyst

would like to compute the correct updated value for LaptopProfit element (3)

without having to rerun the entire workflow.

To support the above activities, a workflow provenance system needs to support

both provenance capture and operations on the provenance. Before we describe these

aspects in more detail, we first discuss how provenance might be expressed.

1.2 Provenance

After discussing the different ways to express provenance (Section 1.2.1), we describe

at a high level how to capture provenance for the transformations in a workflow

(Section 1.2.2). We then describe the provenance-based operations that enable the

functionality presented in the running example (Section 1.2.3).

1.2.1 Expressing Provenance

Provenance Model

One of the most important first steps in expressing provenance is to select a prove-

nance model. Possible models range from a bipartite graph structure connecting input

and output data elements, to the much higher-level and more “semantic” Open Prove-

nance Model [5]. We are interested in data-oriented provenance, so in all of our work,

provenance can be thought of as (or mapped to) a bipartite graph, i.e., mappings

between input and output data elements. As discussed below, we do not always store

the bipartite graph explicitly.

Provenance Storage

To illustrate different possible techniques for storing provenance, consider transfor-

mation JoinAgg from Figure 1.1 with input data set CustSales and output data set

ItemCountryProfit. (To simplify our discussion, for now we ignore input set Item-

Profit.) Let output element o = ItemCountryProfit(4), i.e., the fourth element from
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data set ItemCountryProfit in Figure 1.2. The input elements from CustSales that con-

tributed to o are CustSales(2) and CustSales(5). One way to store this information is

to use physical provenance, which requires each output element to be annotated with

some type of identifier for the contributing input elements. Assuming that CustSales

has an ID column, using physical provenance, we can annotate o with the IDs for

CustSales(2) and CustSales(5).

Another way we can store provenance is by using provenance predicates. For out-

put element o, we can retrieve the relevant input elements by applying the predicate

(item-id=‘I1’ ∧ country=‘France’) to CustSales: σitem-id=‘I1′∧country=‘France′(CustSales) =

{CustSales(2),CustSales(5)}. In contrast to physical provenance, provenance predi-

cates can potentially reduce the space overhead of storing provenance, for example in

a transformation that is many-one with large fan-in.

For transformation JoinAgg, note that the provenance predicates for all output

elements would have the same form: Given any output element o, o’s provenance

can be found by applying the predicate (item-id=o.item-id ∧ country=o.country) to

CustSales. Since all predicates have a common form, it is unnecessary to annotate in-

dividual elements with predicates; we can instead use logical provenance—provenance

information stored at the transformation level. An example of a logical-provenance

specification that holds for this transformation is the attribute mapping (CS.item-id,

CS.country) ↔ (IC.item-id, IC.country), which captures the fact that the output sub-

set of ItemCountryProfit (IC) with particular (item-id, country) values corresponds to

the input subset in CustSales (CS) with the same (item-id, country) values. Logical

provenance specifications can often capture exactly the same element-level prove-

nance information as physical provenance or provenance predicates, but in a much

more compact fashion, and without the overhead of capturing and storing IDs or

predicates.

1.2.2 Provenance Capture

Having discussed some different ways to express provenance, we now describe at a

high level how to capture provenance for the transformations in a workflow. As can be
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seen in the running example, we do not limit ourselves to transformations expressible

in relational algebra or SQL.

In our example, the JoinAgg and Filter transformations perform standard rela-

tional operations. For relational transformations, there is a great deal of past work

that can be applied for capturing provenance automatically and efficiently (see [19] for

a survey). Consider JoinAgg, for example, which is a Select-Project-Join-Aggregate

(SPJA) transformation. As defined by past work, the provenance of element Item-

CountryProfit(1) in Figure 1.2 output by JoinAgg contains the input elements Cust-

Sales(1) and ItemProfit(1). Intuitively, we can see that those are the elements that

produced ItemCountryProfit(1).

Now consider Extract, a transformation that is not a standard relational oper-

ation. We cannot rely on the automatic methods for relational queries mentioned

above to capture provenance for Extract. Either Extract must be instrumented to

write out provenance information as it executes (presumably in the form of mappings

between extracted records and their original input records), or it must provide some

sort of procedure for computing provenance. In the worst case, without further infor-

mation we have to assume that the provenance of each output element is the entire

input data set.

1.2.3 Provenance Operations

Once provenance has been captured, our goal is to support the overall functions

mentioned earlier: explanation, verification, and recomputation. We can support

these functions using the following provenance-based operations:

• Backward tracing. Given an output data element e, where did e come from?

That is, what data elements contributed to e? In our running example, we can use

backward tracing to go from the output element LaptopProfit(3) to the element

ItemData(3) in input set ItemData from which e was derived.

• Forward tracing. Given an input data element e, to what derived elements did

e contribute? In our running example, we can use forward tracing to determine

all of the profit calculations that were affected by ItemData(3).
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• Forward propagation. If an input or derived data element e changes, propagate

the change to everything it affects. Clearly this operation is related to forward

tracing. In our running example, once we correct an element in ItemData, we can

use forward propagation to recalculate only those profit calculations affected by

the correction.

• Refresh. Given an output data element e, check if e is still valid. If it is not,

refresh it to its new valid value. Clearly this operation is related to both backward

tracing and forward propagation. In our running example, after updating the

out-of-date data in ItemData, the analyst can refresh LaptopProfit(3) to its correct

updated value without having to rerun the entire workflow.

1.3 Challenges and Contributions

The goal of this thesis is to support explanation, verification, and recomputation in

data-oriented workflows using provenance. Here we outline the challenges encountered

and our contributions.

1.3.1 Foundations

Defining provenance formally for general transformations and workflows can be chal-

lenging, as evidenced by a variety of definitions in the literature [19, 21, 22]. In

Chapter 2 we lay the formal foundations for defining provenance in data-oriented

workflows. Our contributions are the following:

• Defining provenance (Section 2.2). We give a new general definition of prove-

nance, introducing the notions of correctness, precision, and minimality.

• Theoretical properties of workflow provenance (Section 2.3). Given a work-

flow with provenance defined for each of its transformations, we identify when

provenance properties such as correctness and minimality carry over from individ-

ual transformations to the workflow as a whole.
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1.3.2 Generalized Map and Reduce Workflows

A special case of data-oriented workflows is what we refer to as generalized map and

reduce workflows (GMRWs), in which all transformations are either map or reduce

functions [8, 24]. This setting is more general than conventional MapReduce jobs,

which have just one map function followed by one reduce function; rather we consider

any acyclic graph of map and reduce functions. In Chapter 3 we will see that GMRWs

allow us to capture and exploit provenance more easily and efficiently than for general

data-oriented workflows. We describe how provenance can be captured for both map

and reduce functions transparently using wrappers in Hadoop [8]. Our contributions

are the following:

• Replay property of GMRW provenance (Section 3.3). We identify a class of

GMRWworkflows in which provenance is guaranteed to satisfy the replay property,

a useful guarantee when provenance is used for GMRW debugging. The replay

property states that given a workflow instance and an element in its output data

set, we can produce the output element by running its provenance through the

workflow.

• Provenance capture and tracing (Section 3.4). We describe how provenance

can be captured and stored during workflow execution in the GMRW setting, and

we specify tracing procedures using provenance.

1.3.3 Provenance-Based Refresh

Consider a workflow in which the input data sets have been modified since the work-

flow was run, but the workflow has not been rerun on the modified input. In Chapter 4

we consider the problem of selectively refreshing one or more elements in the output

data, i.e., compute the latest values of particular output elements based on the modi-

fied input data. By exploiting provenance, we can rerun just the relevant computation

to refresh the output elements. Our contributions are the following:

• Foundations for the refresh problem (Section 4.2). We formalize the refresh

problem.
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• Refresh algorithm (Section 4.2). We specify a refresh procedure for a workflow

setting in which each transformation has provenance captured in the form of

provenance predicates.

• Identification of favorable workflow properties (Section 4.3). We identify

specific properties of transformations, provenance, and workflows for which refresh

can be very efficient, while it is inherently less efficient when the properties do not

hold.

1.3.4 Logical Provenance

As mentioned earlier, logical provenance, i.e., provenance information stored at the

transformation level, can often capture exactly the same element-level provenance

information as physical provenance or provenance predicates, but in a much more

compact fashion, and without the overhead of capturing and storing IDs or predicates.

In Chapter 5 we describe how to support backward tracing using logical provenance.

Our contributions are the following:

• Logical provenance specifications for transformations (Section 5.2). We

describe a simple logical-provenance specification language consisting of attribute

mappings and filters.

• Algorithms for backward tracing (Section 5.3). We provide algorithms for

backward tracing in workflows where logical provenance for each transformation

is specified using our language. In our algorithms we perform backward tracing

at the schema level to the extent possible, although eventually accessing the data

is required obviously.

• Logical provenance for relational transformations (Section 5.4). We con-

sider logical provenance in the relational setting, showing that for a class of Select-

Project-Join (SPJ) transformations, logical provenance specifications encode min-

imal provenance.
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1.3.5 Panda System

In Chapter 6 we describe our prototype system called Panda (for Provenance And

Data). Panda supports data-oriented workflows that capture provenance, and it sup-

ports all four provenance operations introduced in Section 1.2.3: backward tracing,

forward tracing, forward propagation, and refresh. Panda allows arbitrary data-

oriented workflows, with each transformation specified in either SQL or in Python.

There have been multiple versions of the Panda system as we have developed our

work. Our contributions are as follows:

• Architecture description (Section 6.1). We describe the high-level architecture

of the final version of Panda, which supports debugging and drill-down using

logical provenance.

• Provenance capture and tracing (Section 6.2). We describe how Panda gen-

erates logical provenance specifications and executes our tracing algorithms.

• Logical provenance experiments (Section 6.3). We present some performance

results for logical provenance.

• Provenance-based refresh (Section 6.4). We describe an earlier version of

Panda that was used to experiment with provenance-based refresh.

• Experimental results for refresh (Section 6.5). We report experimental results

based on this earlier version that consider the overhead of provenance capture, and

the crossover point between selective refresh and full workflow recomputation.

1.4 Related Work

There has been a large body of work in provenance over the past two decades. Surveys

are presented in, e.g., [13, 19, 37]. Provenance models for relational and semistruc-

tured transformations are presented in, e.g., [9, 10, 16, 22, 25, 27, 32, 40]. Provenance

specifically in the data-oriented workflow setting is considered by [5, 7, 11, 18, 21,

29, 33, 42], among others. Here we give an overview of related work applicable to

the thesis in general. More specific and detailed comparisons are given within each

chapter.



CHAPTER 1. INTRODUCTION 12

Provenance granularity. Provenance has two granularities:

1) Schema-level (coarse-grained)

2) Instance-level (fine-grained)

Schema-level provenance answers questions such as which data sets were used to

produce a given output data set. Systems that focus on schema-level provenance

(e.g., [11, 29]) are typically targeted for cases where the transformation graph is

large and complex. In contrast, we consider instance-level provenance, which treats

individual elements within a data set separately.

Transformation type and provenance queries. Another defining characteristic

of related work in provenance is the type of transformations considered, ranging from

copying operations [15] to Select-Project-Join-Union (SPJU) queries [22, 30, 36, 41] to

arbitrary “black boxes” [21]. The transformations for which provenance is captured

are closely related to the types of provenance queries that are typically performed.

For example, by considering only SPJ transformations, reference [30] can provide non-

answer provenance, explanations for why particular output elements are not present

in a query result.

Eager vs. lazy. Provenance systems can be classified as either eager or lazy.

• Eager provenance systems (e.g., [10]) store all provenance information immediately

after performing transformations, in preparation for provenance operations that

will be asked later.

• In contrast, lazy provenance systems [21, 22] may store high-level provenance

information, or perhaps no information at all, doing all the work on-demand when

provenance operations are invoked.

In general, eager provenance has a higher overhead at capture time, but can also

answer provenance queries more efficiently. One contribution of our work is to blur

the distinction between eager and lazy provenance. For example, while we generate

logical-provenance specifications eagerly (at workflow execution time), these specifi-

cations are used to generate instance-level provenance at tracing time.



Chapter 2

Foundations

This chapter lays foundations for the problem of defining provenance in data-oriented

workflows. Section 2.1 defines data-oriented workflows. Section 2.2 gives a new

general definition of provenance, introducing the notions of correctness, precision, and

minimality. Section 2.3 describes when provenance properties such as correctness and

minimality carry over from individual transformations to the workflow as a whole.

Section 2.4 discusses related work, and Section 2.5 concludes the chapter.

2.1 Data-Oriented Workflows

Let a data set be any set of data elements. We are not concerned about the types of

individual data elements; we treat them simply as members of a data set. A trans-

formation T is any procedure that takes one or more data sets as input and produces

one or more data sets as output. As we saw in the running example introduced in

Chapter 1, we do not limit ourselves to transformations expressible in relational al-

gebra or SQL. For any input data sets I1, . . . , Im, we say that the application of T to

I1, . . . , Im resulting in output sets O1, . . . , Or, denoted (O1, . . . , Or) = T (I1, . . . , Im),

is an instance of T .

Data-oriented workflows are graphs where nodes denote data-set transformations,

and edges denote the flow of data input to and output from the transformations:

Input data sets I1,...,Im are fed into a graph of transformations T1,...,Tn to produce

13
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I1 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O1 

Figure 2.1: Example data-oriented workflow.

output data sets O1,...,Or. An example data-oriented workflow is shown in Figure 2.1.

In this thesis we only consider workflows that are a directed acyclic graph, i.e., we do

not consider cycles.

2.2 Provenance

For now, consider a single transformation T with a single input I and multiple outputs

O1, . . . , Or. Let O = O1 ∪ . . . ∪ Or. We will generalize to multiple inputs in Section

2.2.4, and we will assemble transformations into workflows in Section 2.3. We assume

T (∅) = ∅ throughout the thesis, i.e., transformations never produce spurious output

elements. Our goal is to specify data-level provenance relationships between output

elements in O and input elements in I. Specifically, given an output element o ∈ O,

we would like to know the input subset I∗ ⊆ I that “produced” o. Defining this notion

of provenance formally for general transformations can be challenging, as evidenced

by a variety of definitions in the literature [19, 21, 22].

We give a new general definition of provenance for general transformations, in-

troducing the notions of correctness, precision, and minimality. Intuitively, correct

provenance I∗ ⊆ I must contain the “essence” of what derives o. Correct provenance

typically is not unique, so we say correct provenance I∗ is more precise than correct

provenance I∗∗ if I∗ ⊂ I∗∗. As we will see, it turns out with our definitions that there

always exists a most precise provenance, which we refer to as the minimal provenance.
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2.2.1 Correctness

Recall that correct provenance for an output element o ∈ O should contain the

“essence” of what derives o. Here is our formal definition:

Definition 2.2.1 (Correctness) Let O = T (I) be a transformation instance. Con-

sider an output element o ∈ O. Provenance I∗ ⊆ I is correct for o with respect to T

if:

• For any I ′ ⊆ I, o ∈ T (I ′) if and only if o ∈ T (I ′ ∩ I∗). �

Intuitively, this definition says that I∗ is correct provenance if given any input subset

I ′, we only need to consider T (I ′∩I∗) to determine whether or not o ∈ T (I ′). In other

words, the only input elements in I ′ that could contribute to o are those that are also

in I∗. Note that setting I ′ = I shows that if I∗ is correct for o, then o ∈ T (I∗).

We also note that in our definition of correctness, we consider only subsets I ′ of

the input instance I. That is, if I ′ 6⊆ I, then we do not need to consider T (I ′) to

determine the correctness of provenance I∗ ⊆ I. For most of this chapter, we assume

T is defined over all subsets of I.

Example 2.2.1 We continue with the example workflow and data shown in Fig-

ures 1.1 and 1.2 of Section 1.1. Let o = CustSales(1), i.e., the first element from

data set CustSales. Let I∗ = {CustData(1),CustData(3)}. I∗ is correct provenance

although we will soon see that it is not minimal. Intuitively, we would expect I∗ to

be correct for o, since I∗ contains the one element CustData(1) that derives o. To

check formally that I∗ is correct for o with respect to transformation Extract, we

can simply verify that for each of the eight subsets I ′ ⊆ CustData, the condition in

Definition 2.2.1 is satisfied. �

2.2.2 Precision

Correctness alone does not capture the intuitive notion of provenance. For example,

setting I∗ equal to the entire input set I always yields correct provenance, but ob-

viously this choice of I∗ rarely gives useful information. Given two different subsets
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I∗ ⊆ I and I∗∗ ⊆ I that are both correct provenance for an output element o, if

I∗ ⊂ I∗∗, we prefer the smaller subset I∗, since the smaller subset tells us more about

what actually contributed to o.

Definition 2.2.2 (Precision) Let O = T (I) and let o ∈ O. Suppose subsets I∗ ⊆ I

and I∗∗ ⊆ I are both correct provenance for o with respect to T . I∗ is at least as

precise as I∗∗ if I∗ ⊆ I∗∗. I∗ is more precise than I∗∗ if I∗ ⊂ I∗∗. �

Example 2.2.2 Consider again o = CustSales(1). Let I∗ = {CustData(1)}. It is easy

to verify that I∗ is correct provenance for o with respect to transformation Extract.

Furthermore, since I∗ ⊂ {CustData(1),CustData(3)}, I∗ is more precise than the

provenance from Example 2.2.1. �

2.2.3 Minimality

It turns out that there always exists a single most precise provenance, which we refer

to as the minimal provenance. Intuitively, the minimal provenance captures “the

essence” of what derives o.

Definition 2.2.3 (Minimality) Let O = T (I) and let o ∈ O. Suppose subset

I∗ ⊆ I is correct provenance for o with respect to T . I∗ is minimal for o with respect

to T if there does not exist provenance I∗∗ that is correct and more precise than I∗.

�

In Section 2.2.4, we will give an example of minimal provenance after we have defined

minimality for multi-input transformations. We now show that there always exists a

unique minimal provenance.

Theorem 2.2.1 (Unique Minimal Provenance) Let O = T (I) and let o ∈ O.

Let I∗1 , . . . , I
∗
n be all of the correct provenances for o with respect to T . Let IM =

I∗1 ∩ . . . ∩ I∗n. IM is correct and minimal, and there is no other correct and minimal

provenance for o with respect to T .

Proof. Since I is always correct provenance for o, there always exists at least some

subset of I that is correct provenance for o. And since I is finite, we can take the
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intersection of all subsets of I that are correct provenance for o. Thus IM is well-

defined.

We show that IM is correct. To do so, we will show that the intersection of any two

correct provenances is correct provenance, from which the correctness of IM follows.

Let I∗ ⊆ I and I∗∗ ⊆ I both be correct provenance for o. We show that I∗ ∩ I∗∗

is correct provenance for o. We need to show that for any I ′ ⊆ I, o ∈ T (I ′) if and

only if o ∈ T (I ′ ∩ (I∗ ∩ I∗∗)). Since I∗ is correct, we know that o ∈ T (I ′) if and only

if o ∈ T (I ′ ∩ I∗). Since I∗∗ is correct, we know that o ∈ T (I ′ ∩ I∗) if and only if

o ∈ T ((I ′ ∩ I∗)∩ I∗∗)) = T (I ′ ∩ (I∗ ∩ I∗∗)). Thus, I∗ ∩ I∗∗ is correct provenance for o.

We now show that IM is minimal by contradiction. Suppose there existed correct

provenance I∗∗ for o such that I∗∗ ⊂ IM . By the definition of IM , since I∗∗ is correct

provenance, we know that I∗∗ = I∗j for some j and thus IM = I∗1 ∩ . . .∩I
∗
n ⊆ I∗j = I∗∗,

a contradiction.

We now show that IM is unique. Let I∗∗ be any minimal provenance. Since

I∗∗ is correct, by the definition of IM , we know that I∗∗ = I∗j for some j, and thus

IM = I∗1 ∩ . . . ∩ I∗n ⊆ I∗j = I∗∗, implying IM ⊆ I∗∗. Since I∗∗ is minimal, we know

IM 6⊂ I∗∗. Thus, I∗∗ = IM . �

2.2.4 Multiple Inputs

The definitions for correctness, precision, and minimality generalize naturally to mul-

tiple input sets.

Definition 2.2.4 (Correctness) Let O = T (I1, . . . , Im) and let o ∈ O. Provenance

〈I∗1 , . . . , I
∗
m〉, I

∗
1 ⊆ I1, . . . , I

∗
m ⊆ Im, is correct for o with respect to T if:

• For any 〈I ′1, . . . , I
′
m〉 such that I ′1 ⊆ I1, . . . , I

′
m ⊆ Im, o ∈ T (I ′1, . . . , I

′
m) if and only

if o ∈ T (I ′1 ∩ I∗1 , . . . , I
′
m ∩ I∗m). �

Definition 2.2.5 (Precision) Let O = T (I1, . . . , Im) and let o ∈ O. Suppose

〈I∗1 , . . . , I
∗
m〉 and 〈I

∗∗
1 , . . . , I∗∗m 〉 are both correct provenance for o with respect to T .

〈I∗1 , . . . , I
∗
m〉 is at least as precise as 〈I

∗∗
1 , . . . , I∗∗m 〉 if I

∗
1 ⊆ I∗∗1 , . . . , I∗m ⊆ I∗∗m . 〈I∗1 , . . . , I

∗
m〉

is more precise than 〈I∗∗1 , . . . , I∗∗m 〉 if I
∗
1 ⊆ I∗∗1 , . . . , I∗m ⊆ I∗∗m and there exists some i

for which I∗i ⊂ I∗∗i . �
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Definition 2.2.6 (Minimality) Let O = T (I1, . . . , Im) and let o ∈ O. Suppose

〈I∗1 , . . . , I
∗
m〉 is correct provenance for o with respect to T . 〈I∗1 , . . . , I

∗
m〉 is minimal for

o with respect to T if there does not exist provenance 〈I∗∗1 , . . . , I∗∗m 〉 that is correct

and more precise than 〈I∗1 , . . . , I
∗
m〉. �

Theorem 2.2.2 (Unique Minimal Provenance) Let O = T (I1, . . . , Im) and let

o ∈ O. Let 〈I1∗1 , . . . , I1∗m 〉, . . . , 〈I
n∗
1 , . . . , In∗m 〉 be all of the correct provenances for o

with respect to T . Let IM = 〈(I1∗1 ∩ . . .∩ I
n∗
1 ), . . . , (I1∗m ∩ . . .∩ I

n∗
m )〉. IM is correct and

minimal, and there is no other correct and minimal provenance for o with respect to

T .

Proof. Since 〈I1, . . . , Im〉 is always correct provenance for o, there always exists at

least some correct provenance for o. And since 〈I1, . . . , Im〉 is finite, we can take the

intersection of all subsets of 〈I1, . . . , Im〉 that are correct provenance for o. Thus IM

is well-defined.

We show that IM is correct. To do so, we will show that the intersection of

any two correct provenances is correct provenance, from which the correctness of IM

follows. Let 〈I∗1 , . . . , I
∗
m〉 and 〈I

∗∗
1 , . . . , I∗∗m 〉 both be correct provenance for o. We

show that 〈(I∗1 ∩ I∗∗1 ), . . . , (I∗m ∩ I∗∗m )〉 is correct provenance for o. We need to show

that for any 〈I ′1, . . . , I
′
m〉 such that I ′1 ⊆ I1, . . . , I

′
m ⊆ Im, o ∈ T (I ′1, . . . , I

′
m) if and

only if o ∈ T ((I ′1 ∩ (I∗1 ∩ I∗∗1 )), . . . , (I ′ ∩ (I∗m ∩ I∗∗m ))). Since 〈I∗1 , . . . , I
∗
m〉 is correct,

we know that o ∈ T (I ′1, . . . , I
′
m) if and only if o ∈ T ((I ′1 ∩ I∗1 ), . . . , (I

′
m ∩ I∗m)). Since

〈I∗∗1 , . . . , I∗∗m 〉 is correct, we know that o ∈ T ((I ′1 ∩ I∗1 ), . . . , (I
′
m ∩ I∗m)) if and only if

o ∈ T (((I ′1∩I
∗
1 )∩I

∗∗
1 ), . . . , ((I ′m∩I

∗
m)∩I

∗∗
m )) = T ((I ′1∩(I

∗
1∩I

∗∗
1 )), . . . , (I ′m∩(I

∗
m∩I

∗∗
m ))).

Thus, 〈(I∗1 ∩ I∗∗1 ), . . . , (I∗m ∩ I∗∗m )〉 is correct provenance for o.

We now show that IM = 〈IM1 , . . . , IMm 〉 is minimal by contradiction. Suppose

there existed correct provenance 〈I∗∗1 , . . . , I∗∗m 〉 for o such that 〈I∗∗1 , . . . , I∗∗m 〉 is more

precise than IM . By the definition of IM , since 〈I∗∗1 , . . . , I∗∗m 〉 is correct provenance

and 〈IM1 , . . . , IMm 〉 = 〈(I
1∗
1 ∩ . . . ∩ In∗1 ), . . . , (I1∗m ∩ . . . ∩ In∗m )〉, we know that IM1 ⊆

I∗∗1 , . . . , IMm ⊆ I∗∗m , contradicting the assumption that 〈I∗∗1 , . . . , I∗∗m 〉 is more precise

than 〈IM1 , . . . , IMm 〉.
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We now show that IM = 〈IM1 , . . . , IMm 〉 is unique. Let 〈I∗∗1 , . . . , I∗∗m 〉 be min-

imal provenance. Since 〈I∗∗1 , . . . , I∗∗m 〉 is correct provenance, by definition of IM

we know that IM1 ⊆ I∗∗1 , . . . , IMm ⊆ I∗∗m . Since 〈I∗∗1 , . . . , I∗∗m 〉 is minimal, we know

that 〈IM1 , . . . , IMm 〉 cannot be more precise than 〈I∗∗1 , . . . , I∗∗m 〉, implying that IM1 6⊂

I∗∗1 , . . . , IMm 6⊂ I∗∗m . Thus, 〈I∗∗1 , . . . , I∗∗m 〉 = 〈I
M
1 , . . . , IMm 〉. �

We now give an example of minimal provenance.

Example 2.2.3 Consider o = ItemCountryProfit(4). Minimal provenance

for o with respect to transformation JoinAgg is 〈CS∗, IP∗〉, where CS∗ =

{CustSales(2),CustSales(5)} and IP∗ = {ItemProfit(3)}. Note that all three elements

in 〈CS∗, IP∗〉 are needed for 〈CS∗, IP∗〉 to be correct provenance for o. �

2.3 Workflow Provenance

Next, we discuss the theoretical properties of workflow provenance. We first give some

formal definitions. We then identify when correctness and minimality carry over from

individual transformations to the workflow as a whole.

Consider any transformations T1 and T2. The composition T1 ◦ T2 of the two

transformations is a transformation that first applies T1 to an input data set I1 to

obtain intermediate data set I2. It then applies T2 to I2 to obtain output data set O.

Composition is associative, so we denote the linear composition of n transforma-

tions as T1 ◦T2 ◦· · ·◦Tn. In Section 2.3.5, we extend our formalism to cover workflows

where transformations may have multiple input and output data sets, allowing work-

flows to be arbitrary DAGs.

Consider a workflow T1 ◦ T2 ◦ . . . ◦ Tn. A workflow instance is the application of

the workflow to an input I1. Let Ii+1 = Ti(Ii) for i = 1..n. The final output data set

is In+1. We denote this workflow instance as (T1 ◦ T2 ◦ . . . ◦ Tn)(I1) = In+1.

Suppose each of the transformations Ti includes a provenance specification. For

each element o ∈ Ii+1, let PTi
(o) ⊆ Ii denote the provenance of o with respect to Ti.

Then we can define workflow provenance in the intuitive recursive way as follows.
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Definition 2.3.1 (Workflow Provenance) Let W = T1 ◦ T2 ◦ . . . ◦ Tn. Consider a

workflow instance (T1 ◦ T2 ◦ . . . ◦ Tn)(I1) = In+1, with initial input I1. Let o be any

output element in In+1. For each data set Ii in the workflow instance, define I∗i ⊆ Ii

recursively:

• I∗n+1 = {o}

• For i ≤ n, I∗i =
⋃

e∈I∗i+1
PTi

(e)

The workflow provenance of o in W , denoted PW (o), is input subset I∗1 ⊆ I1. �

Having defined workflow provenance in the intuitive way, we are interested in de-

termining when properties such as correctness and minimality carry over from the

individual transformations’ provenance to the workflow provenance. We first define

some transformation properties.

Definition 2.3.2 (Monotonicity) A transformation T ismonotonic if for any input

sets I and I ′, if I ⊆ I ′, then T (I) ⊆ T (I ′). �

In our running example of Section 1.1, all of the transformations except JoinAgg

(technically requiring the extended formalism in Section 2.3.5) are monotonic.

Definition 2.3.3 (One-Many Transformations) A transformation T is one-

many if for any input set I, each output element o ∈ T (I) has exactly one input

element in its minimal provenance. �

In our running example, transformations Extract, CalcProfit, and Filter are one-

many.

Definition 2.3.4 (Many-One Transformations) A transformation T is many-

one if for any input set I, each input element e ∈ I is in at most one output element’s

minimal provenance. �

In our running example, transformations CalcProfit and Filter are many-one.

Let us now introduce a provenance property weaker than correctness, which we

call weak correctness. We will see cases where in a workflow we can guarantee weak

correctness but not correctness.
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Definition 2.3.5 (Weak Correctness Definition) Let O = T (I) be a transfor-

mation instance and let o ∈ O. We say that provenance I∗ ⊆ I is weakly correct for

o with respect to T if:

• For any I ′ ⊆ I, if I∗ ⊆ I ′ ⊆ I, then o ∈ T (I ′). �

This definition states that I∗ is weakly correct provenance for o with respect to T if

T produces o when given any superset of I∗ as input. Note that for any monotonic

transformation T , if o ∈ T (I∗), then I∗ is weakly correct for o with respect to T .

Also note that for any transformation instance T (I), if provenance I∗ ⊆ I is correct,

then I∗ is weakly correct. Provenance I∗ = I is always trivially weakly correct for

any o ∈ T (I).

As a simple example of how weak correctness and correctness differ, consider

an instance of a transformation that performs “deduplication” (merging of elements

deemed to represent the same real-world entity). Given an output element, any of

the corresponding duplicates from the input set would alone constitute weakly correct

provenance. However, correct provenance must contain all of the duplicates.

2.3.1 Remainder of Section

We now outline the major results of this section. Let W = T1 ◦T2 ◦ . . . ◦Tn. Consider

a workflow instance (T1 ◦T2 ◦ . . .◦Tn)(I1) = In+1 in which each of the transformations

Ti includes a correct provenance specification.

• Preservation of correctness (Section 2.3.2). If all transformations Ti are mono-

tonic, then W ’s workflow provenance is correct. However, if there exists any non-

monotonic transformation in W , then W ’s workflow provenance is not necessarily

correct.

• Preservation of minimality (Section 2.3.3). If all transformations Ti are mono-

tonic, we have minimal provenance at each transformation, T1, . . . , Tj are many-

one, and Tj+1, . . . , Tn are one-many, then W ’s workflow provenance is minimal.

However, if all transformations Ti are monotonic and we have minimal provenance

at each transformation (but we don’t have the many-one and one-many properties

of the previous statement), then W ’s provenance is not necessarily minimal.
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• Preservation of weak correctness (Section 2.3.4). If there exists at most

one nonmonotonic transformation in W , then W ’s workflow provenance is weakly

correct. However, if there is more than one nonmonotonic transformation in W ,

then W ’s workflow provenance is not necessarily weakly correct.

2.3.2 Preservation of Correctness

If we have correct provenance for each transformation in the workflow, and each trans-

formation is monotonic, then the workflow provenance (as defined in Definition 2.3.1)

is also correct.

Theorem 2.3.1 Let W = T1 ◦ T2 ◦ . . . ◦ Tn. Consider a workflow instance (T1 ◦ T2 ◦

. . . ◦ Tn)(I1) = In+1 in which all of the transformations are monotonic. For each Ti

and each element e ∈ Ii+1, let PTi
(e) ⊆ Ii be correct provenance for e with respect to

Ti. Consider any output element o ∈ In+1. Workflow provenance PW (o) is correct for

o with respect to W .

Proof. We prove the result by induction on n. The base case of n = 1 follows from

the assumption. Now suppose the theorem holds for n = k and consider the theorem

for n = k + 1. Consider o ∈ Ik+2. PW (o) =
⋃

e∈PTk+1
(o) PW (e).

We prove by contradiction. Suppose I∗1 = PW (o) is not correct for o with respect

to Wk+1 = T1 ◦ T2 ◦ . . . ◦ Tk+1. Then there exists some I ′1 ⊆ I1 such that Wk+1(I
′
1) ∩

{o} 6= Wk+1(I
′
1 ∩ I

∗
1 )∩ {o}. Since each transformation in Wk+1 is monotonic, Wk+1 is

monotonic. It then follows from Wk+1’s monotonicity and the above inequality that

o ∈ Wk+1(I
′
1) and o /∈ Wk+1(I

′
1 ∩ I∗1 ).

For any e ∈ I∗k+1 = PTk+1
(o), by the inductive hypothesis we know that PW (e) is

correct for e with respect to Wk = T1◦T2◦ . . .◦Tk. Since PW (e) ⊆ I∗1 for any e ∈ I∗k+1,

we know that e ∈ Wk(I
′
1) if and only if e ∈ Wk(I

′
1 ∩ I∗1 ), from which it follows that

Wk(I
′
1) ∩ I∗k+1 = Wk(I

′
1 ∩ I∗1 ) ∩ I∗k+1.

Recall that o ∈ Wk+1(I
′
1) = Tk+1(Wk(I

′
1)). Since I∗k+1 is correct for o with respect

to Tk+1, we then know that o ∈ Tk+1(Wk(I
′
1) ∩ I∗k+1) = Tk+1(Wk(I

′
1 ∩ I∗1 ) ∩ I∗k+1).

Since Tk+1 is monotonic, it follows that o ∈ Tk+1(Wk(I
′
1 ∩ I∗1 )) = Wk+1(I

′
1 ∩ I∗1 ), a

contradiction. Thus, I∗1 is correct. �
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Figure 2.2: Counterexample for correct workflow provenance.

If we drop the assumption that all transformations are monotonic, we find an example

demonstrating that workflow provenance is not necessarily correct.

Example 2.3.1 Consider workflow W = SingleStore ◦ Projection shown

in Figure 2.2. The initial input data set SalesInfo contains country-sales

pairs for each of a corporation’s worldwide stores: SalesInfo(country, sales) =

{(France, 10), (Germany, 20), (Germany, 10)}. Transformation SingleStore retains

sales information for stores in countries with only one store, producing intermediate

data set SingleStoreCountries (abbreviated SSC): SSC = SingleStore(SalesInfo) =

{(France, 10)}. The following provenance is correct: PSingleStore((France, 10)) =

{(France, 10)} ⊆ SalesInfo. Transformation Projection projects away the country

name, leaving only total sales for each of the stores in SSC: Projection(SSC) = {10}.

Note that SingleStore is not monotonic, but Projection is. The following prove-

nance is correct: PProjection(10) = {(France, 10)}. Let o = 10 ∈ SalesNum.

The workflow provenance PW (o) of o following Definition 2.3.1 is {(France, 10)} ⊆

SalesInfo. However, the only correct provenance for o with respect to W is ac-

tually all of SalesInfo: {(France, 10), (Germany, 20), (Germany, 10)}. To see, for

example, that (Germany, 10) needs to be in correct provenance I∗, note that by

setting SalesInfo′ = {(Germany, 10)}, we get o ∈ W (SalesInfo′). However, if

(Germany, 10) /∈ I∗, then o /∈ W (SalesInfo′ ∩ I∗). Thus, workflow provenance PW (o)

is not correct. �

2.3.3 Preservation of Minimality

Although correctness carries over from the provenance of individual transformations

to workflow provenance when all transformations are monotonic, we now show an

example demonstrating that there does not exist such a guarantee for minimality.
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Figure 2.3: Counterexample for minimal workflow provenance.

Example 2.3.2 Consider workflow W = Unpack ◦OneTwo shown in Figure 2.3.

The input data set Strings contains two strings: {“1”, “1, 2”}. Transformation

Unpack finds all integers contained in Strings and removes duplicates, producing

intermediate data set Integers = {1, 2}. We have minimal provenance for Unpack:

PUnpack(1) = {“1”, “1, 2”} and PUnpack(2) = {“1, 2”}. Transformation OneTwo

processes intermediate data set Integers as follows:

• If 1 ∈ Integers and 2 ∈ Integers, then OneTwo(Integers) = {“success”}

• Else, OneTwo(Integers) = ∅

In this workflow instance, Final = OneTwo(Integers) = {“success”}. The minimal

provenance of “success” with respect to OneTwo is POneTwo(“success”) = {1, 2}.

Note that Unpack and OneTwo are both monotonic. Let o = “success” ∈ Final.

The workflow provenance PW (o) of o according to Definition 2.3.1 is {“1”, “1, 2”}.

However, {“1, 2”} is also correct provenance for o with respect toW , and it is minimal.

Thus, workflow provenance in this example is not minimal. �

Intuitively, in the above example, workflow provenance is not minimal because it

contains an input element e (“1” in our example) that can never actually influence

whether the output element is produced. In other words, the uninfluential input

element e’s contribution is never sufficient to change the ultimate outcome, yet e is

included in the provenance.

Let us identify a class of workflows for which the above situation does not occur.

If a monotonic workflow consists of a set of many-one transformations followed by a

set of one-many transformations, and we have minimal provenance for each transfor-

mation in the workflow, then workflow provenance is minimal.

Theorem 2.3.2 Let W = T1 ◦ T2 ◦ . . . ◦ Tn. Consider a workflow instance (T1 ◦ T2 ◦

. . . ◦ Tn)(I1) = In+1 in which all of the transformations are monotonic, T1, . . . , Tj are

many-one transformations, and Tj+1, . . . , Tn are one-many transformations. For each
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Ti and each element e ∈ Ii+1, let PTi
(e) ⊆ Ii be minimal provenance for e with respect

to Ti. Consider any output element o ∈ In+1. Workflow provenance PW (o) is minimal

for o with respect to W . �

The proof of this theorem involves some lemmas. Before the lemmas, we define the

notion of minimal witnesses from [16].

Definition 2.3.6 (Minimal Witness) Let O = T (I) be a transformation instance

and let o ∈ O. Subset Iw ⊆ I is a minimal witness of o with respect to T if: (1)

o ∈ T (Iw); and (2) for any proper subset I ′ ⊂ Iw, o /∈ T (I ′). �

As an example to illustrate the difference between minimal witnesses and minimal

provenance, consider a transformation that eliminates duplicates. For any output

element o, each of the corresponding duplicates o in the input data set is a separate

minimal witness, while the minimal provenance is the entire set of o’s in the input.

The following lemma generalizes this example, showing that for any output element

o from a monotonic transformation, the union of all minimal witnesses of o is equal

to o’s minimal provenance.

Lemma 2.3.1 Let O = T (I) be an instance of a monotonic transformation, and let

o ∈ O. Let Iw1 , . . . , I
w
m be all of the minimal witnesses of o with respect to T , and let

I∗ be the minimal provenance of o with respect to T . Then I∗ = Iw1 ∪ . . . ∪ Iwm.

Proof of Lemma 2.3.1 We first show that I∗ ⊇ Iw1 ∪ . . . ∪ Iwm. Given any element

e ∈ Iw1 ∪ . . . ∪ Iwm, we show e ∈ I∗ by contradiction. Suppose e /∈ I∗. Since e ∈

Iw1 ∪ . . . ∪ Iwm, e is in some Iwj . Since Iwj is a minimal witness of o, I∗ is correct

for o, and T is monotonic, we know that {o} = (T (Iwj ) ∩ {o}) = (T (Iwj ∩ I∗) ∩

{o}) ⊆ (T (Iwj − {e}) ∩ {o}). Since Iwj is a minimal witness, o /∈ T (Iwj − {e}), thus

(T (Iwj −{e})∩{o}) = ∅, a contradiction. Thus, e ∈ I∗, implying that I∗ ⊇ Iw1 ∪. . .∪I
w
m.

Now we show that I∗ ⊆ Iw1 ∪ . . . ∪ Iwm. Given any element e ∈ I∗, we show

e ∈ Iw1 ∪ . . .∪ I
w
m. Since e is in the minimal provenance I∗ of o, we know that I∗−{e}

is not correct provenance, implying that there exists some subset I ′ ⊆ I such that

o ∈ T (I ′) but o /∈ T (I ′ ∩ (I∗ − {e})) = T (I ′ ∩ I∗ − {e}). Since I∗ is correct, we know
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that o ∈ T (I ′ ∩ I∗). Consider all subsets of I ′ ∩ I∗. We know at least one subset,

namely the entire I ′ ∩ I∗, produces o. Take the smallest subset I ′′ (pick arbitrarily

if there is a tie) that produces o. It must contain e because T is monotonic and

o /∈ T (I ′ ∩ I∗ − {e}). Also, no subset of I ′′ can produce o, since we picked the

minimal subset. Thus, I ′′ is equal to some minimal witness Iwj , from which it follows

that e ∈ Iw1 ∪ . . . ∪ Iwm. We have shown that I∗ ⊆ Iw1 ∪ . . . ∪ Iwm. Together with

I∗ ⊇ Iw1 ∪ . . . ∪ Iwm, it follows that I
∗ = Iw1 ∪ . . . ∪ Iwm. �

Lemma 2.3.2 Let W = T1 ◦ . . . ◦ Tn where each Ti is a monotonic many-one trans-

formation. Then W is also a many-one transformation.

Proof of Lemma 2.3.2 We prove by induction on n. For n = 1, the lemma follows

from the assumption. Now suppose the lemma holds for n = k and consider the

lemma for n = k + 1. Since the lemma holds for n = k, we know Wk = T1 ◦ . . . ◦ Tk

is many-one.

For any element o ∈ Ik+2, let PTk+1
(o) ⊆ Ik+1 be the minimal provenance of o

with respect to Tk+1. For any element ek+1 ∈ Ik+1, let PWk
(ek+1) ⊆ I1 be the minimal

provenance of ek+1 with respect to Wk. Let PWk+1
(o) = ∪e∈PTk+1

(o)PWk
(e) be the

workflow provenance of o in Wk+1 = Wk ◦ Tk+1. Then by Theorem 2.3.1, since we

have minimal (and thus correct) provenance for Wk and Tk+1, PWk+1
(o) is correct for

o with respect to Wk+1.

Given any e1 ∈ I1, since e1 is in the minimal provenance of at most one element

ek+1 ∈ Ik+1, and ek+1 is in the minimal provenance of at most one element o ∈ Ik+2,

we know that e1 is in PWk+1
(o) for at most one element o ∈ Ik+2. Let P (o) ⊆ I1

be the minimal provenance of o with respect to Wk+1. Since PWk+1
(o) is correct,

PWk+1
(o) ⊇ P (o) for all o ∈ Ik+2. Thus, e1 is in the minimal provenance P (o) for at

most one element o ∈ Ik+2, i.e., Wk+1 is many-one. �

Lemma 2.3.3 Let W = T1 ◦ . . . ◦ Tn. Consider a workflow instance (T1 ◦ T2 ◦ . . . ◦

Tn)(I1) = In+1 where each Ti is a monotonic many-one transformation. For each

transformation Ti and element e ∈ Ii+1, suppose PTi
(e) is the minimal provenance of

e at transformation Ti. Consider any output element o ∈ In+1. Workflow provenance

PW (o) is minimal for o with respect to W .
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Proof of Lemma 2.3.3 We prove by induction on n. For n = 1 the lemma follows

from the assumption. Now suppose the lemma holds for n = k and consider the lemma

for n = k + 1. Since the lemma holds for n = k, for all elements e ∈ Ik+1, PW (e) is

minimal for e with respect to Wk = T1 ◦ . . . ◦ Tk.

Consider o ∈ Ik+2. PW (o) =
⋃

e∈PTk+1
(o) PW (e). To show workflow provenance

I∗1 = PW (o) is minimal, we need to show that for all elements e1 ∈ I∗1 , I
∗
1 − {e1}

is not correct provenance for o with respect to W . To show that I∗1 − {e1} is not

correct, we will construct an input subset I ′1 ⊆ I∗1 ⊆ I1 such that o ∈ W (I ′1) and

o /∈ W (I ′1 − {e1}).

Let e1 be any element in I∗1 . I
∗
k+1 = PTk+1

(o) is the minimal provenance of o with

respect to Tk+1. Since I∗1 =
⋃

e∈I∗
k+1

PW (e), we know that e1 ∈ PW (ek+1) for some

ek+1 ∈ I∗k+1. By Lemma 2.3.1, there exists a minimal witness Iwk+1 ⊆ I∗k+1 of o with

respect to Tk+1 that contains ek+1. Consider PW (ek+1) ⊆ I1, the workflow provenance

of ek+1 ∈ Iwk+1 in W . By the inductive hypothesis, PW (ek+1) is minimal for ek+1 with

respect to Wk = T1 ◦ . . . ◦ Tk. By Lemma 2.3.1, since PW (ek+1) is minimal for ek+1

and e1 ∈ PW (ek+1), there exists a minimal witness Iw1 ⊆ PW (ek+1) ⊆ I1 for ek+1 with

respect to Wk+1 that contains e1.

Let P (e) be the minimal provenance of e ∈ Ik+1 with respect to Wk. We construct

subset I ′1 ⊆ I1 in the following way: I ′1 =
⋃

e∈Iw
k+1

D(e) where D(e) = P (e) if e 6= ek+1,

and D(ek+1) = Iw1 ⊆ P (ek+1).

Since I ′1 contains a minimal witness for every element e ∈ Iwk+1 with respect to

Wk, we know that Wk(I
′
1) ⊇ Iwk+1, implying that W (I ′1) = Tk+1(Wk(I

′
1)) ⊇ Tk+1(I

w
k+1)

since Tk+1 is monotonic. Tk+1(I
w
k+1) ⊇ {o}, from which it follows that o ∈ W (I ′1).

Consider W (I ′1 − {e1}) = Tk+1(Wk(I
′
1 − {e1})). For all e ∈ (Iwk+1 − {ek+1}), since

Wk is many-one (by Lemma 2.3.2), and D(e) is minimal (and thus correct) for e with

respect to Wk, we know that (Wk(I
′
1 − {e1}) ∩ {e}) = (Wk((I

′
1 − {e1}) ∩ D(e)) ∩

{e}) = (Wk(D(e)) ∩ {e}) = {e}, implying that e ∈ (Wk(I
′
1 − {e1}). For e /∈ Iwk+1,

(Wk(I
′
1 − {e1})∩ {e}) = (Wk((I

′
1 − {e1})∩ P (e))∩ {e}) = Wk(∅)∩ {e} = ∅, implying

that e /∈ Wk(I
′
1 − {e1}). For element ek+1, since Wk is many-one, and P (ek+1) is

minimal (and thus correct) for ek+1 with respect to Wk, (Wk(I
′
1 − {e1}) ∩ {ek+1}) =

Wk((I
′
1−{e1})∩P (ek+1))∩ {ek+1} = Wk(I

w
1 −{e1})∩ {e} = ∅, implying that ek+1 /∈
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Wk(I
′
1 − {e1}). Thus, Wk(I

′
1 − {e1}) = Iwk+1 − {ek+1}. It follows that W (I ′1 − {e}) =

Tk+1(I
w
k+1 − {ek+1}) = ∅, proving that I∗1 − {e1} is not correct provenance for o with

respect to W , and thus I∗1 is minimal for o with respect to Wk+1. �

Proof of Theorem 2.3.2 For each data set Ii in the workflow instance, define

I∗i ⊆ Ii recursively:

• I∗n+1 = {o}

• For i ≤ n, I∗i =
⋃

e∈I∗i+1
PTi

(e)

It is straightforward to see that I∗1 = PW (o) ⊆ I1. For any one-many transformation

T , the minimal provenance PT (e) of any element e in T ’s output has size 1. Since

Tj+1, . . . , Tn are one-many, we know that |I∗j+1| = 1. Let I∗j+1 = {ej+1}.

By Lemma 2.3.3, PW (ej+1) = I∗1 is minimal for ej+1 with respect to Wj = T1 ◦

. . . ◦Tj. To show that workflow provenance I∗1 is minimal for o with respect to W , let

e1 be any element in I∗1 . We need to show that I∗1 −{e1} is not correct provenance for

o with respect to W . We construct an input subset I ′1 ⊆ I∗1 ⊆ I1 such that o ∈ W (I ′1)

and o /∈ W (I ′1 − {e1}). Since I∗1 = PW (ej+1) is minimal provenance for ej+1 with

respect to Wj, by Lemma 2.3.1 there exists a minimal witness Iw ⊆ I∗1 of ej+1 with

respect to Wj containing e1.

Let I ′1 = Iw. Then ej+1 /∈ (T1 ◦ . . . ◦ Tj)(I
′
1 − {e1}), implying that o /∈ W (I ′1 −

{e1}). However, ej+1 ∈ (T1 ◦ . . . ◦ Tj)(I
′
1), implying that o ∈ W (I ′1). Thus, workflow

provenance is minimal. �

2.3.4 Preservation of Weak Correctness

Given a workflow with at most one nonmonotonic transformation, if we have weakly

correct provenance at each transformation, then workflow provenance is guaranteed

to be weakly correct.

Theorem 2.3.3 Let W = T1 ◦ T2 ◦ . . . ◦ Tn. Consider a workflow instance (T1 ◦ T2 ◦

. . .◦Tn)(I1) = In+1 in which at most one of the transformations is nonmonotonic. For

each Ti and each element e ∈ Ii+1, let PTi
(e) ⊆ Ii be weakly correct provenance for
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e with respect to Ti. Consider any output element o ∈ In+1. Workflow provenance

PW (o) is weakly correct for o with respect to W .

Proof. For each data set Ii in the workflow instance, define I∗i ⊆ Ii recursively:

• I∗n+1 = {o}

• For i ≤ n, I∗i =
⋃

e∈I∗i+1
PTi

(e)

It is straightforward to see that I∗1 = PW (o) ⊆ I1. Given an input subset I ′1 ⊆ I1

define sets Fi as:

• F1 = I ′1

• For 2 ≤ i ≤ n+ 1, Fi = Ti−1(Fi−1)

Note that Fn+1 = W (I ′1). Recall from Definition 2.3.5 that weak correctness requires

o ∈ T (I ′) for every I∗ ⊆ I ′ ⊆ I. If every transformation Ti is monotonic and I ′1 ⊇ I∗1 ,

then Fi ⊇ I∗i for all i. It follows thatW (I ′1) = Fn+1 ⊇ I∗n+1 = {o}, implying o ∈ W (I ′1)

for any input subset I ′1 such that I∗1 ⊆ I ′1 ⊆ I1, and thus workflow provenance I∗1 is

weakly correct.

Suppose there is one nonmonotonic transformation Tj. Based on the above ar-

gument, since the workflow before Tj is monotonic, I∗j ⊆ Fj ⊆ Ij. For each element

e ∈ I∗j+1, since PTj
(e) ⊆ I∗j , we know that PTj

(e) ⊆ Fj ⊆ Ij, and since PTj
(e) is

weakly correct, we know that e ∈ Tj(Fj) = Fj+1. Thus Fj+1 ⊇ I∗j+1. Since the

transformations after Tj are all monotonic and Fj+1 ⊇ I∗j+1, we know that Fi ⊇ I∗i

for all i > j +1. Thus, W (I ′1) = Fn+1 ⊇ I∗n+1 = {o} for any input subset I ′1 such that

I∗1 ⊆ I ′1 ⊆ I1. Hence workflow provenance I∗1 is weakly correct. �

Given a workflow with two nonmonotonic transformations, workflow provenance is

not guaranteed to be correct or weakly correct.

Example 2.3.3 Consider workflow W = OneTwo ◦ ThreeFour shown in Fig-

ure 2.4. Let Initial = {1, 2}. Transformation OneTwo produces intermediate data

set Int as follows:

• If 1 ∈ Initial and 2 ∈ Initial, then OneTwo(Initial) = {3}

• Else if 1 ∈ Initial and 2 /∈ Initial, then OneTwo(Initial) = {3, 4}
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Figure 2.4: Counterexample for weakly correct workflow provenance.

• Else, OneTwo(Initial) = ∅

In this workflow instance, Int = {3}. The following is correct (and therefore weakly

correct) provenance for 3 with respect to OneTwo: POneTwo(3) = {1}. (Intuitively

{1} is correct, and in fact minimal, because any time Initial contains 1, Int contains

3.) Transformation ThreeFour produces Final from Int as follows:

• If 3 ∈ Int and 4 /∈ Int, then ThreeFour(Int) = {5}

• Else, ThreeFour(Int) = ∅

In this workflow instance, Final = {5}. The following provenance is correct (and

therefore weakly correct) for 5 with respect to ThreeFour: PThreeFour(5) = {3}.

Neither OneTwo nor ThreeFour is monotonic. Let o = 5 ∈ Final. The workflow

provenance PW (o) of o is {1}. However, the only weakly correct provenance of o with

respect to W is {1, 2}, since 5 /∈ W ({1}) = ∅. Thus, workflow provenance is not

weakly correct. �

2.3.5 Workflows with Multi-Input and Multi-Output Trans-

formations

We now give a generalized definition of workflow provenance that supports workflows

containing multi-input and multi-output transformations, i.e., the workflow is a di-

rected graph, but without cycles. It is cumbersome to formally define composition

for general DAGs as we did for linear workflows in Section 2.3 (i.e., T1 ◦ T2 ◦ . . . ◦ Tn

does not generalize comfortably), but the meaning of composition is straightforward.

Definition 2.3.7 (Workflow Provenance) Consider a workflow instance

W (I1, . . . , Im) with initial inputs I1, . . . , Im. Let e be any data element in-

volved in the workflow—input, intermediate, or output. The workflow provenance of

e in W , denoted PW (e), is an m-tuple (I∗1 , . . . , I
∗
m), where I∗1 ⊆ I1, . . . , I

∗
m ⊆ Im. If
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e is an initial input element, i.e., e ∈ Ik, then PW (e) = (∅, . . . , {e}, . . . , ∅), a tuple

in which every value except the k-th is empty. Otherwise, let e be an element in

one of the output sets of a transformation T . Let PT (e) = (P T
1 (e), . . . , P

T
n (e)) be

the one-level provenance of e with respect to T . Then PW (e) = (PW
1 (e), . . . , PW

m (e))

where each PW
i (e) =

⋃
e′∈(PT

1 (e)∪...∪PT
n (e)) P

W
i (e′). �

In this more general setting, we again want to determine when the properties of

correctness, minimality, and weak correctness carry over from the individual trans-

formations’ provenance to the workflow provenance. We first generalize the definitions

of monotonicity and weak correctness.

Definition 2.3.8 (Monotonicity) A transformation T is monotonic if:

• For any input sets I1, . . . , Im and I ′1, . . . , I
′
m with Ii ⊆ I ′i, let (O1, . . . , Or) =

T (I1, . . . , Im) and (O′
1, . . . , O

′
r) = T (I ′1, . . . , I

′
m). O1 ⊆ O′

1, . . . , Or ⊆ O′
r. �

Definition 2.3.9 (Weak Correctness Definition) Let (O1, . . . , Or) =

T (I1, . . . , Im) be a transformation instance and let o ∈ Oi for some i. We say

that provenance 〈I∗1 , . . . , I
∗
m〉, I∗1 ⊆ I1, . . . , I

∗
m ⊆ Im, is weakly correct for o with

respect to T if:

• For any 〈I ′1, . . . , I
′
m〉 such that I∗1 ⊆ I ′1 ⊆ I1, . . . , I

∗
m ⊆ I ′m ⊆ Im, o ∈ T (I ′1, . . . , I

′
m).

�

We now generalize the major theorems presented in this section. Proofs are omitted

since they are long and notation-heavy, yet directly analogous to the proofs given

earlier for linear workflows; no new complexities are encountered.

Theorem 2.3.4 (Preservation of Correctness) Let W be a workflow containing

monotonic transformations T1, . . . , Tn. Consider a workflow instance W (I1, . . . , Im)

with initial inputs I1, . . . , Im. For each Ti, and each element e in any of Ti’s output

sets, let PTi
(e) be correct provenance for e with respect to Ti. Consider any output

element o. Workflow provenance PW (o) is correct for o with respect to W . �
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Theorem 2.3.5 (Preservation of Minimality) Let W be a workflow containing

monotonic transformations T1, . . . , Tn, in which each transformation is either many-

one or one-many, and along no path in the workflow is there a one-many trans-

formation followed by an many-one transformation. Consider a workflow instance

W (I1, . . . , Im) with initial inputs I1, . . . , Im. For each Ti, and each element e in any of

Ti’s output sets, let PTi
(e) be minimal provenance for e with respect to Ti. Consider

any output element o. Workflow provenance PW (o) is minimal for o with respect to

W . �

Theorem 2.3.6 (Preservation of Weak Correctness) Let W be a workflow

containing transformations T1, . . . , Tn, in which each path contains at most one non-

monotonic transformation. Consider a workflow instance W (I1, . . . , Im) with initial

inputs I1, . . . , Im. For each Ti, and each element e in any of Ti’s output sets, let PTi
(e)

be weakly correct provenance for e with respect to Ti. Consider any output element

o. Workflow provenance PW (o) is weakly correct for o with respect to W . �

Note that the workflow counterexamples (Examples 2.3.1, 2.3.2, 2.3.3) given earlier

are also valid in this more general setting.

2.4 Related Work

Reference [16] contains a notion called why-provenance, which contains all minimal

witnesses (combinations of input elements) that produce a given output element. Our

notion of minimal provenance is a generalization of why-provenance; for the special

case of monotonic transformations, minimal provenance is equal to the union of all

minimal witnesses (Section 2.3.3). In contrast to [22], our work defines notions of

correctness and minimality for provenance that apply to general transformations, not

just relational transformations. Reference [32] defines a notion related to provenance

called causality, which captures not only the input elements that contribute to an

output element, but also a measure of how responsible each input element is for

producing the output element; the major results of [32] are restricted to conjunctive
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queries. Reference [10] considers the provenance of individual attribute values (where-

provenance), while our work focuses on the provenance of data elements.

Reference [44] describes tracking provenance for arbitrary functions by instru-

menting the program binary that implements the function. Since the approach in [44]

involves capturing provenance based on a particular execution path, its definition of

correct provenance may be missing relevant input elements. Also, by analyzing the

properties of workflow provenance, we showed that an execution-based definition of

provenance may include input elements that actually have no impact on the final

output.

Reference [21] considers general transformations, providing a hierarchy of trans-

formation types relevant to provenance; each transformation is placed in the hierarchy

by its creator to make provenance tracing efficient. Provenance in [21] is defined sepa-

rately for each transformation type, while the definitions for provenance given in this

chapter are unified across all transformations. Also, while [21] allows acyclic graphs

of transformations, it does not investigate when properties such as correctness and

minimality carry over from individual transformations to a composite workflow.

2.5 Conclusions

We considered the problem of defining provenance in data-oriented workflows. We

gave a new general definition of provenance, introducing the notions of correctness,

precision, and minimality. After we defined workflow provenance in the intuitive re-

cursive way, we then discussed its theoretical properties, identifying when the prove-

nance properties of correctness, minimality, and weak correctness carry over from

individual transformations to the workflow as a whole.



Chapter 3

Generalized Map and Reduce

Workflows

3.1 Introduction

A special case of data-oriented workflows is what we refer to as generalized map and

reduce workflows (GMRWs), in which all transformations are either map or reduce

functions [8, 24]. Our setting is more general than conventional MapReduce jobs,

which have just one map function followed by one reduce function; rather we consider

any acyclic graph of map and reduce functions.

In this chapter, we explore data provenance for forward and backward tracing

in GMRWs. In particular, we will see that the special case of workflows where all

transformations are map or reduce functions allows us to capture and exploit prove-

nance more easily and efficiently than for general data-oriented workflows. We will

also see that provenance can be captured for both map and reduce functions trans-

parently using wrappers in Hadoop [8], a popular open-source implementation of the

MapReduce framework.

Although map and reduce functions as data transformations have become increas-

ingly popular, we are unaware of any work that focuses specifically on provenance

for GMRWs. Here we explore the overhead of provenance capture and the cost of

34
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provenance tracing. Our goal is to enable efficient provenance tracing in GMRWs

while keeping the capture overhead low. Overall, our contributions are as follows:

• After establishing foundations specific to this chapter in Section 3.2, in Section 3.3

we show how correct provenance is specified naturally for individual map and

reduce functions. We then identify properties that hold for workflow provenance

in a GMRW.

• Section 3.4 describes how correct provenance can be captured and stored during

workflow execution, and it specifies backward and forward tracing procedures

using the captured provenance.

• We have built a system called RAMP (Reduce And Map Provenance) implementing

the concepts in this chapter. In Section 3.5, we report some performance results

using RAMP on the time and space overhead of capturing provenance, and on the

cost of provenance tracing.

• Sections 3.2-3.5 apply to arbitrary GMRWs. However, optimizations may be

applied for transformations and workflows with certain properties, discussed in

Section 3.6.

In Section 3.7 we discuss related work, and we conclude in Section 3.8.

3.1.1 Running Example

As a simplified example GMRW that serves primarily to illustrate our definitions and

techniques, consider the workflow shown in Figure 3.1, used to gauge public opinion

on movies. The inputs to the workflow are data sets Tweets and Diggs, containing

user postings collected from Twitter and Digg, respectively. (Note we consider batch

processing of data sets, not continuous stream processing.) The workflow involves

the following transformations:

• Map functions TweetScan and DiggScan analyze the postings in data sets

Tweets and Diggs, looking for postings that contain a single movie title and one

or more positive or negative adjectives. For each such posting, a key-value pair is

emitted to TwitterMovies (TM) or DiggMovies (DM), where the key is the title of
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Figure 3.1: Movie sentiment workflow example.

the movie, and the value is a rating between 1 and 10 based on the combination

of adjectives appearing.

• Reduce function Aggregate computes the number of ratings and the median

rating for each movie title, producing data set AggMovies (AM).

• Map function Filter copies to GoodMovies those movies with at least 1000 ratings

and a median rating of 6 or higher, and copies to BadMovies those movies with at

least 1000 ratings and a median rating of 5 or lower.

As a simple example of how provenance might be useful in this workflow, suppose

we are surprised to see that Twilight is in GoodMovies. Tracing provenance back one

level to AggMovies, we see that Twilight has a median rating of 9, with over 1000

ratings. Further tracing provenance all the way back to the original postings, we

sample usernames of Twilight fans. By reading other postings by these fans, we infer

that teenage girls in particular have been flooding social media sites with raves for

Twilight.

3.2 GMRW Transformations

Recall our foundational definitions for data-oriented workflows introduced in Chap-

ter 2. In generalized map and reduce workflows, we follow the same formalism, but

we specialize to two types of transformations: map functions and reduce functions.

Section 3.2.1 formalizes map and reduce functions with just one input set and one

output set. Section 3.2.2 then introduces two more transformation types, union and

split, which are needed to handle map and reduce functions with multiple input and

output sets.
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3.2.1 Map and Reduce Functions

Map Functions. As in the MapReduce framework, a map function M produces

zero or more output elements independently for each element in its input set I:

M(I) =
⋃

i∈I M({i}). In practice, programmers in the MapReduce framework are not

prevented from writing map functions that buffer the input or otherwise use “side-

effect” temporary storage, resulting in behavior that violates this pure definition of a

map function. In our work, we assume pure map functions.

Reduce Functions. A reduce function R takes an input data set I in which each

element is a key-value pair, and returns zero or more output elements independently

for each group of elements in I with the same key: Let k1, . . . , kn be all of the distinct

keys in I. Then R(I) =
⋃

1≤j≤n R(Gj), where each Gj consists of all key-value pairs

in I with key kj. Similar to map functions, we consider only pure reduce functions,

i.e., those satisfying this definition. In the remainder of the chapter, we use G1, .., Gn

to denote the key-based groups of a reduce function’s input set I.

Transformation Properties

We now list some properties for GMRW transformations that are relevant for prove-

nance.

Deterministic Functions. We assume that all functions are deterministic: Each

map and reduce function returns the same output set when given the same input set.

Again, programmers in the MapReduce framework are not prevented from creating

nondeterministic functions, but we assume determinism in our work.

Multiplicity for Map Functions. We say that a map function M is one-one if for

any input set I, each element in I produces at most one output element: For all i ∈ I,

|M({i})| ≤ 1. Otherwise, the map function is one-many. (Note all map functions

satisfy the definition of one-many transformations given earlier in Definition 2.3.3,

assuming each output element is assigned a unique ID. By assigning unique IDs, we

can assume that the output set contains no duplicates.) In our running example,

TweetScan, DiggScan, and Filter are all one-one.
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Multiplicity for Reduce Functions. We say that a reduce function R is many-

one if for any input set I, each key-based group Gj of I returns at most one output

element: |R(Gj)| ≤ 1. Otherwise, the reduce function is many-many. (Note that in

the context of GMRWs, we define many-one reduce functions based on the key-based

groups. Thus our usage of the term many-one in this chapter is somewhat specialized

over the term as introduced for general transformations in Definition 2.3.4.) In our

running example, Aggregate is many-one.

Monotonicity. Recall that a transformation T is monotonic if for any input sets

I and I ′, if I ⊆ I ′, then T (I) ⊆ T (I ′) (Definition 2.3.2). Note that map functions

are always monotonic, but some reduce functions are nonmonotonic. In our running

example, Aggregate is nonmonotonic. An example of a monotonic reduce function

is one that simply returns the key for all groups above a certain size.

3.2.2 Union and Split Transformations

So far we have assumed map and reduce functions have a single input data set and

single output data set. In practice, functions in the MapReduce framework can have

multiple input data sets, but logically they union their input sets and then perform

the function. Similarly, a map or reduce function with multiple output sets is logically

equivalent to a function that outputs one large set, then splits it into multiple separate

output sets. For our formal analysis in the next section, it is preferable to model all

map and reduce functions as single-input and single-output. Thus, we logically add

union and split transformations to GMRWs, without changing workflow behavior.

A union transformation takes input data sets I1, . . . , Im and creates output set

O = I1 ∪ . . . ∪ Im. A split transformation takes input set I and creates output sets

O1, .., Or, with O1 ∪ . . . ∪ Or = I, and Oi ∩ Oj = ∅ for i 6= j. For split, we assume

that output sets are both deterministic and context-independent, i.e., each i ∈ I is in

the same Ok regardless of other elements in I.

We assume all of our data sets have unique identifiers for all elements. We further

assume identifiers are made globally unique, so ∪ in the above definitions is always
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Figure 3.2: Movie workflow example with union and split.

disjoint union. Figure 3.2 adds union and split transformations to our running exam-

ple.

3.3 Provenance in GMRWs

For each transformation type in GMRWs, there is a natural way to specify correct

provenance:

• Map Provenance. Given a map function M , the provenance of an output ele-

ment o ∈M(I) is the input element i that produced o, i.e., o ∈M({i}).

• Reduce Provenance. Given a reduce function R, the provenance of an output

element o ∈ R(I) is the group Gj ⊆ I that produced o, i.e., o ∈ R(Gj).

• Union Provenance. Given a union transformation U , the provenance of an

output element o ∈ U(I1, . . . , Im) = I1 ∪ . . . ∪ Im is the corresponding input

element i in some Ik, where i = o. (Recall from Section 3.2.2 that ∪ is guaranteed

to be a disjoint union.)

• Split Provenance. Given a split transformation S where S(I) = (O1, . . . , Or)

and I = O1 ∪ . . . ∪ Or, the provenance of an output element o ∈ Ok is the

corresponding element i ∈ I, where i = o.

Above, we defined the provenance of a single element o for each type of transformation.

We can also define the provenance of an output subset O∗ ⊆ O.

Definition 3.3.1 (Provenance of Output Subset) Consider a transformation

instance O = T (I). For any output element o ∈ O, let P (o) be the provenance

of o. Consider output subset O∗ ⊆ O. The provenance of output subset O∗ is

P (O∗) =
⋃

o∈O∗ P (o). �
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The provenance of an output subset O∗ ⊆ O is simply the union of the provenance

for all elements o ∈ O∗.

We can verify easily that each of the natural provenance specifications given above

for map, reduce, union, and split guarantee correct provenance according to Defini-

tion 2.2.4. Furthermore, the provenance specifications for map, union, and split are

all minimal according to Definition 2.2.6. However, reduce provenance is not always

minimal, as shown by the following example.

Example 3.3.1 Consider a reduce function MovieAgg with input data

set SalesData containing movie-sales pairs: SalesData(movie, sales) =

{(Inception, 10), (Twilight, 20), (Twilight, 0)}. Transformation MovieAgg

sums the sales for each movie, producing output set MovieSales =

{(Inception, 10), (Twilight, 20)}. The reduce provenance specified for output

element o = (Twilight, 20) is the group {(Twilight, 20), (Twilight, 0)}. However, the

minimal provenance of o is simply {(Twilight, 20)}, since input element (Twilight, 0)

has no impact on the presence or absence of o. �

Now suppose that correct provenance has been specified for each transformation in

a GMRW as above. In Section 2.3, we provided a general definition of workflow

provenance based on transformation provenance (Definition 2.3.1), and that same

definition applies to GMRWs. We then identified when workflow provenance as de-

fined in Definition 2.3.1 is guaranteed to be correct, minimal, or weakly correct. There

are many GMRWs in which workflow provenance is not guaranteed to satisfy any of

these properties, since even weak correctness is only guaranteed when the workflow

contains at most one nonmonotonic transformation (Theorem 2.3.6). But there is an

even weaker property that we can guarantee for a large class of GMRWs that can

still be useful for debugging. Here we consider when workflow provenance in GMRWs

satisfies the following “replay” property.

Property 3.3.1 (Replay Property) Consider an output element o, and let

PW (o) = (I∗1 , . . . , I
∗
m) be the workflow provenance of o in workflow W as defined

in Definition 2.3.1, using the definitions of transformation provenance at the start of
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Figure 3.3: Modified movie workflow example with ill-behaved provenance.

this section. If we run I∗1 , . . . , I
∗
m through W , denoted W (I∗1 , . . . , I

∗
m), then o is part

of the result: o ∈ W (I∗1 , . . . , I
∗
m). �

Note that the replay property is a weaker property than weak correctness (Defi-

nition 2.3.9), which further requires that for all 〈I ′1, . . . , I
′
m〉 such that I∗1 ⊆ I ′1 ⊆

I1, . . . , I
∗
m ⊆ I ′m ⊆ Im, o ∈ W (I ′1, . . . , I

′
m). The replay property holds for our running

example and for a very large class of GMRWs, but even the replay property does not

hold for all GMRWs. Suppose our running example is changed in the following two

ways (shown in Figure 3.3):

• TweetScan may output more than one element when a tweet discusses multiple

movies, i.e., TweetScan is now one-many.

• Output GoodMovies (GM) is input to an additional reduce functionCountByRat-

ing, which emits the number of movies for each good median rating 6–10.

Using the modified workflow, here is a scenario where the replay property does not

hold. Suppose Tweets consists of three tweets: tweet t1 produces ratings (Inception,8)

and (Twilight,8); tweet t2 produces rating (Twilight,2); tweet t3 produces rating (Twi-

light,5). Let Diggs be empty. Dropping the 1000 ratings requirement, for these input

data sets, output RatingCount contains (rating:8,count:1) based on Inception with

median rating 8, while output BadMovies contains (Twilight) with median rating 5.

For the output element o = (rating:8,count:1) in RatingCount, o’s workflow prove-

nance is PW (o) = {t1}, which contains all of the elements in Tweets related to those

movies with a median rating of 8 (just Inception). However, suppose we reran the

workflow on o’s provenance, i.e., using tweet t1 only. The result in output Rating-

Count is the “incorrect” value (rating:8,count:2). Only one of the three ratings for

Twilight is used, therefore its median is also computed as 8. In terms of our formalism,

o /∈ W (PW (o)).
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Let us try to understand what characteristics of the example workflow caused

the replay property to be violated. When TweetScan is rerun on PW (o) = {t1},

it produces two elements: (Inception,8) and (Twilight,8). When reduce function

Aggregate is run on the two elements produced by tweet t1, the correct median

(Inception,8) is produced, but so is incorrect median (Twilight,8), since not all data

for Twilight is being processed by the workflow. The incorrect median wouldn’t

be harmful on its own, but when it is combined with the correct median in the

CountByRating transformation, an incorrect output is produced. Note that if

either reduce function Aggregate or CountByRating were monotonic, the problem

would not have occurred: If Aggregate were monotonic, it could not produce an

incorrect output value, since it is operating on a subset of the correct input. If

CountByRating were monotonic, then extra input could only create additional

output, not eliminate the correct output.

It turns out that the specific pattern of three (or more) transformations with

certain properties, as exhibited by the above example, is the only case in which

rerunning a GMRW on the provenance of an output element o is not guaranteed to

produce o. In fact, for the replay property o ∈ W (I∗1 , . . . , I
∗
m) to be violated, the

one-many map or many-many reduce function must precede the two nonmonotonic

reduce functions in the workflow.

Theorem 3.3.1 Consider a GMRW W composed of transformations T1, . . . , Tn,

with initial inputs I1, . . . , Im. Let o be any output element, and consider PW (o) =

(I∗1 , . . . , I
∗
m).

1. If all map and reduce functions in W are one-one or many-one, respectively,

then o = W (I∗1 , . . . , I
∗
m). (Note this result is stronger than the general o ∈

W (I∗1 , . . . , I
∗
m).)

2. If there is at most one nonmonotonic reduce function in W , then o ∈

W (I∗1 , . . . , I
∗
m). �

The proof for Part 2 follows directly from the preservation of weak correctness (The-

orem 2.3.6), since W has at most one nonmonotonic transformation. We now prove

Part 1. We actually prove a stronger property: Let O be the output of W and let
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o1, . . . , on be elements of O. Then W (PW ({o1, ..., on})) = {o1, ..., on}. The proof is by

induction on the structure of W .

Base case W = M where M is a map function. By definition, PM({o1, ..., on}) =⋃n

j=1(PM(oj)). For j = 1..n, PM(oj) = {ij} such that M({ij}) = {oj}. By the

definition of map functions, and since M is one-one, M({i1, ..., in}) =
⋃n

j=1(M(ij)) =

{o1, ..., on}.

Base case W = R where R is a reduce function. By definition, PR({o1, ..., on}) =⋃n

j=1(PR(oj)). For j = 1..n, PR(oj) = Gj such that R(Gj) = {oj}. By the definition

of reduce functions, and since R is many-one, R(G1 ∪ . . . ∪ Gn) =
⋃n

j=1(R(Gj)) =

{o1, ..., on}.

Base case W = U where U is a union transformation. U has input data sets

I1, . . . , Im. By definition, PU({o1, ..., on}) =
⋃n

j=1(PU(oj)). For j = 1..n, PU(oj) =

{ij} where ij is the element in some Ik that corresponds to oj. For any set I that

combines subsets of U ’s input sets I1, . . . , Im, let U(I) denote U(I ′1, . . . , I
′
m), where

each I ′k = I ∩ Ik. Then U({ij}) = {oj}. By the definition of union transformations,

U({i1, ..., in}) =
⋃n

j=1(U({ij})) = {o1, ..., on}.

Base case W = S where S is a split transformation. S has output sets O1, . . . , Or.

By definition, PS({o1, ..., on}) =
⋃n

j=1(PS(oj)). For j = 1..n, oj is in some Ok, and

PS(oj) = {ij} such that S({ij}) = O′
1, . . . , O

′
r, where O

′
k = {oj} and O′

h = ∅ for h 6= k.

Since split transformations are context-independent on each element (Section 3.2.2),

S({i1, ..., in}) =
⋃n

j=1(S({ij})) = {o1, ..., on}.

Now suppose workflows W ′
1, . . . ,W

′
p satisfy the inductive hypothesis:

W ′(PW ′({o1, ..., on})) = {o1, ..., on} for any o1, ..., on in the output of W ′. Consider an

additional transformation T and the workflow W that is constructed by making the

outputs of W ′
1, . . . ,W

′
p the inputs of T . (For all T other than union transformations,

p = 1.) We use ◦ for workflow composition.

Map: Suppose W = W ′ ◦ M . Let PM({o1, ..., on}) = {o′1, ..., o
′
n}. Since M is

one-one, by the definitions of map provenance and map functions, M({o′1, ..., o
′
n}) =

{o1, ..., on}. By the inductive hypothesis, W ′(PW ′({o′1, ..., o
′
n})) = {o

′
1, ..., o

′
n}. Thus,

W (PW ({o1, ..., on})) = {o1, ..., on}.

Reduce: Suppose W = W ′ ◦R. Let PR({o1, ..., on}) = (G1 ∪ ... ∪Gn), where each
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group Gj produces oj. Since R is many-one, by the definitions of reduce provenance

and reduce functions, R(G1 ∪ ... ∪ Gn) = {o1, ..., on}. By the inductive hypothesis,

W ′(PW ′(G1 ∪ . . . ∪Gn)) = G1 ∪ . . . ∪Gn. Thus W (PW ({o1, ..., on})) = {o1, ..., on}.

Union: Suppose W is composed of W ′
1, . . . ,W

′
p followed by U . U has input data

sets IU1 , . . . , I
U
p . Let PU({o1, ..., on}) = {o

′
1, ..., o

′
n}. For any set I that combines subsets

of U ’s input sets IU1 , . . . , I
U
p , let U(I) denote U(I ′1, . . . , I

′
p), where each I ′k = I ∩ IUk .

By the definitions of union provenance and union transformations, U({o′1, ..., o
′
n}) =

{o1, ..., on}. By the inductive hypothesis, W ′(PW ′({o′1, ..., o
′
n})) = {o

′
1, ..., o

′
n}. Thus,

W (PW ({o1, ..., on})) = {o1, ..., on}.

Split: Suppose W = W ′ ◦ S. S has output sets O1, . . . , Or. Let PS({o1, ..., on}) =

{o′1, ..., o
′
n}. By the definitions of split provenance and split transformations,

S({o′1, ..., o
′
n}) = O′

1, . . . , O
′
r, where O′

1 ∪ . . . ∪ O′
r = {o1, ..., on}. By the induc-

tive hypothesis, W ′(PW ′({o′1, ..., o
′
n})) = {o′1, ..., o

′
n}. Thus, W (PW ({o1, ..., on})) =

{o1, ..., on}. �

For workflows not satisfying Theorem 3.3.1, workflow provenance as defined in

Definition 2.3.1 might still be useful for debugging. However, we believe it is important

to be able to rerun a workflow on an output element’s provenance—and get the output

element in the result—as part of the use of provenance for debugging purposes.1 In

the GMRW context, we can automatically augment any ill-behaved workflow W with

extra filters that ensure o ∈ W (PW (o)) for any output element o. This result is

formalized in the following Corollary.

Corollary 3.3.1 Consider a GMRW W composed of transformations T1, . . . , Tn,

with initial inputs I1, . . . , Im. Let o be any output element, and consider PW (o) =

(I∗1 , . . . , I
∗
m). Let W ∗ be constructed from W by replacing all nonmonotonic reduce

functions Tj with Tj ◦σj, where σj is a filter that removes all elements from the output

of Tj that were not in the output of Tj when W (I1, . . . , Im) was run originally.2 Then

o ∈ W ∗(PW (o)).

1Provenance-based selective refresh, comprised of backward tracing followed by forward prop-
agation, requires a similar property. In Chapter 4 our approach to selective refresh for arbitrary
workflows would deem this example workflow “unsafe” and disallow it.

2We assume all intermediate/output data sets have been stored for provenance-tracing purposes;
see Section 3.4.
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The proof of this Corollary involves two lemmas.

Lemma 3.3.1 Consider a GMRW W with output O. Suppose there are no

nonmonotonic reduce functions in W . Let o1, . . . , on be elements of O. Then

W (PW ({o1, ..., on})) ⊇ {o1, ..., on}.

Proof of Lemma 3.3.1 By induction on the structure of W .

Base case W = M where M is a map function. By definition, PM({o1, ..., on}) =⋃n

j=1(PM(oj)). For j = 1..n, PM(oj) = {ij} such that oj ∈M({ij}). By the definition

of map functions, M({i1, ..., in}) =
⋃n

j=1(M(ij)) ⊇ {o1, ..., on}.

Base case W = R where R is a reduce function. By definition, PR({o1, ..., on}) =⋃n

j=1(PR(oj)). For j = 1..n, PR(oj) = Gj such that oj ∈ R(Gj). By the definition of

reduce functions, R(G1 ∪ . . . ∪Gn) =
⋃n

j=1(R(Gj)) ⊇ {o1, ..., on}.

Base case W = U where U is a union transformation. U has input data sets

I1, . . . , Im. By definition, PU({o1, ..., on}) =
⋃n

j=1(PU(oj)). For j = 1..n, PU(oj) =

{ij} where ij is the element in some Ik that corresponds to oj. For any set I that

combines subsets of U ’s input sets I1, . . . , Im, let U(I) denote U(I ′1, . . . , I
′
m), where

each I ′k = I ∩ Ik. Then U({ij}) = {oj}. By the definition of union transformations,

U({i1, ..., in}) =
⋃n

j=1(U({ij})) = {o1, ..., on}.

Base case W = S where S is a split transformation. S has output sets O1, . . . , Or.

By definition, PS({o1, ..., on}) =
⋃n

j=1(PS(oj)). For j = 1..n, oj is in some Ok.

PS(oj) = {ij} such that S({ij}) = O′
1, . . . , O

′
r, where O′

k = {oj} and O′
h = ∅

for h 6= k. Since split transformations are context-independent on each element,

S({i1, ..., in}) =
⋃n

j=1(S({ij})) = {o1, ..., on}.

Now suppose workflows W ′
1, . . . ,W

′
p satisfy the inductive hypothesis:

W ′(PW ′({o1, ..., on})) ⊇ {o1, ..., on} for any o1, ..., on in the output of W ′. Consider

an additional transformation T and the workflow W that is constructed by making

the outputs of W ′
1, . . . ,W

′
p the inputs of T .

Map: Suppose W = W ′ ◦ M . Let PM({o1, ..., on}) = {o′1, ..., o
′
n}. By the def-

initions of map provenance and map functions, if I ′ ⊇ {o′1, ..., o
′
n}, then M(I ′) ⊇

{o1, ..., on}. By the inductive hypothesis, W ′(PW ′({o′1, ..., o
′
n})) ⊇ {o

′
1, ..., o

′
n}. Thus,

W (PW ({o1, ..., on})) ⊇ {o1, ..., on}.
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Reduce: Suppose W = W ′ ◦R. Let PR({o1, ..., on}) = (G1 ∪ ... ∪Gn), where each

group Gj produces oj. Since R is monotonic, if I ′ ⊇ G1 ∪ ... ∪ Gn, then R(I ′) ⊇

{o1, ..., on}. By the inductive hypothesis, W ′(PW ′(G1 ∪ . . . ∪ Gn)) ⊇ G1 ∪ . . . ∪ Gn.

Thus W (PW ({o1, ..., on})) ⊇ {o1, ..., on}.

Union: Suppose W is composed of W ′
1, . . . ,W

′
p followed by U . U has input

data sets IU1 , . . . , I
U
p . Let PU({o1, ..., on}) = {o′1, ..., o

′
n}. For any set I that com-

bines subsets of U ’s input sets IU1 , . . . , I
U
p , let U(I) denote U(I ′1, . . . , I

′
p), where

each I ′k = I ∩ IUk . By the definitions of union provenance and union transforma-

tions, if I ′ ⊇ {o′1, ..., o
′
n}, then U(I ′) ⊇ {o1, ..., on}. By the inductive hypothesis,

W ′(PW ′({o′1, ..., o
′
n})) ⊇ {o

′
1, ..., o

′
n}. Thus, W (PW ({o1, ..., on})) ⊇ {o1, ..., on}.

Split: Suppose W = W ′ ◦ S. S has output sets O1, . . . , Or. Let PS({o1, ..., on}) =

{o′1, ..., o
′
n}. By the definitions of split provenance and split transformations, if

I ′ ⊇ {o′1, ..., o
′
n}, then S(I ′) = O′

1, . . . , O
′
r where O

′
1∪ . . .∪O

′
r ⊇ {o1, ..., on}. By the in-

ductive hypothesis, W ′(PW ′({o′1, ..., o
′
n})) ⊇ {o

′
1, ..., o

′
n}. Thus, W (PW ({o1, ..., on})) ⊇

{o1, ..., on}. �

Lemma 3.3.2 Consider a GMRW W with output O. Suppose there are no

nonmonotonic reduce functions in W . Let o1, . . . , on be elements of O. Then

W (PW ({o1, ..., on})) ⊆ O.

Proof of Lemma 3.3.2 By induction on the structure of W .

Base case W = M where M is a map function. Let M have input set I and

output set O. Let PM({o1, ..., on}) = {i1, ..., in}. By the definition of map functions,

{i1, ..., in} ⊆ I, and M({i1, ..., in}) ⊆M(I) = O.

Base case W = R where R is a reduce function. Let R have input set I and output

set O. By definition, PR({o1, ..., on}) =
⋃n

j=1(PR(oj)). For j = 1..n, PR(oj) = Gj such

that Gj ⊆ I. Since R is monotonic and G1∪. . .∪Gn ⊆ I, R(G1∪. . .∪Gn) ⊆ R(I) = O.

Base case W = U where U is a union transformation. U has input data sets

I1, . . . , Im. By definition, PU({o1, ..., on}) =
⋃n

j=1(PU(oj)). For j = 1..n, PU(oj) =

{ij} where ij is the element in some Ik that corresponds to oj. For any set I that

combines subsets of U ’s input sets I1, . . . , Im, let U(I) denote U(I ′1, . . . , I
′
m), where

each I ′k = I ∩ Ik. Then U({ij}) = {oj}. By the definition of union transformations,
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U({i1, ..., in}) =
⋃n

j=1(U({ij})) = {o1, ..., on} ⊆ O.

Base case W = S where S is a split transformation. S has output sets O1, . . . , Or.

By definition, PS({o1, ..., on}) =
⋃n

j=1(PS(oj)). For j = 1..n, oj is in some Ok.

PS(oj) = {ij} such that S({ij}) = O′
1, . . . , O

′
r, where O′

k = {oj} and O′
h = ∅

for h 6= k. Since split transformations are context-independent on each element,

S({i1, ..., in}) =
⋃n

j=1(S({ij})) = {o1, ..., on} ⊆ O.

Now suppose workflows W ′
1, . . . ,W

′
p satisfy the inductive hypothesis:

W ′(PW ′({o1, ..., on})) ⊆ O′ for any o1, ..., on in O′, where O′ is the output of

W ′. Consider an additional transformation T and the workflow W that is

constructed by making the outputs of W ′
1, . . . ,W

′
p the inputs of T .

Map: Suppose W = W ′ ◦M . Let PM({o1, ..., on}) = {o
′
1, ..., o

′
n}. By the definition

of map provenance, {o′1, ..., o
′
n} ⊆ O′. Let O∗ denote W ′(PW ′({o′1, ..., o

′
n})). By the

inductive hypothesis, O∗ ⊆ O′. By the definition of map functions, since O∗ ⊆ O′,

M(O∗) ⊆M(O′) = O. Thus, W (PW ({o1, ..., on})) ⊆ O.

Reduce: Suppose W = W ′ ◦R. Let PR({o1, ..., on}) = (G1 ∪ ... ∪Gn), where each

group Gj produces oj. By the definition of reduce provenance, G1 ∪ . . . ∪ Gn ⊆ O′.

Let O∗ denote W ′(PW ′(G1 ∪ . . .∪Gn)). By the inductive hypothesis, O∗ ⊆ O′. Since

R is monotonic and O∗ ⊆ O′, R(O∗) ⊆ R(O′) = O. Thus, W (PW ({o1, ..., on})) ⊆ O.

Union: Suppose W is composed of W ′
1, . . . ,W

′
p followed by U . U has input

data sets IU1 , . . . , I
U
p . Let PU({o1, ..., on}) = {o′1, ..., o

′
n}. By the definition of union

provenance, {o′1, ..., o
′
n} ⊆ O′. For any set I that combines subsets of U ’s input

sets IU1 , . . . , I
U
p , let U(I) denote U(I ′1, . . . , I

′
p), where each I ′k = I ∩ IUk . Let O∗

denote W ′(PW ′({o′1, ..., o
′
n})). By the inductive hypothesis, O∗ ⊆ O′. By the def-

inition of union transformations, since O∗ ⊆ O′, U(O∗) ⊆ U(O′) = O. Thus,

W (PW ({o1, ..., on})) ⊆ O.

Split: Suppose W = W ′ ◦ S. S has output sets O1, . . . , Or. Let PS({o1, ..., on}) =

{o′1, ..., o
′
n}. By the definition of split provenance, {o′1, ..., o

′
n} ⊆ O′. Let O∗ denote

W ′(PW ′({o′1, ..., o
′
n})). By the inductive hypothesis, O∗ ⊆ O′. By the definition

of O′, S(O′) = O1, . . . , Or. Let S(O∗) = O∗
1, . . . , O

∗
r . By the definition of split

transformations, since O∗ ⊆ O′, each O∗
j ⊆ Oj. Thus, W (PW ({o1, ..., on})) ⊆ O. �
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Proof of Corollary 3.3.1 We prove a stronger property: Let O be the output of

W and let o1, ..., on be elements of O. Then O ⊇ W ∗(PW ({o1, ..., on})) ⊇ {o1, ..., on}.

This property clearly implies the corollary. The proof is by induction on the structure

ofW . The base case and inductive step proofs follow directly from the analogous cases

in Lemmas 3.3.1 and 3.3.2, with the exceptions of nonmonotonic reduce functions.

Base case W = R where R is a nonmonotonic reduce function. By definition,

PR({o1, ..., on}) =
⋃n

j=1(PR(oj)). For j = 1..n, PR(oj) = Gj such that oj ∈ R(Gj). By

the definition of reduce functions, R(G1∪ . . .∪Gn) =
⋃n

j=1(R(Gj)) ⊇ {o1, ..., on}. Let

σR be the filter associated with R. Since {o1, . . . , on} ⊆ O, no element in {o1, . . . , on}

is removed by σR. Thus, σR(R(G1 ∪ . . . ∪ Gn)) ⊇ {o1, ..., on}. Since σR filters only

elements not in O, O ⊇ (R ◦ σR)(G1 ∪ . . . ∪Gn).

Inductive step for Reduce: Suppose W = W ′ ◦ R where R is nonmonotonic. Let

PR({o1, ..., on}) = (G1 ∪ ... ∪ Gn), where each group Gj produces oj. Let O∗ denote

W ′∗(PW ′(G1 ∪ . . . ∪ Gn). Let O′ be the output of W ′. By the inductive hypothesis,

O′ ⊇ O∗ ⊇ (G1 ∪ . . . ∪Gn).

By the definition of reduce provenance, each group Gj is equal to the set of all

elements in O′ with Gj’s key. Since Gj ⊆ O∗ ⊆ O′, there cannot be any element in

O∗ −Gj that has Gj’s key. Thus, each group Gj is equal to the set of all elements in

O∗ with Gj’s key. R(O∗) ⊇
⋃n

j=1 R(Gj) ⊇ {o1, . . . , on}. Let σR be the filter associated

with R. Since {o1, . . . , on} ⊆ O, no element in {o1, . . . , on} is removed by σR. Thus,

W ∗(PW ({o1, ..., on})) ⊇ {o1, ..., on}. Since σR is the final step of W ∗, and σR filters

only elements not in O, O ⊇ W ∗(PW ({o1, ..., on})). �

3.4 Provenance Capture & Tracing

For now let us assume that all input, intermediate, and output data sets are persis-

tent. We also assume all data is stored in files, so (file, offset) can be used as a globally

unique identifier (ID) and locator for any data element. To capture the provenance

specified in Section 3.3, for map functions we add to each output data element the

unique ID for the input element that generated it. For reduce functions, we add to
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each output element a list of IDs for the input elements whose grouping key corre-

sponds to the output element. (If a function has multiple input sets and/or multiple

output sets, the union and split operations we added in Section 3.2.2 for the purposes

of analysis are performed within the function itself.) In a MapReduce framework,

wrapping map and reduce functions automatically to emit these extra fields during

execution is a relatively straightforward process, as we have demonstrated with our

RAMP system (Section 3.5).

An alternative for reduce functions would be to annotate output elements with

the grouping key, instead of storing explicit IDs for the relevant input elements. (In

fact, the grouping key is frequently preserved in the output of a reduce function any-

way.) This approach would save space compared with the ID approach—particularly

for reduce functions with large “fan-in”—but it would slow down backward tracing

significantly, perhaps mitigated some by building special indexes. In Section 3.5, we

measure the space overhead of storing provenance IDs for our running example.

Now consider backward tracing. The following algorithm returns workflow prove-

nance as defined in Definition 2.3.1.

Algorithm 3.4.1 (Backward Tracing) Consider a GMRW W with initial inputs

I1, . . . , Im. Recursive function backward trace returns the provenance of a set E of

data elements from a single input, intermediate, or output data set:

backward trace(E,W, {I1, . . . , Im}) :

if E ⊆ Ik for 1 ≤ k ≤ m then return E;

else{ T ← transformation that output the set containing E;

E ′ ← input elements to T with (file, offset) in E;

E ′
1, . . . E

′
n ← E ′ partitioned by input sets;

I∗ ← ∅;

for i = 1..n do

I∗ ← I∗∪ backward trace(E ′
i,W, {I1, . . . , Im});

return I∗; }}
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Notice in this algorithm that the only time elements are extracted from a set (con-

struction of E ′ in the fourth line), they are fetched based on their (file, offset) iden-

tifiers, which also serve as a locators.

Now consider forward tracing. The overall algorithm is simply the converse of

backward tracing:

Algorithm 3.4.2 (Forward Tracing) Consider a GMRW W with final outputs

O1, . . . , Or, and any set E of data elements from a single input, intermediate, or

output data set. Algorithm forward trace returns the output elements derived from

any element in E:

forward trace(E,W, {O1, . . . , Or}) :

if E ⊆ Ok for 1 ≤ k ≤ r then return E;

else { T ← transformation that processes E;

E ′ ← output elements from T with ID corresponding

to an element in E;

E ′
1, . . . E

′
n ← E ′ partitioned by output sets;

O∗ ← ∅;

for i = 1..n do

O∗ ← O∗∪ forward trace(E ′
i,W, {O1, . . . , Or});

return O∗;}

Our provenance capture scheme is biased towards backward tracing, which we assume

is a more frequent operation. In the forward tracing process, we are given a set of input

elements whose IDs are their (file, offset) pairs, and we need to find all output elements

containing those IDs. Recall IDs were added to output elements by a wrapped map

or reduce function: a single ID was added to each output element of a map function,

and a list of IDs was added to each output element of a reduce function. Without

auxiliary structures, each forward-tracing step would require a complete scan of the

output data set, so to facilitate forward tracing we recommend building indexes on

the special ID fields.
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3.5 RAMP System

We have built a system called RAMP (Reduce And Map Provenance) for capturing and

tracing provenance in GMRWs. (A further development of this system led by another

author is described in [35].) RAMP is built on top of the open-source MapReduce

framework Hadoop [8], using the Dumbo module [14]. To capture provenance, RAMP

wraps each map and reduce function to store IDs exactly as described in Section

3.4. RAMP’s approach to provenance capture is wrapper-based and transparent to

Hadoop, retaining Hadoop’s parallel execution and fault tolerance.

The high-level structure of the RAMP system is shown in Figure 3.4. The system

has two components: the RAMP Wrapper and the RAMP Tracer. In RAMP, users

execute a GMRW just as if they were using Hadoop with Dumbo: by submitting

a single Dumbo script written in Python containing all of the map() and reduce()

functions in the GMRW. As always, the Dumbo script must also specify the control

flow of the GMRW. The RAMP Wrapper wraps the map() and reduce() functions in

the Dumbo script to capture provenance, creating a new Dumbo script with wrapped

map’() and reduce’() functions to be executed by Hadoop. In RAMP, all input,

intermediate, and output data sets are stored in files, so RAMP uses (file, offset)

as an ID for each data element. After a GMRW is executed, users can trace the

provenance of the output element with ID q by submitting the trace(q) command

to the RAMP Tracer. The RAMP Tracer executes the tracing commands directly

on the provenance stored by the wrapped map’() and reduce’() functions during

GMRW execution.

We present performance experiments conducted using RAMP on the original run-

ning example of this chapter (Figure 3.1), with minor modifications: We use Twitter

data only, and to keep the data sizes large we presume all tweets are discussing

movies—we randomly select a movie title for those that do not contain one.

The cluster we used for our experiments consisted of 4 small Amazon EC2 in-

stances (each with 1.7 GB memory, CPU capacity equivalent to a 1.7 GHz Xeon

processor, 160 GB instance storage, Ubuntu 10.04). One instance served as the mas-

ter Hadoop node, and the other three instances served as slave nodes.
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Hadoop MapReduce Layer 

RAMP Wrapper RAMP Tracer 

Hadoop Distributed FileSystem (HDFS) 
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Figure 3.4: Structure of the RAMP system.

Our performance results are summarized as follows:

• We first measure the time and space overhead of provenance capture, for varying

input data sizes. Overall, on our running example, provenance capture incurs

111% time overhead and 45% space overhead during workflow execution. Details

are reported in Section 3.5.1.

• We then measure the time to backward-trace output elements when provenance

has been captured, for varying input data sizes and varying sizes for the output set

to be traced. Overall, we see that the running time for backward-tracing increases

linearly with respect to both initial input size and tracing set size.

Backward tracing when provenance hasn’t been captured requires rerunning map

and reduce functions, looking for the output elements being traced, similar to the

algorithms in [21]. Although some short-circuiting is possible, running time is pro-

portionate to rerunning the entire workflow. Thus, given the reasonable time and

space overhead of provenance capture, tracing just a small number of output ele-

ments warrants performing capture during workflow execution.
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3.5.1 Performance: Capture

We report time and space overhead associated with capturing provenance. For each

input data size, we ran the sample workflow with and without capturing provenance.

To give the biggest advantage to not capturing provenance, we combined TweetScan

(map) and Aggregate (reduce) into one MapReduce job. When we captured prove-

nance, we separated the two functions so that we could store intermediate data and

capture (file, offset) pairs.

Figure 3.5 reports time overhead. We observe that for 1.2 GB of input data,

provenance capture incurs 111% time overhead (2317s vs. 1097s). Figure 3.6 reports

space overhead, plotting the total amount of data involved in the workflow (input,

intermediate, and output) with and without provenance capture. For 1.2 GB of input

data, provenance capture incurs a 45% space overhead. As a comparison point, we

note that for fault tolerance, people are willing to pay 100% to 200% space overhead

(as well as a time overhead to keep copies up to date). Thus, 45%-111% overhead

during provenance capture seems modest to obtain the benefits of provenance tracing.

A significant source of both time and space overhead when capturing provenance

was due to processing TweetScan andAggregate separately, rather than combining

them into a single MapReduce job as we did for the non-provenance measurements.

Specifically, the intermediate data set between TweetScan and Aggregate com-

prises a large fraction of the space overhead; the remaining overhead is the relatively

compact additional IDs in the other intermediate data set (AM in Figure 3.1) and the

output data. Certainly one obvious optimization is to combine these two functions

even in the provenance-capture case, if provenance involving the intermediate data is

not of interest. In Section 3.6 we briefly discuss function merging as an area of future

work.

3.5.2 Performance: Tracing

We measured the time to backward-trace output elements when provenance has been

captured, for varying input data sizes (Figure 3.7) and varying sizes for the output

set to be traced (Figure 3.8). We found that fetching the final textual tweets in the
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Figure 3.5: Time overhead of provenance capture.
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Figure 3.6: Space overhead of provenance capture.

input data dominated tracing costs, so in both experiments we also measured tracing

time without the final fetches. For our largest input size, tracing one element without

the final fetches took approximately 20 seconds (with fetches took approximately one

minute). Note that even when we trace a single output element, the relevant data

sizes become quite large: In our 1.2GB input set, the average number of movie ratings

for one output element is 200,000. Because we have a fixed number of movies, the

provenance of individual output elements grows linearly with input size, explaining

the linear growth in Figure 3.7. Also, since no output elements share provenance,

the number of lookups during backward tracing depends linearly on tracing set size,

explaining the linear growth in Figure 3.8.

3.6 Optimizations

We have proposed provenance capture and tracing techniques that apply generally to

any workflow composed of map and reduce functions. Our initial implementation has
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Figure 3.7: Time to backward-trace one output element.
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Figure 3.8: Time to backward-trace set of output elements.

chosen a fixed strategy that retains all intermediate data sets, records provenance for

each transformation, and traces provenance transformation-by-transformation.

Clearly there are alternatives and optimizations to our approach for specific GM-

RWs, and for specific provenance capture and tracing needs. The most obvious opti-

mization is to logically “merge” adjacent functions with respect to provenance. When

we logically merge two functions f1 and f2, we no longer store the intermediate data

set between the two functions, and we capture and trace the provenance of f2’s out-

put with respect to f1’s input. In the extreme case, we could logically merge all

functions in a workflow, capturing and storing only provenance between the initial

inputs and the final outputs. There are a variety of possible strategies for merg-

ing transformations. Reference [21] merges transformations based on user-specified

transformation properties and knowledge of how composing transformation properties

impacts tracing performance. In Chapter 5 we will merge transformations when their
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logical provenance specifications can be combined without losing any workflow prove-

nance information. As explored in [21], merging some transformation pairs is natural

and easy, while in other cases merging can incur significant overhead at capture time,

although tracing performance always improves. Also, for some applications, the abil-

ity to trace through intermediate data is considered a feature, e.g., for step-by-step

debugging.

There are other, less sweeping, optimizations that could be explored. For example,

our brute-force storage of (file, offset) IDs in output data sets certainly always works,

but there may be cases where we could compact or streamline provenance storage, or

where we could exploit fields (such as reduce-keys) that are already present, perhaps

building additional indexes for efficient lookups.

3.7 Related Work

There has been tremendous interest recently in high-performance parallel data pro-

cessing specified via map and reduce functions, e.g., [8, 24, 43]. In addition, higher-

level platforms have been built on top of these systems to make data-parallel pro-

gramming easier, e.g., [17, 34, 38]. Regardless of which level they operate on, none

of these systems or frameworks provides explicit functionality or even formal under-

pinnings for provenance. At the same time, although there has been a large body

of work in lineage and provenance (as discussed in Section 1.4), none of this work

considers the specific case of GMRWs, whose special properties and opportunities in

the context of provenance are the focus of this chapter.

Reference [21], which perhaps is most related, provides a hierarchy of transforma-

tion types relevant to provenance; each transformation is placed in the hierarchy by

its creator to make provenance tracing as efficient as possible. Our map and reduce

functions fall into the hierarchy, but they are specific enough that we can capture

provenance automatically using a wrapper-based approach. Also, while [21] allows

acyclic graphs of transformations, it does not investigate behavioral properties when

provenance is traced recursively through them. We show in this chapter that recursive

provenance tracing can yield ill-behaved results in certain subtle cases. Finally, in
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this chapter we considered the overhead incurred gathering extra information during

workflow execution to facilitate provenance tracing, a topic not considered in [21].

3.8 Conclusions

We explored provenance for forward and backward tracing in GMRWs. In particular,

we showed that the special case of workflows where all transformations are map

or reduce functions allows us to capture and exploit provenance more easily and

efficiently than for general data-oriented workflows. We identified properties that hold

for workflow provenance in GMRWs. We described how provenance can be captured

for both map and reduce functions transparently using wrappers in Hadoop. We have

built a prototype system as an extension to Hadoop that supports provenance capture

and tracing, and we reported performance numbers on the overhead of provenance

capture and the cost of provenance tracing.



Chapter 4

Provenance-Based Refresh

4.1 Introduction

Consider a workflow in which the input data sets have been modified since the work-

flow was run, but the workflow has not been rerun on the modified input. In this

chapter we consider the problem of selectively refreshing one or more elements in the

output data, i.e., computing the latest values of particular output elements based

on the modified input data. By exploiting provenance, we can rerun just the rele-

vant computation to refresh the output elements. Our contributions are the follow-

ing:

• In Section 4.2, we present a formal foundation for the refresh problem, and we

introduce provenance predicates. We specify a refresh procedure for single trans-

formations, and we identify the properties of transformations and provenance that

are required for correct refresh.

• In Section 4.3, we extend our formalization and refresh procedure to data-oriented

workflows. We identify an additional workflow property necessary for the “tran-

sitive” workflow refresh procedure to produce correct refreshed data.

• In Sections 4.4 and 4.5, we extend our formalism and algorithms to support

transformation types that were excluded, for presentation development, from Sec-

tions 4.2 and 4.3.

58
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Figure 4.1: Genetic risk workflow example.

• In Section 4.6, we discuss how refresh can still be performed (albeit less efficiently)

in workflows for which the workflow property identified in Section 4.3 does not

hold.

The remainder of this section introduces a running example. In Section 4.7, we discuss

related work, and we conclude in Section 4.8.

4.1.1 Running Example

We present a running example, designed to illustrate challenges and solutions through-

out the chapter. Consider Jen, a genetic counselor who runs a workflow, shown in

Figure 4.1, to calculate her patients’ genetic risk profiles. The workflow’s input data

sets are two lists of URLs: PatientURLs and DNAURLs. PatientURLs point to the

patients’ genetic test results, recording the patients’ DNA sequences at certain DNA

locations. DNAURLs identify XML documents describing disease risks associated with

specific DNA location-sequence combinations. The workflow involves the following

transformations:

• Transformations PatientDL and DNADL download files located at the URLs in

data sets PatientURLs and DNAURLs. They produce directories RawPatientData

(abbreviated RP) and RawDNAData (RD), respectively.

• Transformations PExtract and RiskExtract extract data from the downloaded

files into tables: PatientDNA (PD) has attributes for patient name (name), DNA

location (loc), and DNA sequence (seq). Table DNARisks (DR) has attributes for

DNA location (loc), DNA sequence (seq), disease, and risk.

• Transformation Join joins tables PatientDNA and DNARisks on attributes loc and
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PatientURLs
url

1 genetic.com/dl/00501
2 genetic.com/dl/00502

*3* genetic.com/dl/00503
4 genetic.com/dl/00504

RawPatientData (RP)

file
Bob.xml p: url contains ‘00501’
Carl.xml p: url contains ‘00502’

*Denise.xml* p: url contains ‘00503’
Earl.xml p: url contains ‘00504’

PatientDNA (PD)

name loc seq
1 Bob 1 aaa p: file = ‘Bob.xml’, f : loc = 1
2 Carl 2 ttt p: file = ‘Carl.xml’, f : loc = 2
3 Carl 3 ggg p: file = ‘Carl.xml’, f : loc = 3

*4* Denise 2 aga p: file = ‘Denise.xml’, f : loc = 2
5 Earl 2 ata p: file = ‘Earl.xml’, f : loc = 2
6 Earl 3 gcc p: file = ‘Earl.xml’, f : loc = 3

DNARisks (DR)

loc seq disease risk
1 1 aaa heart 0.6 p: file = ‘1-aaa.xml’

*2* 2 aga heart 0.8 p: file = ‘2-aga.xml’
3 2 ttt liver 0.4 p: file = ‘2-ttt.xml’
4 3 gcc lung 0.7 p: file = ‘3-gcc.xml’

PatientRisks (PR)

name disease risk

1 Bob heart 0.6 pPD: name=‘Bob’ ∧ loc=1 ∧ seq=‘aaa’, pDR: loc=1 ∧ seq=‘aaa’
2 Carl liver 0.4 pPD: name=‘Carl’ ∧ loc=2 ∧ seq=‘ttt’, pDR: loc=2 ∧ seq=‘ttt’

*3* Denise heart 0.8 pPD: name=‘Denise’ ∧ loc=2 ∧ seq=‘aga’, pDR: loc=2 ∧ seq=‘aga’
4 Earl lung 0.7 pPD: name=‘Earl’ ∧ loc=3 ∧ seq=‘gcc’, pDR: loc=3 ∧ seq=‘gcc’

HighPatientRisks

name disease risk
1 Bob heart 0.6 p: name = ‘Bob’ ∧ disease = ‘heart’

*2* Denise heart 0.8 p: name = ‘Denise’ ∧ disease = ‘heart’
3 Earl lung 0.7 p: name = ‘Earl’ ∧ disease = ‘lung’

DNAURLs
url

1 dnarec.com/1/aaa
*2* dnarec.com/2/aga
3 dnarec.com/2/ttt
4 dnarec.com/3/gcc

RawDNAData (RD)

file
1-aaa.xml p: url contains ‘1/aaa’

*2-aga.xml* p: url contains ‘2/aga’
2-ttt.xml p: url contains ‘2/ttt’
3-gcc.xml p: url contains ‘3/gcc’

Figure 4.2: Genetic risk workflow sample data with provenance predicates. (*’s indi-
cate data elements relevant to HighPatientRisks element #2.)
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seq, then projects away the join attributes to produce table PatientRisks (PR) with

attributes name, disease, and risk.

• Transformation Filter selects from PatientRisks those records with risk > 0.5,

producing final output HighPatientRisks.

Figure 4.2 shows sample input data sets along with all intermediate data, and finally

output table HighPatientRisks. (The figure also includes provenance predicates and

forward filters, described in Sections 4.2 and 4.4, respectively.) The starred data

elements are for reference in the following scenario.

Before seeing a patient, Jen refreshes relevant records in table HighPatientRisks.

As an example, we show how our approach efficiently refreshes Denise’s heart disease

record, i.e., element #2 in table HighPatientRisks. There are two main steps:

(1) Backward tracing: To refresh a given output element, provenance predicates

are first used to trace transitively from the output element to its relevant input

elements. Starting with HighPatientRisks element #2, its provenance predicate

enables tracing backward one step to obtain element #3 in table PatientRisks. From

this element, another step is traced backward, resulting in PatientDNA element #4

together with DNARisks element #2. This process continues, to elements Denise.xml

in RawPatientData and 2-aga.xml in RawDNAData, and finally to input elements

PatientURLs #3 and DNAURLs #2. Details of how provenance predicates support

backward tracing in general will be presented in Sections 4.2–4.5.

(2) Forward propagation: Now that the relevant input elements have been found, they

are propagated forward. Transformations PatientDL and DNADL are rerun on

input elements PatientURLs #3 and DNAURLs #2 respectively to download the latest

data from the web. The resulting elements are then sent through transformations

PExtract and RiskExtract. Suppose that when RiskExtract is run on the latest

downloaded data, the risk value for DNARisks element #2 has changed from 0.8 to

0.6. Further forward propagation through transformations Join and Filter sets

Denise’s new heart-disease risk in HighPatientRisks to 0.6. Note if the new value

were ≤ 0.5, then after the Filter transformation Denise’s record would disappear,
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a situation that is also captured by refresh. Details of when forward propagation

works correctly, and how, will be covered in Sections 4.2–4.5.

The remainder of the chapter formalizes the basic building blocks and techniques

demonstrated in this example, covering a wide class of data types, transformations,

and workflows.

4.2 Provenance Predicates and

One-Transformation Refresh

For now, we will consider transformations that take a single data set as input and

produce a single output set; we will generalize to multi-input transformations in Sec-

tion 4.5. (Multi-output transformations do not introduce any interesting challenges

for selective refresh, and are thus omitted.) As in Chapter 2, for any transformation

T and input data set I, we say that the application of T to I resulting in an output

set O, denoted T (I) = O, is an instance of T . As usual, given a transformation in-

stance T (I) = O and an output element o ∈ O, provenance identifies the input data

elements that contributed to o’s derivation.

In this chapter, we consider transformations where correct provenance for each

output data element is obtained by applying a predicate on the input:

Definition 4.2.1 (Provenance Predicates) Consider a transformation instance

T (I) = O. We require that each output element o ∈ O be annotated with a prove-

nance predicate p. The elements of I satisfied by predicate p, i.e., the result of tracing

query σp(I), constitute o’s provenance as specified by predicate p. �

Note that our use of the relational notation σp(I) for tracing queries is for convenience

and familiarity only; data set I need not be a conventional relation. We expect

(and it is natural for) predicates to encode provenance that is correct according to

Definition 2.2.1. Note that predicate p=true, selecting all input elements, is always

correct provenance according to Definition 2.2.1, although usually not minimal.
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Predicates give us a very general notion of provenance. In the GMRW setting

from Chapter 3, we can encode provenance using predicates that select on identifiers

or grouping keys. Provenance for basic relational operators is naturally expressed as

predicates, e.g., for a group-by aggregation operator, provenance predicates select rel-

evant input elements based on grouping value. Most of the numerous transformation

types covered in [21] are amenable to the provenance-predicate approach. In Chapter

5, we will consider logical provenance—provenance specified at the transformation

level. Our logical provenance specifications can be translated to provenance predi-

cates. However, since provenance predicates specify provenance at the element level,

they are more expressive than logical provenance in general.

Formally, we now assume that the output of each transformation instance produces

a set of pairs: T (I) = O = {〈o1, p1〉, . . . , 〈on, pn〉}, combining output elements and

their provenance predicates.

Example 4.2.1 Our running example data in Figure 4.2 includes provenance pred-

icates, denoted p. Table PatientDNA includes additional predicates labeled f , which

will be explained in Section 4.4. Table PatientRisks includes pairs of provenance pred-

icates, since there are two input data sets to its transformation (Section 4.5). All

of the remaining tables have a single provenance predicate for each output element,

according to our definition. In all of them it can be seen easily that the predicate

p associated with each output element o, when applied to the input table for o’s

transformation, produces correct provenance for o. �

In our running example, it happens that provenance predicates always select a

single input element, but this property is not required in our approach. In general,

provenance predicates may select any number of input elements, up to the entire

input data set.

Now that we have formalized provenance, we specify a provenance-based refresh

procedure for single transformations, and we identify two properties of transforma-

tions and their provenance predicates that are required for the procedure to work

correctly.
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Ignoring provenance for a moment, consider refresh for a single transformation T .

Suppose input I has been modified to Inew, and we would like to refresh an output

element o that was produced by T (I). The refreshed value of o should be the element

o′ in T (Inew) that “corresponds” to o, if one exists. (In our work we assume refresh

of a single output element produces either a single refreshed element or no element

at all, but not several elements.) Note that for refresh to even be well-defined, we

need to formalize when an element o′ in T (Inew) corresponds to the element o being

refreshed.

One way to make refresh well-defined is to declare one or more output attributes

as an immutable key. Then, given an output element o in T (I), the refreshed value

of o is the element o′ in T (Inew) with the same key, if one exists.

Example 4.2.2 Consider output directory RawDNAData in Figure 4.2. Intuitively,

the file name is an immutable key. To refresh a file in RawDNAData, we could rerun

transformation DNADL on list DNAURLs, then look for the output file whose file

name matches the file we wish to refresh. �

While immutable keys make for a convenient definition, unfortunately performing

refresh based on immutable keys (without provenance) typically requires full recom-

putation of the output data set in order to find the refreshed element. Our goal is to

avoid unnecessary computation while performing selective refresh.

Consider as an alternative the following refresh procedure based on provenance

predicates. For the remainder of the chapter we assume each transformation T has a

(possibly infinite) input domain IT , specifying T ’s allowable input sets. By giving the

option of a known domain for input sets, we allow more transformations to satisfy

the requirements for the following procedure. Of course in the general case, IT may

be the domain of all possible values.

Procedure 4.2.1 (Provenance-Based Refresh) Consider transformation in-

stance T (I) = O, and suppose input data set I ∈ IT has been modified to Inew ∈ IT .

To refresh an output element 〈o, p〉 ∈ O there are two steps:

1. Backward tracing: Run tracing query σp on Inew to find the subset of Inew asso-

ciated with provenance predicate p.
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2. Forward propagation: Apply T on σp(I
new) to compute the new value 〈o′, p′〉. If

the result is empty, o has no refreshed value. �

Example 4.2.3 Suppose we wish to refresh RawDNAData element 2-aga.xml. In-

stead of rerunning transformation DNADL on the entire input data set as suggested

in Example 4.2.2, Procedure 4.2.1 first finds the provenance of the element being

refreshed: Provenance predicate p (url contains ‘2/aga’) is applied to the input set

DNAURLs to obtain DNAURLs element #2. Next transformation DNADL is applied

to the selected element only, which yields the refreshed RawDNAData element. �

Example 4.2.3 is more efficient than Example 4.2.2, but does Procedure 4.2.1 always

work? We identify two requirements on transformations and provenance predicates

under which it does.

Requirement 4.2.1 (Predicate Correctness) Consider any transformation in-

stance T (I) = O for I ∈ IT , and any 〈o, p〉 ∈ O. Then T (σp(I)) = {〈o, p〉}. �

Note this requirement is stronger than requiring predicates to specify correct prove-

nance; it further requires that applying T to any predicate-based subset of I cannot

yield more than one element. It also implies that no two output elements share

the same predicate. For many-one (and therefore one-one) transformations, this re-

quirement is natural. We will adapt the requirement to also capture many-many

transformations, but for presentation purposes we defer this topic to Section 4.4.

All of the transformations in our running example satisfy Requirement 4.2.1, with

two exceptions: PExtract is a many-many transformation that requires the addi-

tional machinery introduced in Section 4.4, and Join is a multi-input transformation

requiring some (minimal) additional machinery covered in Section 4.5.

The second requirement is more subtle, and more central to our approach:

Requirement 4.2.2 (Predicate as Key) Consider any transformation instance

T (I) = O for I ∈ IT , and any 〈o, p〉 ∈ O. Then for any I ′ ∈ IT , if T (σp(I
′)) 6= ∅, then

T (σp(I
′)) = {〈o′, p〉} for some o′, and 〈o′, p〉 ∈ T (I ′). �
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This requirement intuitively states that when input changes, even if there is a new

value for an old output element based on its new provenance, the provenance predicate

remains unchanged. Not only does this condition enable efficient refresh, it also

identifies what it means for an output element based on new input to be the refreshed

version of an old output element:

Effectively, we are treating provenance predicates as the immutable keys that co-

ordinate new and old values of output elements.

Note that, implicitly, we are defining the correct refreshed values of old output ele-

ments based on our choice of predicates. In our running example, as well as in all

other workflow examples in the thesis, it is natural for transformations to output

provenance predicates such that Requirement 4.2.2 is satisfied, and for provenance

predicates to act as immutable keys.

The following property, which follows directly from Requirement 4.2.1, further

solidifies the key analogy by observing that provenance predicates are unique (under

set semantics) within each output data set:

Property 4.2.1 (Unique Predicates) Consider any transformation instance

T (I) = O for I ∈ IT , and any 〈o, p〉 ∈ O. There is no 〈o′, p〉 ∈ T (I) with o′ 6= o. �

Now let us return to our refresh procedure and see how Requirements 4.2.1 and

4.2.2 guarantee that Procedure 4.2.1 works correctly, under the predicate-as-key ap-

proach. Recall, to refresh an output element 〈o, p〉 ∈ T (I) after input I has been

modified to Inew, Procedure 4.2.1 computes T (σp(I
new)).

• First suppose T (σp(I
new)) produces an empty result. Then there should be

no 〈o′, p〉 in T (Inew), i.e., no new output with provenance predicate p, thus

corresponding to o. If there were such an 〈o′, p〉, then by Requirement 4.2.1,

T (σp(I
new)) = {〈o′, p〉}, contradicting the fact that T (σp(I

new)) is empty.

• Now suppose T (σp(I
new)) is non-empty. Requirement 4.2.2 guarantees that

T (σp(I
new)) = {〈o′, p〉} for some o′, and that 〈o′, p〉 is a valid output element

in T (Inew). Thus, o′ is the refreshed value for o.
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4.3 Refresh for Workflows

Consider any transformations T1 and T2. Each transformation takes a data set from

its domain as input, and it produces as output a data set annotated with provenance

predicates. As usual, the composition T1 ◦ T2 of the two transformations first applies

T1 to an input data set I1 ∈ IT1 to obtain intermediate data set I2. It then applies T2

to the data portion (omitting provenance predicates) of I2 to obtain output data set

O. We assume transformations T1 and T2 are only composed when the data elements

output by T1 are guaranteed to satisfy the input domain of T2.

As usual, with associativity, we can denote the linear composition of n transfor-

mations as T1 ◦ T2 ◦ · · · ◦ Tn. In Section 4.5, we extend our formalism and algorithms

to cover workflows where transformations may have multiple input data sets. (As

mentioned in Section 4.2, transformations with multiple output sets do not introduce

any complexities, and therefore are omitted.) Our running example in Figure 4.1 is a

workflow composed of six transformations, with one of them taking multiple inputs.

Consider a workflow T1 ◦ T2 ◦ . . . ◦ Tn, and consider an instance of this workflow

with input I1 ∈ IT1 . Let Ii+1 = Ti(Ii) for i = 1..n. We assume Ii+1 ∈ ITi+1
for

i = 1..n− 1. The final output data set is In+1. We denote this workflow instance as

(T1 ◦ T2 ◦ . . . ◦ Tn)(I1) = In+1. The following workflow refresh algorithm is a recursive

extension of the single-transformation refresh Procedure 4.2.1.

Algorithm 4.3.1 (Workflow Refresh) Consider a workflow instance

(T1 ◦ T2 ◦ . . . ◦ Tn)(I1) = In+1. Suppose I1 has been modified to Inew1 ∈ IT1 .

Algorithm workflow refresh recursively refreshes output element 〈o, p〉 ∈ Ii+1:

workflow refresh(〈o, p〉 ∈ Ii+1) :

if i = 1 then return T1(σp(I
new
1 ))

else { S = σp(Ii);

S ′ =
⋃

〈o′,p′〉∈S

workflow refresh(〈o′, p′〉 ∈ Ii);

return Ti(S
′) }
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Example 4.3.1 We revisit the original example from Section 4.1.1, now using work-

flow refresh to refresh (Denise,heart,0.8) (element #2) in HighPatientRisks. The else

branch of the algorithm traces backward one step by applying provenance predicate

p (name=‘Denise’ ∧ disease=‘heart’) to table PatientRisks, yielding element #3. This

element is then refreshed recursively: The algorithm traces backward another step

by applying provenance predicates to PatientDNA and DNARisks (requiring our ex-

tension for multi-input transformations; see Section 4.5), yielding elements #4 and

#2 respectively. The recursive refresh continues until the initial transformations Pa-

tientDL and DNADL are reached, for which the if branch selects elements #3 and

#2 from input sets PatientURLs and DNAURLs respectively.

As the recursion unwinds, the algorithm forward propagates each refreshed ele-

ment. Transformations PatientDL and DNADL are run on PatientURLs element

#3 and DNAURLs element #2, yielding refreshed values for elements Denise.xml in

RawPatientData and 2-aga.xml in RawDNAData. PExtract and RiskExtract are

then run on these refreshed elements. Suppose, as in Section 4.1.1, the refreshed

value for DNARisks element #2 now has risk=0.6. After the unwinding recursion

runs Join and Filter on refreshed elements, we finally get the refreshed value of

HighPatientRisks element #2, with Denise’s heart disease risk set to 0.6. �

In Section 4.2 we identified properties of transformations and provenance predi-

cates required for the single-transformation refresh procedure to work correctly. It

turns out that the same properties are not sufficient for the recursive algorithm to

work correctly. As seen in Chapters 2 and 3, even when individual transformations

have correct provenance, workflow provenance is not always guaranteed to be correct,

weakly correct, or even to satisfy the even weaker replay property (Property 3.3.1).

Furthermore, supporting selective refresh requires us to backward trace through old

intermediate data. Thus, it is not surprising that we need to restrict the composition

of transformations and their provenance predicates to ensure correct workflow refresh.

We call this requirement workflow safety.

We first provide intuition for workflow safety, then formalize it. Consider T1 ◦ T2

applied to input I1 ∈ IT1 . Let I2 = T1(I1) and O = T2(I2). Suppose I1 has been

modified to Inew1 ∈ IT1 . Let I
new
2 = T1(I

new
1 ), i.e., Inew2 is what would be produced by
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running transformation T1 on the entire new input set. Consider any element 〈o, p〉

in the original output set O. Safety requires that the set of elements in o’s “new

provenance,” σp(I
new
2 ), is equal to the set obtained by refreshing each element in o’s

“old provenance,” σp(I2).

Requirement 4.3.1 (Workflow Safety) Consider any workflow instance (T1 ◦T2 ◦

. . . ◦ Tn)(I1) = In+1. Every Ti must be safe with respect to Ti−1, i = 2..n, defined as

follows. Consider any I ′i−1 ∈ ITi−1
. Let I ′i = Ti−1(I

′
i−1). For any 〈o, p〉 ∈ Ti(Ii), we

must have
⋃

〈o′,p′〉∈σp(Ii)

Ti−1(σp′(I
′
i−1)) = σp(I

′
i). �

If a workflow instance (T1 ◦T2 ◦ . . . ◦Tn)(I1) = In+1 is safe, then it can be shown that

its workflow provenance is correct. Since the definition of safety must be satisfied for

any I ′i−1 ∈ ITi−1
, while correctness is with respect to a fixed input, safety is a stronger

property than correct workflow provenance.

With extensions to the safety definition to be introduced in Sections 4.4 and 4.5 for

many-many and multi-input transformations, the workflow in our running example

satisfies Requirement 4.3.1. However, there are some reasonable workflows where

safety is not satisfied, as illustrated by the following example.

Example 4.3.2 Consider a workflow T1◦T2 that takes an input set I1 with attributes

salesperson, city, and sales in Euros. T1 converts sales in Euros to sales in Dollars, with

output provenance predicates selecting on salesperson. T2 then sums sales in Dollars

grouped by city, with output provenance predicates selecting on city.

Suppose the original input I1 has two salespeople from Paris, Amelie and Jacques,

selling 10 Euros each. The output I2 of transformation T1 contains (Amelie,Paris,13)

and (Jacques,Paris,13) (at 2010 exchange rates), and the final output is (Paris,26).

Now suppose I1 is modified to Inew1 , with an additional salesperson (Marie,Paris,20).

Safety requires equality of the following two procedures:

1. Compute the provenance of (Paris,26) in intermediate data set I2, then refresh the

resulting values. Predicate city=‘Paris’ applied to I2 yields (Amelie,Paris,13) and

(Jacques,Paris,13); refreshing does not change their values.



CHAPTER 4. PROVENANCE-BASED REFRESH 70

2. Update the intermediate data set to Inew2 = T1(I
new), then compute the prove-

nance of (Paris,26) in Inew2 . Inew2 contains Marie as well as Amelie and Jacques, so

applying predicate city=‘Paris’ gives us a different result from case 1. �

Intuitively, a workflow is unsafe if, in some intermediate data set I, full forward

propagation of modified input would cause “insertions” into a subset of I that com-

prises the provenance of a data element in the next data set. These insertions will be

missed when we perform backward tracing, since we only refresh existing elements in

intermediate data sets.

Provenance predicates for relational transformations typically yield safe workflows,

but aggregation is an example of a transformation that can cause a workflow to be

unsafe, if it is not the first transformation in a workflow, or if groups can grow as a

result of input modifications. In Section 4.6 we discuss one way of handling unsafe

workflows that allows us to retain some of the advantages of selective refresh without

compromising correctness.

We now show that workflow refresh correctly refreshes output elements, when

Requirements 4.2.1, 4.2.2, and 4.3.1 all hold. The argument hinges on the following

theorem.

Theorem 4.3.1 (Recursive Refresh Theorem) Consider a workflow instance

(T1 ◦ T2 ◦ . . . ◦ Tn)(I1) = In+1 satisfying Requirement 4.3.1. Given any element

〈o, p〉 ∈ Ii+1 for i ≥ 1, workflow refresh(〈o, p〉) = Ti(σp(I
new
i )).

Proof. We prove the theorem by induction on i. For the base case of i = 1, con-

sider any 〈o, p〉 ∈ I2 = T1(I1). By the first line (if case) of Algorithm 4.3.1, work-

flow refresh(〈o, p〉 ∈ I2) = T1(σp(I
new
1 )).

Now suppose the theorem holds for i = k − 1, k > 1; we show it holds for i = k.

Consider element 〈o, p〉 ∈ Ik+1. workflow refresh computes the following two sets:

S = σp(Ik) = {〈o1, p1〉 . . . 〈om, pm〉} and S ′ =
⋃

〈oi,pi〉∈S

workflow refresh(〈oi, pi〉). By

the inductive hypothesis, each workflow refresh(〈oi, pi〉) = Tk−1(σpi(I
new
k−1)). Thus,

S ′ =
⋃

〈oi,pi〉∈σp(Ik)

Tk−1(σpi(I
new
k−1)). By Requirement 4.3.1, the right-hand side of the



CHAPTER 4. PROVENANCE-BASED REFRESH 71

last expression is equal to σp(I
new
k ). Since the last line of workflow refresh returns

Tk(S
′), workflow refresh returns Tk(σp(I

new
k )), which completes the proof. �

To understand what the theorem is saying, consider a workflow instance (T1 ◦ T2 ◦

. . . ◦ Tn)(I1) = In+1 and a final output element 〈o, p〉 ∈ In+1. Suppose I1 is updated

to Inew1 . Theorem 4.3.1 says that running workflow refresh on 〈o, p〉 is equivalent to

computing Inewn by pushing input Inew1 through every transformation except the last

one, then running Tn on o’s “new provenance,” σp(I
new
n ).

With this theorem, we see that the same arguments given in Section 4.2 for the

correctness of single-transformation refresh carry over to the general workflow case:

Running workflow refresh logically reduces to running single-transformation refresh

of Tn on the new input set Inewn . Since Tn satisfies Requirements 4.2.1 and 4.2.2,

the arguments in Section 4.2 show that workflow refresh returns the correct refresh

of an element: If it returns empty, there is no element in the new output set with

provenance predicate p. If it returns an element 〈o′, p′〉, then p′ = p and 〈o′, p〉 is the

unique element in Inewn+1 with predicate p.

4.4 Many-Many Transformations

So far we have required T (σp(I)) = {〈o, p〉} for any 〈o, p〉 ∈ O in any transformation

instance T (I) = O (Requirement 4.2.1). This requirement effectively limits us to

transformations that are many-one or one-one. We now weaken this requirement, only

insisting 〈o, p〉 ∈ T (σp(I)). Let us see how weakening the requirement captures more

transformations (specifically allowing one-many and many-many transformations) but

complicates the picture.

Example 4.4.1 In our running example, PExtract is a one-many transformation.

Consider refreshing (Earl,3,gcc) (element #6) in PatientDNA through transforma-

tion PExtract. Using Refresh Procedure 4.2.1 for single transformations, prove-

nance predicate file=‘Earl.xml’ is applied to RawPatientData, producing input ele-

ment Earl.xml. Suppose when transformation PExtract is then run on Earl.xml,

two elements are produced, (Earl,2,aaa) and (Earl,3,ttt) (indicating corrected DNA



CHAPTER 4. PROVENANCE-BASED REFRESH 72

sequences at locations 2 and 3), both with provenance predicate file=‘Earl.xml’. How

do we know which of these elements, if any, corresponds to the one we are trying to

refresh? �

To solve the problem illustrated in this example, we require that for many-many

(and therefore one-many) transformations, output elements include not only prove-

nance predicates, but also forward filters. The forward filter for an output element

o is applied after forward propagating o’s provenance, to select from multiple out-

put elements the one corresponding to o. In Example 4.4.1, a suitable forward filter

for output element #6 is loc=3, capturing the fact that element #6 describes Earl’s

DNA sequence at location 3. Note that all of the forward filters for table PatientDNA

(denoted f in Figure 4.2) select on attribute loc, since locations are unique within

each set of elements for a given name.

It is not hard to generalize our entire framework to support many-many transfor-

mations using forward filters. We require each transformation instance to produce

triples instead of pairs: T (I) = O = {〈o1, p1, f1〉, . . . , 〈on, pn, fn〉}. (By implicitly

assuming all fi=True for many-one transformations, our extension is fully “back-

ward compatible” with everything in the chapter thus far.) To refresh an element

〈o, p, f〉 ∈ O, we add a third step to Procedure 4.2.1 that applies forward filter σf to

the result from Step 2, i.e., the overall refresh operation is σf (T (σp(I
new))).

All of the formalism and intuitive arguments in Sections 4.2 and 4.3 extend

quite easily to incorporate forward filters, generally replacing 〈o, p〉 with 〈o, p, f〉 and

T (σp(I)) with σf (T (σp(I))). Note that in Requirement 4.2.2 (Predicate as Key), by

extending each output pair to include a forward filter f , we are effectively treating

provenance predicates and forward filters together as immutable keys, i.e., only the

p -f pairs need be unique, not provenance predicates alone. We now provide details of

the extension for many-many transformations. Section 4.4.1 describes the extension

for one-transformation refresh, and Section 4.4.2 describes the extension for workflow

refresh.
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4.4.1 One-Transformation Refresh

Procedure 4.4.1 (Provenance-Based Refresh) Consider transformation in-

stance T (I) = O, and suppose input data set I ∈ IT has been modified to Inew ∈ IT .

To refresh an output element 〈o, p, f〉 ∈ O there are three steps:

1. Backward tracing: Run tracing query σp on Inew to find the subset of Inew

associated with provenance predicate p.

2. Forward propagation: Apply T on σp(I
new) to compute the refreshed elements

associated with provenance predicate p.

3. Forward filtering: Apply σf on T (σp(I
new)) to find the new value 〈o′, p′, f ′〉. If

the result is empty, then o has no refreshed value. �

Requirement 4.4.1 (Predicate Correctness) Consider any transformation in-

stance T (I) = O for I ∈ IT , and any 〈o, p, f〉 ∈ O. Then σf (T (σp(I))) = {〈o, p, f〉}.

�

Requirement 4.4.2 (Predicate as Key) Consider any transformation instance

T (I) = O for I ∈ IT , and any 〈o, p, f〉 ∈ O. Then for any I ′ ∈ IT , if σf (T (σp(I
′))) 6= ∅,

then σf (T (σp(I
′))) = {〈o′, p, f〉} for some o′, and 〈o′, p, f〉 ∈ T (I ′). �

Property 4.4.1 (Unique Predicates) Consider any transformation instance

T (I) = O for I ∈ IT , and any 〈o, p, f〉 ∈ O. There is no 〈o′, p, f〉 ∈ T (I) with o′ 6= o.

�

We can show in a similar manner as we did at the end of Section 4.2 that Procedure

4.4.1 generates the correct refreshed value of 〈o, p, f〉 ∈ O. Note that now p-f pairs

are treated as our immutable key.

• First suppose σf (T (σp(I
new))) produces an empty result. Then there should

be no 〈o′, p, f〉 in T (Inew). If there were such an 〈o′, p, f〉, then by Require-

ment 4.4.1, σf (T (σp(I
new))) = {〈o′, p, f〉}, contradicting that σf (T (σp(I

new)))

is empty.



CHAPTER 4. PROVENANCE-BASED REFRESH 74

• Now suppose σf (T (σp(I
new))) is non-empty. Requirement 4.4.2 guarantees that

σf (T (σp(I
new))) = {〈o′, p, f〉} for some o′, and that 〈o′, p, f〉 is a valid element

in T (Inew). Thus, o′ is the refreshed value for o.

4.4.2 Workflow Refresh

Algorithm 4.4.1 (Workflow Refresh) Consider a workflow instance

(T1 ◦ T2 ◦ . . . ◦ Tn)(I1) = In+1. Suppose I1 has been modified to Inew1 . Algo-

rithm workflow refresh refreshes output element 〈o, p, f〉 ∈ Ii+1:

workflow refresh(〈o, p, f〉 ∈ Ii+1) :

if i = 1 then return σf (T1(σp(I
new
1 )))

else { S = σp(Ii);

S ′ =
⋃

〈o′,p′,f ′〉∈S

workflow refresh(〈o′, p′, f ′〉 ∈ Ii);

return σf (Ti(S
′)) }

Requirement 4.4.3 (Workflow Safety) Consider a workflow instance (T1 ◦ T2 ◦

. . . ◦ Tn)(I1) = In+1. Every Ti must be safe with respect to Ti−1, i = 2..n, defined as

follows. Consider any I ′i−1 ∈ ITi−1
. Let I ′i = Ti−1(I

′
i−1). For any 〈o, p, f〉 ∈ Ti(Ii), we

must have
⋃

〈o′,p′,f ′〉∈σp(Ii)

σf ′(Ti−1(σp′(I
′
i−1))) = σp(I

′
i). �

Theorem 4.4.1 (Recursive Refresh Theorem) Consider a workflow instance

(T1 ◦ T2 ◦ . . . ◦ Tn)(I1) = In+1 satisfying Requirement 4.4.3. Given any element

〈o, p, f〉 ∈ Ii+1 for i ≥ 1, workflow refresh(〈o, p, f〉) = σf (Ti(σp(I
new
i ))).

Proof. We prove the theorem by induction on i. For the base case of i = 1, con-

sider any 〈o, p, f〉 ∈ I2 = T1(I1). By the first line (if case) of our algorithm, work-

flow refresh(〈o, p, f〉 ∈ I2) = σf (T1(σp(I
new
1 ))), so the theorem holds for the base

case.

Now suppose that the theorem holds for i = k − 1 where k > 1; we

show it holds for i = k. Consider element 〈o, p, f〉 ∈ Ik+1. workflow refresh
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computes the following two sets: S = σp(Ik) = {〈o1, p1, f1〉 . . . 〈om, pm, fm〉}

and S ′ =
⋃

〈oi,pi,fi〉∈S

workflow refresh(〈oi, pi, fi〉). By the inductive hypoth-

esis, each workflow refresh(〈oi, pi, fi〉) = σfi(Tk−1(σpi(I
new
k−1))). Thus, S ′ =⋃

〈oi,pi,fi〉∈σp(Ik)

σfi(Tk−1(σpi(I
new
k−1))). By Requirement 4.4.3, the right-hand side of the

last expression is equal to σp(I
new
k ). Since the last line of workflow refresh returns

σf (Tk(S
′)), workflow refresh returns σf (Tk(σp(I

new
k ))), which completes our proof. �

4.5 Multi-Input Transformations

For presentation purposes, so far we have assumed each transformation has one

input data set. The extension for transformations with multiple input sets is

straightforward and intuitive: Each output element carries a separate prove-

nance predicate for each of its transformation’s input sets. Now a transfor-

mation instance is T (I1, I2, . . . , Im) = O, and O consists of extended triples:

{〈o1, (p
1
1, . . . , p

m
1 ), f1〉, . . . , 〈on, (p

1
n, . . . , p

m
n ), fn〉}. (We obtain full “backward compati-

bility” with everything in the chapter thus far by setting m = 1.) Refresh proceeds in

a similar manner as before, except during backward tracing m provenance predicates

are evaluated on their corresponding input data sets, and during forward propagation

the transformation is run on the m input subsets.

Example 4.5.1 From our running example, to refresh (Carl,liver,0.4) (element #2)

in PatientRisks, provenance predicate pPD (name=‘Carl’ ∧ loc=2 ∧ seq=‘ttt’) is ap-

plied on PatientDNA to obtain element #2, and provenance predicate pDR (loc=2 ∧

seq=‘ttt’) is applied on DNARisks to obtain element #3. These elements are forward

propagated as the two inputs to transformation Join, yielding the refreshed value of

PatientRisks element #2. �

We can easily adapt all of the formalism from Sections 4.2–4.4 to handle multi-

input transformations. In general we replace p with p1, . . . , pm, and T (σp(I)) with

T (σp1(I1), . . . , σpm(Im)). In Requirement 4.2.2 (Predicate as Key), we now treat the

entire combination of p1, . . . , pm, f as the immutable key. In Requirement 4.3.1
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(Workflow Safety), we require each transformation to be safe with respect to all

of its predecessor transformations in concert. We now provide details of the ex-

tension for multi-input transformations. Section 4.5.1 describes the extension for

one-transformation refresh, and Section 4.5.2 describes the extension for workflow

refresh.

4.5.1 One-Transformation Refresh

Procedure 4.5.1 (Provenance-Based Refresh) Consider transformation in-

stance T (I1, . . . , Im) = O, and suppose input data sets (I1, . . . , Im) ∈ IT

have been modified to (Inew1 , . . . , Inewm ) ∈ IT . To refresh an output element

〈o, (p1, . . . , pm), f〉 ∈ O there are three steps:

1. Backward tracing: Run tracing queries σpi on Inewi to find the subsets of Inewi

associated with provenance predicates pi, i = 1..m.

2. Forward propagation: Apply T on (σp1(I
new
1 ), . . . , σpm(I

new
m )) to compute the

refreshed elements associated with provenance predicates p1, . . . , pm.

3. Forward filtering: Apply σf on T (σp1(I
new
1 ), . . . , σpm(I

new
m )) to find the new

value 〈o′, (p′1, . . . , p
′
m), f

′〉. If the result is empty, then o has no refreshed value.

�

Requirement 4.5.1 (Predicate Correctness) Consider any transformation in-

stance T (I1, . . . , Im) = O and any 〈o, (p1, . . . , pm), f〉 ∈ O. Then σf (T (σp1(I1), . . . ,

σpm(Im))) = {〈o, (p1, . . . , pm), f〉}. �

Requirement 4.5.2 (Predicate as Key) Consider any transformation instance

T (I1, . . . , Im) = O and any 〈o, (p1, . . . , pm), f〉 ∈ O. Then for any (I ′1, . . . , I
′
m) ∈

IT , if σf (T (σp1(I
′
1), . . . , σpm(I

′
m))) 6= ∅, then σf (T (σp1(I

′
1), . . . , σpm(I

′
m))) =

{〈o′, (p1, . . . , pm), f〉} for some o′, and 〈o′, (p1, . . . , pm), f〉 ∈ T (σp1(I
′
1), . . . , σpm(I

′
m)).

�
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Property 4.5.1 (Unique Predicates) Consider any transformation in-

stance T (I1, . . . , Im) = O and any 〈o, (p1, . . . , pm), f〉 ∈ O. There is no

〈o′, (p1, . . . , pm), f〉 ∈ O with o′ 6= o. �

We can show in a similar manner as we did at the end of Section 4.2 that Procedure

4.5.1 generates the correct refreshed value of 〈o, (p1, . . . , pm), f〉 ∈ O. Note that now

〈p1, . . . , pm, f〉 vectors are treated as our immutable key.

• First suppose σf (T (σp1(I
new
1 ), . . . , σpm(I

new
m ))) produces an empty result.

Then there should be no 〈o′, (p1, . . . , pm), f〉 in T (σp1(I
new
1 ), . . . , σpm(I

new
m )).

If there were such an 〈o′, (p1, . . . , pm), f〉, then by Requirement 4.5.1,

σf (T (σp1(I
new
1 ), . . . , σpm(I

new
m ))) = {〈o′, (p1, . . . , pm), f〉}, contradicting the fact

that σf (T (σp1(I
new
1 ), . . . , σpm(I

new
m ))) is empty.

• Now suppose σf (T (σp1(I
new
1 ), . . . , σpm(I

new
m ))) is non-empty. Requirement 4.5.2

guarantees that σf (T (σp1(I
new
1 ), . . . , σpm(I

new
m ))) = {〈o′, (p1, . . . , pm), f〉} for

some o′, and that 〈o′, (p1, . . . , pm), f〉 is a valid element in T (Inew1 , . . . , Inewm ).

Thus, o′ is the refreshed value for o.

4.5.2 Workflow Refresh

Algorithm 4.5.1 (Workflow Refresh) Consider a workflow composed of an

acyclic graph of transformations T1, . . . , Tn and input data sets I1, . . . , Ik. Let

Oi = Ti(I
i
1, . . . , I

i
mi
) for i = 1..n; the final output data set is On. Suppose the input

sets I1, . . . , Ik have been modified to Inew1 , . . . , Inewk . Let p̄ be shorthand for p1..pm;

its use is clear in context. Algorithm workflow refresh refreshes output element

〈o, (p1, . . . , pmi), f〉 ∈ Oi:

workflow refresh(〈o, (p1, . . . , pmi), f〉 ∈ Oi) :

for j = 1..mi:

if I ij is an input data set then S ′
j = σpj(I

i new
j )

else { Sj = σpj(I
i
j);



CHAPTER 4. PROVENANCE-BASED REFRESH 78

S ′
j =

⋃

〈o′,p̄′,f ′〉∈Sj

workflow refresh(〈o′, p̄′, f ′〉)}

return σf (Ti(S
′
1, . . . , S

′
mi
)) }

Requirement 4.5.3 (Workflow Safety) Consider a workflow composed of an

acyclic graph of transformations T1, . . . , Tn and input data sets I1, . . . , Ik. Let

Oi = Ti(I
i
1, . . . , I

i
mi
) for i = 1..n; the final output data set is On. Assume the out-

put of each transformation matches the input domain of the next transformation.

Every Ti must be safe with respect to each of its input transformations, defined as

follows. Let Tj be an input transformation of Ti. Consider any (I
′j
1 , . . . , I

′j
mj
) ∈ ITj

.

Let O′
j = Tj(I

′j
1 , . . . , I

′j
mj
). For any 〈o, (p1, . . . , pmi

), f〉 ∈ Oi, let pj be the predicate

corresponding to Oj. We must have
⋃

〈o′,p̄′,f ′〉∈σ
pj

(Oj)

σf ′(Tj(σp′1
(I

′j
1 ), . . . , σp′mj

(I
′j
mj
))) =

σpj(O
′
j). �

Theorem 4.5.1 (Recursive Refresh Theorem) Consider a workflow composed

of an acyclic graph of transformations T1, . . . , Tn and input data sets I1, . . . , Ik, sat-

isfying Requirement 4.5.3. Given any element 〈o, (p1, . . . , pmi
), f〉 ∈ Oi for i ≥ 1,

workflow refresh(〈o, (p1, . . . , pmi
), f〉) = σf (Ti(σp1(I

i new
1 ), . . . , σpmi

(I i new
mi

))).

Proof. Given i, let l(i) be the length of the longest path from Oi to input data: if Ti

has input data sets as all inputs, then l(i) = 1. We prove the theorem by induction

on l(i). For the base case of l(i) = 1, consider any 〈o, (p1, . . . , pmi
), f〉 ∈ Oi. Using

workflow refresh, we see for all j that since I ij are input data sets, S ′
j = σpj(I

i new
j ).

We return σf (Ti(S
′
1, . . . , S

′
mi
)) = σf (Ti(σp1(I

i new
1 ), . . . , σpmi

(I i new
mi

))), so the theorem

holds for the base case.

Now suppose that the theorem holds for all i such that 1 ≤ l(i) ≤ d − 1 where

d > 1; we show it holds for all i such that l(i) = d. Consider i such that l(i) = d.

Consider element 〈o, (p1, . . . , pmi
), f〉 ∈ Oi. For each j in 1..mi, if I ij is a in-

put data set, S ′
j = σpj(I

i new
j ). Else, workflow refresh computes the following two

sets: Sj = σpj(I
i
j) and S ′

j =
⋃

〈o′,p̄′,f ′〉∈Sj

workflow refresh(〈o′, p̄′, f ′〉). Since for all
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input transformations Tt to Ti we have 1 ≤ l(t) ≤ d − 1, by the inductive hypothe-

sis, each workflow refresh(〈o, (p1, . . . , pmt
), f〉) = σf (Tt(σp1(I

t new
1 ), . . . , σpmt

(I t new
mt

))).

Thus, since S ′
j =

⋃

〈o′,p̄′,f ′〉∈σ
pj

(Iij)

workflow refresh(〈o′, p̄′, f ′〉) =
⋃

〈o′,p̄′,f ′〉∈σ
pj

(Iij)

σf ′(Tj(σp′1
(Ij new

1 ), . . . , σp′mj
(Ij new

mj
))), then by Requirement 4.5.3, each S ′

j =

σpj(I
i new
j ).

Since the last line of workflow refresh returns σf (Ti(S
′
1, . . . , S

′
mi
)), workflow refresh

returns σf (Ti(σp1(I
i new
1 ), . . . , σpmi

(I i new
mi

))), which completes our proof. �

4.6 Unsafe Workflows

In Section 4.3 we introduced safe workflows (Requirement 4.3.1), and our refresh

algorithms thus far require workflow safety. We suggest one simple mechanism that

allows refresh in unsafe workflows to still make some use of our algorithms.

Consider a workflow instance (T1 ◦ T2 ◦ . . . ◦ Tn)(I1) = In+1. (Our argument gen-

eralizes easily to workflows with multi-input transformations.) Suppose the workflow

is unsafe at Tk for some k, 1 < k ≤ n, but the rest of the workflow is safe. (More

generally, consider the largest k such that the workflow is unsafe at Tk.) Suppose I1

has been modified to Inew1 . To support correct refresh of output elements in In+1,

we can first bring intermediate data set Ik up-to-date by sending the entire modified

input Inew1 through all transformations up to Tk−1, producing I
new
k . Then we can treat

Inewk as if it were the first input data set (and Tk the first transformation), performing

refresh as normal: backward-trace from In+1 to Ik, then forward propagate through

to In+1.

In this setting, we would certainly want to keep track of when Inewk is up-to-date,

perhaps even propagating input modifications through the first k − 1 transforma-

tions eagerly. Combining eager propagation with on-demand refresh is an interesting

direction of future work.
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4.7 Related Work

None of the many papers on lineage and provenance discussed in Section 1.4 exploit

provenance for selective refresh in a general workflow environment. There has been

a large body of work in incremental view maintenance: the efficient propagation of

base data modifications to bring materialized views up to date, usually in a relational

setting [12, 28]. We consider general workflows rather than relational views. Also,

in contrast to the view-maintenance problem, selective refresh considers efficiently

computing the up-to-date value of individual output elements, not the entire output.

Reference [26] considers the problem of “update exchange” between data peers linked

by mappings. A subproblem they address is determining when a derived data element

is no longer valid, but they do not provide a means to selectively refresh out-of-date

values. Also, transformations in [26] are restricted to those that can be expressed in

Datalog.

4.8 Conclusions

We presented a formal foundation and algorithms for efficient selective refresh of out-

put elements in data-oriented workflows. We identified properties of transformations,

provenance, and workflows that are required for the algorithms to perform refresh

correctly, and we discussed how the algorithms can be adapted to handle unsafe

workflows.



Chapter 5

Logical Provenance

5.1 Introduction

Recall from Chapter 1 that most approaches to provenance in workflows either track

coarse-grained (schema and/or transformation level) provenance or they track the

provenance of individual data elements with physical provenance. Physical provenance

requires each output element to be annotated with some type of identifier for the

contributing input elements.

In this chapter, we introduce logical provenance—provenance information stored

at the transformation level. For many transformations, including a large subset of

SQL, logical provenance can be derived automatically from the transformation’s spec-

ification, and it captures exactly the same information as physical provenance but in

a much more compact fashion (one specification per transformation rather than one

per data element). Furthermore, for these transformations, logical provenance incurs

no overhead at workflow-execution time, whereas physical provenance requires at a

minimum the capture and storage of pointers. For some transformations, we must

“augment” the output to support logical provenance. In the worst case, the augment-

ing process unavoidably degenerates to the equivalent of storing physical provenance.

The contributions of this chapter are as follows:

• Logical provenance specifications for transformations (Section 5.2). We

81
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describe a simple logical-provenance specification language consisting of at-

tribute mappings and filters.

• Algorithms for provenance tracing (Section 5.3). We provide algorithms

for provenance tracing in workflows where logical provenance for each transfor-

mation is specified using our language. In our algorithms we perform provenance

tracing at the schema level to the extent possible, although eventually accessing

the data obviously is required.

• Logical provenance for relational transformations (Section 5.4). We con-

sider logical provenance in the relational setting, showing that for a class of

Select-Project-Join (SPJ) transformations, logical provenance specifications en-

code minimal provenance.

In Section 5.5 we discuss related work, and we conclude in Section 5.6.

5.2 Logical Provenance Specifications

This chapter builds on the foundations of provenance presented in Chapter 2. Recall

we discussed the desirable formal properties of provenance in Section 2.2, and we

explored how these properties carry over from individual transformations to a work-

flow in Section 2.3. In this chapter we start by discussing how to logically specify

provenance relationships between the input elements and output elements of a given

transformation. To design such a specification language, we assume each data set has

some predefined attributes that are present in each element. Elements may contain

arbitrary additional data, which we do not use for provenance.

We describe a simple logical-provenance (transformation level) specification lan-

guage. This language can encode precise (data-element level) provenance for a large

class of transformations, capturing the same information as physical provenance but

in a much more compact fashion. Logical provenance specifications in our language

consist of attribute mappings and filters.
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Definition 5.2.1 (Attribute Mapping) Let T be a transformation with input sets

I1, . . . , Im and output sets O1, . . . , Or. Let A be an attribute of input set Ii, and let

Bj be an attribute of output set Oj. Given any value x ∈ domain(Bj) and any input

set instances I ′1, . . . , I
′
m, let σBj=x(T (I

′
1, . . . , I

′
m)) be shorthand for σBj=x(O

′
j) where

(O′
1, . . . , O

′
r) = T (I ′1, . . . , I

′
m). T has an attribute mapping between input attribute

Ii.A and output attribute Oj.Bj, denoted Ii.A ↔ Oj.Bj, if for all possible values of

x ∈ domain(Bj) and all possible input set instances I ′1, . . . , I
′
m:

σBj=x(T (I
′
1, . . . , I

′
m)) = σBj=x(T (I

′
1, . . . , σA=x(I

′
i), . . . , I

′
m)) �

In words, attribute mapping Ii.A↔ Oj.Bj states that the output subset of Oj where

Bj = x is unaffected by all elements in Ii except those where A = x.

Example 5.2.1 We revisit our running example workflow and data shown in Fig-

ures 1.1 and 1.2 of Section 1.1. Consider transformation JoinAgg from the example,

which takes data sets CustSales (CS) and ItemProfit (IP) as input and joins them

on attribute item-id to output data set ItemCountryProfit (IC). Attribute mapping

IP.brand ↔ IC.brand is one example that holds for this transformation, indicating

that the subset of output elements in IC with particular brand values is produced

by the input subset of IP with the same brand values. Other attribute mappings

that hold for transformation JoinAgg are IP.item-id ↔ IC.item-id, IP.type↔ IC.type,

CS.country↔ IC.country, and CS.item-id ↔ IC.item-id. �

Definition 5.2.2 (Filter) Let T be a transformation with input sets I1, . . . , Im and

output sets O1, . . . , Or. T has a filter condition C on input Ii if for all possible input

set instances I ′1, . . . , I
′
m:

T (I ′1, . . . , I
′
m) = T (I ′1, . . . , σC(I

′
i), . . . , I

′
m) �

In words, filter C states that output elements are never affected by input elements

from Ii that do not satisfy condition C.

Example 5.2.2 Consider transformation Filter from the running example (Fig-

ure 1.1), which takes data set ItemCountryProfit (IC) as input and outputs data set

LaptopProfit (LP). The filter type=‘laptop’ holds for this transformation, indicating
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that output elements in LP are never affected by elements in IC except those satisfying

type=‘laptop’. �

We now define provenance as encoded by attribute mappings and filters. We will

shortly prove its correctness.

Definition 5.2.3 (Provenance Encoded by Logical Specification) Consider a

transformation instance (O1, . . . , Or) = T (I1, . . . , Im) with a logical provenance spec-

ification consisting of a set of attribute mappings M and a set of filters F . We

denote the specification as (M,F ). Let Mi,j denote the subset of attribute mappings

A ↔ B in M such that attribute A is from input Ii and attribute B is from output

Oj. Let Fi denote the subset of filters in F that are on Ii. Consider output element

o ∈ Oj for some j. The provenance of o as encoded by (M,F ) is 〈I∗1 , . . . , I
∗
m〉 =

〈σC1(I1), . . . , σCm
(Im)〉 where each Ci = (

∧
(A↔B)∈Mi,j

A = o.B) ∧ (
∧

C∈Fi
C). �

Example 5.2.3 Consider again transformation Filter from the running exam-

ple (Figure 1.1), which takes data set ItemCountryProfit (IC) as input and out-

puts data set LaptopProfit (LP). Consider the logical provenance specification

(M,F ), where M = {IC.item-id↔LP.item-id, IC.country ↔ LP.country, IC.brand ↔

LP.brand} and F = {type=‘laptop’}. Referring to Figure 1.2, if o =

LP(1), the first tuple in LP, then o’s provenance as encoded by (M,F ) is

σitem-id=‘I1′∧country=‘France′∧brand=‘HP′∧type=‘laptop′(IC) = {IC(1)}. �

We now prove that provenance encoded by logical specifications is indeed correct,

according to Definition 2.2.4 of provenance correctness.

Theorem 5.2.1 Consider a transformation instance (O1, . . . , Or) = T (I1, . . . , Im)

with logical provenance specification (M,F ). Given any output element o ∈ Oj for

some j, o’s provenance 〈I∗1 , . . . I
∗
m〉 = 〈σC1(I1), . . . , σCm

(Im)〉 as specified in Defini-

tion 5.2.3 is correct for o with respect to T according to Definition 2.2.4.

Proof. Consider any output element o ∈ Oj for some j. 〈I∗1 , . . . , I
∗
m〉 =

〈σC1(I1), . . . , σCm
(Im)〉 where each Ci is a conjunction of predicates as in Defini-

tion 5.2.3. Consider any 〈I ′1, . . . , I
′
m〉 such that I ′1 ⊆ I1, . . . , I

′
m ⊆ Im. We need

to show that o ∈ T (I ′1, . . . , I
′
m) if and only if o ∈ T (I ′1 ∩ I∗1 , . . . , I

′
m ∩ I∗m).
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First suppose o ∈ T (I ′1, . . . , I
′
m). Then o ∈ σB=o.B(T (I

′
1, . . . , I

′
m)),

where B contains all attributes in o. Since M and F hold for T ,

σB=o.B(T (I
′
1, . . . , I

′
m)) = σB=o.B(T (σC1(I

′
1), . . . , σCm

(I ′m))), from which it follows that

o ∈ σB=o.B(T (σC1(I
′
1), . . . , σCm

(I ′m))). Since T (σC1(I
′
1), . . . , σCm

(I ′m)) = T (I ′1 ∩

I∗1 , . . . , I
′
m∩ I

∗
m), o ∈ σB=o.B(T (I

′
1∩ I

∗
1 , . . . , I

′
m∩ I

∗
m)), implying o ∈ T (I ′1∩ I

∗
1 , . . . , I

′
m∩

I∗m).

Now suppose o ∈ T (I ′1 ∩ I∗1 , . . . , I
′
m ∩ I∗m). Since T (I ′1 ∩ I∗1 , . . . , I

′
m ∩

I∗m) = T (σC1(I
′
1), . . . , σCm

(I ′m)), o ∈ T (σC1(I
′
1), . . . , σCm

(I ′m)). Then

o ∈ σB=o.B(T (σC1(I
′
1), . . . , σCm

(I ′m))). Since M and F hold for T ,

σB=o.B(T (σC1(I
′
1), . . . , σCm

(I ′m))) = σB=o.B(T (I
′
1, . . . , I

′
m)), from which it follows that

o ∈ σB=o.B(T (σC1(I
′
1), . . . , σCm

(I ′m))). Thus, o ∈ σB=o.B(T (I
′
1, . . . , I

′
m)), implying

o ∈ T (I ′1, . . . , I
′
m). �

5.2.1 Attribute Mappings with Functions

We now show how attribute mappings can be extended beyond simple equalities to

involve functions.

Definition 5.2.4 (Attribute Mapping with Functions) Let T be a transforma-

tion with input sets I1, . . . , Im and output sets O1, . . . , Or. Let A be attributes of

input set Ii, and let B be attributes of output set Oj. Let f be a function whose do-

main includes all possible values of A, and let g be a function whose domain includes

all possible values of B. T has an attribute mapping between f(Ii.A) and g(Oj.B),

denoted f(Ii.A) ↔ g(Oj.B), if for all possible values of g(B) and all possible input

set instances I ′1, . . . , I
′
m:

σg(B)=x(T (I
′
1, . . . , I

′
m)) = σg(B)=x(T (I

′
1, . . . , σf(A)=x(I

′
i), . . . , I

′
m)). �

Example 5.2.4 Consider a transformation NameCombine that takes input set

Emp(first-name, last-name, addr) and creates output set Person(name, addr) by con-

catenating first-name and last-name for each record in Emp. Let f(a, b) be a function

that concatenates a and b. Attribute mapping f(Emp.first-name, Emp.last-name) ↔
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Person.name holds for this transformation, indicating that the subset of output ele-

ments in Person with particular name values corresponds to the input subset of Emp

for which concatenating first-name and last-name produces that name. �

In the remainder of this chapter, we will only consider mappings that involve equali-

ties. Much of the formalism that follows can be extended to handle functions without

introducing any new complexities.

5.2.2 Multi-Attribute Mappings

Given attribute mappings involving single input and output attributes, we can com-

bine them to create attribute mappings across sets of attributes. The definition below

considers a single output set. (We explain later why multiple output sets are not con-

sidered.)

Definition 5.2.5 (Multi-Attribute Mapping) Let T be a transformation with

input sets I1, . . . , Im and output sets O1, . . . , Or. Let A = (A1, A2, . . . , An) and

B = (B1, B2, . . . , Bn) denote vectors of attributes from I = (I1, . . . , Im) and a sin-

gle output set Oj respectively. Let σA=x(I1, . . . , Im) denote (σp1(I1), . . . , σpm(Im))

where pi is the conjunction of all terms in the set {A1 = x1, . . . , An = xn} such that

Ak is an attribute in Ii. Given any x ∈ domain(B) and any input set instances

I ′1, . . . , I
′
m, let σB=x(T (I

′
1, . . . , I

′
m)) be shorthand for σB1=x1∧...∧Bn=xn

(O′
j) where

(O′
1, . . . , O

′
r) = T (I ′1, . . . , I

′
m). We say that attribute mapping I.A ↔ Oj.B holds

iff ∀I,x ∈ domain(B), we have σB=x(T (I1, . . . , Im)) = σB=x(T (σA=x(I1, . . . , Im))).

Example 5.2.5 Consider again transformation JoinAgg from the running example

(Figure 1.1). Attribute mapping (IP.item-id, IP.brand, IP.type)↔ (IC.item-id, IC.brand,

IC.type) holds for this transformation, indicating that the subset of output elements

in IC with particular (item-id, brand, type) values corresponds to the input subset of

IP with the same (item-id, brand, type) values. �

The following theorem states that a set of single-attribute mappings is equivalent to

its combination:
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Theorem 5.2.2 (Combining Attribute Mappings) Let T be a transformation

with input sets I1, . . . , Im and output sets O1, . . . , Or. Let A = (A1, A2, . . . , An) and

B = (B1, B2, . . . , Bn) denote vectors of attributes from I = (I1, . . . , Im) and a single

output set Oj respectively. Attribute mappings A1 ↔ B1, . . . , An ↔ Bn hold if and

only if A↔ B holds.

Proof. We prove by induction on the number of attributes. For n = 1, the theorem

follows from the assumption. Now suppose that the theorem holds for n = k and

consider n = k + 1.

Suppose A1 ↔ B1, . . . , Ak+1 ↔ Bk+1 all hold. Since the theorem holds for n = k,

we know that (A1, A2, . . . , Ak) ↔ (B1, B2, . . . , Bk) holds, from which it follows that

σBk=xk
(T (I1, . . . , Im)) = σBk=xk

(T (σAk=xk
(I1, . . . , Im))) for all possible values of xk.

We can then use attribute mapping Ak+1 ↔ Bk+1 to deduce that for all possible

values of xk+1, we have that

σBk+1=xk+1
(T (I1, . . . , Im))

= σ(Bk=xk)∧(Bk+1=xk+1)(T (I1, . . . , Im))

= σBk=xk
(σBk+1=xk+1

(T (I1, . . . , Im)))

= σBk=xk
(σBk+1=xk+1

(T (σAk+1=xk+1
(I1, . . . , Im)))) (via Ak+1 ↔ Bk+1)

= σBk+1=xk+1
(σBk=xk

(T (σAk+1=xk+1
(I1, . . . , Im))))

= σBk+1=xk+1
(σBk=xk

(T (σAk=xk
(σAk+1=xk+1

(I1, . . . , Im))))) (via assumption that

theorem holds for n = k)

= σBk+1=xk+1
(T (σAk+1=xk+1

(I1, . . . , Im))).

Thus, if A1 ↔ B1, . . . , Ak+1 ↔ Bk+1, then (A1, A2, . . . , Ak+1)↔ (B1, B2, . . . , Bk+1).

Now suppose (A1, A2, . . . , Ak+1) ↔ (B1, B2, . . . , Bk+1). We need to show that

Aj ↔ Bj holds for all j. Without loss of generality, we will set j = k + 1 to simplify

notation. Suppose Ak+1 ↔ Bk+1 does not hold. Then there exists xk+1, I
′
1, . . . , I

′
m

such that:

σBk+1=xk+1
(T (I ′1, . . . , I

′
m)) 6= σBk+1=xk+1

(T (σAk+1=xk+1
(I ′1, . . . , I

′
m)))

Given this inequality, there exists at least one element e that is in the symmetric

difference of the two sides. Let xk be the value of e.Bk. Then we have:

σ(Bk=xk)∧(Bk+1=xk+1)(T (I
′
1, . . . , I

′
m)) 6= σ(Bk=xk)∧(Bk+1=xk+1)(T (σAk+1=xk+1

(I ′1, . . . , I
′
m)))

σBk+1=xk+1
(T (I ′1, . . . , I

′
m)) 6= σBk+1=xk+1

(T (σAk+1=xk+1
(I ′1, . . . , I

′
m)))
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By the definition of (A1, A2, . . . , Ak+1)↔ (B1, B2, . . . , Bk+1) holding for T , we know

that for all I1, . . . , Im:

σBk+1=xk+1
(T (I1, . . . , Im)) = σBk+1=xk+1

(T (σAk+1=xk+1
(I1, . . . , Im)))

Setting (I1, . . . , Im) equal to (I ′1, . . . , I
′
m) we get:

σBk+1=xk+1
(T (I ′1, . . . , I

′
m)) = σBk+1=xk+1

(T (σAk+1=xk+1
(I ′1, . . . , I

′
m)))

Setting (I1, . . . , Im) equal to σAk+1=xk+1
(I ′1, . . . , I

′
m) we get:

σBk+1=xk+1
(T (σAk+1=xk+1

(I ′1, . . . , I
′
m))) = σBk+1=xk+1

(T (σAk+1=xk+1
(I ′1, . . . , I

′
m)))

But then we have σBk+1=xk+1
(T (I ′1, . . . , I

′
m)) = σBk+1=xk+1

(T (σAk+1=xk+1
(I ′1, . . . , I

′
m))),

a contradiction. Thus, Ak+1 ↔ Bk+1 holds. �

In Definition 5.2.5 and Theorem 5.2.2 we have not considered multi-attribute map-

pings involving multiple output sets. While we could extend Definition 5.2.5 in a

natural way to allow multiple output sets, Theorem 5.2.2 would not hold, as demon-

strated by the following example.

Example 5.2.6 Consider transformation T with input data sets I1(A) =

{(1), (2), (3)} and I2(B) = {(2), (3), (4)}, and output data sets O1(C) = {(2), (3)}

and O2(D) = {(2), (3)}. Both O1 and O2 are computed by taking the intersection

of the values in I1 and I2. Attribute mappings I1.A ↔ O1.C and I2.B ↔ O2.D

both hold individually. However, consider multi-attribute mapping (I1.A, I2.B) ↔

(O1.C,O2.D) defined as follows: For any x ∈ domain(C), y ∈ domain(D) and any

input set instances I ′1, I
′
2, we have σC=x(T (I

′
1, I

′
2)) = σC=x(T (σA=x(I

′
1), σB=y(I

′
2)))

and σD=y(T (I
′
1, I

′
2)) = σD=y(T (σA=x(I

′
1), σB=y(I

′
2))). Recall (O1, O2) = T (I1, I2).

Let (O′
1, O

′
2) = T (σA=2(I1), σB=3(I2)). Note that O′

1 = ∅ and O′
2 = ∅. Mapping

(I1.A, I2.B) ↔ (O1.C,O2.D) implies that σC=2(O1) = σC=2(O
′
1) and σD=3(O2) =

σD=3(O
′
2). However, σC=2(O1) = {(2)} 6= ∅ = σC=2(O

′
1) and σD=3(O2) = {(3)} 6= ∅ =

σD=3(O
′
2), and thus (I1.A, I2.B)↔ (O1.C,O2.D) does not hold. �

In the remainder of the chapter we consider single-attribute mappings only, since

multi-attribute mappings generally don’t add useful expressive power.
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5.3 Provenance Tracing in Workflows

Consider a workflow in which each transformation has a logical provenance speci-

fication in the language described in Section 5.2. Given an output element in the

workflow, suppose we want to find the input subsets that contributed to the output

element, e.g., for debugging or drill-down purposes. In this section, we discuss how

to perform provenance tracing, i.e., how to use the logical provenance specifications

given for each transformation in the workflow to compute the workflow provenance of

a given output element. In particular, we are interested in making provenance tracing

as efficient as possible.

As we saw in Section 2.3, even if we have minimal provenance for each transforma-

tion, workflow provenance isn’t always minimal, or even correct. Using the theoretical

results of Section 2.3, for many workflows we can guarantee the minimality or cor-

rectness of workflow provenance. For workflows where minimality or correctness of

workflow provenance is not theoretically guaranteed, we would still like to provide

the option of computing workflow provenance, since it could be helpful for debugging

and drill-down.

Although it is straightforward to trace provenance recursively backwards through

a workflow one transformation at a time, sometimes we can combine logical prove-

nance across transformations, enabling more efficient tracing. In Section 5.3.1, we

specify when and how logical provenance can be combined across transformations

without losing correctness. In Section 5.3.2, we give conditions under which tracing

the combined logical provenance is guaranteed to return the same result as tracing

each transformation’s logical specification separately (thus, e.g., preserving minimal-

ity). In Section 5.3.3, we present our overall algorithm for provenance tracing in

workflows with logical provenance specifications given for each transformation.

5.3.1 Combining Logical Provenance Across Transforma-

tions

Let T1 and T2 be transformations such that T2 takes as input one of T1’s output data

sets. Given an element o from an output set I3 of T2, suppose we wanted to trace o’s
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Figure 5.1: Abstract workflow W = T1 ◦ T2.

provenance to all input sets of T1 using the logical provenance specifications for T1

and T2. We specify when and how logical provenance can be combined across T1 and

T2 without losing correctness.

Consider Figure 5.1. Let I2 be the output set of T1 that is passed to T2. Without

loss of generality, we assume T1 has only one input set in addition to I1, which we

call J1. Similarly T2 has input data sets I2 and J2. Throughout this section, we use

W = T1 ◦T2 to denote the workflow composed of T1 and T2, with input sets I1, J1, J2.

T1(I1, J1) may output multiple sets; as convention we use T1(I1, J1)2 to denote the

output set of T1(I1, J1) that is passed to T2. Let M1 denote the set of attribute

mappings for T1 between I1 and I2, and let F1 denote the set of filters for T1 on I1.

Similarly let M2 denote the set of attribute mappings for T2 between I2 and I3, and

let F2 denote the set of filters for T2 on I2. We first show how attribute mappings

can be combined across transformations.

Theorem 5.3.1 (Transitivity of Attribute Mappings) Consider W = T1 ◦ T2.

If T1 has attribute mapping (I1.A ↔ I2.B) ∈ M1, and T2 has attribute mapping

(I2.B ↔ I3.C) ∈M2, then attribute mapping (I1.A↔ I3.C) ∈MW holds for W .

Proof 5.3.1 Since I1.A ↔ I2.B holds for T1, we know that for all possible values

of x and I ′1, J
′
1, σB=x(T1(I

′
1, J

′
1)) = σB=x(T1(σA=x(I

′
1), J

′
1))). Since I2.B ↔ I3.C holds

for T2, we know that for all x and I ′2, J
′
2, σC=x(T2(I

′
2, J

′
2)) = σC=x(T2(σB=x(I

′
2), J

′
2)).

Thus, we know that for all x and I ′1, J
′
1, J

′
2:

σC=x((T1 ◦ T2)(I
′
1, J

′
1, J

′
2))

= σC=x(T2(T1(I
′
1, J

′
1)2, J

′
2))

= σC=x(T2(σB=x(T1(I
′
1, J

′
1)), J

′
2)) (since I2.B ↔ I3.C holds for T2)
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= σC=x(T2(σB=x(T1(σA=x(I
′
1), J

′
1)), J

′
2)) (since I1.A↔ I2.B holds for T1)

= σC=x(T2(T1(σA=x(I
′
1), J

′
1)2, J

′
2)) (since I2.B ↔ I3.C holds for T2)

= σC=x((T1 ◦ T2)(σA=x(I
′
1), J

′
1, J

′
2))

proving that I1.A↔ I3.C holds for W = T1 ◦ T2. �

Example 5.3.1 Consider transformations JoinAgg and Filter from the running ex-

ample (Figure 1.1). Since attribute mapping IP.brand↔ IC.brand holds for JoinAgg,

and attribute mapping IC.brand↔ LP.brand holds for Filter, then by Theorem 5.3.1

attribute mapping IP.brand↔ LP.brand holds for JoinAgg ◦ Filter. Informally, the

composite mapping states that the subset of output elements in LaptopProfit with a

particular brand value are derived from the subset of ItemProfit with the same brand

value. �

Now consider filters. It is straightforward to show that filters that hold for T1 also

hold for T1 ◦ T2.

Theorem 5.3.2 Consider W = T1 ◦ T2. If filter condition C ∈ F1 holds for T1, then

C ∈ FW also holds for W .

Proof 5.3.2 Since T1 has filter condition C ∈ F1, we know that for all possible values

of I ′1, J
′
1, T1(I

′
1, J

′
1) = T1(σC(I

′
1), J

′
1). Thus, we know that for all I ′1, J

′
1, J

′
2:

(T1 ◦ T2)(I
′
1, J

′
1, J

′
2)

= T2(T1(I
′
1, J

′
1)2, J

′
2)

= T2(T1(σC(I
′
1), J

′
1)2, J

′
2)

= (T1 ◦ T2)(σC(I
′
1), J

′
1, J

′
2)

proving that C ∈ FW holds for W = T1 ◦ T2. �

The next theorem shows that in some cases filters on T2 can be “propagated” back-

ward through I2 using attribute mappings so they hold on W .

Theorem 5.3.3 Consider W = T1 ◦ T2. Suppose T2 has a filter condition C ∈ F2.

If (I1.A1 ↔ I2.B1, . . ., I1.As ↔ I2.Bs) ⊆ M1 where B1, . . . , Bs are all attributes that

are involved in C, then filter condition C ′ ∈ FW holds for W , where C ′ is equal to C

after replacing all Bi with Ai.
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MC 

MultiStore
 

Projection
 

SalesInfo Countries
 

Figure 5.2: Example where combining logical provenance is not equivalent to workflow
provenance.

Proof 5.3.3 Since T2 has a filter condition C on I2, we know that for

all I ′1, J
′
1, J

′
2, (T1 ◦ T2)(I

′
1, J

′
1, J

′
2) = T2(σC(T1(I

′
1, J

′
1)2), J

′
2). We need to

show that for all I ′1, J
′
1, σC(T1(I

′
1, J

′
1)2) = σC(T1(σC′(I ′1), J

′
1)2). Suppose

σC(T1(I
′
1, J

′
1)2) 6= σC(T1(σC′(I ′1), J

′
1)2). Then there exists some o that is in

one side but not the other. Since o is only in one side, it follows that

σB=o.B(σC(T1(I
′
1, J

′
1)2)) 6= σB=o.B(σC(T1(σC′(I ′1), J

′
1)2)). But since the attribute map-

pings hold, we know σB=o.B(σC(T1(I
′
1, J

′
1)2)) = σB=o.B(σC(T1(σA=o.B(I

′
1), J

′
1)2)) =

σB=o.B(σC(T1(σA=o.B∧C′(I ′1), J
′
1)2)) = σB=o.B(σC(T1(σC′(I ′1), J

′
1)2)), a contradiction.

Thus σC(T1(I
′
1, J

′
1)2) = σC(T1(σC′(I ′1), J

′
1)2). �

5.3.2 Relationship Between Combined Logical Provenance

and Workflow Provenance

Although attribute mappings and filters can be combined across transformations using

Theorems 5.3.1, 5.3.2, and 5.3.3, sometimes the combined logical provenance is weaker

(less precise) than the workflow provenance computed by considering transformations

separately, accessing intermediate data between transformations.

Example 5.3.2 Consider workflow W = MultiStore ◦ Projection shown in

Figure 5.2. The initial input data set SalesInfo contains country-city-sales triples

for each of a corporation’s worldwide stores: SalesInfo(country, city, sales) =

{(France, Paris, 10), (France, Paris, 20), (France,Nice, 30)}. Transformation

MultiStore retains cities with more than one store, producing intermediate data

set MultiCities (abbreviated MC): MC(country, city) = MultiStore(SalesInfo) =

{(France, Paris)}. Attribute mappings SalesInfo.country ↔ MC.country

and SalesInfo.city ↔ MC.city both hold for MultiStore. Transformation

Projection projects away the city name, leaving only countries (with du-

plicates eliminated): Countries(country) = {France}. Attribute mapping
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MC.country ↔ Countries.country holds for Projection. Let o = France ∈

Countries. The workflow provenance PW (o) of o following Definition 2.3.1 is

{(France, Paris, 10), (France, Paris, 20)} ⊆ SalesInfo. By Theorem 5.3.1, at-

tribute mapping SalesInfo.country ↔ Countries.country holds for W . However, the

provenance of o = France ∈ Countries using this composite attribute mapping is

{(France, Paris, 10), (France, Paris, 20), (France,Nice, 30)}, which is correct, but

not as precise as the workflow provenance {(France, Paris, 10), (France, Paris, 20)}

we computed by keeping the attribute mappings separate. �

The following theorem states that we can combine logical provenance across transfor-

mations without losing the precision of o’s workflow provenance if: (1) all attribute

mappings A↔ B in M1 have a corresponding attribute mapping B ↔ D in M2, and

(2) the provenance of o encoded by (M2, F2) for I2 is nonempty.

Theorem 5.3.4 Consider workflow W = T1 ◦ T2. Suppose M1 = {A1 ↔

B1, . . . , Ar ↔ Br} and M2 = {B1 ↔ D1, . . . , Bs ↔ Ds}, r ≤ s. Let composite

MW = {A1 ↔ D1, . . . , Ar ↔ Dr}. Consider a workflow instance I3 = W (I ′1, J
′
1, J

′
2)

and any output element o ∈ I3. Suppose the provenance of o encoded by (M2, F2)

for I2 is nonempty. Let 〈I∗1 , J
∗
1 , J

∗
2 〉 be o’s provenance as encoded by (MW , F1) for

W according to Definition 5.2.3. Let 〈I∗∗1 , J∗∗
1 , J∗∗

2 〉 be the workflow provenance of o

according to Definition 2.3.1. Then I∗1 = I∗∗1 .

Proof. I∗1 = σ(A1=o.D1)∧...∧(Ar=o.Dr)∧F1(I1). We now compute I∗∗1 . The

provenance of o encoded by (M2, F2) for I2 is σ(B1=o.D1)∧...∧(Bs=o.Ds)∧F2(I2).

By assumption, σ(B1=o.D1)∧...∧(Bs=o.Ds)∧F2(I2) is nonempty. Then

I∗∗1 =
⋃

e′∈σ(B1=o.D1)∧...∧(Bs=o.Ds)∧F2
(I2)

σ(A1=e′.D1)∧...∧(Ar=e′.Dr)∧F1(I1) =

σ(A1=o.D1)∧...∧(Ar=o.Dr)∧F1(I1) = I∗1 . �

5.3.3 Tracing Algorithm

In workflows with logical specifications at each transformation, a range of provenance-

tracing algorithms are possible. A conservative algorithm, for example, may combine

logical provenance across transformations only when it is certain that doing so will
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not reduce precision. Alternatively a more aggressive algorithm (at least from the per-

formance perspective) may combine logical provenance even without such certainty,

to avoid the overhead of tracing provenance through each step of intermediate data.

The tracing algorithm presented here attempts to avoid losing precision by combin-

ing logical provenance only when the primary condition of Theorem 5.3.4 is satisfied:

Every attribute mapping A ↔ B in M1 has a corresponding mapping B ↔ D in

M2. However, since the algorithm does not also check the second condition of The-

orem 5.3.4 (whether the provenance of output elements at intermediate data sets is

nonempty), in rare cases the algorithm can reduce precision.

Algorithm 5.3.1 (Provenance Tracing) Consider a workflow instance in which

each transformation T has logical provenance specification (MT , F T ). Let I1, . . . , Im

be the initial input sets of the workflow, and let I be any intermediate or output data

set. PT recursively traces the provenance of subset E ⊆ I using attribute mappings

M and filters F . The initial invocation of PT to trace output element o ∈ Oj is

PT ({o} ⊆ Oj, ∅, ∅, Oj).

PT (E ⊆ I,M, F, I ′) :

if I ′ is an initial input set Ij then:

if I = I ′ then:

let I∗j = E

return 〈I∗1 , . . . , I
∗
m〉, where each I∗k = ∅ for k 6= j

else:

suppose M = {A1 ↔ B1, . . . , Ar ↔ Br}

let I∗j =
⋃

e∈E σ(A1=e.B1)∧...∧(Ar=e.Br)∧F (Ij)

return 〈I∗1 , . . . , I
∗
m〉, where each I∗k = ∅ for k 6= j

else:

let T be the transformation that output I ′, with input sets IT1 , . . . , I
T
mT

for i in [1,mT ]:

let Mi denote the subset of mappings A↔ B in MT such that

A is from ITi and B is from I ′
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let Fi denote the subset of filters in F T that are on ITi

if I = I ′ then:

let 〈I i1, . . . , I
i
m〉 = PT (E ⊆ I,Mi, Fi, I

T
i ) for 1 ≤ i ≤ mT

else:

if every right attribute in Mi is a left attribute of M then:

suppose Mi = {A1 ↔ B1, . . . , Ar ↔ Br}

suppose M = {B1 ↔ D1, . . . , Bs ↔ Ds}, r ≤ s

let M ′ = {A1 ↔ D1, . . . , Ar ↔ Dr}

let 〈I i1, . . . , I
i
m〉 = PT (E ⊆ I,M ′, Fi, I

T
i )

else:

suppose M = {A1 ↔ B1, . . . , Ar ↔ Br}

let E ′ =
⋃

e∈E σ(A1=e.B1)∧...∧(Ar=e.Br)∧F (I
T
i )

let 〈I i1, . . . , I
i
m〉 = PT (E ′ ⊆ ITi , ∅, ∅, I

T
i )

return 〈I∗1 , . . . , I
∗
m〉, where each I∗j =

⋃
1≤i≤mT

I ij

5.4 Logical Provenance for Relational Transforma-

tions

We now consider logical provenance in the relational setting. We establish nota-

tion in Section 5.4.1 and discuss how to generate logical provenance specifications

for Select-Project-Join (SPJ) transformations in Section 5.4.2. In Section 5.4.3 we

show that for a wide class of SPJ transformations, provenance encoded by our logical

specifications is minimal. For transformations outside of this class, in Section 5.4.4

we introduce augmentation, which carries some overhead but enables minimal prove-

nance. In Section 5.4.5 we extend our results to Select-Project-Join-Aggregate (SPJA)

transformations.
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5.4.1 Preliminaries

In the relational setting, all data sets are tables. A table contains a set of tuples

{t1, . . . , tn} conforming to a given schema. We assume set semantics.

Definition 5.4.1 (Select-Project-Join Transformation) A Select-Project-Join

(SPJ) transformation is any transformation that can be expressed as a tree of re-

lational algebra selection (σ), projection (π), and cross-product (×) operators. Note

since we assume set semantics, π is duplicate-eliminating. �

All SPJ transformations T can be transformed into a canonical form T (I1, . . . , Im) =

πA(σC(σC1(I1) × . . . × σCm
(Im))) using a sequence of algebraic transformations [39].

Note A is the final projection list, Ci are “local” (single-table) selection conditions,

and C contains “join” (multi-table) conditions. Hereafter we will operate on the

canonical form of relational transformations.

5.4.2 Logical Provenance for SPJ Transformations

Given the canonical form of an SPJ transformation T , it is straightforward to generate

a set of attribute mappings and filters that hold for T .

Theorem 5.4.1 Let T be an SPJ transformation: O = T (I1, . . . , Im) =

πA(σC(σC1(I1) × . . . × σCm
(Im))). For each attribute Ii.A ∈ A, attribute mapping

Ii.A↔ O.A holds for T .

Proof. Let I ′1, . . . , I
′
m be any input set instances and let x be any possible value of

O.A.

σA=x(T (I
′
1, . . . , I

′
m))

= σA=x(πA(σC(σC1(I
′
1)× . . .× σCm

(I ′m))))

= σA=x(πA(σC(σA=x(σC1(I
′
1)× . . .× σCm

(I ′m))))

= σA=x(πA(σC(σC1(I
′
1)× . . .× σCi

(σA=x(I
′
i))× . . .× σCm

(I ′m))))

= σA=x(T (I
′
1, . . . , σA=x(I

′
i), . . . , I

′
m)) �
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Theorem 5.4.2 Let T be an SPJ transformation: O = T (I1, . . . , Im) =

πA(σC(σC1(I1)× . . .× σCm
(Im))). For each Ii, T has filter condition Ci on Ii.

Proof. Let I ′1, . . . , I
′
m be any input set instances. Then we have:

T (I ′1, . . . , I
′
m)

= πA(σC(σC1(I
′
1)× . . .× σCi

(I ′i)× . . .× σCm
(I ′m)))

= πA(σC(σC1(I
′
1)× . . .× σCi

(σCi
(I ′i))× . . .× σCm

(I ′m)))

= T (I ′1, . . . , σCi
(I ′i), . . . , I

′
m) �

Given the above theorems, we can generate a canonical logical provenance specification

for any SPJ transformation.

Definition 5.4.2 (Canonical Specification for SPJ Transformation) Let T

be an SPJ transformation: O = T (I1, . . . , Im) = πA(σC(σC1(I1) × . . . × σCm
(Im))).

The canonical logical provenance specification for T is (M,F ) where M contains all

mappings Ii.A↔ O.A such that Ii.A ∈ A, and F contains all Ci. �

5.4.3 Encoding Minimal Provenance for SPJ Transforma-

tions

We show that for a certain class of SPJ transformations, the provenance encoded by

the canonical logical specification is minimal.

Theorem 5.4.3 Consider an SPJ transformation instance: O = T (I1, . . . , Im) =

πA(σC(σC1(I1)× . . .× σCm
(Im))). Suppose A contains all attributes in C. (Recall C

contains all multi-table conditions.) Given o ∈ O, let 〈I∗1 , . . . , I
∗
m〉 be the provenance

of o as encoded by the canonical logical specification for T . 〈I∗1 , . . . , I
∗
m〉 is minimal

for o with respect to T . �

The Theorem’s proof follows directly from the following two Lemmas.

Lemma 5.4.1 Consider an SPJ transformation instance: O = T (I1, . . . , Im) =

πA(σC(σC1(I1)× . . .×σCm
(Im))). Suppose that A contains all attributes in C. Given

o ∈ O, let 〈I∗1 , . . . , I
∗
m〉 be the provenance of o as encoded by the canonical logical
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specification for T . Let Ii contain all attributes in the schema of Ii. Then 〈I
∗
1 , . . . , I

∗
m〉

= 〈I∗∗1 , . . . , I∗∗m 〉 where each I∗∗i = πIi(σC∧A=o(σC1(I1)× . . .× σCm
(Im))).

Proof. Let Ai contain the attributes of Ii in A. The provenance of o

as encoded by T ’s canonical logical provenance specification is 〈I∗1 , . . . I
∗
m〉 =

〈σA1=o.A1∧C1(I1), . . . , σAm=o.Am∧Cm
(Im)〉. Let us show that I∗i = I∗∗i .

First suppose ei ∈ I∗i = σAi=o.Ai∧Ci
(Ii). Then ei ∈ Ii, and since o ∈

T (I1, . . . , Im) = πA(σC(σC1(I1) × . . . × σCm
(Im))), o ∈ σA=o(πA(σC(σC1(I1) × . . . ×

σCm
(Im)))) = πA(σC∧(A=o)(σC1(I1) × . . . × σCm

(Im))) = πA(σC∧(A=o)(σC1(I1) ×

. . . × σAi=o.Ai∧Ci
(Ii) × . . . × σCm

(Im))). Since A contains all attributes in C,

πA(σC∧(A=o)(σC1(I1)× . . .×σAi=o.Ai∧Ci
(Ii)× . . .×σCm

(Im))) = πA(σC∧(A=o)(σC1(I1)×

. . . × {ei} × . . . × σCm
(Im))). Since o ∈ πA(σC∧(A=o)(σC1(I1) × . . . × {ei} × . . . ×

σCm
(Im))), there exists some (e1, . . . , ei−1, ei+1, . . . , em) ∈ (σC1(I1)×. . .×σCi−1

(Ii−1)×

σCi+1
(Ii+1)× . . .×σCm

(Im)) such that σC∧A=o({e1}× . . .×{em}) = {e1}× . . .×{em}.

Thus I∗∗i = πIi(σC∧A=o(σC1(I1) × . . . × σCm
(Im))) ⊇ πIi({e1} × . . . × {em}) ⊇ {ei},

implying ei ∈ I∗∗.

Now suppose ei ∈ I∗∗i = πIi(σC∧A=o(σC1(I1) × . . . × σCm
(Im))). Then ei ∈ Ii,

ei.Ai = o.Ai, and ei satisfies Ci. Thus, ei ∈ σ(Ai=o.Ai)∧Ci
(Ii) = I∗i . �

Lemma 5.4.2 Consider an SPJ transformation instance: O = T (I1, . . . , Im) =

πA(σC(σC1(I1) × . . . × σCm
(Im))). Given o ∈ O, consider 〈I∗1 , . . . , I

∗
m〉 where each

I∗i = πIi(σC∧A=o(σC1(I1)× . . .×σCm
(Im))). 〈I

∗
1 , . . . , I

∗
m〉 is minimal for o with respect

to T .

Proof. We first show that 〈I∗1 , . . . , I
∗
m〉 is correct. Consider any I ′1 ⊆ I1, . . . I

′
m ⊆ Im.

First suppose o ∈ T (I ′1, . . . , I
′
m). Let us show that o ∈ T (I ′1∩I

∗
1 , . . . , I

′
m∩I

∗
m). Since

o ∈ T (I ′1, . . . , I
′
m), there exist e1 ∈ I ′1, . . . , em ∈ I ′m such that {o} = πA(σC(σC1({e1})×

. . . × σCm
({em}))). We know ei ∈ I∗i , since {ei} = πIi(σC∧A=o(σC1({e1}) × . . . ×

σCm
({em}))) ⊆ πIi(σC∧A=o(σC1(I1)×. . .×σCm

(Im))) = I∗i . Thus, e1 ∈ I ′1∩I
∗
1 , . . . , em ∈

I ′m ∩ I∗m, and it follows that o = T ({e1}, . . . , {em}) ⊆ T (I ′1 ∩ I∗1 , . . . , I
′
m ∩ I∗m).

Now suppose o ∈ T (I ′1 ∩ I∗1 , . . . , I
′
m ∩ I∗m). Since T is monotonic and I ′1 ∩ I∗1 ⊆

I ′1, . . . , I
′
m∩I

∗
m ⊆ I ′m, T (I

′
1∩I

∗
1 , . . . , I

′
m∩I

∗
m) ⊆ T (I ′1, . . . , I

′
m), and so o ∈ T (I ′1, . . . , I

′
m).

Thus, 〈I∗1 , . . . , I
∗
m〉 is correct.
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Let us now show 〈I∗1 , . . . , I
∗
m〉 is minimal. Suppose there existed a more precise

〈I∗∗1 , . . . , I∗∗m 〉 that was also correct. Then there exists some j for which I∗∗j ⊂ I∗j ,

i.e., there exists some element ej such that ej ∈ I∗j , ej /∈ I∗∗j . Since ej ∈ I∗j =

πIj(σC∧A=o(σC1(I1)× . . .× σCm
(Im))), there exists some (e1, . . . , ej−1, ej+1, . . . , em) ∈

(σC1(I1) × . . . × σCj−1
(Ij−1) × σCj+1

(Ij+1) × . . . × σCm
(Im)) such that {o} =

πA(σC(σC1({e1})×. . .×σCm
({em}))). Let us choose subsets I

′
1 = {e1}, . . . , I

′
m = {em}.

Since we are assuming that 〈I∗∗1 , . . . , I∗∗m 〉 is correct and o ∈ T (I ′1, . . . , I
′
m), we

would expect o to be in T (I ′1 ∩ I∗∗1 , . . . , I ′m ∩ I∗∗m ). But T (I ′1 ∩ I∗∗1 , . . . , I ′m ∩ I∗∗m ) ⊆

T ({e1}, . . . , {ej−1}, ∅, {ej+1}, . . . , {em}) = ∅. Thus, o /∈ T (I ′1 ∩ I∗∗1 , . . . , I ′m ∩ I∗∗m ), a

contradiction. There exists no correct 〈I∗∗1 , . . . , I∗∗m 〉 that is more precise, implying

that 〈I∗1 , . . . , I
∗
m〉 is minimal. �

Theorem 5.4.3 follows directly from Lemmas 5.4.1 and 5.4.2. We also note that

〈I∗1 , . . . , I
∗
m〉 where each I∗i = πIi(σC∧A=o(σC1(I1)× . . .×σCm

(Im))) is proven in [22] to

be the lineage of an SPJ transformation. Thus, we have shown via Lemma 5.4.2 that

the lineage of an SPJ transformation given in [22] corresponds to our definition of

minimal provenance (Definition 2.2.6). Of course our notion of minimal provenance

also supports general transformations.

5.4.4 Augmentation

Given an SPJ transformation T (I1, . . . , Im) = πA(σC(σC1(I1)× . . .×σCm
(Im))), recall

that Theorem 5.4.3 only guarantees that the canonical logical specification given in

Definition 5.4.2 encodes minimal provenance if A contains all attributes in C. One

approach to solving this problem is to simply retain more attributes in A to meet the

requirement, a process we call augmentation.

Definition 5.4.3 (Augmentation) Let T be a transformation with output schema

A. Transformation T ′ is an augmentation of transformation T if T ′ has output schema

A′ ⊃ A and T = T ′ ◦ πA. �

Augmentation can be applied to any transformation, including non-relational trans-

formations. The benefit of augmentation is that it allows logical specifications to
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encode more precise provenance. However, augmentation requires more storage, and

it also requires a logical or materialized view to be maintained, to produce the orig-

inal output from the augmented one. Note that if augmentation retains all input

attributes or even a key for each input tuple, then we effectively require each output

tuple o to have a pointer to the input tuples that contributed to o. Thus, augmenta-

tion degenerates to physical provenance.

Definition 5.4.4 (Provenance Encoded by Augmentation) Let O =

T (I1, . . . , Im) be a transformation instance with output schema A. Let T ′ be

an augmentation of T with output schema A′ ⊃ A and logical specification (M,F ).

Let O′ = T ′(I1, . . . , Im). Given o′ ∈ O′, let I∗(o′) = 〈I∗1 (o
′), . . . , I∗m(o

′)〉 be the prove-

nance of o′ as encoded by the logical specification for T ′. Given o ∈ O, the provenance

of o as encoded by (M,F ) is 〈I∗1 , . . . , I
∗
m〉, where each I∗i =

⋃
(o′∈O′)∧(πA(o′)=o) I

∗
i (o

′).

�

Theorem 5.4.4 (Correctness of Provenance Encoded by Augmentation)

Let O = T (I1, . . . , Im) be a transformation instance with output schema A. Let

T ′ be an augmentation of T with output schema A′ ⊃ A and logical specification

(M,F ). Given o ∈ O, the provenance of o as encoded by (M,F ) is correct for o with

respect to T .

Proof. Let O′ = T ′(I1, . . . , Im). Then o ∈ O if and only if there exists o′ ∈ O′ such

that πA(o
′) = o. Consider any I ′1 ⊆ I1, . . . , I

′
m ⊆ Im. We have:

{o} ∩ T (I ′1, . . . , I
′
m)

= {o} ∩ πA(T
′(I ′1, . . . , I

′
m))

= {o} ∩ πA(T
′(I ′1, . . . , I

′
m) ∩ σA=o.A(O

′))

= {o} ∩ πA(T
′(I ′1 ∩ I∗1 , . . . , I

′
m ∩ I∗m) ∩ σA=o.A(O

′))

= {o} ∩ πA(T
′(I ′1 ∩ I∗1 , . . . , I

′
m ∩ I∗m))

= {o} ∩ T (I ′1 ∩ I∗1 , . . . , I
′
m ∩ I∗m) �
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5.4.5 Logical Provenance for SPJA Transformations

We now extend our results to Select-Project-Join-Aggregate (SPJA) transformations.

We first introduce the aggregation operator.

Definition 5.4.5 (Aggregation) Let I be an input table I with schema I, and let

G ⊆ I, B ⊆ I. Let g1, . . . , gn be all of the distinct values of G in I, and let each

group Gi = σG=gi(I). The aggregation operator αG,aggr(B)→V takes an input table I

and outputs for each group Gi ⊆ I the tuple 〈gi, vi〉, where vi = aggr(Gi.B) and aggr

is an aggregation function onB: αG,aggr(B)→V (I) =
⋃

1≤i≤n{〈gi, vi〉}. We could extend

to multiple aggregation functions, but the added complexity wouldn’t introduce any

interesting challenges. �

Definition 5.4.6 (SPJA Transformation) A Select-Project-Join-Aggregate

(SPJA) transformation is a transformation that can be expressed in the canonical

form T (I1, . . . , Im) = πA0(σC0(αG,aggr(B)→V (πA(σC(σC1(I1)× . . .× σCm
(Im)))))). �

In the above canonical form, A0 and C0 refer to the schema G∪{V }. Note that there

exist transformations that can be expressed as a tree of selection (σ), projection (π),

cross-product (×), and aggregation (α) operators that cannot be transformed into the

above canonical form. However, any such transformation can be expressed as a tree of

SPJA transformations, each of which can be transformed into the canonical form; see

[39] for details. Our work considers only SPJA transformations with this canonical

form, assuming more complex queries will be split into multiple transformations.

Two of the theorems for SPJ transformations have a corresponding theorem for

SPJA transformations.

Theorem 5.4.5 Let T be an SPJA transformation: O = T (I1, . . . , Im) =

πA0(σC0(αG,aggr(B)→V (πA(σC(σC1(I1)× . . .× σCm
(Im)))))). For each attribute Ii.A ∈

(A0 ∩G), attribute mapping Ii.A↔ O.A holds for T .

Proof. Let I ′1, . . . , I
′
m be any input set instances and let x be any possible value of

A. Since A ∈ A0 and A ∈ G, we have:
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σA=x(T (I
′
1, . . . , I

′
m))

= σA=x(πA0(σC0(αG,aggr(B)→V (πA(σC(σC1(I
′
1)× . . .× σCm

(I ′m)))))))

= σA=x(πA0(σC0(αG,aggr(B)→V (σA=x(πA(σC(σC1(I
′
1)× . . .× σCm

(I ′m))))))))

= σA=x(πA0(σC0(αG,aggr(B)→V (πA(σC(σA=x(σC1(I
′
1)× . . .× σCm

(I ′m))))))))

= σA=x(πA0(σC0(αG,aggr(B)→V (πA(σC(σC1(I
′
1) × . . . × σCi

(σA=x(I
′
i)) × . . . ×

σCm
(I ′m)))))))

= σA=x(T (I
′
1, . . . , σA=x(I

′
i), . . . , I

′
m)) �

Theorem 5.4.6 Let T be an SPJA transformation: O = T (I1, . . . , Im) =

πA0(σC0(αG,aggr(B)→V (πA(σC(σC1(I1) × . . . × σCm
(Im)))))). Then T has filter con-

dition Ci on Ii.

Proof. Let I ′1, . . . , I
′
m be any input set instances. Then we have:

T (I ′1, . . . , I
′
m)

= πA0(σC0(αG,aggr(B)→V (πA(σC(σC1(I
′
1)× . . .× σCi

(I ′i)× . . .× σCm
(I ′m))))))

= πA0(σC0(αG,aggr(B)→V (πA(σC(σC1(I
′
1)× . . .× σCi

(σCi
(I ′i))× . . .× σCm

(I ′m))))))

= T (I ′1, . . . , σCi
(I ′i), . . . , I

′
m) �

As we did for SPJ transformations, we can generate canonical logical provenance

specifications for SPJA transformations.

Definition 5.4.7 (Canonical Specification for SPJA Transformation)

Let T be an SPJA transformation: O = T (I1, . . . , Im) =

πA0(σC0(αG,aggr(B)→V (πA(σC(σC1(I1) × . . . × σCm
(Im)))). The canonical logical

provenance specification for T is (M,F ) where M contains all mappings Ii.A↔ O.A

such that Ii.A ∈ (A0 ∩G), and F contains all Ci. �

Based on Theorems 5.2.1, 5.4.5, and 5.4.6, we know that the canonical specification

for SPJA transformations encodes correct provenance. For SPJA transformations T

in which the outermost projection operator πA0 projects out attributes in G, we can

augment T such that all attributes in G are retained.

Definition 5.4.8 (Augmentation of SPJA Transformation) Consider an

SPJA transformation T (I1, . . . , Im) = πA0(σC0(αG,aggr(B)→V (πA(σC(σC1(I1) × . . . ×
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σCm
(Im)))))) where (A0 ∩ G) ⊂ (A ∩ G). The canonical augmentation of T is T ′

where T ′(I1, . . . , Im) = πA′

0
(σC0(αG,aggr(B)→V (πA(σC(σC1(I1) × . . . × σCm

(Im))))))

and A′
0 = A0 ∪G. �

Given an augmentation T ′, its logical specification can contain additional attribute

mappings for all attributes in G that are retained by πA′

0
but not by πA0 . How-

ever, even for SPJA transformations that retain all attributes in G, the following

example demonstrates that the logical specification does not always encode minimal

provenance.

Example 5.4.1 Consider transformationCountryAgg with input data set SalesInfo

containing country-sales pairs for each of a corporation’s worldwide stores:

SalesInfo(country, sales) = {(France, 10), (Germany, 20), (Germany, 0)}. Transfor-

mation CountryAgg sums up the sales for each country, producing output table

CountrySales = αcountry,SUM(sales)(SalesInfo) = {(France, 10), (Germany, 20)}. The

canonical logical provenance specification is (M,F ), where M = {SalesInfo.country↔

CountrySales.country} and F = ∅. Let o = (Germany, 20) ∈ CountrySales.

Then o’s provenance as encoded by (M,F ) is σcountry=‘Germany′(SalesInfo) =

{(Germany, 20), (Germany, 0)}. However, the minimal provenance of o is simply

{(Germany, 20)}, since input tuple (Germany, 0) has no impact on the presence or

absence of o. �

In the above example, we see that input values of 0 are not in the minimal provenance

of a nonzero sum in the output. Similarly, for MIN and MAX aggregates, the minimal

provenance of an output tuple only contains those input tuples with the corresponding

minimum or maximum value. Since the focus of our work is on logical provenance

for general transformations, we do not treat individual aggregate functions here as

special cases; instead, we only capture the logical provenance that can be found by

treating the individual aggregate functions as black boxes.
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5.5 Related Work

Provenance in the context of schema mappings is studied in, e.g., [20, 26, 40]. Ref-

erences [20] and [26] both consider schema mapping languages that cannot express

general transformations (e.g., aggregation). Reference [40] considers a different type

of provenance that consists of schema elements and transformations as opposed to

input data elements.

Reference [6] uses Pig Latin [34] to express the functionality of workflow modules,

from which provenance information is generated, but unlike our general approach,

provenance definitions are tightly coupled with the specific Pig Latin operations. Ref-

erence [18] presents techniques for reducing the space overhead of provenance storage,

while our logical provenance uses transformation properties to avoid storing physical

provenance altogether. Reference [42] requires the workflow creator to specify trans-

formation inverses for each transformation from which provenance can be computed;

it has no support for automatically computing logical provenance for well-understood

transformations, such as relational ones. Reference [25] captures provenance by aug-

menting relational transformations via query rewrite, in effect annotating output

elements with provenance information. Our approach in some cases must resort to

augmentation, but we attempt as much as possible to capture provenance information

at the transformation level.

5.6 Conclusions

We described a simple logical-provenance specification language consisting of at-

tribute mappings and filters, and we provided a tracing algorithm in workflows where

logical provenance for each transformation is specified using our language. We con-

sidered logical provenance in the relational setting, showing that for a class of Select-

Project-Join (SPJ) transformations, logical provenance specifications encode minimal

provenance.



Chapter 6

Panda System

We have built a prototype system called Panda (for Provenance And Data) that sup-

ports data-oriented workflows, with provenance capture and tracing. Panda permits

data-oriented workflows of arbitrary (but acyclic) structure, with each transformation

specified in either SQL or in Python [2].

There have been multiple versions of the Panda system as we have developed

our work. In Section 6.1 we describe the high-level architecture of the final version

of Panda, which is based on logical provenance. In Section 6.2 we describe how

Panda generates logical provenance specifications and executes provenance tracing. In

Section 6.3 we present some performance results for logical provenance. In Section 6.4

we describe an earlier version of Panda that was used to experiment with provenance-

based refresh. In Section 6.5 we report experimental results based on this earlier

version; we consider the overhead of provenance capture, and the crossover point

between selective refresh and full workflow recomputation.

To the best of our knowledge, no other general-purpose data-oriented workflow

system (e.g., [31, 33]) supports significant provenance functionality. Therefore, there

is no separate related work section in this chapter.

105
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Figure 6.1: Architecture of the prototype Panda system.

6.1 System Architecture

The high-level architecture of the Panda system is shown in Figure 6.1. Each data

set handled by Panda is encoded in a separate relational table, and all records (tu-

ples) are given a globally unique ID. The main backend is SQLite, which stores

all data sets, SQL transformations, provenance, and workflow information. Python

transformations are stored separately in files.

Users interact with Panda through either the command-line interface or the Panda

GUI. There are three main types of user commands: (1) Creating or modifying input

data sets; (2) Creating transformations that generate newly-defined data sets from

existing ones, to build up workflows; (3) Provenance tracing. The Panda Layer

processes all user commands: It stores workflow graphs and their transformations,

generates logical provenance specifications for each transformation as described in

Chapter 5, and executes tracing operations.

6.2 Generating and Tracing Logical Provenance

This section references both the foundations of provenance presented in Chapter 2 and

the logical-provenance specification language and formalism presented in Chapter 5.
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We describe how Panda generates logical provenance specifications for SQL transfor-

mations (Section 6.2.1) and Python transformations (Section 6.2.2). We then describe

how Panda performs provenance tracing (Section 6.2.3). We focus on backward trac-

ing in this chapter, although our system supports both backward and forward tracing.

6.2.1 SQL Transformations

Panda supports transformations specified as SQL queries, restricted to single SE-

LECT blocks with optional grouping and aggregation. Note that this form of query

corresponds to the SPJA transformations in Definition 5.4.6 of Section 5.4.5, although

in our system we restrict WHERE clauses to conjunctive conditions.

As an example, consider transformation JoinAgg from our running example (Fig-

ure 1.1). This transformation can be expressed using the following SQL query:

Create Table ItemCountryProfit As

Select CS.item-id, country, brand, type,

SUM(quantity*profit_per_item) as profit,

From CustSales CS, ItemProfit IP

Where CS.item-id = IP.item-id

Group By CS.item-id, country, brand, type

In relational algebra, JoinAgg(CS, IP) can be expressed as:

αitem-id ,country,brand ,type,SUM (quantity∗profit per item)→profit(σCS .item-id=IP .item-id(CS× IP))

Panda generates logical provenance specifications through syntactic analysis of SQL

queries. During syntactic analysis, Panda generates attribute mappings between at-

tributes appearing in the SELECT clause and all possible corresponding input at-

tributes, computed by taking the transitive closure over equalities in the WHERE

clause. Panda generates filters for all conjuncts in the WHERE clause that apply to

a single input table. For our example transformation, Panda generates logical specifi-

cation (M,F ): M = {CS.item id ↔ IC.item id,CS.country ↔ IC.country, IP.item id ↔

IC.item id, IP.brand↔ IC.brand, IP.type↔ IC.type}, F = {}.

Now suppose the above query did not contain the item id attribute in its SELECT

clause. In this case Panda augments the query automatically as in Definition 5.4.7:
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Panda adds the item id attribute to the SELECT clause for the purpose of provenance

tracing, producing augmented result AugItemCountryProfit. It then creates a SQL

view for the output data set to hide the extra attribute:

Create View ItemCountryProfit As

Select country, brand, type, profit,

From AugItemCountryProfit

To illustrate how Panda augments SPJ transformations (i.e., without aggregation),

consider the following query:

Create Table CountryBrands As

Select country, brand

From CustSales CS, ItemProfit IP

Where CS.item-id = IP.item-id

In relational algebra, the above query can be expressed as:

πcountry,brand(σCS.item-id=IP.item-id(CS× IP))

Note that this query does not satisfy the requirements of Theorem 5.4.3, because

the attributes in the condition CS.item-id = IP.item-id are not included in the

final result. Thus, Panda augments the query so that the augmented transformation

satisfies the requirements of Theorem 5.4.3:

Create Table AugCountryBrands As

Select country, brand, CS.item-id

From CustSales CS, ItemProfit IP

Where CS.item-id = IP.item-id

Since the requirements of Theorem 5.4.3 are now satisfied, logical provenance for

the augmented transformation encodes minimal provenance. To recover the original

output, Panda creates the following view:

Create View CountryBrands As

Select country, brand

From AugCountryBrands
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6.2.2 Python Transformations

Panda only supports Python transformations that are one-one or one-many

transformations—i.e., the transformation operates on one record at a time—although

this restriction could be lifted with additional work. For Python transformations,

Panda prefers for the user to specify logical provenance, but provides a fallback mech-

anism if no provenance is specified.

Consider transformation Extract from the running example (Figure 1.1). The

user may provide Panda with the logical specification (M,F ) for Extract: M =

{CustData.cust-id↔ CS.cust-id,CustData.country↔ CS.country}, F = {}. If no user-

specified logical provenance is provided, Panda augments each output record with

the ID of the corresponding input record (calling it src id in the output), and gen-

erates the attribute mapping I.ID ↔ O.src id for the augmented transformation. (ID

is the column for the globally unique ID present in every Panda record.) As usual,

Panda stores the output of the augmented transformation, and creates a view on the

augmented output to produce the original output. Note that since each record in

the augmented output effectively contains a pointer to its contributing input record,

augmenting the output in this case degenerates to effectively storing physical prove-

nance.

6.2.3 Provenance Tracing

Panda enables provenance to be traced along a specified tracing path: a source data

set O, and a target data set I reached via a single specified path from the source.

To perform tracing, Panda generates and executes a SQL query that joins multiple

tables, returning the same provenance as in Algorithm 5.3.1.

In more detail, given a record in O, Panda first combines logical provenance

wherever possible along the tracing path from O to I. Then Panda generates a

query that joins the data sets in the remaining combined path. The conditions in the

join query are based on the logical provenance (attribute mappings and filters) for

the data sets in the combined path, and on the unique ID of the tuple being traced.
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Algorithm 6.2.1 (Provenance Tracing) Consider a workflow instance in which

each transformation T has logical provenance specification (MT , F T ). Let o ∈ O

be the output element we want to trace through Path = 〈I1, I2, . . . , In, In+1〉 where

In+1 = O. Using helper functions CombinePath and GenerateQuery, PT returns a

query that traces the provenance of o.

PT (o ∈ O,Path) :

for i in [1, n]:

let Ti be the transformation with input set Ii and output set Ii+1

let Mi denote the subset of mappings A↔ B in MTi such that

A is from Ii and B is from Ii+1

let Fi denote the subset of filters in F Ti that are on Ii

let ProvPath = 〈I1,M1, F1, I2,M2, F2, . . . , In,Mn, Fn〉

let CPath = CombinePath(ProvPath)

return GenerateQuery(CPath, o ∈ O)

// Combine logical provenance in ProvPath

CombinePath(ProvPath) :

suppose ProvPath = 〈I1,M1, F1, I2,M2, F2, . . . , In,Mn, Fn〉

CPath := 〈〉

M := ∅

for i in [n, n− 1, . . . , 2, 1]

if M = ∅ then:

M := Mi

else:

if every right attribute in Mi is a left attribute of M then:

suppose Mi = {A1 ↔ B1, . . . , Ar ↔ Br}

suppose M = {B1 ↔ D1, . . . , Bs ↔ Ds}, r ≤ s

M := {A1 ↔ D1, . . . , Ar ↔ Dr}

else:
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CPath := 〈Ii,M, Fi〉+CPath

M := Mi

CPath := 〈I1,M, F1〉 + CPath

return CPath

// Trace combined logical provenance in CPath returned by CombinePath

GenerateQuery(CPath, o ∈ O) :

suppose CPath = 〈I1,M1, F1, I2,M2, F2, . . . , In′ ,Mn′ , Fn′〉

for i in [1, n′]:

suppose Mi = {A1 ↔ B1, . . . , Ar ↔ Br}

let Ci = ((A1 = B1) ∧ . . . ∧ (Ar = Br) ∧ Fi)

let I1 be the schema of I1

return πI1(σC1∧...∧Cn′∧O.ID=o.ID(I1 × . . .× In′ ×O))

As an example, consider a LaptopProfit record (ID=15 say) that we want to

trace to destination CustSales (recall Figure 1.1 in Section 1.1). The path

between LaptopProfit (LP) and CustSales (CS) contains intermediate data set

ItemCountryProfit (IC): Path = 〈CS, IC, LP〉. The attribute mappings between

CS and IC are M1 = {(CS.item-id↔ IC.item-id), (CS.country↔ IC.country)},

and the attribute mappings between IC and LP are M2 =

{(IC.item-id↔ LP.item-id), (IC.country↔ LP.country), (IC.brand↔ LP.brand),

(IC.profit↔ LP.profit)}. Since all mappings in M1 have corresponding mappings in

M2, CombinePath combines M1 and M2 to produce the following logical specifi-

cation (M,F ) between CS and LP: M = {CS.item id ↔ LP.item id,CS.country ↔

LP.country}, F = {}. Panda then uses GenerateQuery to generate the following

tracing query:

Select Distinct CS.*

From CustSales CS, LaptopProfit LP

Where LP.item-id = CS.item-id

And LP.country = CS.country And LP.ID = 15
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Figure 6.2: Health insurance data workflow.

Panda uses Distinct in its tracing queries so that tuples that would otherwise appear

multiple times in the tracing result appear only once.

6.3 Logical Provenance Experiments

The primary goal of our experiments was to explore the benefits of logical provenance

over physical provenance. We will see that logical provenance has smaller time and

space overhead as expected (Section 6.3.1), and also enables more efficient provenance

tracing by combining provenance across transformations (Section 6.3.2). Overhead

and tracing performance may vary considerably depending on the particular workflow

and data. Our experiments were not designed to explore these variations, but rather

to serve as an example of how logical provenance compares to physical provenance in

one fairly neutral setting.

We conducted our experiments using the Panda system on the real-world workflow

shown in Figure 6.2. The workflow processes health insurance claim data from the

Heritage Health Prize competition [4]. The workflow’s input data sets are:

• ClaimData(memberID, providerID, diseaseID, data), where attribute data is a text

field containing health insurance claim data

• DiseaseData(diseaseID, type)

• VisitData(memberID, days), which contains the number of days spent in the hospital

The workflow involves the following transformations:

• ExtractYear extracts attribute year from ClaimData.data, producing data

set YearData(memberID, providerID, diseaseID, data, year), abbreviated YD.

ExtractYear is a Python transformation with logical specification (M,F ):
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M = {(ClaimData.memberID↔ YD.memberID), (ClaimData.providerID ↔

YD.providerID), (ClaimData.diseaseID↔ YD.diseaseID), (ClaimData.data↔

YD.data)}, F = {}.

• LookupType joins YearData and DiseaseData on attribute diseaseID (and drops

diseaseID), producing data set DiseaseType(memberID, providerID, data, year, type),

abbreviated DT. LookupType is a SQL transformation that is aug-

mented to keep join attribute diseaseID (recall Section 6.2.1). The

logical specification for the augmented output DTA is (M,F ): M =

{(YD.memberID↔ DTA.memberID), (YD.providerID↔ DTA.providerID),

(YD.diseaseID↔ DTA.diseaseID),(YD.data↔ DTA.data), (YD.year↔ DTA.year),

(DiseaseData.diseaseID↔ DTA.diseaseID), (DiseaseData.type↔ DTA.type)},

F = {}.

• SelectYear applies filter year=3 to DiseaseType and drops year, produc-

ing data set Year3Data(memberID, providerID, data, type), abbreviated Y3.

SelectYear is a SQL transformation with logical specification (M,F ):

M = {(DT.memberID↔ Y3.memberID), (DT.providerID↔ Y3.providerID),

(DT.data↔ Y3.data), (DT.type↔ Y3.type)}, F = {year=3}.

• LookupDays joins Year3Data and VisitData on attribute mem-

berID, producing DaysData(memberID, providerID, data, type, days), ab-

breviated DD. LookupDays is a SQL transformation with logi-

cal specification (M,F ): M = {(Y3.memberID↔ DD.memberID),

(Y3.providerID↔ DD.providerID), (Y3.data↔ DD.data), (Y3.type↔ DD.type),

(VisitData.memberID↔ DD.memberID), (VisitData.days↔ DD.days)}, F = {}.

• Finally, AggDays computes the average number of days spent

in the hospital for each (type, providerID) group, producing

data set AverageTime(type, providerID, avgdays). AggDays is

a SQL transformation with logical specification (M,F ): M =

{(DD.type↔ AverageTime.type), (DD.providerID↔ AverageTime.providerID)},

F = {}.

All of the experiments in this section were run on a MacBook Air laptop (1.8 GHz
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Figure 6.3: Time overhead of provenance capture.
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Figure 6.4: Space overhead of provenance capture.

Intel Core i7, 4 GB memory, 250 GB storage, Mac OS X 10.7). The time performance

numbers we report are averages taken over 5 runs; we observed little variation between

runs. To measure the performance of physical provenance, we used a modified version

of Panda that stores physical provenance in separate provenance tables.

6.3.1 Time and Space Overhead

Figure 6.3 demonstrates the time overhead of logical and physical provenance, running

our workflow with varying input data sizes. Comparing the running times of workflow

computation with and without provenance, the time overhead is roughly proportional

to the size of the input data set, ranging from 3% to 8% for logical provenance, and

from 50% to 71% for physical provenance. The time overhead for logical provenance

is due to the additional output data produced by augmentation.

Figure 6.4 demonstrates the space overhead of logical and physical provenance.

The space measurement totals all intermediate and output data involved in the work-

flow. Logical provenance incurs a consistent approximately 4% space overhead across
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Figure 6.5: Provenance tracing time.

input data sizes, while physical provenance incurs a consistent approximately 23%

space overhead. Again, augmentation is responsible for essentially all of the space

overhead for logical provenance.

6.3.2 Tracing Time

We measured the time to trace output tuples through our workflow to input data set

ClaimData, after the workflow was run collecting physical or logical provenance. We

report two times for logical provenance (Figure 6.5):

1. Logical: Time to trace one output tuple using Panda’s tracing algorithm as

presented in Algorithm 6.2.1

2. Logical Uncombined: Time to trace one output tuple using a tracing algorithm

that does not combine provenance across transformations

For our workflow, Algorithm 6.2.1 combines provenance twice, eliminating interme-

diate data sets YearData and Year3Data from the tracing query (recall Section 5.3.3).

Thus, while the tracing query for both physical provenance and uncombined logical

provenance involves six data sets, the tracing query for combined logical provenance

involves only four data sets.

As shown in Figure 6.5, tracing using uncombined logical provenance is 10-14%

slower than using physical provenance. While both approaches involve tracing queries

with the same number of data sets, tracing physical provenance is faster, since the
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data tables used in the tracing query for logical provenance are larger than the physical

provenance tables. However, combining logical provenance in Algorithm 6.2.1 enables

faster tracing; tracing using combined logical provenance is 32-37% faster than using

physical provenance.

6.4 Supporting Provenance-Based Refresh

In this section, we describe an earlier version of Panda that was used to experiment

with provenance-based refresh. We call this version PandaR. This section refer-

ences the provenance-based refresh material presented in Chapter 4. We describe

how PandaR obtains provenance predicates for SQL transformations (Section 6.4.1)

and Python transformations (Section 6.4.2). We then describe how PandaR performs

provenance-based refresh (Section 6.4.3). Performance experiments will be in Sec-

tion 6.5.

6.4.1 SQL Transformations

For SQL transformations, PandaR creates provenance predicates automatically, fol-

lowing known definitions and techniques [16, 19, 22]: Single-table Select statements

are one-one, so their output provenance predicates can select on declared keys from

the input data set. Multi-table Select statements generate provenance predicates

for each input table separately as described in Section 4.5, again relying on declared

keys. Finally, Group-by queries generate provenance predicates based on the group-

ing attribute(s).

As an example of a SQL transformation, consider adding transformation Join as

we build up our genetic risk workflow example from Section 4.1.1 (Figure 4.1). The

user appends the transformation to the workflow with the following command:

Create Table PatientRisks As

Select name, disease, risk

From PatientDNA, DNARisks

Where PatientDNA.loc = DNARisks.loc And PatientDNA.seq = DNARisks.seq
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In response to this command, PandaR creates the new table PatientRisks, and creates

an additional table to store the provenance predicates. Forward filters are never

needed since SQL queries cannot produce many-many transformations.

6.4.2 Python Transformations

To support refresh, PandaR requires that Python transformations output provenance

predicates with each output element. As an example, consider transformation Pa-

tientDL from our genetic risk workflow example (Figure 4.1). The user writes a

Python script patientdl.py that takes as its argument a list of URLs, and returns

the set of XML documents located at the URLs, with corresponding provenance pred-

icates. The user then appends transformation PatientDL to the workflow with the

following command:

Create Table RawPatientData

As Python ’patientdl.py’ on PatientURLs

In response to this command, PandaR creates the new table RawPatientData, as well

as an additional table to store the provenance predicates. For many-many transforma-

tions, the Python script would also need to create a forward filter (recall Section 4.4)

for each output element.

6.4.3 Refresh

When workflows are created and run, PandaR stores everything needed to support

selective refresh: provenance predicates and intermediate data sets for backward-

tracing; transformations and forward filters for forward-propagation. PandaR as-

sumes that all transformations, provenance, and workflows satisfy the require-

ments specified in Chapter 4. Automatically detecting when the requirements are

satisfied—particularly the most interesting requirement of workflow safety (Require-

ment 4.3.1)—is an important area of future work.

Under the assumption of all requirements being satisfied, PandaR supports selec-

tive refresh using the exact algorithms given in Chapter 4. When an output element
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o is refreshed, if a new value o′ is produced then PandaR automatically replaces o

with o′. If the refresh results in an empty set, then o is deleted. However, we leave a

visible “tombstone” for o with its associated provenance predicate (and forward filter

if present). Then, if desired we can refresh the tombstone at a later time and possibly

discover that further input modifications have created a new value for o.

6.5 Refresh Experiments

The primary goal of this empirical study was to determine, for varying workflow

characteristics, when it is advantageous to perform selective refresh as opposed to

rerunning the entire workflow. Specifically, how many refreshes can we perform before

their aggregate running time—including the extra time spent to capture provenance—

exceeds that of complete recomputation?

For this empirical study we used the example workflow described in Section 4.1.1

(Figure 4.1), with fabricated data. Transformations Join and Filter use SQL, while

transformations PatientDL, DNADL, PExtract, and RiskExtract were coded

in Python. We indexed the intermediate data sets so that our provenance predicates

could be evaluated efficiently. All of the experiments in this section were run using

PandaR on a MacBook Air laptop (1.8 GHz Intel Core i7, 4 GB memory, 250 GB

storage, Mac OS X 10.7). To study how different workflow characteristics impact the

overhead of provenance capture and the performance of refresh, we ran experiments

for varying data sizes and varying transformation costs. The time performance num-

bers we report are averages taken over 5 runs; we observed little variation between

runs.

Our performance results are summarized as follows:

• The time and space overhead of provenance capture is proportional to the time and

space required by workflow execution, which in turn is proportional to the amount

of input data. We observed roughly 25% time overhead and 56% space overhead

for various input sizes to capture provenance while executing the workflow.
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Figure 6.6: Time overhead of provenance capture, vary input size.

• Not surprisingly, the relative time overhead of provenance capture and provenance

tracing decreases as individual transformations get more expensive. Thus, selec-

tive refresh is most advantageous for workflows with relatively expensive transfor-

mations.

• In our experiments, we were able to refresh between 47% and 71% of the data

elements in the output data set before the running time (including provenance

capture) exceeded that of complete recomputation. The crossover point was in-

dependent of input data size, but became more favorable for selective refresh as

transformations got more expensive.

6.5.1 Overhead of Provenance Predicates

Figure 6.6 shows the time overhead of provenance capture for varying input data sizes.

Comparing the running times of workflow computation with and without provenance,

we see that the time overhead is roughly proportional to the amount of input data,

ranging from 21% to 29%

Figure 6.7 shows the space overhead of provenance capture for varying input data

sizes. We totaled all data involved in the workflow, including intermediate data, with

and without provenance. Storing provenance, which includes provenance predicates

and forward filters, incurred a 56% overhead across all input data sizes. Note the space

overhead would be considerably lower for “wider” data elements; our fabricated data

elements are relatively small.
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Figure 6.7: Space overhead of provenance capture, vary input size.
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Figure 6.8: Time overhead of provenance capture, vary transformation cost.

Next we measured the impact of transformation cost on time overhead of prove-

nance capture. We modified the two transformations that download data from the

web, PatientDL and DNADL, to perform local downloads instead, and we in-

strumented them with a configurable delay. Figure 6.8 shows the time overhead of

provenance capture, varying the costs of (i.e., the delays in) transformations Pa-

tientDL and DNADL. We can see that the larger the transformation costs, the

lower the relative time overhead of provenance capture; e.g., time overhead is 32%

at 50ms vs. 14% at 200ms. Intuitively, when transformations are more expensive,

provenance capture plays a smaller role.
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6.5.2 Crossover Point for Refresh

Our next experiments identify the crossover point between selective refreshes (includ-

ing provenance capture) and full recomputation (without provenance capture). For

starters, the two lines in Figure 6.9 plot the running times of:

1. Recompute: Time required to fully (re)compute the workflow.

2. Refresh: Total time to selectively refresh a varying fraction of the output data

elements. To make a fair comparison, we added the time overhead of provenance

capture to the total time.

In this experiment we used an input size of 20 MB and the original transformation

costs for PatientDL and DNADL. From Figure 6.9 we see that we can capture

provenance and then refresh over 60% of the data elements in the output data set

before the total running time exceeds that of recomputation. Obviously, selective

refresh is most advantageous when only a small subset of the output elements are

refreshed, however in our experiment a significant fraction of output elements needed

to be refreshed before we observed no advantage at all.

Figure 6.10 shows the crossover point (in terms of percentage of refreshed ele-

ments) between selective refresh and full workflow recomputation when we vary the

input size. This line is approximately constant, indicating that the relationship be-

tween selective refresh and workflow recomputation is independent of input data size.

Figure 6.11 shows the impact of transformation costs on the crossover point. The



CHAPTER 6. PANDA SYSTEM 122

0	  

20	  

40	  

60	  

80	  

0	   10	   20	   30	   40	   50	  

C
ro
ss
o
v
e
r	  
p
o
in
t	  
	  

(%
	  e
le
m
e
n
ts
	  r
e
fr
e
sh
e
d
)	  

Input	  size	  (MB)	  

Figure 6.10: Crossover point between selective refresh and workflow recomputation,
vary input size.
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Figure 6.11: Crossover point between selective refresh and workflow recomputation,
vary transformation cost.

input data size is 20 MB, and the transformation costs are varied as described above

for Figure 6.8. Here the crossover point becomes more favorable for selective refresh

as transformations get more expensive: we can refresh 47% at 50ms versus 71% at

200ms before refresh time exceeds recomputation. Like with provenance capture, as

transformations get more expensive, we are not surprised to see a decrease in the

relative cost of provenance tracing.
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6.5.3 Unsafe Workflows

All of the reported experiments were conducted using our workflow example from

Section 4.1.1 (Figure 4.1), which is a safe workflow. Recall from Section 4.6 that we

propose handling unsafe workflows with a simple hybrid approach: perform workflow

computation for the unsafe portion of the workflow, and selective refresh for the rest.

Since this solution combines the two computations we’ve measured, we would expect

a hybrid result: the crossover point for unsafe workflows will be less favorable towards

selective refresh, with the amount of crossover “shift” determined by the percentage

of the workflow that is unsafe.

6.6 Conclusions

We described the Panda system, which supports data-oriented workflows, with prove-

nance capture and tracing. There have been multiple versions of the Panda system

as we have developed our work. We gave an overview of the final version of Panda,

which is based on logical provenance. We described how Panda generates logical

provenance specifications and executes our tracing algorithms, and we presented some

performance results for logical provenance. We described an earlier version of Panda,

which we called PandaR, that was used to experiment with provenance-based refresh.

We reported experimental results based on PandaR that consider the overhead of

provenance capture, and the crossover point between selective refresh and full work-

flow recomputation. Even including the time overhead of provenance capture, we were

able to selectively refresh over 60% of the output elements before the total running

time exceeded that of recomputation.
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Summary and Future Work

This thesis studied the problem of managing provenance in data-oriented workflows.

Overall, our work provided a comprehensive foundation, set of algorithms, and pro-

totype system for capturing and exploiting provenance. We summarize our work in

Section 7.1, and we discuss future directions in Section 7.2.

7.1 Thesis Summary

Chapter 1 gave an overview of provenance, showing through a motivating example

how provenance can support the overall functions of explanation, verification, and

recomputation in data-oriented workflows. Chapters 2-6 contained the main contri-

butions of the thesis.

• Foundations. In Chapter 2 we laid the formal foundations for defining prove-

nance in data-oriented workflows. We gave a new general definition of provenance,

introducing the notions of correctness, precision, and minimality. After we de-

fined workflow provenance in the intuitive recursive way, we then discussed its

theoretical properties, identifying when the provenance properties of correctness,

minimality, and weak correctness carry over from individual transformations to

the workflow as a whole.

• Generalized Map and Reduce Workflows. In Chapter 3 we explored prove-

nance for forward and backward tracing in generalized map and reduce workflows

124
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(GMRWs). We showed that the special case of workflows where all transforma-

tions are map or reduce functions allows us to capture and exploit provenance

more easily and efficiently than for general data-oriented workflows. We iden-

tified properties that hold for workflow provenance in GMRWs. We described

how provenance can be captured for both map and reduce functions transparently

using wrappers in the Hadoop open-source MapReduce framework. We built a

prototype system as an extension to Hadoop that supports provenance capture

and tracing, and we reported performance numbers on the overhead of provenance

capture and the cost of provenance tracing.

• Provenance-Based Refresh. In Chapter 4 we considered the problem of se-

lectively refreshing one or more output elements in a workflow where the input

data sets had been modified since the workflow was run, but the workflow had

not been rerun on the modified input. We presented a formal foundation and

algorithms for selective refresh in workflows where each transformation has prove-

nance captured in the form of provenance predicates. We identified properties of

transformations, provenance, and workflows that are required for the algorithms

to perform refresh correctly, and we discussed how the algorithms can be adapted

to handle workflows that do not satisfy these properties.

• Logical Provenance. In Chapter 5 we considered logical provenance: prove-

nance information stored at the transformation level. Logical provenance can

often capture exactly the same element-level provenance information as physi-

cal provenance, but in a much more compact fashion. Thus, for workflows in

which provenance can be captured logically without losing information, logical

provenance is strictly preferable to physical provenance. We described a simple

logical-provenance specification language consisting of attribute mappings and fil-

ters. We provided algorithms for backward tracing in workflows where logical

provenance for each transformation is specified using our language. We also con-

sidered logical provenance specifically in the relational setting, showing that for

a class of Select-Project-Join (SPJ) transformations, logical provenance specifica-

tions encode minimal provenance.
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• Panda System. In Chapter 6 we described the Panda system, which supports

data-oriented workflows, with provenance capture and tracing. There have been

multiple versions of the Panda system as we have developed our work. We gave

an overview of the final version of Panda, which is based on logical provenance.

We described how Panda generates logical provenance specifications and executes

our tracing algorithms, and we presented some performance results for logical

provenance. We described an earlier version of Panda, referred to as PandaR, that

was used to experiment with provenance-based refresh. We reported experimental

results based on PandaR that consider the overhead of provenance capture, and

the crossover point between selective refresh and full workflow recomputation.

7.2 Future Directions

We divide our discussion of future directions by topic. Section 7.2.1 discusses gener-

alized map and reduce workflows, Section 7.2.2 discusses provenance-based refresh,

and Section 7.2.3 discusses logical provenance.

7.2.1 Generalized Map and Reduce Workflows

• Efficient tracing. Our work on the RAMP system focused primarily on trans-

parent wrapping and efficiency of provenance capture. A natural next step would

be to focus on efficiency of both backward and forward tracing. For both types of

tracing, building appropriate indexes is sure to be a key component.

• Incorporating SQL processing. A general avenue for future work is to in-

corporate SQL processing into GMRWs. SQL nodes interspersed with map and

reduce functions can form a rich and interesting environment. Some SQL queries

are map or reduce functions already, allowing them to slot right into the GMRW

framework. Other SQL queries may not fit the map or reduce paradigm precisely,

but do have provenance that can be incorporated via extensions to the GMRW

framework. Finally, several systems (e.g., Hive [38]) compile SQL queries into
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MapReduce jobs, which may provide a natural way to incorporate SQL process-

ing into GMRWs.

7.2.2 Provenance-Based Refresh

• Verifying requirements. As discussed in Chapter 4, correct selective refresh

requires that the transformations and workflows satisfy certain properties. Cur-

rently, workflow creators must ensure that their transformations and workflows

satisfy the requirements. It may be possible to develop static and/or dynamic

tests that can automatically check these requirements for some classes of work-

flows.

• Integrating refresh with eager propagation. In its current form, the work-

flow refresh algorithm may unnecessarily repeat work that may be shared between

individual refreshes invoked during the recursion. A more sophisticated algorithm

might be able to take advantage of all information obtained about new values

during a refresh operation. More generally, an expanded system might perform a

combination of eager and lazy refresh in response to user needs.

• Stability guarantees. Currently we assume that input data may change at any

time, so selective refresh must always perform full backward tracing. Further-

more, we always perform forward propagation, under the assumption the data

has changed. If the system monitors changes and can make guarantees about

data stability—both input data and, when possible, intermediate data—we could

use this information to avoid unnecessary work.

• Special settings. We considered a very general environment where provenance

is tracked at the level of individual data elements and individual transformations.

The goal was to lay the foundations for selective refresh for a wide class of data-

oriented workflows. In some settings, the refresh problem might be simplified

and/or made more efficient when special properties hold. For example, as dis-

cussed in Chapter 5, often schema-level provenance relationships are known for
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transformations. Currently, the refresh algorithm requires schema-level prove-

nance to be encoded as provenance predicates on each data element. This ap-

proach works, but it is unnecessarily cumbersome when all predicates take the

same form. Also, as in Chapter 5, sometimes it is possible to “fold together”

provenance for multiple transformations, eliminating the need for intermediate

results and making refresh more efficient.

7.2.3 Logical Provenance

• Specialized tracing algorithms. Recall from Chapter 5 that there are a range

of possible provenance-tracing algorithms for workflows with logical specifications

at each transformation. A conservative algorithm, for example, may combine log-

ical provenance across transformations only when it is certain that doing so will

not reduce precision. Alternatively a more aggressive algorithm (at least from

the performance perspective) may combine logical provenance even without such

certainty, to avoid the overhead of tracing provenance through each step of in-

termediate data. One area of future work is to study the relationship between

the precision and performance of tracing algorithms, perhaps identifying classes

of workflows for which specialized tracing algorithms can greatly improve perfor-

mance without losing much precision. A natural next step is to more comprehen-

sively explore the performance tradeoffs between logical and physical provenance,

which likely depend on the properties of the workflow and data.

• Specification languages. In Chapter 5 we presented a specific language for

expressing logical provenance, based on attribute mappings and filters. It would

be interesting to explore other possible logical-provenance specification languages.

The language we presented was designed to be expressive yet simple, but there

may exist other specification languages that work especially well for workflows in

particular domains.
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efficiently querying scientific workflow provenance graphs. In EDBT, 2010.

[8] Apache. Hadoop. http://hadoop.apache.org/.

[9] Omar Benjelloun, Anish Das Sarma, Alon Halevy, and Jennifer Widom. ULDBs:

Databases with uncertainty and lineage. In VLDB, 2006.

[10] Deepavali Bhagwat, Laura Chiticariu, Wang-Chiew Tan, and Gaurav Vijay-

vargiya. An annotation management system for relational databases. In VLDB,

2004.

129



BIBLIOGRAPHY 130

[11] Olivier Biton, Sarah Cohen-Boulakia, Susan B. Davidson, and Carmem S. Hara.

Querying and managing provenance through user views in scientific workflows.

In ICDE, 2008.

[12] Jose A. Blakeley, Per-Ake Larson, and Frank Wm Tompa. Efficiently updating

materialized views. In SIGMOD, 1986.

[13] Rajendra Bose and James Frew. Lineage retrieval for scientific data processing:

a survey. ACM Comput. Surv., 37(1), 2005.

[14] Klaas Bosteels. Dumbo. http://wiki.github.com/klbostee/dumbo/.

[15] Peter Buneman, Adriane Chapman, and James Cheney. Provenance management

in curated databases. In SIGMOD, 2006.

[16] Peter Buneman, Sanjeev Khanna, and Wang-Chiew Tan. Why and where: A

characterization of data provenance. In ICDT, 2001.

[17] Craig Chambers, Ashish Raniwala, Frances Perry, Stephen Adams, Robert R.

Henry, Robert Bradshaw, and Nathan Weizenbaum. FlumeJava: Easy, efficient

data-parallel pipelines. In PLDI, 2010.

[18] Adriane P. Chapman, H. V. Jagadish, and Prakash Ramanan. Efficient prove-

nance storage. In SIGMOD, 2008.

[19] James Cheney, Laura Chiticariu, and Wang-Chiew Tan. Provenance in

databases: Why, how, and where. Foundations and Trends in Databases, 1(4),

2009.

[20] Laura Chiticariu and Wang-Chiew Tan. Debugging schema mappings with

routes. In VLDB, 2006.

[21] Yingwei Cui and Jennifer Widom. Lineage tracing for general data warehouse

transformations. The VLDB Journal, 12(1), 2003.

[22] Yingwei Cui, Jennifer Widom, and Janet L. Wiener. Tracing the lineage of view

data in a warehousing environment. ACM TODS, 25(2), 2000.



BIBLIOGRAPHY 131

[23] Susan B. Davidson and Juliana Freire. Provenance and scientific workflows:

challenges and opportunities. In SIGMOD, 2008.

[24] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data processing on

large clusters. In OSDI, 2004.

[25] Boris Glavic and Gustavo Alonso. Perm: Processing provenance and data on the

same data model through query rewriting. In ICDE, 2009.

[26] Todd J. Green, Grigoris Karvounarakis, Zachary G. Ives, and Val Tannen. Up-

date exchange with mappings and provenance. In VLDB, 2007.

[27] Todd J. Green, Grigoris Karvounarakis, and Val Tannen. Provenance semirings.

In PODS, 2007.

[28] Ashish Gupta and Inderpal Singh Mumick. Maintenance of materialized views:

Problems, techniques, and applications. IEEE Data Engineering Bulletin, 18(2),

1995.

[29] Thomas Heinis and Gustavo Alonso. Efficient lineage tracking for scientific work-

flows. In SIGMOD, 2008.

[30] Jiansheng Huang, Ting Chen, Anhai Doan, and Jeffrey F. Naughton. On the

provenance of non-answers to queries over extracted data. In VLDB, 2008.
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