
LogicBlox, Platform and Language: a Tutorial

Todd J. Green, Molham Aref, and Grigoris Karvounarakis

LogicBlox, Inc
1349 W Peachtree St NW
Atlanta, GA 30309 USA

{todd.green|molham.aref|grigoris.karvounarakis}@logicblox.com

Abstract. The modern enterprise software stack—a collection of appli-
cations supporting bookkeeping, analytics, planning, and forecasting for
enterprise data—is in danger of collapsing under its own weight. The task
of building and maintaining enterprise software is tedious and laborious;
applications are cumbersome for end-users; and adapting to new com-
puting hardware and infrastructures is difficult. We believe that much
of the complexity in today’s architecture is accidental, rather than in-
herent. This tutorial provides an overview of the LogicBlox platform, a
ambitious redesign of the enterprise software stack centered around a
unified declarative programming model, based on an extended version of
Datalog.

1 The Enterprise Hairball

Modern enterprise applications involve an enormously complex technology stack
composed of many disparate systems programmed in a hodgepodge of program-
ming languages. We refer to this stack, depicted in Figure 1, as “the enterprise
hairball.”

First, there is an online transaction processing (OLTP) layer that performs
bookkeeping of the core business data for an enterprise. Such data could include
the current product catalog, recent sales figures, current outstanding invoices,
customer account balances, and so forth. This OLTP layer typically includes a
relational DBMS—programmed in a combination of a query language (SQL), a
stored procedure language (like PL/SQL or TSQL), and a batch programming
language like Pro*C—an application server, such as Oracle WebLogic [35], IBM
WebSphere [36], or SAP NetWeaver [26]—programmed in an object-oriented
language like Java, C#, or ABAP—and a web browser front-end, programmed
using HTML and Javascript.

In order to track the performance of the enterprise over time, a second busi-
ness intelligence (BI) layer typically holds five to ten years of historical infor-
mation that was originally recorded in the OLTP layer and performs read-only
analyses on this information. This layer typically includes another DBMS (or,
more commonly, a BI variant like Teradata [33] or IBM Netezza [25]) along with
a BI application server such as Microstrategy [23], SAP BusinessObjects [5],
or IBM Cognos [7], programmed using a vendor-specific declarative language.

Fig. 1: Enterprise software components and technology stack example.

Data is moved from the transaction layer to the BI layer via so-called extract-
transform-load (ETL) tools that come with their own tool-specific programming
language.

Finally, in order to plan the future actions of an enterprise, there is a planning
layer, which supports a class of read-write use cases for which the BI layer
is unsuitable. This layer typically includes a planning application server, like
Oracle Hyperion [13] or IBM Cognos TM1 [34], that are programmed using
a vendor-specific declarative language or a standard language like MDX [21],
and spreadsheets like Microsoft Excel that are programmed in a vendor-specific
formula language (e.g. A1 = B17 - D12) and optionally a scripting language like
VBA. In order to enhance or automate decisions made in the planning layer,
statistical predictive models are often prototyped using modeling tools like SAS,
Matlab, SPSS, or R, and then rewritten for production in C++ or Java so they
can be embedded in the OLTP or OLAP layers.

In summary, enterprise software developed according to the hairball model
must be programmed using a dozen or so different programming languages, run-
ning in almost as many system-scale components. Some of the languages are im-
perative (both object-oriented and not) and some are declarative (every possible
flavor). Most of the languages used are vendor-specific and tied to the component
in which they run (e.g. ABAP, Excel, R, OPL, etc.). Even the languages that are
based on open standards are not easily ported from one component to another
because of significant variations in performance or because of vendor specific
extensions (e.g., the same SQL query on Oracle will perform very differently
on DB2). Recent innovations in infrastructure technology for supporting much
larger numbers of users (Web applications) and big data (predictive analytics),
including NoSQL [28], NewSQL [27] and analytic databases, have introduced
even more components into the technology stack described above, and have not
helped reduce its overall complexity.

This complexity makes enterprise software hard to build, hard to implement,
and hard to change. Simple changes—like extending a product identifier by 3
characters or an employee identifier by 1 digit—often necessitate modifications

to most of the different components in the stack, requiring thousands of days of
person effort and costing many millions of dollars. An extreme example of the
problems caused by this accidental complexity occurred in the lead-up to the
year 2000, where the simple problem of adding two digits to the year field (the
Y2K problem) cost humanity over $300 billion dollars [24].

Moreover, as a result of the time required for such changes, individuals within
an enterprise often resort to ad hoc, error-prone methods to perform the calcu-
lations needed in order to make timely business decisions. For example, they
often roll their own extensions using spreadsheets, where they incompletely or
incorrectly implement such calculations based on copies of the data that is not
kept in sync with the OLTP database and thus may no longer accurately reflect
the state of their enterprise.

2 LogicBlox

To address these problems, the LogicBlox platform follows a different approach,
based on ruthless simplification and consolidation. Its main goal is to unify the
programming model for enterprise software development that combine transac-
tions with analytics, by using a single expressive, declarative language amenable
to efficient evaluation schemes, automatic parallelizations, and transactional se-
mantics. To achieve this goal, it employs DatalogLB, a strongly-typed, extended
form of Datalog [17,1] that is expressive enough to allow coding of entire enter-
prise applications (including business logic, workflows, user interface, statistical
modeling, and optimization tasks).

Datalog has, historically, been used as a toy language not intended for prac-
tical applications, so the choice of Datalog as a unifying language for enterprise
application development may be a bit surprising. One reason for its selection for
LogicBlox was that, in our experience, Datalog programs are easier to write and
understand by the target users of such systems (i.e., business consultants, not
Computer Science researchers), compared to languages such as Haskell [12] or
Prolog [17]. Moreover, with Datalog we are able to draw on a rich literature for
automatic optimizations and incremental evaluation strategies; the latter is of
paramount importance for enterprise applications, where small changes to the
input of a program are common, and need to be handled at interactive speeds.
Changes in an Excel-like spreadsheet application, for instance, need to be re-
flected immediately.

Today, the LogicBlox platform has matured to the point that it is being
used daily in mission-critical applications in some of the largest enterprises in
the world. In the tutorial, we present an overview of the language and plat-
form, covering standard Datalog features but emphasizing extensions to support
general-purpose programming and the development of various OLTP, BI and
planning components of enterprise applications. We also highlight some of the
engineering challenges in implementing our platform, which must support mixed
transactional and analytical workloads, high data volumes, and high numbers

of concurrent users, running applications which are executed—conceptually, at
least—entirely within the database system.

3 The DatalogLB Language

The bulk of the tutorial will focus on Dataloglb, the lingua franca of the Log-
icBlox platform. We sketch some highlights of the language in this section.

Rules. Dataloglb rules are specified using a <- notation (instead of the tradi-
tional “:-”), as in the example below:

person(x) <- father(x,y).

person(x) <- mother(x,y).

grandfather(x,z) <- father(x,y), father(y,z) ; father(x,y), mother(y,z).

mother(x) <- parent(x,y), !father(x).

In this example, ; indicates disjunction while ! is used for negation1. Pred-
icate and variable names may use lower/upper case freely. The first two rules
copy data from the father and mother predicates into person. The third rule
computes the grandfather predicate, essentially as the union of two conjunctive
queries. Finally, the fourth rule specifies that all parents that are not fathers are
mothers, with negation interpreted under the stratified semantics.

Entity types and constraints. The main building-blocks of the Dataloglb type
system are entities, i.e., specially declared unary predicates corresponding to
some concrete object or abstract concept. The Dataloglb type system also in-
cludes various primitive types (e.g., numeric types, strings etc). For example,
the following Dataloglb program declares (using a -> notation) that person is
an entity:

person(x) -> .

Entities can have various properties, expressed through predicates with the
corresponding entity as the type of some argument, e.g.,:

ssn[x] = y -> person(x), int[32](y).

name[x] = n -> person(x), string(n).

The first declaration says that ssn is a functional predicate mapping person

entities to integer-valued Social Security Numbers, while the second maps person
entities to string names.

Entities can be arranged in subtyping hierarchies, e.g., the following example
declares that male is a subtype of person:

male(x) -> person(x).

1 Not to be confused with the Prolog cut operator

(a)

sales_entry_form(f) -> form(f).

form_title[f] = "Sales Data Entry"

<- sales_entry_form(f).

component[f] = d, dropdown(d), label[d] = "item"

<- sales_entry_form(f).

submit_button[f] = b, label[b] = "submit"

<- sales_entry_form(f).

(b)

Fig. 2: A UIBlox form and an excerpt from its specification

As expected, subtypes inherit the properties of their supertypes and can be
used wherever instances of their supertypes are allowed by the type system. For
example, according to the declarations above, a male also has an ssn and a name.

One can also use the -> notation to specify runtime integrity constraints, such
as that every parent relationship is also either a father or mother relationship,
but not both:

parent(x,y) -> father(x,y), !mother(x,y) ; mother(x,y), !father(x,y).

As another example, the [] notation used earlier for the predicate ssn is just
syntactic sugar for the following type declaration and integrity constraint:

ssn(x,y) -> person(x), int[32](y).

ssn(x,y), ssn(x,z) -> y = z.

Updates and events. The needs of interactive applications motivate procedural
features in Dataloglb (inspired by previous work on Datalog with updates [2] and
states [16]). For instance, LogicBlox provides a framework for user interface (UI)
programming that allows the implementation of UIs over stored data through
Dataloglb rules. Apart from being able to populate the UI based on results of
Dataloglb programs, UI events are also handled through Dataloglb rules that
are executed in response to those events.

For example, consider a simple application in which managers are allowed to
use the form in Figure 2a to modify sales data for planning scenarios. This form,
including the title of the page, the values in the drop-down menu and the text on
the “submit” button, are generated by the Dataloglb rules shown in Figure 2b.

The selection of values for particular items from the drop-down menu, spec-
ifying a UI view, also corresponds to a database view:

dropdown_values(d,i)

<- component[f] = d, sales_entry_form_user(f,u), modifiable_by(i,u).

UI events, such as when the submit button in Figure 2a is pushed, are represented
as predicates, and one can write rules—such as the one below—that are executed
when these events happen:

^sales[p,d,s] = v

<- +button_clicked(f,s),

sales_entry_form_user(f,u), dropdown_selected[f] = p,

date_fld_value[f,_] = d, num_fld_value[f,_] = v, manager(s,u).

This is an example of what LogicBlox terms a delta rule2, used to insert data
into the edb predicate sales. In this body, the atom button clicked(f,s) is
preceded by the insert modifier “+”, which indicates an insertion to the cor-
responding predicate. As a result, the rule will only be fired when the submit
button is pushed and the corresponding fact is inserted in the button clicked

predicate. Similarly, the symbol “^” in the head is the upsert modifier, indicating
that if the corresponding key already exists in sales, its value should be updated
to the one produced by the rule, otherwise a new entry with this key-value pair
should be inserted.

Constructors. Dataloglb allows the invention of new values during program ex-
ecution through the use of constructors (aka Skolem functions [9]) in the heads
of rules. Dataloglb programs using recursion through constructors are not guar-
anteed to terminate on all inputs. For this reason, the Dataloglb compiler im-
plements a safety check that exploits the connection between Datalog evaluation
and the chase procedure [22], and warns if termination cannot be guaranteed.
(The same safety check is used for programs using recursion through arithmetic.)

Programming in the large. Enterprise applications written in Dataloglb can
contain tens of thousands of predicates and rules. To support such large-scale
projects, Dataloglb also supports organization of programs into modules and
reusable libraries.

Second-order existential quantifiers. Combinatorial optimization problems arise
in many enterprise applications. To support this class of problems, Dataloglb
allows predicates to be marked as existentially quantified, subject to specified
constraints, using the usual facilities of the language as a “syntax skin” for an
underlying solver. For instance, the following is a fragment of a program that
solves Sudoku puzzles via linear programming:

X[i,j,z,t,k]=v -> index(v), index(i), index(j), index(z),

index(t), number(k), v >= 0, v <= 1.

index(i), index(j), index(z), index(t), number(k) -> X[i,j,z,t,k]= _.

lang:solver:variable(‘X).

Obj[] = v -> float[64](v).

lang:solver:minimal(‘Obj).

Obj[] += X[x,y,z,t,k] * f[x,y,k].

2 not to be confused with the delta rules transformation used in semi-naive evaluation

In the example, X is the existentially-quantified predicate predicate, and Obj is
the objective function for the solver. (The last rule uses an aggregate syntax,
+=, inspired by the Dyna project [8].)

Provenance. Dataloglb includes an option to record provenance information [10]
during program evaluation and query [14] it afterwards, to facilitate debugging.

BloxAnalysis. The BloxAnalysis feature of the platform allows one to import
Dataloglb programs as data in appropriate predicates in a LogicBlox workspace.
As a result, one can use Dataloglb programs to perform static analysis of Dat-
aloglb programs, as well as to rewrite them for optimization purposes.

4 Academic Collaborations

We will close the tutorial by highlighting successful collaborations with aca-
demics using LogicBlox as a motivating setting and research vehicle. These
collaborations have resulted in publications in diverse areas including declar-
ative networking [18], program analysis [4,3], distributed query evaluation [37],
software engineering and testing [31,20,19], data modeling [11] constraint han-
dling rules [30,29,6], magic sets transformations [32], and debugging Datalog
programs [15].

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

2. S. Abiteboul and V. Vianu. Datalog extensions for database queries and updates.
J. Comput. Syst. Sci., 43(1), 1991.

3. M. Bravenboer and Y. Smaragdakis. Exception analysis and points-to analysis:
better together. In ISSTA, 2009.

4. M. Bravenboer and Y. Smaragdakis. Strictly declarative specification of sophisti-
cated points-to analyses. In OOPSLA, 2009.

5. http://www.sap.com/solutions/analytics/business-intelligence.

6. D. Campagna, B. Sarna-Starosta, and T. Schrijvers. Approximating constraint
propagation in datalog. In CICLOPS, 2011.

7. http://www.ibm.com/software/analytics/cognos.

8. J. Eisner and N. Filardo. Dyna: Extending Datalog for modern AI. In O. de Moor,
G. Gottlob, T. Furche, and A. Sellers, editors, Datalog Reloaded, volume 6702 of
Lecture Notes in Computer Science, pages 181–220. Springer, 2011.

9. H. B. Enderton. A Mathematical Introduction to Logic. Academic Press, 1st
edition, 1972.

10. T. J. Green, G. Karvounarakis, and V. Tannen. Provenance semirings. In PODS,
2007.

11. T. A. Halpin. Structural aspects of data modeling languages. In BM-
MDS/EMMSAD’11, 2011.

http://www.sap.com/solutions/analytics/business-intelligence
http://www.ibm.com/software/analytics/cognos

12. P. Hudak, S. Peyton Jones, P. Wadler, B. Boutel, J. Fairbairn, J. Fasel, M. M.
Guzmán, K. Hammond, J. Hughes, T. Johnsson, D. Kieburtz, R. Nikhil, W. Par-
tain, and J. Peterson. Report on the programming language Haskell: a non-strict,
purely functional language version 1.2. SIGPLAN Notices, 27(5):1–164, May 1992.

13. http://www.oracle.com/hyperion.
14. G. Karvounarakis, Z. G. Ives, and V. Tannen. Querying Data Provenance. In

SIGMOD, 2010.
15. S. Köhler, B. Ludäscher, and Y. Smaragdakis. Declarative datalog debugging for

mere mortals. In Datalog 2.0. 2012.
16. B. Ludäscher. Integration of Active and Deductive Database Rules, volume 45 of

DISDBIS. Infix Verlag, St. Augustin, Germany, 1998.
17. D. Maier and D. S. Warren. Computing With Logic: Logic Programming With

Prolog. Addison-Wesley, 1988.
18. W. R. Marczak, S. S. Huang, M. Bravenboer, M. Sherr, B. T. Loo, and M. Aref.

Secureblox: customizable secure distributed data processing. In SIGMOD, 2010.
19. M. J. McGill, L. K. Dillon, and R. E. K. Stirewalt. Scalable analysis of conceptual

data models. In ISSTA, 2011.
20. M. J. McGill, R. E. K. Stirewalt, and L. K. Dillon. Automated test input generation

for software that consumes orm models. In OTM, 2009.
21. http://www.xmla.org.
22. M. Meier, M. Schmidt, and G. Lausen. On chase termination beyond stratification.

PVLDB, 2(1):970–981, 2009.
23. http://www.microstrategy.com.
24. R. L. Mitchell. Y2K: The good, the bad and the crazy. ComputerWorld, December

2009.
25. http://www.ibm.com/software/data/netezza.
26. http://www.sap.com/platform/netweaver/index.epx.
27. https://www.451research.com/report-short?entityId=66963.
28. http://nosql-database.org/.
29. B. Sarna-Starosta and T. Schrijvers. Transformation-based indexing techniques for

constraint handling rules. In CHR, 2008.
30. B. Sarna-Starosta, D. Zook, E. Pasalic, and M. Aref. Relating Constraint Handling

Rules to datalog. In CHR, 2008.
31. R. E. K. Stirewalt, S. Rugaber, H.-Y. Hsu, and D. Zook. Experience report: Using

tools and domain expertise to remediate architectural violations in the logicblox
software base. In ICSE, 2009.

32. K. T. Tekle and Y. A. Liu. More efficient datalog queries: subsumptive tabling
beats magic sets. In SIGMOD, 2011.

33. http://www.teradata.com.
34. http://www.ibm.com/software/analytics/cognos/products/tm1.
35. http://www.oracle.com/technetwork/middleware/weblogic.
36. http://www.ibm.com/software/webservers/appserv/was.
37. D. Zinn, T. J. Green, and B. Ludäscher. Win-move is coordination-free (some-

times). In ICDT. 2012.

http://www.oracle.com/hyperion
http://www.xmla.org
http://www.microstrategy.com
http://www.ibm.com/software/data/netezza
http://www.sap.com/platform/netweaver/index.epx
https://www.451research.com/report-short?entityId=66963
http://nosql-database.org/
http://www.teradata.com
http://www.ibm.com/software/analytics/cognos/products/tm1
http://www.oracle.com/technetwork/middleware/weblogic
http://www.ibm.com/software/webservers/appserv/was

	LogicBlox, Platform and Language: a Tutorial

