
Logical Refinements of Church’s Problem�

Alexander Rabinovich1 and Wolfgang Thomas2

1 Tel Aviv University, Department of Computer Science
rabino@math.tau.ac.il

2 RWTH Aachen, Lehrstuhl Informatik 7, 52056 Aachen, Germany
thomas@informatik.rwth-aachen.de

Abstract. Church’s Problem (1962) asks for the construction of a pro-
cedure which, given a logical specification ϕ on sequence pairs, realizes
for any input sequence X an output sequence Y such that (X, Y) satisfies
ϕ. Büchi and Landweber (1969) gave a solution for MSO specifications
in terms of finite-state automata. We address the problem in a more
general logical setting where not only the specification but also the solu-
tion is presented in a logical system. Extending the result of Büchi and
Landweber, we present several logics L such that Church’s Problem with
respect to L has also a solution in L, and we discuss some perspectives
of this approach.

1 Introduction

An influential paper in automata theory is the address of A. Church to the
Congress of Mathematicians in Stockholm (1962) [3]. Church discusses systems
of restricted arithmetic, used for conditions on pairs (X, Y) of infinite sequences
over two finite alphabets. As “solutions” of such a condition ϕ he considers
“restricted recursions” (of which the most natural example is provided by finite
automata with output), which realize letter-by-letter transformations of input
sequences X to output sequences Y , such that ϕ is satisfied by (X, Y). By
“Church’s Problem” one understands today the question whether a condition in
MSO (the monadic second-order theory of the structure (N, <)) can be realized
in this sense by a finite automaton with output, and in this case to synthesize
it. Büchi and Landweber solved this problem, and in recent years many authors
took up the question in various applications of the algorithmic theory of infinite
games (see e.g. [6]).

In the original problem, a precise relation between a specification and its solu-
tion was not addressed, maybe due to the fact that specifications and solutions
were considered to be in different domains. However, by a well-known corre-
spondence between finite automata and monadic second-order logic (established
by Büchi, Elgot, and Trakhtenbrot), the Büchi-Landweber solution for MSO-
specifications can again be presented as MSO-formulas. In this paper we analyze
� This paper was written during a visit of the first author in Aachen in February

2007, funded by the European Science Foundation ESF in the Research Networking
Programme AutoMathA (Automata: From Mathematics to Applications).

J. Duparc and T.A. Henzinger (Eds.): CSL 2007, LNCS 4646, pp. 69–83, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

70 A. Rabinovich and W. Thomas

this view and generalize the result to a number of sublogics of MSO. We ex-
hibit natural logics L such that Church’s Problem for conditions in L is solvable
again in L. Moreover, a slightly sharpened statement holds: If a condition is not
solvable, then again a procedure definable in L exists to prohibit satisfaction
of the condition. In shorter words one says that infinite games defined in L are
determined with L-definable winning strategies.

We shall show the result for the following logics:

1. MSO, monadic second-order logic over (N, <).
2. FO(<), first-order logic over (N, <) (with free set variables, similarly for the

logics below).
3. FO(<)+MOD, the extension of FO(<) by modular counting quantifers,
4. FO(S), first-order logic over (N, S) with successor relation S,
5. strictly bounded logic, which is quantifier-free logic over (N, 0, +1).

The first three are treated in one proof, the last two handled separately.
We also exhibit examples of logics where the statement of the theorem fails,

among them the extension of FO(S) by the quantifier ∃ω (“there exist infinitely
many”) and Presburger arithmetic.

The study of the Büchi-Landweber Theorem for subsystems of MSO was
started in a recent paper by Selivanov [15]. He showed that specifications given
by aperiodic regular ω-languages can be solved with aperiodic transducers, which
is a setting semantically equivalent to FO(<) but relying on different techniques.
The present paper uses a different concept of definability and a general proof
method based on Ehrenfeucht-Fraissé type equivalences of the logics under con-
sideration. The essential proof ingredients for the logics 1. - 4. above are the
following:

1. A normal form of L-formulas in the form of Boolean combinations of formulas
∃ωxϕ(x), respectively ∃xϕ(x), where ϕ(x) is an L-formula bounded in x,

2. a refinement of these normal forms corresponding to parity automata, respec-
tively weak parity automata, whose states are L-definable equivalence types
of finite words (the equivalence typically based on the undistinguishability
by L-formulas of a given quantifier rank),

3. the construction of (weak) parity games over game graphs whose vertices
are essentially the mentioned equivalence classes, and the application of the
positional determinacy of (weak) parity games.

These results motivate a closer study of refined uniformization problems that
already have a tradition in recursion theory and descriptive set theory (however,
there in the context of degrees of unsolvability). We mention some perspectives
in the Conclusion.

In the subsequent Section 2 we introduce the terminology and state the main
result, adding a discussion of the possible concepts of definability for solutions
of Church’s Problem. In Section 3 we recall the prerequisites on (weak) parity
games, and in Section 4 we develop the above-mentioned normal forms. The
proof of the main result follows in Section 5.

Logical Refinements of Church’s Problem 71

2 Preliminaries and Main Result

2.1 Church’s Problem, Games, and Strategies

Church’s Problem deals with sequence pairs over alphabets of the form {0, 1}n.
An instance is (the formal definition of) a set S of pairs (α, β) where say
α ∈ ({0, 1}m1)ω and β ∈ ({0, 1}m2)ω . We identify this set with the ω-language
over {0, 1}m1+m2 which contains for each pair (α, β) the ω-word α(0)̂ β(0),
α(1)̂ β(1) . . . (where u v̂ denotes the concatenation of the vectors u and v).

In the original form of Church’s Problem, the set S is defined in a restricted
system of arithmetic. In this context, it is convenient to use the standard cor-
respondence between a sequence α ∈ ({0, 1}n)ω and an m-tuple (P1, . . . , Pm) of
predicates Pi over the natural numbers, with i ∈ Pj iff the j-th component of
α(i), short (α(i))j , is equal to 1. The underlying mathematical model is (N, <).
We assume that the reader is acquainted with MSO logic over this structure (see
[6]). We indicate first-order variables by x, y . . . and monadic second-order vari-
ables by X, Y, . . . Then an instance of Church’s Problem is a formula ϕ(X, Y)
with tuples of free set variables X = (X1, . . . , Xm1) and Y = (Y1, . . . , Ym2),
interpreted by tuples P and Q of predicates. For simplicity we write the ω-word
associated with P as P (0)P (1) . . ., each letter being a bit vector of length m1,
similarly for Q.

A solution of Church’s problem for the formula ϕ(X, Y) is an operator F
mapping an m1-tuple P of predicates to an m2-tuple Q, subject to the im-
portant restriction that F should be causal, i.e. Q(n) should only depend on
the segment P (0), . . . , P (n) of P . 1 This corresponds to the view that ϕ(X, Y)
defines an infinite two-person game in which a play is built up as a sequence
P (0), Q(0), P (1), Q(1) etc., where the players 1 and 2 supply their choices P (i),
respectively Q(i), in alternation. A strategy for Player 2 is given by a causal
operator F , and a strategy for Player 1 by a strongly causal operator G : Q �→ P
(where P (n) only depends on the prefix Q(0), . . . , Q(n − 1)) of Q. The causal
operator F is a winning strategy for Player 2 in the game defined by ϕ (in
Church’s words: a solution to the condition ϕ) if ∀Xϕ(X, F (X)) holds, similarly
the strongly causal operator G is a winning strategy for Player 1 if we have
∀Y ¬ϕ(G(Y), Y). holds. All games considered in this paper are determined, i.e.
either Player 1 or Player 2 has a winning strategy.

We define a causal operator F : P �→ Q in terms of a word function f that
assigns to any finite sequence

(
P (0)
Q(0)

)
. . .

(
P (n − 1)
Q(n − 1)

)(
P (n)

∗

)

a vector from {0, 1}m2 (which is then taken as Q(n)). By F (P) we denote the
sequence Q that is generated by applying f successively to

(
P (0)
∗

)
, to

(P (0)
Q(0)

)(
P (1)
∗

)
etc. Similarly, a strongly causal operator G is presented as a word function g

1 So F is a special kind of continuous operator in the Cantor topology over infinite
sequences.

72 A. Rabinovich and W. Thomas

which assigns to a sequence as above, with the last column letter missing, a
vector from from {0, 1}m1 (which is then taken as P (n)).

For the definability of an operator F in a logical system L, we assume that
L-formulas can be interpreted in finite word models of the form displayed above.
Formally, we consider structures ([0, n], <, (P ∩ [0, n]), (Q ∩ [0, n − 1]), n) for
causal operators F : P �→ Q, and ([0, n], <, (P ∩ [0, n − 1]), (Q ∩ [0, n − 1]), n)
for strongly causal operators G : Q �→ P . (For the latter case we have to provide
means to cover the case n = 0, in order to fix P (0). This is done by a Boolean
combination of formulas Xi(x) and the statement that x has no predecessor.)
We say that a function f over finite words is L-definable if there are L-formulas
ψ1(X, Y , x), . . . , ψm2(X, Y , x) such that

([0, n], <, (P ∩ [0, n]), (Q ∩ [0, n − 1]), n) |= ψj(X, Y , z)

iff the j-component of f applied to
(P (0)
Q(0)

)
. . .

(P (n−1)
Q(n−1)

)(
P (n)
∗

)
is equal to 1, and

we call then also the associated causal operator F L-definable. Similarly the
definability of strongly causal operators is defined.

We say that an L-defined game is determined with L′-definable winning strate-
gies if for each L-formula ϕ(X, Y), there is either an L′-definable causal operator
as winning strategy of Player 2, or an L′-definable strongly causal operator as
winning strategy for Player 1.

2.2 Fragments of MSO and Main Result

The systems MSO, FO(<), and FO(S) are all well-known from the literature. In
the first two cases, the underlying model is (N, <), in the third case (N, S) with
the successor relation S. We use free predicate variables X, Y, . . . (for monadic
predicates) in all cases; in MSO we allow also quantification over them. We write
atomic formulas in the form x = y (equality is included), x < y, S(x, y), and
X(y), and use the standard connectives ¬, ∨, ∧, →, ↔ and quantifiers ∃, ∀. MSO
is strictly more expressive than FO(<) (as exemplified by the formula saying “the
minimum of X is even”), and FO(<) is strictly more expressive than FO(S) (as
exemplified by “there is a Y element between two X-elements”).

The logic FO(<)+MOD is obtained from FO(<) by adjoining the quantifiers
∃r,qx, for q > 1 and 0 ≤ r < q, meaning “there is a finite number n of elements
x with n ≡ r(mod q)”. FO(<)+MOD is a system located in expressive power
strictly between FO(<) and MSO (see [17]). Note that over N, the quantifier
allows to express ∃ωx (“there exist infinitely many x”) by negating ∃r,q for all
r = 0, . . . , q − 1. Denote by FO(S)+∃ω the extension of FO(S) by ∃ωx.

By strictly bounded logic mean the quantifier-free fragment of FO(0, +1). This
logic characterizes the properties of sequences that are determined by their pre-
fixes of fixed given length (or, in other words, are both open and closed in the
Cantor topology). Corresponding formulas are called “bounded specifications”
in [9].

Logical Refinements of Church’s Problem 73

Theorem 1. (Main Theorem)
Let L be any of the logics MSO, FO(<), FO(<)+MOD, FO(S), or strictly
bounded logic. Then each L-definable game is determined with L-definable win-
ning strategies.

Theorem 2. If L is FO(S)+∃ω or FO(S)+MOD, then there are L-definable
games that are determined, however not with L-definable winning strategies.

2.3 On Definability of Causal Operators

It is useful to discuss the (in general non-equivalent) options for defining causal
and strictly causal operators.

An operator F : Σω
1 → Σω

2 is implicitly defined by a formula ψ(X, Y) over
the structure (N, . . .) if for any P , Q we have

F (P) = Q iff (N, . . .) |= ψ[P , Q]

and F is said implicitly L definable iff it is defined by a formula in the logic
L. An operator F is explicitly defined by the formulas ϕ1(X1, . . . , Xm1 , x), . . . ,
ϕm2(X1, . . . Xm1 , x) over the structure (N, . . .) if for every P̄ = (P1, . . . , Pm1) ∈
P(N)m1 and Q̄ = (Q1, . . . , Qm2) ∈ P(N)m2 the following holds:

Q = F (P) iff (N, . . .) |=
∧

i ∀x(Qi(x) ↔ ϕi(P , x)).

Note that F is implicitly MSO-definable iff F is explicitly MSO-definable.
However, for the fragments of MSO considered here, implicit L-definability is
(in general: strictly) more general than L-explicit definability. As an example
consider a constant operator G : {0, 1}ω → {0, 1}ω defined as G(a0, . . . ai . . .) =
b0 . . . bi . . ., where bi = 1 iff i is even. It is definable in FO[<] implicitly but not
explicitly.

Both notions are not adequate for our purpose since non causal and even
non-continous functions can be definable (e.g. F : P �→ Q with Q = N if P is
infinite and else Q = ∅).

An operator F is explicitly definable by bounded formulas in L if there are
L-formulas ψi(X, x) where atomic formulas X(t) are only allowed for t ≤ x such
that

F (P) = Q iff (N, . . .) |=
∧
i

∀x(Qi(x) ↔ ψi(P , x))

Let L be one of the following logics MSO, FO[<] and for FO[<]+MOD.
Clearly, if an operator is L-definable by bounded formulas, then it is causal.

However, this notion is insufficient for weak logics such as FO(<), due to a
lack of reference to previous values; note that in MSO a sequence of values Q(y)
for y < x is accessible by an auxiliary second-order quantification. An option
to implement this reference is to use the full play prefix P (0)Q(0)P (1)Q(1) . . .
P (n−1)Q(n−1)P (n) when defining Q(n). But this does not allow (in FO(<) and
FO(S)) to determine the origin of, say, a single bit 1 (assuming 0 elsewhere),
namely whether this bit belongs to the P (i) or to the Q(i). Thus we use the
vector representation for the pairs (P (i), Q(i)).

74 A. Rabinovich and W. Thomas

Finally, we remark that the notion of bounded formula is meaningful only
when the order relation < (or ≤) is in the signature. In order to cover also
the successor logic FO(S), we pass to finite prefixes of infinite sequences as the
models of formulas that define strategies, shifting boundedness from the syntactic
to the semantic level. We thus arrive at the concept of definability for causal and
strongly clausal operators as used above in Theorem 1.

3 Preliminaries on Games and Automata

3.1 Muller and Parity Games and Their Weak Versions

A directed bipartite graph G = (V1, V2, E) is called a game arena if the outdegree
of every vertex is at least one. We assume in this paper that V := V1 ∪ V2 is
finite. If G is an arena, a game on G is defined by an initial node vinit ∈ V1 and
a winning condition (by convention for Player 2). A play over G is an infinite
sequence ρ ∈ V ω starting in vinit, built up by two agents called player 1 and
2 that choose edges in alternation (player i from vertices in Vi). By Inf(ρ),
respectively Occ(ρ) we denote the set of vertices from V which occur infinitely
often, respectively just occur, in ρ. A winning condition decides who wins a
play; we declare Player 2 to be the winner iff it is satisfied. (Here we follow the
convention above that the “good” player is the second, having to react move
by move to Player 1.) First we consider two winning conditions, called Muller
condition, respectively weak Muller condition (the latter is also called Staiger-
Wagner-condition in the literature). In both cases, the condition is specified by
a family F of subsets of V . A play ρ satisfies the Muller (resp. weak Muller)
condition F if Inf(ρ) ∈ F (resp. if Occ(ρ) ∈ F).

As usual, a strategy f for Player 1 (Player 2) is a function which assigns to
every path of odd (positive even) length a node adjacent to the last node of the
path. (We assume that the inital vertex is given, and that player 1 starts from
there.) A play vinitv1v2 . . . is played according to a strategy f1 of Player 1 (strat-
egy f2 of Player 2) if for every prefix π = vinitv1 . . . vn of odd (even) length we
have vn+1 = f1(π) (respectively, vn+1 = f2(π)). A strategy is winning for Player
2 (respectively, for Player 1) if all the plays played according to this strategy
satisfy the winning condition under consideration. A strategy is memoryless if
it depends only on the respective last node in the path.

In a parity game (resp. weak parity game), the winning condition refers to a
coloring c : V1∪V2 → {0, 1, . . .m} of the game graph. For a play ρ = v0v1 . . . let
Cω(ρ), resp. C(ρ), be the maximal color occurring infinitely often, resp. occurring
at all, in the sequence c(v0)c(v1) A play ρ is won according to the parity
condition, resp. weak parity condition, if Cω(ρ), resp. C(ρ), is even.

The following theorem, due to Emerson/Jutla and Mostowski, is fundamental
(see [6,11] and e.g. [21] for the weak case):

Theorem 3 (Memoryless Determinacy for (Weak) Parity Games)
In a parity game, one of the two players has a winning strategy which moreover
is memoryless. The same statement holds for weak parity games.

Logical Refinements of Church’s Problem 75

3.2 From (Weak) Muller to (Weak) Parity Conditions

There are well-known reductions of Muller games and weak Muller games to
parity games, respectively weak parity games. We recall these constructions here
as a background to the next section. The idea is to transform an infinite sequence
(e.g., an infinite play) ρ over the set V into a new sequence ρ′ over a larger
alphabet, which results from V by adding a “memory component”. A coloring
is associated with each of the new letters, making use of the state-set collection
F that defines the (weak) Muller condition under consideration. The aim is
to obtain the following equivalence: The sequence ρ satisfies the (weak) Muller
condition iff ρ′ satisfies the (weak) parity condition.

First we treat the case of weak Muller conditions, say for a collection F ⊆ 2V .
We associate with each sequence ρ = v0v1 . . . over V a sequence over V × 2V ,
where the first components give a copy of ρ and a second component P ⊆ V
indicates the set of previously visited V -elements. We thus speak of the data
structure appearence record, short AR. So the sequence ρ′ starts with (v0, ∅),
and for a step from v to v′ in ρ we pass in ρ′ from (v, P) to (v′, P ∪ {v}). The
sequence ρ′ will have, from some point onwards, a constant second component,
which equals Occ(ρ). If we attach to (v, P) the color 2|P | when P ∈ F and
2|P | − 1 when p �∈ F , then we have that Occ(ρ) ∈ F iff C(ρ) is even (which
means that the weak parity condition is satisfied).

A similar reduction is known for the Muller condition (see [19]). Consider again
F ⊆ 2V , where V = {v1, . . . , vn}. Now not only the visited V -elements but also
the order of their visits is recorded (latest appearance record, short LAR [7]). Let
ρ = v0v1 . . . vj . . . be a sequence over V . The associated latest appearance record
at time point j is a sequence (vj , vi1 , . . . , vik

) where S = {vi1 , vi2 , . . . , vik
} is the

appearance record at j, i.e., the set of states visited before j. We list them in the
order of latest appearance before vj (most recently visited vertices listed first):
Every state from S appears exactly once in the sequence vi1 , vi2 , . . . , vik

, and we
have a sequence j > j1 > j2 > . . . > jk such that: (1) vim appears at jm in ρ
(m = 1, . . . k); (2) There is no occurrence of vim between positions jm and j in
ρ (m = 1, . . . k).

If in the LAR (v, vi1 , . . . vim), v occurs as entry vih
, we call h the “index” of

the LAR (otherwise let h = 0). Using the index we equip a LAR with a color
as follows. Assign to (v, vi1 , . . . vim) of index h the color 2h if {vi1 , . . . , vih

} ∈ F
and otherwise 2h − 1. Then the sequence ρ satisfies the Muller condition w.r.t.
F iff the induced sequence ρ′ satisfies the parity condition with respect to the
defined coloring.

Two observations are of interest in the sequel:

1. The description of the LAR structure requires the order relation of the un-
derlying model, while this is irrelevant for the AR structure.

2. Together with the positional determinacy of (weak) parity games, the reduc-
tions yield finite-state automata that execute winning strategies in (weak)
Muller games; the state set (consisting of LAR’s, respectively AR’s) and the
transition function of a strategy automaton depend only on the game graph,
whereas for the output function the winning condition is also used.

76 A. Rabinovich and W. Thomas

4 Normal Forms

As a tool to analyze logical formulas we recall well-known equivalences between
models based on indistinguishability by formulas up to some quantifier depth k.
We call these equivalence classes “k-types”. The models under consideration are
expansions of finite orderings (A, <) or of (N, <) by tuples P of unary predicates.
For m-tuples P we speak of m-chains.

The logics L to be considered below are MSO, FO(<), FO(<)+MOD, and
FO(S).

4.1 Types

Two m-chains M, M ′ are k-equivalent for L (written: M ≡L
k M ′) if M |= ϕ ⇔

M ′ |= ϕ for every L-formula ϕ(X) of quantifier depth k. This is an equivalence
relation between m-chains; its equivalence classes are called k-types for L (and
for the considered signature and m unary predicates). We denote the (finite) set
of k-types by Hk, usually suppressing an index for the logic under consideration.
(In the case of FO[<]+MOD, we assume that also a maximal divisor q is fixed in
advance.) If a formula ϕ is true in every model of type t we say that “t implies
ϕ”.

Let us list some fundamental and well-known properties of k-types for any of
the mentioned logics L above; we suppress the reference to L for simplicity of
notation.

Proposition 4. 1. For every m and k there are only finitely many k-types of
m-chains.

2. For each k-type t there is a “characteristic formula” which defines t (i.e., is
satisfied by an m-chain iff it belongs to t). For given k and m, a finite list
of characteristic formulas for all the possible k-types can be computed.

3. Each formula ϕ(X) is equivalent to a (finite) disjunction of characteristic
formulas; moreover, this disjunction can be computed from ϕ.

The proofs of these facts can be found in several sources, we mention [8,16,20]
for MSO and FO(<), [17] for FO(S) and FO(<)+MOD.

Given m-labelled chains M0, M1 we write M0 + M1 for their concatenation
(ordered sum). In our context, M0 will always be finite and M1 finite or of order
type ω. Similarly, if for i ≥ 0 the chain Mi is finite, the model Σi∈NMi is obtained
by the concatenation of all Mi in the order given by the index structure (N, <).

We need the following composition theorem on ordered sums ([16]):

Proposition 5. (Composition Theorem)
Let L be any of the logics considered above.

(a) The k-types of m-chains M0, M1 for L determine the k-type of the ordered
sum M0 + M1 for L, which moreover can be computed from the k-types of
M0, M1.

(b) If the m-chains M0, M1, . . . all have the same k-type for L, then this k-type
determines the k-type of Σi∈NMi, which moreover can be computed from the
k-type of M0.

Logical Refinements of Church’s Problem 77

Part (a) of the theorem justifies the notation s + t for the k-type of an m-chain
which is the sum of two m-chains of k-types s and t, respectively.

4.2 Strong Normal Forms

In this subsection we deal with the logics MSO, FO(<)+MOD, and FO(<), and
we denote here by L any of these three logics.

A formula ψ(x) with at most one free individual variable x is (syntactically)
bounded if all its first-order quantifiers are of the form ∃≤xy . . . (short for ∃y(y ≤
x ∧ . . .) and ∀≤xy . . . (short for ∀y(y ≤ x → . . .)).

We use a normal form proved in [18] for MSO and FO(<) which easily extends
to FO(<)+MOD. For all logics that satisfy the Composition Theorem and ex-
tends FO(<), it provides a first-order description of the fact (for given k) that the
infinite m-chain under consideration can be cut into a sequence w0, w1, w2, . . .
such that all wi for i > 0 share the same k-type t. (The fact that such a de-
composition exists is clear from Ramsey’s Theorem; the obvious formalization,
however, uses a second-order quantifier.)

Proposition 6 ([18]). Every L-formula ϕ(Z) is equivalent (over the class of
m-chains with domain N) to a formula in bounded normal form, more specifically
of the form

n∨
i=1

(∃ωzψi(Z, z) ∧ ¬∃ωzψ′
i(Z, z))

where the ψi, ψ′
i are bounded.

In a next step we sharpen this normal form to a “parity normal form”.
Formulas in parity normal form involve a coloring of a certain finite set of

bounded formulas Δ = {ϕ1(Z, x), . . . , ϕn+1(Z, x)} such that an m-chain can
satisfy at most one of them. We denote the color of ϕi by col(ϕi) and call Δj

the formulas from Δ of color ≤ j.

Lemma 7. (Parity Normal Form)
Every L-formula ϕ(Z) is equivalent (over the class of m-chains with domain N)
to a formula in parity normal form:

n/2∨
i=0

(∨
ϕ∈Δ2i

∃ωx ϕ(Z, x) ∧
∧

ϕ∈Δ2i+1

¬∃ωx ϕ(Z, x))
)

where Δ is a finite set of bounded formulas, such that an ω-chain satisfies at
most one of them, and Δ0 ⊆ . . . ⊆ Δn+1 = Δ . (This formula will be denoted
Parityϕ(Δ, col).)

Proof. The proof follows the mentioned transformation from Muller automata to
parity automata. The only important observation is that the latest appearance
record LAR can be formalized in FO(<).

78 A. Rabinovich and W. Thomas

We let ϕ(Z) be a formula and let ψi, ψ
′
i be formulas as in Proposition 6. Let k

be the maximal quantifier depth of the formulas ψi(Z, x), ψ′
i(Z, x) of the above

bounded normal form of ϕ(Z). Again, let Hk be the set of k-types over Z.
Let us define the following Muller acceptance condition F ⊆ P(Hk): We in-

clude a subset R of Hk in the set F iff for some j, R contains some type implying
ψj but contains no type implying ψ′

j . Note that a structure M = (N, . . .) sat-
isfies ϕ iff the set of k-types that are satisfiable cofinally often on the initial
substructures of M is in F .

For every latest appearance record lar = (t, ti1 , . . . , tim) over Hk, we can write
a formula ϕlar(Z, x) such that (N, <) |= ϕlar(P , j) iff lar is the latest appearance
record of the sequence t1 . . . tj , where ti is the k-type of of the submodel of
(N, <, P) over the interval [0, i]. For every k-type t one can write in these logics
a formula expressing that the k-type of an interval [0, x] is t (We denote this
formula by T k(x) = t, suppressing Z). Then ϕlar can be easily expressed as
explained in Subsection 3.2. For example, if lar = (t, ti1 , t, ti2), then ϕlar is the
conjunction of the following formulas:

T k(x) = t ∧ ∀y < x(T k(y) = t ∨ T k(y) = ti1 ∨ T k(y) = ti2)

∃y1y2y(y2 < y < y1 < x) ∧(T k(y1) = ti1 ∧ T k(y2) = ti2 ∧ T k(y) = t = T k(x)
∧∀z

(
(x > z > y) → ¬T k(z) = t

)
∧∀z

(
(x > z > y1) → ¬T k(z) = ti1

)
∧∀z

(
(x > z > y2) → ¬T k(z) = ti2

)
Now let F be the acceptance Muller conditions over Hk which corresponds

to presentation of ϕ in bounded normal form. We transform Muller conditions
into a coloring of LAR over Hk exactly like explained in Section 3.2, and for
lar ∈ LAR will assign to ϕlar the color of lar. Let Δ be the set of formulas
{ϕlar : lar is a latest appearance record over Hk}. It is easy to verify that ϕ is
equivalent to the formula Parityϕ(Δ, col).

4.3 Weak Normal Forms

For the logic FO(S), we consider models M = (N, S, P) and M = ([0, n], S, P)
with an m-tuple P . We first recall the model theoretic analysis of FO(S) which
relies on the first-order model theory of finite graphs (due to Hanf, see e.g. [5]).

By the r-sphere around the element x we mean the submodel, pointed at x,
consisting of x with its next k neighbours to the left and to the right (as far as
these neighbors exist). We call a sphere right-complete (left-complete) if these k
elements exist to the right (left) of x, and complete if both properties apply. By
σ we denote an isomorphism type of an r-sphere; the set of all possible r-sphere
isomorphism types is denoted Sr.

A (r, K)-type of a model M is given, for each σ ∈ Sr, by the numbers nσ of
occurrences of σ counted up to threshold K. So it is a vector (nσ)σ∈Sr of values
in [0, K +1] and defined by a conjunction of FO(S)-formulas “there are precisely
k elements x with: “r-sphere type of x = σ” where k < K, and “there are K +1
elements x with “r-sphere type of x = σ”.

Logical Refinements of Church’s Problem 79

We need the following known facts which give a rather direct description of
k-types for FO(S):

Lemma 8. (Hanf, see [5])
For each k, there are r, K such that each (r, K)-type implies a fixed k-type (so
(r, K)-types refine k-ypes), or in other words: Truth of a FO(S)-formula of quan-
tifier depth k over a model M as considered here is determined by the (r, K)-type
of M .

Now we consider models with domain N. Then only right-complete spheres are
relevant. We use this fact to introduce a restricted version of type for the fi-
nite prefixes (ignoring the right-incomplete spheres of prefixes), which induces a
monotonicity property when we let the prefixes increase. For the initial segment
Ms of a model M = (N, S, P) up to number s we denote by π(s) = (nσ)σ the
vector of natural numbers in [0, K + 1] which lists, in some fixed order of the
r-sphere types σ that are right-complete, the numbers of their occurrences in
Ms counted up to threshold value K (again representing any number > K by
K +1). Call π(s) the “(r, K)-profile” of Ms, and π the (r, K)-profile of the whole
structure M . ¿From the lemma it follows (under the given conventions for the
parameters k, r, K) that the (r, K)-profile π determines truth of formulas ϕ(Z)
in M up to quantifier depth k.

When s increases, the profiles π(s) can only increase as well (componentwise).
At some point s0, the value π(s0) = (ns0

σ)σ is equal to the M -profile π and
stays constant. Let us write π′ > π if for all components the π′-value is ≥ the
corresponding π-value, and for some component we have a strict inequality >.
We can write down FO(S)-formulas ϕτ , ϕ>τ expressing in a segment model Ms

that its (r, K)-profile is τ , respectively > τ .
We obtain the following “normal form” for FO(S)-formulas; note that we

write it down on the semantical level since bounded formulas are not available
in FO(S).

Lemma 9. (“Weak Normal Form”)
Let ϕ(Z) be a FO(S)-formula. Then for each model M = (N, S, P), we have
M |= ϕ(Z) iff ∨

τ∈Π(ϕ)

(
∃s Ms |= ϕτ ∧ ¬∃s Ms |= ϕ>τ

)

where Π(ϕ) is the set of (r, K)-profiles that imply ϕ.

A small further step gives us a parity normal form. For this we consider an
extension of the partial order of (r, K)-profiles to a linear order, giving each
profile an index h. We associate now colors with the formulas ϕτ , ϕ>τ above, by
giving a profile of index h the color 2h if it belongs to Π(ϕ), otherwise 2h − 1.
Assume the colors range from 0 to n + 1. Then we obtain the following, using
again the notation of Δj for the formulas of color ≤ j:

80 A. Rabinovich and W. Thomas

Lemma 10. (“Weak Parity Normal Form”)
Let ϕ(Z) be a FO(S)-formula. For each model M = (N, S, P), M |= ϕ(Z) iff

n/2∨
i=0

(∨
ϕτ∈Δ2i

∃s Ms |= ϕτ ∧
∧

ϕσ∈Δ2i+1

¬∃s Ms |= ϕσ

)

5 Proof of Theorems 1 and 2

5.1 Logics with Strong or Weak Normal Form

Let L be any of the logics MSO, FO(<), FO(<)+MOD. In the previous section
we have shown that each L-formula ϕ(Z) can be transformed into an equivalent
parity automaton Aϕ whose states are k-types for the logic L, for suitable k. (In
order to include the empty model as initial state, the state space of Aϕ is Hk ∪
{ε}.) After scanning an initial segment P (0) . . . P (n), the automaton assumes
just the k-type (for L) of the model ([0, n], <, (P ∩ [0, n])). By construction (and
by the properties of k-types), each state is L-definable.

This transformation of a specification (game definition) ϕ(Z) into an automa-
ton is independent of the game theoretical context. Now we emphasize this aspect
again. The m-tuple Z is split into two blocks X, Y of length m1, m2, respectively,
the specification reads ϕ(X, Y), and predicates P , Q used for the interpretation
of X, Y are built up step by step in alternation.

Following this splitted construction, we introduce a game graph, where the
vertices from Hk∪{ε} are accompanied by extra vertices in (Hk∪{ε})×{0, 1}m1,
which serve to represent the “intermediate steps” reached by Player 1 after his
choice of a m1-tuple P (n).

Formally, we define the game graph Gϕ = (V1, V2, E) by

– V1 = Hk ∪ {ε}, V2 = V1 × {0, 1}m1

– the edge set E with an edge from t ∈ V1 to (t, a) for each t ∈ V1 and each
a ∈ {0, 1}m1, and an edge from each (t, a) to the k-type t + (a, b) for each
b ∈ {0, 1}m2. (Recall that t + (a, b) is the k-type of a model which results
from a model of type t by concatenating the m-tuple (a, b).)

In order to obtain a parity game, we have to define a coloring c. For this, we
associate to both t and each (t, a) the same color as given for t in the automaton
Aϕ. Then it is obvious that a sequence (P , Q) satisfies ϕ iff Player 2 wins the
parity game over Gϕ with the coloring c. Assume that Player 2 wins. Then we
can fix a winning strategy by choosing one m2-tuple b for each vertex (t, a) in V2.
Denote the i-th component of this vector b by bi(t, a). We show that this strategy
is L-definable. For this, recall that we can express by an L-formula ψt(X, Y , x)
that “the k-type of ([0, x − 1], (X ∩ [0, x − 1]), (Y ∩ [0, x − 1], x) is t”. We define
the winning strategy by the following L-formulas ψi(X, Y , x):

∨
(t,a)∈V2

(ψt(X, Y , x) ∧ X(x) = a ∧ “bi(t, a) = 1”)

Logical Refinements of Church’s Problem 81

Here X(x) = a stands for
∧

j[¬]Xj(x) with negations inserted for those j where
aj = 0, and bi(t, a) = 1 for “true” or “false” depending on the value of bi. The
proof for definability of a winning strategy for Player 1 works similarly.

For the logic FO(S), we proceed in exact analogy, invoking the weak parity
normal form, constructing a weak parity game consisting of FO(S)-definable
states, and using positional determinacy of weak parity games. Since composi-
tionality of types is needed in the definition of the game graph, one uses (r, K)-
types as vertices, but the induced (r, K)-profiles for the winning condition.

5.2 Strictly Bounded Logic

For a specification ϕ(X, Y) of strictly bounded logic (the quantifier-free fragment
of FO(0, +1)) with an m1-tuple X and a m2-tuple Y , let k be the maximal
nesting of the function symbol +1 in ϕ. It is easy to show that satisfaction
of ϕ in (N, 0, +1, P , Q) only depends on the prefix of (P , Q) up to position k.
Collect the finite set L0 of these prefixes (of length k + 1) such that all their
extensions to ω-sequences satisfy ϕ. We consider the game graph with vertices
w ∈ {0, 1}m1+m2 of length ≤ k + 1 (for Player 1) and (w, a) for these w and
a ∈ {0, 1}m1 (for Player 2). The standard attractor construction (see [6]) yields a
positional winning strategy for either of the two players which is clearly definable
in strictly bounded logic.

5.3 Proof of Theorem 2

We consider a game due to Dziembowski, Jurdziński, and Walukiewicz [4]. For
better readability we use the alphabet {a, b, c} for X and {0, 1, 2} for Y . Let
ϕ(X, Y) be the following condition: “If a, b occur infinitely often in X , then 2
occurs infinitely often in Y ; if only one of a, b occurs infinitely often, then 1, but
not 2, occurs infinitely often in Y ; otherwise Y is ultimately 0”. This condition
is expressible in FO(S)+∃ω (even without S).

The game is solvable by means of the LAR over {a, b, c}. The output is 0 if c
is the current X-value, it is 1 if a is the current value with b occurring after a
in the current LAR-list, and otherwise 2 (dually for letter b).

Assume that a winning strategy is definable in FO(S)+∃ω. Since the un-
derlying models are finite words, it is easy to transform the definition into an
equivalent FO(S)-definition. Choose (r, K) as in the weak normal form theorem
and consider the word u = (c2rac2rb)Kc2r over {a, b, c}. Now we apply a case
distinction concerning the output values of the strategy for words in uac∗ after
u. If the maximum is 0 or 2, we obtain a contradiction to the assumption that
the strategy wins, by considering P = u(ac2r)ω ; namely, the strategy will yield
0, respectively 2, as the maximal output repeated infinitely often but should do
this with value 1. Similarly, one argues for the case of words in ubc∗. It remains
to consider the situation that for both cases the maximum output is 1. Then we
obtain a contradiction for u(ac2rbc2r)ω; the strategy yields 1 as maximal output
repeated infinitely often but should produce value 2.

82 A. Rabinovich and W. Thomas

The proof for FO(S)+MOD works similarly (since again the quantifier ∃ω

is implicitly present), however with a more involved case distinction which is
omitted here.

6 Discussion and Perspectives

Based on a natural concept of logical definability of winning strategies in infinite
games, we exhibited several fragments L of MSO logic such that the L-definable
games are determined with L-definable winning strategies.

Let us add remarks on possible extensions of these results.
Our formulation of Church’s Problem can be viewed as a task to transform

ω-languages (specifications) to tuples of standard languages (defining the out-
put functions, essentially by descriptions of mutually disjoint languages of play
prefixes for the different output letters). This study can be pursued in language
theory, and further types of properties can be considered, like “locally testable”
or “piecewise testable” (see [12]). These properties are not captured by logics but
can be analyzed in a very similar way by approriate equivalence relations. We
leave a more detailed treatment (which involves some extension of the method
of the present work) to a future paper.

In [14] the Church problem for MSO over expansions of ω by monadic
predicates (i.e., over structures (N, <, P1, . . . , Pn) with fixed subsets Pi as
“parameters”) was investigated. It was shown that for every MSO formula
ψ(X, Y, P1, . . . , Pn) and structure M = (N, <, P1, . . . , Pn) there is either an
MSO-definable (in M) causal operator, as winning strategy of Player 2, or an
MSO-definable (in M) strongly causal operator, as winning strategy for Player
1. There, similarly to our paper, for an instance of Church’s problem a parity
game graph is constructed. However, unlike the case considered here, this graph
is infinite. The finiteness of the game graph is crucial to our proof of definability
of the winning strategy (see section 5.1). So it remains an open question whether
the results of our paper can be extended to the expansions of (N, <) by monadic
predicates.

Let us consider Church’s Problem in the framework of another decidable
theory: Preburger arithmetic, the first-order theory of addition over N. Here
Theorem 1 fails:2 It is easy to write down in Presburger arithmetic a formula
ϕ(Y0) which says that Y0 is the set Squ of squares (use the fact that the dis-
tances of successive squares increase by 2). The strategy to generate Squ is
also Presburger definable. Invoking the fact that multiplication is FO-definable
in (N, +, Squ) ([13]), the FO(+)-specifications are the arithmetical relations in
(X, Y0, Y) where Y0 = Squ. On the other hand, it is known ([10]) that there are
specifications ∃ωxR(X, Y , x) even with recursive R which (are determined but)
do not allow an arithmetical winning strategy. This leads us to the question: Are
2 The short abstract [2] of Büchi, Elgot, and Wright (without a corresponding paper)

claims that specifications in Presburger arithmetic do not have, in general, MSO-
definable solutions; the reference to [13] given in [2] seems to point to a similar
argument as sketched here.

Logical Refinements of Church’s Problem 83

there natural logics L which are not covered by the proof method of this paper
and still satisfy Theorem 1?

References

1. Büchi, J.R., Landweber, L.H.: Solving sequential conditions by finite-state strate-
gies. Trans. Amer. Math. Soc. 138, 367–378 (1969)

2. Büchi, J.R., Elgot, C.C., Wright, J.B.: The nonexistence of certain algorithms of
finite automata theory. Notices of the AMS 5, 98 (1958)

3. Church, A.: Logic, arithmetic, and automata. In: Proc. Int. Congr. Math. 1962,
Inst. Mittag-Lefler, Djursholm, Sweden, pp. 23–35 (1963)

4. Dziembowski, S., Jurdziński, M., Walukiewicz, I.: How much memory is needed to
win infinite games? In: Proc. 12th LICS, pp. 99–110 (1997)

5. Ebbinghaus, H.D., Flum, J.: Finite Model Theory. Springer, Heidelberg (1995)
6. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games.

LNCS, vol. 2500. Springer, Heidelberg (2002)
7. Gurevich, Y., Harrington, L.: Trees, automata, and games. In: Proc. 14th STOC,

pp. 60–65. ACM Press, New York (1982)
8. Gurevich, Y.: Monadic second order theories. In: Barwise, J., Feferman, S. (eds.)

Model Theoretic Logics, pp. 479–506. Springer, Heidelberg (1986)
9. Kupferman, O., Vardi, M.Y.: On Bounded Specifications. In: Nieuwenhuis, R.,

Voronkov, A. (eds.) LPAR 2001. LNCS (LNAI), vol. 2250, pp. 24–38. Springer,
Heidelberg (2001)

10. Moschovakis, Y.: Descriptive Set Theory. North-Holland, Amsterdam (1980)
11. Perrin, D., Pin, J.E.: Infinite Words. Elsevier, Amsterdam (2004)
12. Pin, J.E.: Varieties of Formal Languages. North Oxford and Pergamon, Oxford

(1986)
13. Putnam, H.: Decidability and essential undecidability. JSL 22, 39–54 (1957)
14. Rabinovich, A.: Church Synthesis Problem with Parameters. In: Ésik, Z. (ed.) CSL

2006. LNCS, vol. 4207, pp. 546–561. Springer, Heidelberg (2006)
15. Selivanov, V.: Fine hierarchy of regular aperiodic ú- languages. In: Harju, T., et

al. (eds.) DLT 2007. LNCS, vol. 4588, Springer, Heidelberg (2007)
16. Shelah, S.: The monadic theory of order. Ann. of Math. 102, 349–419 (1975)
17. Straubing, H.: Finite Automata, Formal Logic, and Circuit Complexity, Birk-

häuser, Boston (1994)
18. Thomas, W.: A combinatorial approach to the theory of ω-automata. Inf. Contr. 48,

261–283 (1981)
19. Thomas, W.: On the synthesis of strategies in infinite games. In: Mayr, E.W.,

Puech, C. (eds.) STACS 95. LNCS, vol. 900, pp. 1–13. Springer, Heidelberg (1995)
20. Thomas, W.: Languages, automata, and logic. In: Rozenberg, G., Salomaa, A.

(eds.) Handbook of Formal Languages, vol. 3, pp. 389–455. Springer, Heidelberg
(1997)

21. Thomas, W.: Complementation of Büchi automata revisited. In: Contributions on
Theoretical Computer Science in Honor of Arto Salomaa, pp. 109–120. Springer,
Heidelberg (1999)

	Logical Refinements of Church’s Problem
	Introduction
	Preliminaries and Main Result
	Church's Problem, Games, and Strategies
	Fragments of MSO and Main Result
	On Definability of Causal Operators

	Preliminaries on Games and Automata
	Muller and Parity Games and Their Weak Versions
	From (Weak) Muller to (Weak) Parity Conditions

	Normal Forms
	Types
	Strong Normal Forms
	Weak Normal Forms

	Proof of Theorems 1 and 2
	Logics with Strong or Weak Normal Form
	Strictly Bounded Logic
	Proof of Theorem 2

	Discussion and Perspectives

