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Logicist Statistics I. Models and Modeling
A. P. Dempster

Abstract. Arguments are presented to support increased emphasis on
logical aspects of formal methods of analysis, depending on probability
in the sense of R. A. Fisher. Formulating probabilistic models that con-
vey uncertain knowledge of objective phenomena and using such models
for inductive reasoning are central activities of individuals that intro-
duce limited but necessary subjectivity into science. Statistical models
are classified into overlapping types called here empirical, stochastic and
predictive, all drawing on a common mathematical theory of probability,
and all facilitating statements with logical and epistemic content. Con-
texts in which these ideas are intended to apply are discussed via three
major examples.
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ysis; formal subjective probability; complementarity; subjective and ob-
jective; formal and informal; empirical, stochastic and predictive models;
U.S. national census; screening for chronic disease; global climate change.

1. FOUNDATIONS: “WHAT WE CAN SAY”

The aim of this paper and a planned sequel on
statistical inference is to direct attention to an alter-
native account of the language and logic of applied
statistics. The focus of the present paper on models
and modeling derives from a perception that these
topics are too little emphasized in expositions of
statistics, despite their centrality. On one side, data
analysis is directed at exposing structure whose for-
mal content can be described as mathematical mod-
els, while on the other side formal statistical in-
ference depends essentially upon assumed formal
probability models. Statistical inference consists by
definition of the interpretation of uncertain reality
through models.

My account synthesizes subjective and objective
aspects of practice. Another theme emphasizes an
ever-present interplay of formal and informal el-
ements in scientific analysis. My most basic aim,
however, is to distinguish the “logic” of reasoning
about a specific situation under analysis, from “pro-
cedures” that I suggest are best understood as pack-
aged templates for logic. Whereas textbook descrip-
tions of practice often appear to suggest that “what
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statisticians do is choose and apply procedures,” I
argue that statistics is equally importantly about
“what we can say”1 beyond reporting the products of
applying defined procedures. This is especially true
of statistical inference. (Superscript numerals refer
to the notes collected in Section 6.)

The “proceduralist” versus “logicist” theme goes
to the heart of the protracted controversies2 that
pitted Ronald Fisher against Jerzy Neyman and his
school. Neyman followed Fisher by placing sampling
models at the epicenter of statistical inference, all
but eliminating the widespread earlier acceptance
of Bayesian logic.3 The mathematical properties
of sampling distributions that Fisher derived with
great skill were fundamental to Neyman’s “fre-
quentist” theory of choosing procedures, so that
Fisher has often been adopted by Neymanians as
a distinguished predecessor. Whereas many statis-
ticians are puzzled that Fisher was so adamantly
opposed to Neyman’s transparent and often elegant
theory,4 my perception is that Fisher was engaged
in insisting that the logic of interpreting each in-
dividual application is primary.5 I believe it is also
transparent that logicism is more inclusive than
proceduralism, and despite Neyman’s objections6

deserves rehabilitation.
The formal outline of an inferential procedure,

say for parameter estimation or for testing a null
hypothesis, is much the same between Fisher and
Neyman, but their conceptions of how to choose a
procedure are fundamentally different. Fisher in-
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stinctively thought in terms of the logic of specific
inferences and in terms of choosing a procedure that
captures all the information in a data set, as, for
example, by sufficiency. There is no necessary role
for long run operating characteristics in this pro-
gram. Fisher undercut his own influence, however,
through intemperate refusals to allow that frequen-
tist properties of procedures are theoretically infor-
mative and have interesting connections with his
own conceptions of information.7 The bitterness of
the dispute, together with the fact that most mathe-
matical statisticians sided with Neyman, resulted in
Fisher’s logicist position being virtually suppressed
in many academic circles.

Subjective elements are clearly present in the
competing methodologies of Fisher and Neyman
for understanding procedures. Both are dependent
on assumed models, and neither has a clear op-
erational analysis of sources and justifications for
model choice, thus leaving much up to informal
subjective judgment by practitioners. Both theories
have further ambiguities about choosing a proce-
dure even given a model, and neither copes well
with the demands of large contemporary data bases
that require ever more complex models. Logicist
inference does, however, pay for its more inclusive
purview by introducing a further type of subjec-
tivity, namely, a formal logic of uncertainty that
applies to specific analyses. Whereas Fisher’s logi-
cist statistics implies formal subjective analysis in
aid of ordinary informal scientific discourse, Ney-
man rejects this limited type of subjectivity and
believes that frequentist and behavioral theory can
substitute. This constitutes the underlying issue of
substance in their disputes.

I argue that “formal subjective probability” ought
to be recognized and accepted as part of normal
statistical science. Not only are Bayesian prior
and posterior probabilities formal subjective prob-
abilities, but sampling probabilities are equally
interpretable as formal subjective probabilities that
inform users about the uncertainties in prospective
sampling processes. Fisher’s writing is consistent
with the perception that he thought about sampling
distributions in these terms. Correspondingly, for
him, Bayesian inference is not a distinct method-
ology, but something to be used when the requisite
prior model assumptions can be given empirical
sources, similar to those traditionally understood
to underlie sampling models. While not rejecting
Bayesian logic, Fisher along with many of his con-
temporaries thought it desirable and important
to develop alternative forms of uncertain infer-
ence based directly on sampling distributions. It
appears therefore that, while Fisher might be de-

scribed as frequentist or Bayesian in limited ways,
his understanding of roles for statistical theory in
science was evidently broader than either narrowly
conceived school allows.

Neyman rejected formal subjective probability
as used by Fisher in his fiducial argument for as-
signing limits to an unknown parameter value
in a specified sampling model. Because parame-
ter values are conceived as “fixed” in frequentist
theory, if one then takes observations as also
fixed, one is led to “absurd” statements such as
P�1 < 2 < 3:2� = 0:95 (Neyman, 1977).8 It is ques-
tionable, however, to reject the formalization of
subjective uncertainties about parameter values on
principle while logically parallel formal subjective
certainties are implicit in scientific applications
of formal deterministic models (i.e.,“equations”),
and in particular are fundamental in frequentist
theory to connect model-based asymptotic prop-
erties of mathematical structures with objective
facts about real-world frequencies. By concentrat-
ing on mathematical theory, frequentists tend to
ignore implications for practice of their own cri-
terion of long run validity. For example, I believe
it is rare to find a frequentist attempting empir-
ical verification of an assumed long run property
associated with a reported frequentist application.
Moreover, to claim that a frequentist inference
statement has objective validity in practice is to as-
sume that an adopted model holds for a meaningful
long run, hence applies to each member of the long
run, and most especially to the particular member
defining a specific application. These requirements
put a strong responsibility on users to know what
is meant by the validity of a model in a unique
practical situation. However desirable complete sci-
entific objectivity may seem in principle, refusal to
admit formal quantification of specific subjective
uncertainties leaves a hole too big to ignore in the
foundations of statistical science.9

The term “subjective” covers diverse activities of
problem-formulation and problem-solving carried
out by individuals, drawing on memory, making
choices and, most especially, attempting to reason
about specific phenomena and issues under analy-
sis. Most such subjective activities consist largely
of an undocumented and “informal” stream of con-
sciousness. By contrast, the true subject matter of
science is conventionally perceived to be the ex-
ternal or “objective” world. Direct cognition of the
objective world comes to us through visual or audi-
tory or even tactile mechanisms. Our minds attempt
to assimilate and integrate such data with other
complexes of knowledge and understanding. As
mathematical scientists, we translate parts of our
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informal data bases into precise formal elements.
In applied statistics, these formal elements consist
of mathematical models associated with statistical
phenomena. We then apply formal procedures for
data selection, experimental intervention and data
analysis to quantities defined in the models. Fi-
nally, the results are interpreted in the language of
the motivating sphere of human inquiry, which in
statistics may be as diverse as deciphering genetic
codes or analyzing economic policy. The reasoning
behind such interpretations seeks to lay bare the
essential story emerging from the numbers in rela-
tion to the problem under analysis. Such informal
“logic” forms a part of the basis of “what we can
say.”

Formal logic implies a calculus for obtaining
certain or uncertain knowledge about facts given
knowledge of other facts. It occupies an important
corner of the 2×2 cross-classification of components
of science defined by the pairs subjective–objective
and informal–formal, namely, formal subjective
logic. A special case, deterministic Boolean logic,
is routinely accepted as the basis for computing
from input facts and a truth table whether com-
plex statements are “true” or “false” with certainty.
Boolean principles are in fact ubiquitous, since
every equation embedded in a formal model is in-
terpreted to mean that the equality is “true” with
certainty in the formal small world described by
the model. When several equations are assumed,
then the conjunction of the statements is concluded
to be “true” with certainty. Regarding statements
of uncertainty, however, there has been strong re-
luctance to use the straightforward extension to
probabilistic logic, which is the interpretation of
results of formal model-based probability calcula-
tions to assign a numerical measure of uncertainty
to “truth” or “falsity” of an objective circumstance.
Boole himself had no such inhibitions and devoted
six chapters of his book to the topic (Boole, 1854).
The position taken in this paper is that every prob-
ability computed from an accepted formal model
of a specific situation has a corresponding inter-
pretation as a formal expression of uncertainty of
an idealized hypothetical individual, sometimes re-
ferred to as “you,” in implied formally represented
circumstances. The model is assumed to separate
formally known from formally unknown, therefore
formally certain from formally uncertain.

Subjective elements are kept separate from sub-
stance in most scientific discourse, creating a mis-
leading appearance of objectivity untainted by opin-
ion. It is accepted that progress is guided in part
by personal insight and skilled execution, and that
referees weigh such qualities when passing subjec-

tive judgments for recommending publications and
awards. More basic, however, is substantive uncer-
tainty that accompanies all scientific analysis, es-
pecially applied statistical analysis. Scientific writ-
ing tends to mention uncertainty explicitly only in
passing, and rarely makes educated use of technical
concepts like chance, or probability, or likelihood. I
believe that when statistical scientists in particular
fail to make appropriate uses of these tools, includ-
ing pointing out their formal subjective interpreta-
tions, they are evading an important part of their
professional responsibilities. The uncertainties en-
countered in statistical practice are neither wholly
subjective nor wholly objective; that is, neither are
they entirely contained in the minds of scientists
faced with limited information, nor are they uni-
versal uncertainties put in place by an all-seeing
Creator. All scientists, and especially statistical sci-
entists, need quantitative analysis of specific uncer-
tainties that by nature depend on balancing com-
plementary roles for formal subjective and formal
objective elements.

Behind the proceduralist–logicist distinction lies
a broader complementarity10 familiar in professions
such as law and medicine between problem-solving
by following rules and problem-solving by reason-
ing from givens to conclusions. Frequentist theory
rests on a fiction that the design and analysis of
statistical studies can be implemented by selecting
and carefully following protocols set down in ad-
vance after contemplating long run properties un-
der assumed stochastic models. The dominance of
such thinking over Fisherian logicism emerged circa
1930 from the frequentist theories of Neyman and
his collaborator Egon Pearson. Throughout this pre-
sentation I am insisting that both elements need
to be involved simultaneously. Rules cannot be set
down in advance, as is especially obvious during
the processes of model choice, on which frequentism
depends.

That model assumptions are reflective of objec-
tive reality yet are not fully part of that reality is
at the core of the explanation of modeling that I ad-
vocate, and moreover fits well with Bohr’s famous
statement, “It is wrong to think that the task of
physics is to find out how nature is. Physics concerns
what we can say about nature.”11 The quote implies
agnosticism about whether any model assumptions
made in practice represent objective truths or laws,
and instead advocates focusing on how such laws
define “what we can say” in the form of defensible
statements about objective reality. Statistical logi-
cism includes here uncertain statements computed
from probability models. How to choose and justify
formal models in practice is not solved by this at-
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titude, but is placed in a context of real science
that fairly balances objective and subjective, and
puts aside an operationally spurious concept of true
model.

The complementarity of formal and informal
elements of science is deeply but often invisibly
embedded in modeling practice. Formal representa-
tions of the external world are so basic to statistical
sciences, as to all quantitative sciences, that rou-
tine technical discourse rarely separates them from
their manifest informal counterparts. In statistics,
we objectify formal “units” and “variables” that give
rise to fundamental data “arrays,” whether observed
or unobserved. Similarly, formal representations of
“knowing” or “inferring” values of postulated quan-
tities are implicitly accepted by practitioners of all
philosophical persuasions. If a deterministic “law”
is represented by an equation, as in a typical linear
or nonlinear model, then applying the equation in a
specific context assumes a relation among variable
values that holds exactly and supports a precise
model-based statement. By contrast, Neymanian
proceduralism advocates exclusion of statements
of probabilistic logic, such as an assertion that the
mean of specific unknown population values is, say,
less than 100 with probability 0.7 given specified
evidence. On this contentious issue, logicism follows
Laplace’s conception of what we can say. While na-
ture may be deterministic and therefore perfectly
predictable to an all-seeing intelligence, fallible
humans, including scientists, need formal proba-
bilities for quantifying uncertainty.12 A frequentist
prohibition on such subjective interpretations of
probability is neither credible nor necessary.

Logic itself has both formal and informal sides.
Ultimately, scientific discourse is presented in terms
of natural language that defies in its complexity re-
duction to formal mathematical laws, so is informal.
Nevertheless, in objective situations that are sim-
ple enough to be fully captured by precise forms,
logic also has a familiar representation in terms of
formal Boolean logic that is generally accepted as
noncontroversial. Textbook computations regarding
chance phenomena would seem to be equally accept-
able instances of probabilistic logic. Indeed, every
use of a formal probability model in specific circum-
stances carries with it connotations of probabilistic
reasoning, implying statements of uncertain predic-
tion given understood circumstances. Since the mod-
els are formal, so is the logic. It is evident that R. A.
Fisher thought of statistical techniques as convey-
ing uncertain knowledge through several varieties
of formal probability statements,13 some of them
quite new in form such as the direct interpretation
of likelihood.

Implicit in this viewpoint is an idealized formal
robot “you,” who produces formal inferences for the
statistician (Good, 1950, or Savage, 1962). “You” is
of course only a tool of an actual flesh-and-blood
scientist who must learn to translate statements
from “you” into the natural language of ordinary sci-
ence. These translations are at the core of statistical
practice and are implicit in every report. But be-
ing subjective, they are mostly passed by in silence,
coalescing the formal and informal, and hiding an
important aspect of statistical analysis.

A rather crude obstacle to granting subjectivity
a rightful place at the table derives from confusion
of scientific subjectivity with radical informal sub-
jectivity of an “anything goes” variety. The latter is
no more than a straw man waiting to be knocked
down, since the word “can” in the phrase “what we
can say about nature” implies controls inherent in
the scientific method. In particular, it is difficult to
accept the political incorrectness of formal subjec-
tive probability, wrapped as its applied statistical
realizations must be in formal rationality and scien-
tific responsibility. The fundamental reason for rec-
ognizing subjective elements is simply their perva-
siveness in all sciences, including especially statis-
tical sciences. Every statistical analysis requires a
lengthy list of choices by the practitioner, such as
the choice of a small world to be formalized, and
choices among procedures for data selection, exper-
imental manipulations, data analysis, model con-
struction and inference. The very term choice im-
plies a subjective role.

The task of questioning Neymanian orthodoxy
passed from Fisher to the neo-Bayesian movement
that gained a minority foothold in the anglophone
statistical world around 1950. In actuality, all math-
ematically trained statisticians, including Fisher,
Neyman and both Pearsons,14 recognize the logical
force of the Bayesian paradigm, and only question
its applicability in specific situations. Fisher in par-
ticular had a broader understanding of the role of
probability in applied statistics than typifies his
more ideological Bayesian successors in opposition
to Neyman’s decision-theoretic frequentism. For
Fisher, Bayesian posteriors were simple and nat-
ural expressions of formal subjective uncertainty,
as were p-values based on sampling distributions,
with the latter involving the interpretation of sub-
jective probability after the fact (Dempster, 1964,
1971).

The scientific world that statistics faces has
changed since Fisher’s time, drastically and perma-
nently, especially regarding the complexity of the
statistical phenomena we are both able and asked
to address. In the astonishing worlds of present
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and future computing technologies, there should
emerge a broader range and synthesis of statisti-
cal technologies for modeling and inference than
either Bayesians or Fisher appear to contemplate.
I suggest that frequentist theory, as the primary
evaluator of procedures, should and will gradually
recede into history, as practice leads to experi-
ence and confidence with probabilistic inference
and related modeling techniques that are becoming
technically feasible.

A recurrent theme of my presentation is that for-
mal model creation is a pivotal component of prac-
tice lying between data analysis and inference. Al-
though the term “model-based statistics” suggests
the existence of a variety that is not model-based,
the formality of all statistical analysis implies as-
sumed formal structures (in effect, models). Only
the extent of probabilistic overlay is optional. That
assumptions may be wrong and hence misleading
is a half-truth obscuring the need for trading off,
usually by informal judgment, between benefits and
costs of assumptions. Scientific development is cu-
mulative and depends on a pyramid of assumptions,
tentative, approximate or even unrecognized. At a
minimum, no statistical formalization can proceed
without choices among objective features to repre-
sent or to omit, implying an assumption that ele-
ments left out are unimportant for purposes at hand
and do not excessively bias conclusions and become
costly errors of practice.

The many contemporary statisticians who place
“data analysis” at the center of their working
universe15 are content to leave statistical model-
ing at the level of empirical fits to data (Tukey,
1977). In doing so, they in effect opt for a primi-
tive logic of asserting that a simplifying empirical
model is an adequate representation for purposes
at hand, implying that formal estimation and for-
mal assessment of prediction errors are secondary.
This circumstance often holds, leading many sci-
entists to do their own statistics, often well. It
is nevertheless wise for statisticians to assume a
need to assess differences between quantities com-
puted from observations and unavailable quantities
that the computed quantities are thought to ap-
proximate. When the latter are essential objects
of investigation, formal procedures for assessing
how much they differ from empirical quantities are
inescapable, creating an opening for formal logic
based on formal models incorporating unknown
quantities of interest.

When formal inference is attempted, formal
probability models are inescapable. Model choice
involves Fisherian inference, with much backing
and filling (Box, 1980). When tentatively adopted,

models become an essential formal ingredient for
connecting what is observed to what is not and
may never be observed. Thus models are the ba-
sis for getting beyond limited information directly
computable from observations.

2. WHAT “IS” A MODEL?

“Model” is used here interchangeably with the
awkwardly long “mathematical model.” The long
form draws attention to abstract or purely math-
ematical content, while the short form suggests
a type of replica, here a formal representation of
objective reality through a corresponding math-
ematical structure. The term model implies, in
addition to the abstract structure, a defined set of
connections of the structure to the objective world,
conveyed in part by names given to entities in
the model, together with descriptive material on
time, place, sampling and experimental methods
and common understanding of scientific situa-
tions as expressed through informal language and
thought.

There are differences in how the term model is
used, between statistics and parallel mathemati-
cal disciplines, or between statistics and many sci-
ences and professions where statistical phenomena
receive formal analysis. In mathematical statistics,
usage is typically generic, as when a sequence of
Bernoulli trials is described as a model for coin
tossing, with no specific sequence of coin tosses de-
fined, and typically specifying a generic number n
of tosses. This happens with good reason, since it is
part of the power of mathematics to make assertions
of wide generality and potential applicability. On
the other hand, a model in applied statistics would
often be regarded as intended for specific objective
circumstances, as when a model is constructed to
represent the survival times of a defined sample of
patients in a specific medical study. Generic usage is
appropriate when contemplating the power of math-
ematical abstraction to analyze many different in-
stances of a type of phenomenon through a single
formal structure, while specific usage brings with it
the considerations required to evaluate complemen-
tary processes of judging acceptability in a specific
instance. “Model” in this paper generally implies an
entity applied with specificity.

Computers are more and more connected with
mathematical models. A computer model is a trans-
lation of a mathematical model into a computer pro-
gram that mimics the application of an abstractly
identical model to an objective situation. Comput-
ers are often used to create repeated artificial real-
izations that simulate multiple copies of the same
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abstract model, where the instantiated values as-
signed to free variables vary across realizations, as,
for example, in various resampling methods current
in statistics. The term “model run” usually signifies
a simulated copy of a model that mimics the behav-
ior of the modeled process over a period of objective
time. It is often of interest to compare actual values
taken from a real-world scientific application with
values from one or more model runs. Alternatively,
such simulated copies can be used to study features
of a model, either to assess its abstract properties
or to understand its wider implications. Computer
models are gaining in importance as the need to
work with complex mathematical structures grows
and far outruns the ability of traditional mathemat-
ical analysis to provide adequate qualitative and
quantitative summaries of model properties.

In applied statistics, saying what a model “is”
means describing the constituent parts and how
they fit together. The major parts can be described
as “small world descriptors” and “relations.” More
familiar terms for the same pair are “data struc-
tures” and “laws.” Examples of laws are “equations”
for deterministic relations, and “distributions” or
“measures” for probabilistic laws. Traditionally in
statistics, the concept of model has been almost
synonymous with probabilistic relations, especially
assumed families of probability distributions, while
the categorization of the types of data structures
over which the relations are defined receives less ex-
plicit discussion, usually being perceived as simple
enough in any application to be left as under-
stood from context. Given the steadily increasing
complexity of routinely encountered statistical ap-
plications, choices of both appropriate descriptors
and relations can only assume an ever expanding
place in practice.16

In some fields the term “data” can mean any input
to a computer, such as a program or empirical data,
whereas in statistics “data” typically is restricted to
the latter. Moreover, statistical data generally im-
plies the presence of one or more varieties of repeti-
tion. The most common statistical data structure is
the n×p “data matrix” whose n rows are associated
with repeated examples of the same type of object
or statistical “unit,” such as people, stars or corpo-
rations, and whose p columns are associated with
“variables” or attributes of the specific unit type,
such as gender, weight or wealth of a person. Each
of the np elements of a data matrix is associated
with a possible real number that codes the value of
the attribute for that unit. I say possible because the
hypothesized value of any such matrix entry may
be objectively determined, or undetermined at the
time of analysis, and may be subjectively known or

unknown to the idealized formal statistical analyst
“you” hypothesized to be adopting the model in a
specified situation. Often regular arrays do not ex-
ist, as when certain attributes are defined only on
units of a special type, thus necessitating the use of
conditioned data structures, and so on to ever more
complex data types.

In statistics, whether a datum, say, the value
of a specific attribute for a specific individual, is
observed and/or known, or unobserved and there-
fore unknown, is fundamental. In fact, the use of
the term datum (something given) for an unknown
quantity is contradictory, but nevertheless widely
used, as in the phrase “missing data.” I use “sta-
tistical data structure” to cover both available and
unavailable “data,” as in representing a sample and
the population from which it is extracted. Other
structure-enriching and situation-dependent com-
plexities of data type include the simultaneous use
of several kinds of replication, such as repeated
measurements in time, or repetitions across 1D, 2D
or 3D physical space, or such as hierarchies of unit
types, like people as employees of firms, and firms
organized by categories of business. The immedi-
ate goal is not to present a systematic catalog of
statistical data types, but only to raise conscious-
ness of the importance of a necessary foundation
for the logic of applied statistics that remains un-
deremphasized. Topics more commonly taught in
computer science, such as the theory of relational
data bases, are needed by statisticians as well.

Three varieties of relation appear separately or
jointly under the common heading of statistical
model: (a) an empirical relation, (b) a stochastic
relation and (c) a predictive (deterministic and/or
probabilistic) relation. The typical instance of vari-
ety (a) is a smooth or regular mathematical form
fitted to a representation of some aspect of an
empirical data set and regarded as a substitute
representation that approximates the original in
the sense of mathematical closeness, while summa-
rizing and simplifying the meaning of the original
through a form characterized by only a few pa-
rameter values. Most commonly, both the data
representation and its approximating empirical
model counterpart are presented graphically, often
in color, so that the analyst can visualize both rep-
resentations simultaneously and make an informal
assessment of goodness-of-fit of the model to data.
Fitting a curve such as a line or a spline to a 2D
scatter of points, or a surface to a 3D or 4D scat-
ter, are prevalent forms of empirical modeling, with
color and perspective often used to add extra dimen-
sions to 2D pictures. An older staple of statistical
practice is an empirical fitted “probability” distri-
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bution that approximates an empirical distribution,
such as a normal density function superposed on an
empirical histogram, or a Weibull survival function
fitted to a Kaplan–Meier survival curve. Empirical
modeling is a subtype of exploratory data analysis,
intended to provide suggestive insights into objec-
tive phenomena, such as suggestions about what
formal models to adopt as bases for formal rea-
soning, but in itself only able to feed directly into
informal arguments and judgments.

Stochastic relations are products of judgments
that observable values generated by objective sta-
tistical phenomena are analogous to the outcomes
of a specified game of chance. For example, given a
specified population of a million objects, any subset
of 1,000 may be called a sample of size n = 1;000,
and if I take certain precautions designed to vali-
date in advance a prior belief that every possible
subset is equally likely, in the sense of an informal
judgment to that effect, then statistical modelers
will often concur that the sample is a “simple ran-
dom sample from the population.” This terminology
conveys a precise formal probability model with a
sample space consisting of all possible subsets and
a probability measure assigning equal numerical
probabilities summing to unity across all possible
subsets. The game analogy refers to an urn model
where one draws 1,000 balls from an urn contain-
ing one million balls, the drawing being fair in the
sense that every subset of 1,000 “has” (read, “can
be said to have”) as good a chance of being selected
as any other.

The standard mathematical term for a function
defined over a probability measure space of pos-
sible realizations is “random variable.” The term
is also natural and appropriate for hypothetical
applications set up as vehicles for the mathemat-
ics. For example, if an urn contains red balls and
black balls, or a population consists of persons in-
fected and uninfected with HIV, then the count of
red, or infected, in a random sample is properly
termed a random variable in the mainline sense
of credibly obeying a stochastic relation while hav-
ing a mixed subjective–objective interpretation for
the logicist applied statistician. A random vari-
able has an associated probability distribution that
describes implied uncertainty about the unknown
value of the variable. In a dichotomous data struc-
ture such as red–black or infected–uninfected, the
simple random sample assumption (or hypothe-
sis from a model-critiquing standpoint) implies
a hypergeometric or approximately binomial dis-
tribution for the random count. In the sampling
context, the distribution is called a sampling distri-
bution. Excepting small minorities of statisticians

who would restrict applied statistical uses of the
formal mathematics of probability to empirical
modeling, stochastic models, and in particular ran-
dom variables and associated distributions, are
virtual hallmarks of applied statistics, and with
good reason, since they are bases for all proba-
bilistic inference from known to unknown, such as
from an observed fraction of HIV-infected persons
in a random sample to the corresponding unknown
fraction in the sampled population.

In mathematical communities that study ad-
vanced mathematical properties of probability
measures (“probabilists”) and corresponding proba-
bilistic properties of statistical procedures (“mathe-
matical statisticians”), statistical applications and
the associated awkwardnesses of matching abstract
entities to objective reality commonly recede into
implicit and subconscious formulaic patterns. It is
understood that probabilities have connections to
scientific uncertainty, but the nature and specifica-
tion of the connections are easily left to nonspecific
understanding because they are not directly in-
volved in the hard work of the mathematics. In
statistical practice, by contrast, one needs to con-
vey either implicitly or explicitly the uncertain
situations that “you” associate with each formal
subjective probability in the model.

For example, probabilities associated with a ran-
dom sampling hypothesis or with an associated
sampling distribution, such as the distribution of
the number of red balls in a random sample of
1,000, are interpretable as quantifying uncertainty
about the outcome of a prospective sampling pro-
cess. The interpretation of these probabilities after
the sampling has taken place, and in particular af-
ter the number of red balls in the sample has been
observed to be, say, 531, is rarely addressed, and
when addressed is usually a source of confusion
and controversy. Students of elementary statistics
learn by a combination of formula and computer in-
quiry that the probability of 531 or more red balls
from an urn containing 50% red balls is approxi-
mately 0.027, and given the observation 531 many
are taught to report the value 0.027 as a “p-value.”
There is little misunderstanding about the inter-
pretation of 0.027 before the sampling takes place,
assuming that it had occurred to someone to make
the computation before an observation was made.
But almost continually since Jakob Bernoulli late
in the 17th century started to compute sampling
probabilities and implicitly connected them to infer-
ring the unknown population fraction of red balls
in the urn, or in his explanatory example the frac-
tion of survivors in a population, there have been
questions raised about the logical relevance of sam-
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pling probabilities after the data are collected and
recorded. I return to this question below.

There are close parallels between empirical mod-
els and stochastic models, in the sense that the same
formal mathematical structures can appear in both
guises in a single application. For example, when a
normal density function is fitted to an empirical his-
togram, it is sometimes a natural accompaniment to
regard the empirical data as an attribute of a ran-
dom sample from some population, and thence to
regard the observations underlying the histogram
to be observed values of independently and iden-
tically distributed (i.i.d.) normal random variables.
The empirical model is determined by fitted values
of parameters called mean and variance, while the
same quantities can be reinterpreted as estimates
of the population mean and population variance un-
der a more elaborate data structure that identifies a
defined population from which the sample units are
randomly drawn. There are many other examples
of empirical models associated with stochastic mod-
els, such as regression models, ANOVA models and
stationary time series models associated with nor-
mal (or “Gaussian”) distributions, and a very large
vista of non-Gaussian and/or nonlinear models, both
extant and remaining to be developed.

Before proceeding to the more general concept
of predictive models, I digress to discuss senses in
which empirical and stochastic models are objective
and subjective. In the background is a widespread
value-judgment that science ought to be objective
and that subjective elements are to be viewed with
suspicion if not outright rejection. A parallel theme
in the mathematical sciences is that mathemat-
ical representations, when carefully defined and
communicated, are largely objective in their intrin-
sic abstract properties, a claim in which I concur,
although the objectivity of purely mathematical ob-
jects is distinct from the objectivity of real-world
natural and social entities, and like all forms of
objectivity exists only as perceived through the sub-
jective minds of corresponding literati. Of course,
the applied scientific validity of a specific math-
ematical model based on a copy of an objective
abstract mathematical structure is something else
again, and begs serious questions about meaning,
to be taken up later. A comment here is that the
data structure parts of most mathematical models
that are accepted as valid statistical models are
relatively uncontroversial, whereas associated as-
sumptions of formal deterministic and probabilistic
relations often raise disagreements over acceptabil-
ity, for example, over whether the subjective logical
consequences of the model are sufficiently consis-
tent with the available objective evidence. Both the

data structure and the relational parts of a model
are deliberate human constructions, and therefore
have essential subjective aspects.

The recognition that all aspects of statistical prac-
tice, including empirical and stochastic modeling,
depend on sequential choices by human analysts co-
exists uneasily with beliefs that science is devoted
to the discovery of objective truth. The latter may be
a worthy goal, but it is unreachable, as is especially
obvious in statistical studies. Our models come and
go more frequently than in most sciences and are
often controversial. An explanation of the imperma-
nence of formal models is the impossibility of fully
coping with complex reality. Empirical data analy-
sis evidently makes only modest claims regarding
scientific truth, mainly in the form of suggestions
about good ways to look at empirical facts in support
of tentative steps along a tortuous path of discov-
ery. By contrast, stochastic modeling enters science
through traditions much closer to the physicist’s
ideal that nature is governed by true laws with pre-
cise mathematical expressions. In many branches
of physical science, it is traditional to believe that
nature is governed by precise deterministic laws
and that the random or irregular appearance of
many phenomena is due to the presence of many
simultaneously interacting individually unobserv-
able mechanisms, or sometimes to instabilities of
chaotic nonlinear systems. Stochastic modelers of-
ten declare an unknown quantity, such as the next
day’s stock market, to be a “random variable,” nom-
inally signifying not only complex unpredictability
but actual belief in the objectivity of chance mecha-
nisms. Clearly, however, random phenomena can-
not be both objectively stochastic and objectively
chaotic.

Philosophical questions concerning the existence
or nonexistence of stochastic mechanisms in the ob-
jective world have important interactions with ap-
plied statistics. If stochastic mechanisms truly ex-
ist, then it would be appropriate in practice to seek
true stochastic models and to regard everyday im-
perfect models as approximations to corresponding
unknown true models. In this case, the concept of
a model error would mean what it says, namely, a
difference between an adopted model and its asso-
ciated true model. An alternative view is that, try
as we may in our daily experience of statistical ap-
plications, we are unable to locate in the objective
world meaningful evidence of the alleged stochas-
tic mechanisms that produce assumed random out-
puts. Even the motivating examples of gamblers’
games of chance whose simplicity led in the first
place to the mathematics of probability cannot be
supported with evidence that truly random mecha-
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nisms of tossing and shuffling exist in the objective
world. I believe that this alternative view is almost
always required for a viable working philosophy in
practice, and hence that a statement that a model
is wrong is operationally meaningless and should be
avoided. In place of positing model error, one needs
to compare models as being more or less success-
ful for their intended purposes, including accurate
representation and trustworthy inference.

The language of objective randomness, whether
stochastic or chaotic or both together, appears to
render superfluous the complementary language
of subjective probability, specifically, the interpre-
tation of probability as quantifying the subjective
uncertainty of the hypothetical formal analyst “you”
that accompanies like a shadow the small world
data structure of a formal model and performs
the logic implied by the relations assumed in the
model. Again, my position is that proscription of a
subjective component is a mistake, even as I main-
tain that complementary objective elements are
essential to balanced understanding, in particular
regarding the importance of objective inputs to the
determination of scientifically acceptable stochastic
or chaotic models. Of course, one can choose to of-
fer only the recipe and not the execution, as much
of the procedure-laden literature of statistics ap-
pears to do, but at a cost of ducking responsibility
for the quality of formal model choices and inter-
pretations, and thence responsibility for the quality
of translations of formal elements into informal
interpretations.

Given that models cannot be reliably identified
with objective reality, a complementary backup an-
chor in “what we can say” is suggested here as a nec-
essary feature of formal models. Reflecting this po-
sition, Adrian Smith has commented that “a model
is essentially a predictive machine for observable
quantities” (Smith, 1995). I would add a friendly
amendment to include quantities that may not be
observable in practice but nevertheless are defined
within a credible data structure. Also, the machine
analogy is apt because a machine is made from ob-
jective parts and is intended to interact with ele-
ments of an objective external world, so encourages
recognition of complementary objective aspects of
what a model is.

Predictive relations, both deterministic and prob-
abilistic, are meant for interpretation given specific
states of knowledge. In the case of deterministic
logic, say, of the simple Boolean variety, one is given
certain facts and can deduce whether other facts are
true or false by straightforward computation. Sim-
ilarly, in Bayesian statistics, the device is to com-
pute marginal posterior probabilities by computa-

tion from model and data. In Dempster (1998b) I
argue that both cases illustrate a single methodol-
ogy of model formulation followed by logical compu-
tation. An important remark here is that interpre-
tation of these predictions assumes that at the time
of prediction “you” has precisely the evidence postu-
lated by a predictive model and observed statistical
data.

A stochastic model is formally a particular sub-
variety of predictive model, in the sense that a pre-
sumed formal analyst possessing precise values of
free parameters in an assumed model is empow-
ered by the model to make uncertain probabilistic
inferences about assumed outcomes of the game of
chance or its scientific analog. The “parameters” of
a stochastic model typically have an ambiguous sta-
tus. Given the universality of subjective interpre-
tation, parameters are always instruments of logic,
as are the probabilities they help to specify. Just
as contemplated numerical probabilities may have
direct counterparts in the objective world, for ex-
ample, as empirical frequencies, adopted parameter
formalizations may be similarly related to empirical
quantities, like population means. Also like proba-
bilities, however, parameters need not have an ob-
jective status. Modern Bayesian theory (Bernardo
and Smith, 1994) teaches that a basic source of
parametric models is to be found in the assumption
of exchangeability, so that parameters need only be
technical constructs in a stochastic model, having a
role in logical computation, but not assumed to have
a value locatable in an objective data structure. Of
course, it helps both to interpret and assess values
for parameters to have sources in long run behav-
ior of actual systems under study, but this is not
always possible in complex situations where repeti-
tion is limited.

The predictive value of stochastic models is weak-
ened by the reversal of roles of parameter values
and outcomes, since in the context of statistical
analysis the former are unknowns, while at least
some of the latter are observables, thus confounding
the normal logic of probabilistic prediction. Fisher
with his postdictive interpretation and Neyman
with effective denial of interpretation represent al-
ternative attempts to finesse the difficulty. In any
case, once fixed by observation, a random variable
is in no sense variable, so might better be called
a quantity. The problem of how to make predictive
use of an assumed parametric family of sampling
distributions, or more generally of parameterized
stochastic models, is deferred to later writing.

In summary, a statistical model attempts to repre-
sent objective reality through a data structure and
an associated set of relations. While mathematically
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similar, the relations are of three different types,
with each type providing a different version of “what
we can say” about an empirical case study. The con-
ceptual richness of statistical science derives in no
small part from the variety of types and associated
uses of relations.

3. REASONS AND REASONING
BEHIND MODELS

Activities undertaken by a statistical modeler are
associated with goals of the modeler. Three such
goals are (1) approximation, (2) explanation or un-
derstanding and (3) prediction. There are three ma-
jor traditions of statistical modeling: (i) the data an-
alyst’s approach of fitting empirical models to data,
(ii) the applied probabilist’s approach of associating
stochastic models with classes of phenomena and
(iii) the subjectivist statistician’s approach of con-
structing formal relations that represent the uncer-
tainty of the idealized formal analyst “you.” There
is a natural tendency among proponents of one or
other tradition to emphasize a preferred goal over
the others, and to link that goal to an associated
modeling tradition, sometimes viewing alternative
approaches as misguided. Violations of Bohr’s prin-
ciple of complementarity inevitably follow.

Adherents to schools (i) and (ii) see themselves by
and large as objectivists, but differ in fundamental
ways. For example, the first group tend to assume
that modeling is applied to a primary set of data
and is aimed at representations that exhibit sim-
ple recognizable structures, and thence are seen as
teasing out messages in the data through deliber-
ate data reduction and approximation. The second
group are more phenomenon-driven than data-
driven. They pay homage to objectivity by speaking
as though stochastic models actually underlie ob-
servable phenomena in the external world. Under
(ii) it is acceptable to say that a constructed model
approximates the true model, adopting language
that provides cover for those wishing to avoid the
appearance of subjectivism. Modeling is a de facto
subjective skill practiced in both schools behind
screens of informality. By contrast, logicist model-
ers accept the centrality of formally representing
uncertainty via formal subjective probability. Unfor-
tunately, a subclass of Bayesian subjectivists courts
ridicule by ignoring the intrusions of objective evi-
dence into model construction, and have long raised
the ire of objectivists who accuse them of using prior
distributions to approximate mental states of un-
certainty that are plainly poorly determined in the
objective world. Meanwhile, objectivists themselves
often deserve to be called to account for unfounded

assumptions of objective stochastic mechanisms
that equally plainly lack external existence. Model-
ing is sometimes regarded as primarily a task for
subject matter specialists, but in most fields req-
uisite knowledge and understanding of statistics
remains thinly spread.

The situation is complicated because at an in-
formal level we certainly do have mental states of
uncertainty, and there should be no bar to attempt-
ing to formalize these states via precise mathemat-
ical representations, even if consistency of opinions,
by itself and without supporting empirical evidence,
lacks validity for interpersonal use, hence can be in-
appropriate when used for public decisions. Equally,
there are important mental illuminations from in-
formal contemplation of formal stochastic mecha-
nisms even when their objective existence is a fic-
tion, because they provide suggestive explanations
of empirical phenomena through analogies to fa-
miliar games of chance. My own view is that all
three schools have virtues that coexist easily under
the principle of complementarity, whereas insisting
on the exclusiveness of a single approach leads to
untenable distortions of normal processes of scien-
tific discovery and analysis. Complementarity im-
plies life with a more complex outlook. Benefits in-
clude putting aside unnecessary and often foolish
controversies.

Modeling takes place in a medium of informal
reasoning, much of it invisible to readers of sci-
entific reports. Accordingly, students and other ob-
servers of the statistical scene sometimes have the
impression that “the model came in the door with
the data.”17 The relative invisibility of processes of
model choice contributes also to a perception that
clever choice of a robust procedure can reduce or
eliminate model dependence. While suspicion, criti-
cism and improvement of specific models are parts
of healthy science, in the end, estimates and con-
sequent decisions must be made despite model de-
pendence that remains nonremovable because the
objective evidence required to remove it is not avail-
able. Statistical analysis must involve defining what
is meant by model error and its associated risks,
and do so in the face of objective circumstances of
increasing complexity.

It may be helpful to separate modeling processes
into “early” and “late,” meaning those controlling
the initiation of formal relations into a study, and
those controlling the processes of modifying and re-
fining model choices. The “early” strategies of cate-
gory (i) empirical modelers appear to be dominated
by the use of descriptive or exploratory data anal-
ysis procedures whose outputs may suggest smooth
approximately mathematizable forms for data sum-
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maries or data decompositions (Tukey, 1962). There
is a danger in this approach of overinterpretation,
or attaching substantive meaning to accidental and
therefore misleading appearances. The term confir-
matory data analysis has been coined (Tukey, 1977)
for Fisherian tests of significance aimed at reducing
false appearances. The reasoning here is not sim-
ply one of applying off-the-shelf tests and automati-
cally rejecting when test statistics deviate from null
expectations too far to be consistent with chance.
The use of tests of significance as a part of “late”
model evaluation requires sensitivity to processes
by which interesting features were noticed in the
course of data manipulation, often by an informal
reaction to a display. Subsequently, there needs to
be another informal judgment as to how selection of
the thing noticed is acceptably reflected in the null
model.

Being primarily phenomenon-driven, the applied
probabilist’s approach to modeling is sharply dif-
ferent from that of the empirical data analyst. In
early stages, it may be driven scarcely at all by ex-
amination of specific data sets. The emphasis is on
identifying important features of complex systems,
such as biological units or trajectories of physical
objects in space, then deciding from scientific under-
standing what features, both hidden and observable,
merit formal representation by stochastic relations
and finally using stochastic models, such as point
processes or linear systems with random pertur-
bations, to construct tentative relations among the
quantities set out in the data structure.18 Stochas-
tic modeling is often practiced in association with a
frequentist viewpoint that seeks to avoid the inter-
pretation of specific probabilities.19 Frequentism is a
seductive theory with valid aspects that proponents
support with enthusiasm, apparently untroubled by
equally obvious limitations. Under frequentism, re-
alizations of a system subject to stochastic modeling
are viewed as randomly selected from an ensemble
of possible realizations, whence probabilities in the
model adopted for a specific realization encountered
in practice are interpretable as relative frequencies
calculated over the ensemble. The upside of the half-
truth embodied in frequentist ideology is that quan-
tities interpretable as probabilities are ordinary
objective quantities obtainable in principle from
simple counting. In practical terms, many proba-
bilities and expectations appearing in stochastic
models can be approximately obtained from empiri-
cal data to an acceptable degree of accuracy, and in
some situations can be obtained exactly from sym-
metry assumptions accepted a priori. The downside
is that when a frequency-based probability is sub-
jectively interpreted relative to a specific unknown,

the assumption of an ensemble of objective situa-
tions implies exchangeability of the specific instance
with those hypothesized or identified as the basis of
frequency probabilities. Like all assumptions, this
one involves risks. For example, frequency proba-
bilities involve dangers of substantial losses if used
uncritically for bets, lest opponents have other in-
formation that can be exploited by choosing sides to
bet on at quoted odds. Repetitions and associated
relative frequencies are defining characteristics
of statistics, not of particular statistical philos-
ophies.

Rather than accept that scientists must pick and
choose among different varieties of formal proba-
bility, I prefer to operate with a unitary concept
that integrates the basic features of the major
candidates for separate theories. While empirical
frequency is unquestionably a leading source of
approximate numerical probabilities, it is equally
true that no empirical frequency can be acceptably
linked to a situation-specific probability without a
subjective judgment that symmetry among the el-
ements counted is an appropriate feature in the
objective situation where probability has the mean-
ing of predictive uncertainty. Only by suppressing
a natural symbiosis can one neatly assert that ob-
jective probability “is” frequency while subjective
probability “is” degree of predictive certainty and
therefore something quite separate.

In the sphere of modeling for statistical analy-
sis, Bayesian practice deviates at least rhetorically
from the path mapped by a unified theory. The for-
mulation of Bayes separates the modeling tasks
of constructing a stochastic model for observables
to be used in computing the likelihood factor in
the posterior density, and constructing a prior den-
sity that constitutes the closing factor. Much effort
among Bayesian statisticians is devoted to “elicit-
ing” prior probabilities from the heads of experts
or teams of experts. The unified theory suggests
that empirical sources are as important for prior
probabilities elicited from experts as they are for
stochastic models. It is arguable that the strong
non-Bayesian inference schools of 20th century
statistics would not have developed had frequency
sources of prior probabilities been typically avail-
able. For science, the use of experts is valid, but only
if the sources of objective evidence that gives mean-
ing to the experts are also available to the modeler.
The Bayesian algorithm should be regarded as
a means of combining separate and independent
(Dempster, 1998b) sources of evidence. Unless the
sources are informally identified, the formalizing
modeler cannot propose formal representations, nor
judge whether the sources overlap or interfere.
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An account of the origins of predictive models be-
gins with informal identification of features of a
data structure judged essential to motivating real-
world questions. Since the identification process be-
gins at a nonformal level, it uses the descriptive lan-
guage of ordinary nonmathematical sciences that
is translated by the modeling process into limited
mathematical representations. The data structure
of a model so conceived is designed to accommodate
formal representations of the selected features, and
the set of predictive relations erected on the struc-
ture reflects what is formalized as known about
the features, in both deterministic and probabilis-
tic senses. The standard features mentioned already
are units, variables, times and places. There are also
specialized feature types that appear repeatedly in
many statistical models. One of these is “measure-
ment error.” Many observable quantities are rou-
tinely represented as true values of corresponding
objective quantities identified in a data structure,
but it is almost never the case that the correspon-
dence is exact. Either we are virtually sure, as in the
case of continuous-valued variables, that some dif-
ferential, however small, exists between true and
measured quantities, or, as in the case of discrete
measures such as counts, even when complete preci-
sion can occur, a strong possibility of error remains.
The basic modeling decisions are then whether to
increase complexity by including a formal represen-
tation of error in the formal data structure, and, if
so, what formal representation in terms of a stochas-
tic model can be made to quantify prior uncertainty
about the “errors.” These choices are guided by judg-
ments about the consequences of the model error
arising because something perceived to exist is ig-
nored in the formal model. If the measurement error
is small enough that practical differences between
including it or not are insignificant relative to ul-
timate uses of the model, as shown by comparing
analyses with and without, then the analyst is jus-
tified in omitting formal representation. Invoking
this principle is rarely easy or automatic, since in-
formation about the size of the measurement errors
is involved, and the objective bases of such infor-
mation may be strong or weak, and in either case
may come both from immediate data and from ex-
ternal sources. The necessity of tentative judgments
explains why a model choice can never provide more
than a tentative prediction machine with a subjec-
tive operator.

Repetition is the lifeblood of statistical modeling.20

For example, while the error made by a measur-
ing instrument in a particular instance may be cru-
cial in a specific context, the concept of measure-
ment error associated with an instrument cannot

be modeled without consideration of repeated use of
the instrument, or a population of similar instru-
ments. That is, the population of errors from re-
peated use of the instruments, both realized errors
and hypothetical future errors, is fundamental to
thinking about model-building. Historically, the first
scientific applications of stochastic models arose in
the two areas of modeling measurement errors and
modeling sampling hypotheses, the canonical exam-
ple of the latter being Jakob Bernoulli’s binomial
sampling model for human survival, where again re-
peated sampling is of the essence. In modern statis-
tics, two or more levels of repeated sampling are
commonly built into a single model. In hierarchi-
cal models, inference about a population distribu-
tion is generally based on observations of variation
across repeated draws from the population, and on
observed variation across repeated draws of popu-
lations from a superpopulation of populations, the
latter making possible adjustments of within popu-
lation inferences, such as shrinking toward super-
population means. Through time series models it is
possible to achieve predictive power, such as for pre-
dicting next month’s unemployment rate from cur-
rent and historical rates using repeated observa-
tions of how similar time configurations have fared
historically as bases for predictions. Assumed “ex-
changeability” among repetitions is the most funda-
mental originator of statistical models.

A second major force behind model origination is
the recognition of mechanisms. Much informal un-
derstanding of scientific phenomena, or of the state
of the world more broadly, derives from beliefs that
things are the way they are due to the operation of
“causal processes” that describe how things work
(Dempster, 1990). Opinions differ on whether uncer-
tain causal effects require a version of probability
theory all its own.21 My own view is that a sepa-
rate theory of causal logic is superfluous. Causation
per se seems to have no explicit representation in
formal statistical models, but causation is mani-
fested empirically through informal understanding
of mechanisms whose features and workings should
be incorporated whenever possible into formal mod-
els. To model causal processes it is necessary that
the data structure be rich enough to capture the
variables through which the processes operate,
and then relations among causes and effects can
be captured through deterministic and probabilis-
tic relations.22 For example, in specific contexts,
we can understand why observational errors arise,
such as through vagueness of a questionnaire or
malfunctioning of a piece of equipment, or through
inattention of a human data collector, and we can
in principle build models of small worlds that
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formally incorporate the features of such mecha-
nisms. We may choose not to construct such models,
however, due to a sense that we have too little
knowledge to formalize relations in a way that can
contribute to improved inferences beyond what is
implied by a simpler stochastic model. But often we
can have enough knowledge of physical, biological
or social mechanisms to justify explicit representa-
tions in models. Or we may be sufficiently convinced
of the importance of certain mechanisms that we
will provide them in the data structure even when
available relations are too weak to lead to effective
logical inferences. In such situations, the outcome
of analysis is a conclusion that the objective bases
of knowledge representation are too weak to sus-
tain formal assessments. Examples are discussed
in Section 4.

Since the finished set of assumptions that make
up a model are, or ought to be, accompanied by a his-
tory of features considered essential, such as empir-
ical sources and alternative forms considered and
sometimes discarded, there is more to model crit-
icism and revision than checking fit to data. More
fundamentally, the issue is whether information em-
bedded in the totality of evidence considered sup-
ports or contradicts answers to questions that were,
or ought to have been, considered along the way.
Were all essential aspects of the phenomenon, and
especially of known operant mechanisms, adequate-
ly represented? Do the assumed formal determin-
istic and probabilistic relations of the model ade-
quately reflect the evidence available?

Outputs of statistical procedures that assess fit of
data to models are also useful inputs to the informal
judgments that addressing such questions demands
(Box, 1980). The question of fit is essentially one of
prediction. Does the predictive machine of the model
when applied to relevant features of internal or ex-
ternal data provide predictions sufficiently close to
observed features? Testing fit of models is one of the
issues addressed by statistical inference (Dempster,
1998b). Several related issues are involved. What
makes an appropriate measure of fit, and how many
different measures can be safely assayed in a spe-
cific example? Should the evaluation be through in-
terpretation of tail-areas of sampling distributions
(p-values), or interpretation of likelihood ratios or
interpretation of Bayesian relative odds of compet-
ing models embedded in a formal supermodel? What
does it mean to make a test sensitive to failure of
particular features of a model, and is it necessary to
have “alternative hypotheses” waiting in the wings
before implementing a formal logic of testing? Such
questions are addressed at length in the research
literature.23

4. EXAMPLES

4.1 Preliminaries

A discussion of three statistical applications of
importance both to statistics as a discipline and
to society at large may serve to illustrate concrete
situations where a greater emphasis on formal mod-
eling could reduce confusion and controversy. The
U.S. decennial census presents challenges that are
special to U.S. laws and mores. The census engages
many professional statisticians within the Bureau
of the Census and is an ongoing concern of many
users as well as research statisticians in academia,
including some who have participated in adver-
sarial legal proceedings on opposite sides of the
“adjustment” question. Second, statistical issues
that concern screening for life-threatening diseases
are largely the province of biostatisticians and
epidemiologists, representing technical strengths
in both statistics and medicine. Lastly, statistical
analysis is key to judging whether global surface
temperature will continue to rise on the time scale
of a few future generations, and whether observed
climate changes on a range of spatial scales are
“caused” in part by a systematic “greenhouse” ef-
fect from the buildup of atmospheric CO2 and other
trace gases. Statistical questions concerning global
climate change are actively pursued mainly by a
few small groups of full-time researchers, mostly
with primary expertise in the physical sciences, es-
pecially atmospheric and oceanographic sciences.
On the other hand, empirical modeling techniques
such as multivariate principal components analysis
and time series spectral analysis are heavily used in
many kinds of climate investigations. Opportunities
for interactions between quantitatively sophisti-
cated specialists (such as demographers, medical
researchers and climate scientists) and academic
statisticians are numerous and widespread, espe-
cially for explicit and disciplined development of
stochastic models and associated formal inference
procedures.

In each of the three very different areas of science,
involving different subspecialties of statistical ex-
pertise, the dominating issues of statistical practice
are traditionally posed as choosing effective statisti-
cal techniques. The ultimate goal of framing logical
statements about the specific objects of investiga-
tion, such as the specific true numbers of people in
various geographical locations and demographic cat-
egories on Census Day, is often buried in a welter of
differing opinions about the relative merits of pro-
cedural choices. When scientific conclusions involve
uncertainty in a fundamental way, however, we need
formal probabilistic reasoning to inform and defend
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subsequent informal uncertainty judgments. Proba-
bilistic reasoning in turn depends on model assump-
tions. To ensure good statistical conclusions, there is
no substitute for inference-wise statisticians in ac-
tive roles, not simply as technical advisors for proce-
dural choices, but also to connect formal uncertainty
assessments with meaningful answers to substan-
tive problems.

Another feature of the illustrations to follow, as
with much socially relevant applied statistics, is
that the science does not take place in isolation
from often conflicting political, societal and econom-
ic interests. All the more need exists, therefore, to
create safe havens where considered and unpreju-
diced discussions can take place, free from oppor-
tunistic and one-sided argumentation of adversarial
proceedings. Responsible professionals need to de-
bate contentious issues among themselves, aiming
to put a consensus before the public, where the
consensus should include a formulation of what re-
mains unknown, and why, as well as what has been
resolved. For progress in this realm, the statisti-
cal profession requires greater consensus on broad
principles, as well as involvement in the science.

The two basic elements of a model defined in Sec-
tion 2 are a specification of data structure for a
suitably inclusive small world, and a logical struc-
ture of hypothesized formal deterministic and prob-
abilistic relations among unknowns. Formal model-
ing of objective phenomena should be carried out
in a spirit of attempting to gain scientific consen-
sus on these choices. Subsequent processes of for-
mal logical deduction, such as Bayesian inference
about relevant unknowns, are primarily problems
of computation. At first encounter, the computations
may appear forbidding, but they are mathematically
straightforward and can be expected to yield to tech-
nical advances in logical and numerical computing.
A more demanding requisite for changing profes-
sional attitudes is willingness to face up to reexam-
ining deeply ingrained habits of thought, including
open-mindedness about recognizing formal subjec-
tivity as a guide to accurate informal understanding
and reporting of uncertainty.

Clarity in the presence of both objective and
subjective elements requires precise usage of tech-
nical language in relation to specific applications. A
symptomatic illustration is provided by the terms
“estimate” and “estimator,” where the former is
simply a number that represents a guess at some
quantity, while the latter refers to a procedure that
is designed to be used repeatedly and is convention-
ally evaluated under various sampling distribution
assumptions, leading to theoretical properties such
as “bias” or “standard error” or other measures of

performance. It is fundamental to ask how such
“operating characteristics” of a procedure relate to
the specific result of applying the procedure. Fail-
ure to separate inhibits critical review of the key
issue of interpretation of corresponding specific
data.

The widely used term “bias” provides an inter-
esting case study. “Bias” is used by statisticians
in quite different technical senses. One sense con-
cerns largely informal understanding of phenomena
rooted in the objective world, whereas another con-
cerns formal mathematical analysis that addresses
the average value of an estimator under many re-
peated hypothetical applications given a specified
sampling model. Thus a sample can be biased in
the first sense due to faulty real-world sample se-
lection processes, or an estimator can be biased
in the second sense because the assumptions in a
probabilistic sampling model imply the existence of
mathematical bias. When the former type of bias is
present, it can usually be shown to have a reflection
in the mathematical concept, but not necessarily
vice versa. Thus the standard mathematicization
of “bias” can mislead if a statistician identifies
“bias” with the sampling properties of proposed
estimators. As is generally the case with studies
of sample-theoretic operating characteristics, the
connection of mathematical results with specific
applications is problematic. In a specific applica-
tion, for example, alternative sampling properties
that condition on selected features of the specific
application could well be thought to have relevance
comparable to that of more marginal sampling prob-
abilities, if not more. Not only is there no uniquely
applicable operating characteristic in a specific sit-
uation, but statisticians who use Bayesian posterior
distributions as the preferred estimation principle
are led to a quite different formal prescription for
assessing the effects of real-world biasing mecha-
nisms, namely, the difference between a posterior
estimate from a model that allows for the mecha-
nism and a posterior estimate from a model that
ignores the mechanism.

The moral of the story is that a primary emphasis
in any specific application should be on formal mod-
eling, or representation of real-world mechanisms,
including sampling mechanisms, after which logicist
principles of reasoning about the specifics of the case
study, including reasoning from given data, largely
prescribe appropriate inferential methods. In par-
ticular, discussions of “bias” should start from the
identification of objective mechanisms, which are
then represented formally via modeling processes
that deliberately connect objective phenomena with
mathematical idealizations.
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To foreshadow the topic of Section 4.2, consider
the widely recognized concept of “correlation bias”
that was central to the adjustment controversies
following both the 1980 and 1990 U.S. population
censuses. At issue here is whether a hypothesized
propensity to avoid being counted in a “capture”
sample, here the original attempt at a full-count
census, varies across the population in a way that
is correlated with a corresponding propensity of in-
dividuals to avoid being counted in a “recapture”
sample, here an attempted “Post Enumeration Sur-
vey” (PES). Once the selection mechanisms behind
the correlation bias issue are recognized, the con-
nection to the fundamental problem of census un-
dercount is apparent, so must be addressed when
seeking consensus on a model. The tendency of the-
oretical statisticians, however, has been to focus on
the simple capture–recapture estimator that goes
with the assumption of zero correlation, and thus
to deflect attention away from model formulation
and over to assessing hypothetical systematic long
run average error from misuse of the naive esti-
mator, with the ultimate goal of devising yet an-
other procedure that “corrects” the naive estimator
for “bias,” which in turn requires estimating further
unknowns that appear in the theoretical expression
for “bias”—and so on. The practical goal should be
different, namely, to reach consensus on a model
that reflects what is regarded as current knowledge,
whence a good posterior inference procedure will be
nearly automatic. The statistical “bias” that mat-
ters is the difference between a quoted estimate,
say computed from a standard formula, and a more
considered estimate resulting from consensus on an
acceptable model that captures relevant features of
the objective phenomenon.24

The long run averages that underlie measures of
performance of procedures rarely have an objective
origin in the real world, so mostly can provide only
imagined supports for choices among alternative es-
timators. It is in any case paradoxical that the ratio-
nalization of procedural choices advocated under the
inductive behavior theory of Neyman relies on the
same principle of minimizing expected risk as does
the Bayesian decision-theoretic principle that aims
to minimize expected risk a posteriori.25 What mat-
ters is the actual error of an actual estimate, and
this can only be assessed formally through a logic
of uncertainty that applies directly to model-based
assessment of the “true” value of the estimand as
postulated in a formal data structure.

4.2 Example—U.S. Decennial Census

The decennial census is revered by some virtu-
ally as a ritual in the civil religion surrounding the

U.S. Constitution. Absent the mystique, the census
is more likely to be regarded as a mundane task:
to devise an adequate way to count people, as re-
quired for allocating citizens to voting units or dis-
tributing funds accurately according to legislative
mandates. On the contrary, as professionals know
well, the counting process is a nontrivial scientific
process of social measurement. My goal is not to of-
fer advice on detailed protocols for future censuses.
I have little expertise on the practical management
of what is a large, complex and exceedingly frus-
trating operation. My goal is rather to illustrate the
concepts of logicist statistics and statistical model-
ing that were laid out in abstract terms in preceding
sections.

To this academic observer, it is surely wrong to be
constrained by 18th century constitutional language
indicating that the census will consist of complete
enumeration. Statistical technologies have moved
on, as have technologies for transportation, commu-
nication and computation that no one would propose
limiting to 18th century standards. A more relevant
concern is that standards of statistical science em-
ployed in the last few decades of the 20th century
may need the overhaul and modernizing entailed by
logicist methodology, in order to fit with the rapid
changes in parallel technologies. There should of
course be formal random sampling designs intro-
duced where they promise acceptable accuracy at
a price that cannot be matched otherwise. In par-
allel, randomization needs to be complemented by
formal stochastic modeling and subsequent proba-
bilistic logic specifically directed at the targets of
sampling.

The first task of formal model construction is de-
ciding what features of a complex objective world
are to make up the data structure of mathematically
represented elements. Choices here are controlled
by the endpoints of the exercise. The difficulty
for the census designer becomes quickly appar-
ent when it is realized that very large variations
in spatial scales are involved. For assigning num-
bers of congressional seats to each state, only total
populations within state boundaries are needed,
while for redrawing congressional districts within
states more localized counts are important. Com-
mercial census users may expect composition and
characteristics of households down to small urban
tracts. Measurement and sampling strategies that
are suitable for one purpose may be inadequate or
cost-ineffective for another. For the most detailed
demands, households within a hierarchy of mapped
political jurisdictions are the most common basis of
a frame for locating the residents, although other
living arrangements identified by point or areal lo-
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cation are needed for parts of the population. One
must assume that the stock of such unit-households
on Census Day is accepted as a defined concept
and is approximately on record to a satisfactory
degree of objective accuracy and specificity for the
task at hand. Similarly, an inventory of charac-
teristics of individual persons, including age, sex
and other variables may be assumed identified and
given precise objective definitions within acceptable
tolerances of ambiguity.

The data structure needs units and variables that
represent processes of observation or measurement,
so that individual units have both recorded and true
values for observed variables. Similarly, where sam-
pling is used, there are sampled units and unsam-
pled units to consider. The fact of subjective judg-
mental choices of exactly what to represent formally
and what to omit is very apparent. For example,
when information is recorded by interview, one can
in principle include both observed and observers as
related units with recorded identities and character-
istics for purposes of representing variation among
measurers as well as measured. But such a degree of
detail might be deemed impractical except for sub-
studies. The fundamental processes of measurement
and sample selection come associated with concepts
of “error” that are ubiquitous and multifaceted, as
in errors in lists of occupied housing units, errors of
omission and multiple counting of persons and er-
rors of omission or mistaken records on individual
items. That much serious effort has gone into iden-
tifying, understanding and analyzing such errors is
clear from available literature, as reviewed in the
discussion articles in the August 1994 issue of Sta-
tistical Science (9 458–537). Much of the discussion
draws on a huge body of detailed knowledge giv-
ing rise to dozens of informal interpretations and
judgments. But an overall formal data structure
that specifies the limited small world representation
of the objective situation under analysis is hard to
discern.

The logicist approach of this paper differs most
seriously from current practice at the stage of
specifying formal relations. Whereas formal data
structures are implicit in the conduct of the census,
even if not separated out and inscribed in a book
of mathematically defined elements, the need for
probabilistic relations, especially stochastic models,
is typically demoted to the role of tools for the study
of procedures for data collection and analysis that
are evaluated under various loss functions that
are themselves in dispute. Stochastic models are
thus allowed a secondary role in evaluating choices
among procedures, whereas inferential interpre-
tation of formal probabilities of specific unknown

target quantities is largely suppressed. Protocols
for data collection are extended to protocols for re-
porting and are regarded as necessary for ensuring
objectivity, as though science can escape subjective
choices both before and after data collection. On
the contrary, assumed models having a part to play
in data-specific logic must be open to question and
revision through processes of empirical data anal-
ysis and modeling, including scrutiny after data
are in hand. The only way I see to control and con-
tain fratricidal statistical controversies like those
accompanying the postmortems on the 1980 and
1990 censuses is to prescribe a period of intense
examination after the data are collected, including
reviews of specific stochastic and predictive mod-
els, followed by a consensus conference in which
the status of what is known and what is not known
is set forth, including quantifiable assessments of
uncertainty.

What I am advocating needs both a reorientation
of methodological approach and a massive modeling
effort. Since models provide the logical glue bind-
ing what is known and what is unknown, stochastic
models need to be created for each error type. The
key properties of the probabilities in these mod-
els are that they must be interpretable as defining
the subjective uncertainty of the analyst before
the error is committed, and that they can be con-
verted into posterior measures of uncertainty by
Bayesian or other formal probabilistic inference
methods. The groundwork for stochastic modeling
of measurement and sampling processes was laid in
the 18th and 19th centuries, and much developed
in the 20th. I believe that the current statistical
leadership needs to engage in serious debate and
reconsideration of fundamentals of probabilistic in-
ference, so that a valuable intellectual heritage may
be put to its natural uses.

The dispute over what to report as estimated pop-
ulation counts from the 1990 census came down to
choosing between a pair of procedures, one yielding
“unadjusted” estimates and the other “adjusted” es-
timates. An influential tradition in statistics sees
virtue in unadjusted estimates that reflects the logi-
cal simplicity of reporting only direct counts. A large
part of the appeal here is mistrust of technology,
especially fear that technology will be manipulated
to serve political ends. Biasing mechanisms that
cause counting errors are well understood, how-
ever, and are known to induce substantial errors in
raw counts. Stochastic and predictive modeling are
basic statistical methodologies for assessing such
errors, and when based on empirical studies have
in my opinion much better credentials than either
purely subjective guesses at the quantitative effects
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of biasing mechanisms or the effective denial that
goes with raw counts. As for political manipulation,
it occurs because politicians can exploit differences
among scientists, and rarely occurs because scien-
tists themselves choose analyses on the basis of
political positions.

Adoption of formal uncertainty analysis for error
assessment adds complexity, but not without neces-
sity or justification. According to Ericksen, Fien-
berg and Kadane (1994), the overall national pop-
ulation total estimate by the unadjusted method
omits roughly 20 million people and wrongly in-
cludes about 16 million, implying a net undercount
of about 4 million.26 Error rates affecting subgroups
of the population are evidently of economic and po-
litical significance. These are created by differential
error rates of both overcounted and undercounted
persons among geographical and political regions,
together with differential sizes of subgroups, such
as minorities, among different regions.

As recounted by Fienberg (1993), the issue of en-
shrining an official count was settled by a 1993 ju-
dicial decision27 that put to rest legal opposition
to a federal administrative decision not to adjust
that was originally made by the Secretary of Com-
merce in 1987. Legal maneuvering had led to a
hearing in 1992 that consisted largely of testimony
by opposing teams of statisticians. But, for legal
reasons, the case turned on a nonscientific issue,
namely, the Secretary’s decision having been “nei-
ther arbitrary nor capricious.” The judge opined that
the pro-adjustment party had the stronger scientific
case, but that with respected experts on both sides
he could not find the Secretary arbitrary or capri-
cious.

I agree with the judge’s lay opinion on the scien-
tific merits, which means that I favor the positions
of Belin and Rolph (1994) (BR) and Ericksen, Fien-
berg and Kadane (1994) (EFW) over those of the
Berkeley-centered anti-adjusters Breiman (1994)
(B) or Freedman and Wachter (1994) (FW). In fact,
my position may be as far to one side of BR–EKF
as B–FW is to the other. While detailed and cogent
by their own lights, the B–FW analyses are un-
dercut by an implicit frequentist philosophy that
provides no logical basis for formal analysis of spe-
cific errors. No actual model can be the objectivists’
true model, so they are restricted to formally an-
alyzing hypothetical consequences of hypothetical
false model assumptions, while never achieving
the construction of formal statements about actual
consequences in a specific situation. Their posi-
tion provides a sure-fire platform for attacking any
model-based or loss-function-based analysis, but
they have little constructive to say.

The weakness of the case made by the defenders
of the Census Bureau’s adjustment proposal is re-
flected in the confusion of principles they adopt. A
fundamental problem is that the census staff does
not go nearly far enough in the direction of de-
tailed model construction and logical inference. In
the end, the thinking behind an adjustment proce-
dure is likely to be Bayesian, but formal Bayesian
logic is kept shrouded in mists, one suspects because
the essential concept of formal subjective probabil-
ity is taboo. Another factor is that the academic in-
tellectuals themselves remain partly in the grip of
Neyman’s philosophy. To be fair, it is appropriate to
tread carefully in a census environment where even
the parametric model-based foundation common to
Neyman and Fisher is viewed with suspicion. Con-
sequently, the prevailing ideology among statisti-
cians is reliance on hopelessly inadequate “design-
based” tools that lead in complex situations to an
incomprehensible maze of ad hoc primary estima-
tors and estimators of variance components associ-
ated with sampling error analysis of the primary
estimators.

One of the key features of the adjustment proce-
dure is the device of smoothing used to control the
estimation error coming from the separate use of
small PES subsamples in each of a large number
of poststrata. The smoothing idea has been promi-
nent for 30 years at least, originally going under
odd names such as “ridge regression” or “James–
Stein estimation” associated with particular formu-
lations or justifications that by now should seem
archaic. The simplest and, I believe, the only prac-
tically available justification relevant to specific ap-
plications is Bayesian, and of course in a Bayesian
framework the correct way to smooth is implicit in
the model, so the issue of choosing a good smoothing
procedure is moot.

Belin and Rolph (1994) and Rolph (1993) make a
strong case within the prevailing theoretical ethos
to explain and support the official smoothing pro-
cedure. This is done by invoking a loss function,
conceived as in Wald’s (1950) frequentist decision
theory. FW criticize the use of loss functions on the
narrow grounds that no single subjective choice of
a loss function could justify a smoothing procedure.
I agree, but the introduction of loss brings with it
several more basic confusions. One is the Neyma-
nian conflation of expected loss associated with the
long run behavior of a statistical procedure with an
actual loss sustained by accepting a specific numer-
ical statistical estimate as a true value. A more ba-
sic question is whether the concept of loss has any
place in the task of framing logical uncertainty. The
negative answer to which I subscribe is that deci-
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sion analysis is important in its place, but that the
inputs to uncertainty analysis and decision analy-
sis come from logically separate sources. Stochastic
models and subsequent posterior probability assess-
ments draw on knowledge and evidence, whereas
utilities or losses draw on assessment of values.
Only after each is separately formulated is it ap-
propriate to mix them in formal computations. The
dominance of proceduralism over logic in statistical
thinking has promoted a fundamental mispercep-
tion that permits values to spill over and partially
control uncertainty analysis.

Then Census Bureau Director Bryant (1993) pro-
posed the concept of a “one number” census, as a
means to reduce the adjustment controversy and
hence save the drain of intellectual resources to le-
gal activities. If based on scientific consensus, the
one number census would indeed effectively remove
the problem, but there is little likelihood of con-
sensus in the year 2000, even if political pressures
were to abate. Bureau planners have recently envis-
aged partially replacing direct enumeration with a
promising form of counting by random sample (U.S.
Bureau of the Census, 1996). By allowing a con-
trollable and quantifiable degree of sampling error,
one can gain substantially on total error. For ex-
ample, hypothetically one might plan a 1/9 sample,
where by tripling the cost per household one could
reduce measurement error sufficiently to obtain ac-
ceptable overall accuracy, and still reduce data col-
lection costs by 2/3. At the time of writing, how-
ever, a series of news reports28 details political op-
position to any use of sampling. One subheading in
large type reads “Money, politics and law, figure in
a fight over census methods.” Statistical science ap-
parently does not rate recognition. The profession
needs to consider how it can establish an image of
scientific credentials that are less easily ignored.

Randomized sampling, both for a limited part of
an initial count and for postenumeration surveys,
seems a modest first step to a cost-effective census
in the U.S. context. From my standpoint to the left
of BR–EFK, however, it is clear that the profession
is far from moving toward logicist interpretation
of the products of randomized surveys. No current
research effort on a meaningful scale exists that
is directly aimed at formal modeling of a full sys-
tem, including data structures that fully reflect
error mechanisms, the specification of stochastic
models representing empirical data collection pro-
cesses, and especially carrying through to detailed
inference computations. Only then will we possess
well-articulated assessments of what the effects of
sampling and measurement errors are at the var-
ious spatial scales for which estimated counts are

needed. Logicist studies should be directed at com-
parison of expectations under alternative census
designs. Then quite different postdata development
is needed to assess errors in raw counts. Evidently,
however, the profession needs much rethinking of
fundamentals before a serious start on what needs
to be done will occur.

4.3 Screening for Early Detection and Treatment
of Cancer

The heuristic behind screening is an obvious phe-
nomenon, namely, that cures or at least delayed
advances of disease can be achieved through diag-
nosing and treating malignant cancers while the
disease remains asymptomatic, thus preventing or
delaying more advanced stages that are difficult
or impossible to reverse. Interestingly, it is usually
difficult to establish the presence of these bene-
fits through statistical studies, including carefully
designed and executed randomized intervention
studies that follow several tens of thousands of
subjects. The methodology of choice is to look for
“statistically significant” differences in the end
point of disease-specific population mortality be-
tween systematically screened treatment groups
and a normal care control group. On reflection,
given relatively low population incidence rates and
the length of followup needed to reach most rel-
evant cases of mortality, it is not surprising that
tests based on feasible randomized population tri-
als (RPTs) have low power for assessing group
differences.

There are various sensible innovations in the lit-
erature, some being tried and others just advocated.
A characteristic feature of these methods is that
they require enriching the data structure, for exam-
ple, to include surrogate outcome measures that can
shorten followup time, to allow more detailed trac-
ing of the natural history of a disease and its compo-
nent subtypes and to permit more precise detailing
of risk-relevant background characteristics of indi-
viduals in the study.29 Introducing such complexity
leads to informal analysis of how, and how much (or
typically how little), universal screening might af-
fect subclasses of individuals. So far there appears
to have been minimal effort to develop such complex
representations into formal models. The practice of
avoiding complexity in formal models goes hand-in-
glove with the advocacy of keeping analysis simple
by reducing the output to a simple test of signifi-
cance of an overall difference between treated and
control groups. I believe that strong arguments de-
serve to be made to the effect that complexity should
be retained and incorporated into formal models and
that correspondingly more complex statistical infer-
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ence procedures need to be developed and imple-
mented. For example, formal data structures should
record which of both treated and control patients
were actually screened, when, by what procedures
and what the results were. For cases developing the
disease, questions of whether diagnosis was from
a screen or from symptoms, and at what disease
stage, are surely key variables to include in a com-
plex model.

Two ongoing controversies concern whether there
should be routine mammogram screening of women
ages 40–49 for breast cancer and whether there
should be routine chest X-ray (CXR) screening of
smokers over age 45 for lung cancer. In the for-
mer case, the accepted wisdom appears to be edging
toward support for the “statistical significance” of
mortality improvements.30 A consensus conference
in early 1997 heard a wide range of opinions on po-
tential benefits, risks and costs of screening women
in their 40s, and on the problems and defects of
currently available studies such as quality of ex-
perimental procedures, choices of screening inter-
vals, length of followup, post hoc age subgrouping
and so on. The consensus report advocated leaving
the decision to women and their doctors, which pro-
duced an uproar, duly followed by political pressure,
and then positive screening recommendations from
several expert bodies.31 In the lung cancer case,
the situation is more problematic because the ma-
jor source of evidence comes from three coordinated
RPTs started in the 1970s that were designed pri-
marily to test whether “sputum cytology” at four
month intervals plus annual CXR might be more
effective as a screening tool than CXR alone. In
particular, the ambiguous nature of the statistical
evidence regarding the value of regular CXR for di-
agnosing early lung cancer resulted in “no screen”
recommendations since 1980 from several profes-
sional bodies, even for high-risk smokers. The sta-
tistical evidence relating to other cancers, several of
which are commonly screened for in routine medical
care, ranges from convincing to similarly ambigu-
ous, whether supported by RPTs or not (Strauss,
1997, 1998; Strauss et al., 1997).

Two sets of stakeholders are foreground and back-
ground in screening debates. Most prominent in the
literature are public health concerns about what is
happening or could be happening to populations,
and about screening programs that are or could be
recommended and implemented, with what benefits
and with what associated costs and collateral risks.
More implicit are the concerns of individuals who
decide to undergo or not to undergo specific medi-
cal procedures, and of their physicians who inform,
advise and recommend. The causal reasoning and

causal inference questions of public health officials
and of clinicians have different emphases. The for-
mer are directly concerned with causal effects on
groups of individuals of a decision to recommend
specific screening policies and practices, whereas
the latter are more directly interested in behavioral
and biological mechanisms operating at the individ-
ual level. The contrasting causal processes do not
operate in isolation. For example, the screened pa-
tient learns the outcome and then takes or declines
actions that affect his or her unfolding biological
situation, which in turn influences characteristics
of screened vis-à-vis unscreened populations. A rea-
son for the often confusing and inconsistent results
from social experiments like RPTs is that they do
not take place in isolation from individual decisions,
such as decisions by individuals in control groups to
avail themselves of screening practices nominally
enforced in treated groups, thus lessening the con-
trast between groups.32

Several statistical complexities and difficulties of
screening RPTs, have been described and named
in the epidemiological literature (Morrison, 1992).
Suppose that screening begins by inviting “treated”
subjects to follow a program of regular screening,
while the “control” group is left to normal care with
or without advice to seek a standard screening test
on their own. It is then anticipated that “cases” will
start to turn up in the treated group more rapidly
than in the control group, as a result of prescribed
screens, while members of the control group who
might have been diagnosed had they been screened
will typically not be diagnosed until later, whether
through a later screening test obtained outside the
study or from physical symptoms. As long as the
screening program remains operative, the number
of positive diagnoses in the treated group can be ex-
pected to remain larger than in the control group.
This expectation might at first appear paradoxical
since it implies a nonnull empirical difference be-
tween treatment and control groups even when a
relevant null hypothesis holds, namely, that long-
term disease progression for an individual patient
is the same whether the patient is in the treated
group and is diagnosed early as a result of a screen,
or is in the control group and diagnosed later. The
empirical difference statistic is therefore regarded
as subject to a “bias” dubbed in the literature “lead-
time bias.”

Two other “biases” of a similar character are
“length bias” and “overdiagnosis bias.” A naive
comparison of survival times after diagnosis may
be expected to show longer survival for those in
a treated group than in a control group, even if
one adopts a null hypothesis that early discov-
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ery and treatment has no differential beneficial
effect, because under the null hypothesis earlier
discovery by x days simply adds x days to sur-
vival. Such “length bias” is often associated with
the phenomenon of the screening tool turning up
“pseudotumors” or very slowly growing lesions that
would rarely lead to symptoms or serious illness, in
which case “length bias” is enhanced by “overdiag-
nosis bias.” Traditional statistical analyses often
compute treatment–control differences on standard
statistics like survival curves, and then attempt to
allow informally or sometimes to correct formally
for the effects of these “biases.” Often such correc-
tions are questionable, being based on awkward
theoretical leaps, for example, ad hoc replacement
of unknowns by estimates without accounting for
their estimation error.

Modeling is not an easy task. The phenomena be-
ing modeled are extremely complex, and even mod-
els that appear complex can only begin to capture
the main points. For example, techniques of per-
forming and reading mammograms are in flux and
are subject to errors and distortions, and these in
turn are interlinked to variations in tissue density,
type and location of tumor and so forth. Clearly,
however, a model will as a matter of course create
a time line for each individual, including the natu-
ral history of disease (if any) together with medical
events including detectability by screen, detectabil-
ity by symptoms, treatment and posttreatment as-
sessment and disease-specific death. The literature
on formal model representations is small and prim-
itive, especially for breast cancer screens.33 A more
sustained modeling effort has been attempted in
the lung cancer–CXR case (Flehinger and Melamed,
1994) leading to some simulation-based plausible
estimates of averages bearing on the value of screen-
ing, to which I return below.

One major argument favoring formal models is
that by design they take account of the real phe-
nomena behind each phenomenological “bias.” For
example, a minimal model would surely include rep-
resentation of both screen-detected and symptom-
detected times of diagnosis, with at most one of
these actualized for each individual, whence “lead-
time” is formally specified in the model for every
study individual. In a sense, there is no such thing
as a “bias” here, only an anticipated aspect of the
process under study, and not something to be cor-
rected for, but something to be assessed through
the model which gives it formal meaning. A sec-
ond major argument in favor of detailed modeling
is that it opens the way to logically satisfying sta-
tistical inferences.34 Here, I believe, the weight of
statistical orthodoxy in favor of simple null mod-

els and associated p-values for testing treatment–
control differences has gone sadly wrong. The ac-
ceptability of the logic of using p-values for scien-
tific judgments, as compared, for example, to adap-
tations of Bayesian logic, depends very much on con-
text. I believe that the use of p-values for the more
common randomized clinical trials (RCTs) of treat-
ment efficacy in specified diseased populations has
been unthinkingly carried over to the case of ran-
domized screening trials denoted here RPTs, with-
out allowing for a critical difference that affects the
logic. Since the history of medicine is replete with
scores of examples of treatments greeted optimisti-
cally only to be discarded later, a null hypothesis
of no effect of treatment is often plausible for an
RCT. An orthodoxy that demands strong evidence
against the null hypothesis then provides societal
protection against false positives. The situation is
different with screening trials. Whereas RCTs can
provide evidence of effectiveness even when the bi-
ological mechanism is unknown, as often happens
in clinical medicine, we do understand the principal
mechanism in the case of screening trials, namely,
early detection and treatment. There is little inter-
est in whether the mechanism is operating or not,
since at least in some instances it is almost certain
that cures take place that would not have occurred
otherwise. The inference task is not conventional
significance testing, but rather estimating with un-
certainty how many extra years of life can be ex-
pected for different classes of persons.

In this regard, the modeling technology of
Flehinger and Melamed appears to be very promis-
ing. Although the model is admitted to be simple,
and the statistical estimation procedures are also
quite primitive, the model has been used to obtain
statements that are radically different both in na-
ture and in content from anything otherwise avail-
able in the huge medical literature on screening.
The following is a direct quote of their final para-
graph:

Based on this model and the data col-
lected by the Cooperative Early Lung
Cancer group, it was estimated (1) that
the mean duration of stage I non-small
cell lung cancer is at least 4 years,
(2) that the probability of detecting stage
I lung cancer by chest radiography is
16% or less, and (3) that the probability
of curing stage I lung cancer is 50% or
less. Further calculation indicates that
if a high-risk population were examined
annually with chest radiography from
age 45 to 80 years, the mortality reduc-
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tion would be 18% or less. Although this
is far from optimum, it could prevent as
many as 25,000 lung cancer deaths each
year in the United States.

If these numbers are reasonably credible, they have
important implications, beside which the debate
over proof by significance is a distraction. The au-
thors comment that the epidemic of lung cancer
among smokers cannot be ended by present meth-
ods of early detection and treatment, implying that
better methods of both are needed. As an outsider,
my sense is that the numbers do strongly sup-
port a finding of benefit from routine screening of
high-risk populations. Of course, society also needs
to decide what it can afford, whence modeling and
estimation that demonstrate positive results can-
not be the end of the story. But high priority needs
to go toward appropriate statistical research and
development in the context of actual RPTs.

4.4 Anthropogenic Factors in Climate Change

Scientists are being pressed to resolve questions
concerning whether and to what degree anthro-
pogenic factors, especially the burning of fossil
fuels, are affecting “natural variability” in space
and time. Possible systematic changes include most
notably an upward trend in global average surface
temperatures, perhaps accompanied by disruptive
changes in local temperatures and precipitation
amounts, or by alterations in other major variables
such as large-scale circulation patterns of the at-
mosphere and oceans. Another possibility is severe
coastal flooding as sea levels rise along with the
melting of polar ice caps.

Climatology is a large scientific field supported
by institutes and programs in many nations. Cli-
mate change research in particular is monitored by
a major supranational body, the Intergovernmen-
tal Panel on Climate Change (IPCC), whose reports
(Houghton et al., 1991, 1992, 1996) survey current
scientific knowledge and opinion. Controlling emis-
sions, especially of carbon dioxide, to an extent that
might be needed soon to ward off major dislocations
50 to 100 years hence introduces large economic is-
sues and associated political choices, affecting eq-
uity across many economic entities both within and
among nations. As with the examples of Sections
4.2 and 4.3, slow scientific progress fosters a wide
range of opinion among scientists, leading to dif-
ficult policy-making, and at times to accusations
that scientists themselves are in thrall to special
interests.35

Since variability and uncertainty characterize the
study of climate, statistical technologies are integral

to scientific conclusions. Countless papers in atmo-
spheric and oceanographic research journals draw
on established statistical techniques, from simple
and standard graphical displays and data sum-
maries to more complex methods such as spectral
analysis of time series, and principal components
analysis, the latter under the name EOF (“empir-
ical orthogonal function”) analysis. Other methods
less familiar to statisticians are also widely used,
such as methods developed by engineers for signal
detection, and inverse methods more generally for
reconstruction of images and other complex struc-
tures from limited data. The use of such techniques
in climatology is mainly descriptive, with few refer-
ences to formal stochastic modeling and inference,
whence opportunities and challenges are extensive.
Factors working against a change in the statistical
status quo are a research leadership in climatol-
ogy largely uninformed about possibilities, and a
limited supply of trained and capable professional
statisticians, most of whom seek careers in fields
where applied statistics is better established.

The following brief overview starts with a sum-
mary of the science of climate change, then outlines
statistical needs and strategies for a particular ap-
proach called the “fingerprint” method and finally
discusses the current state of fingerprint analyses
in the climate change literature. Popular views of
the global warming threat rest on the “greenhouse”
analogy, the idea being that carbon dioxide and
other trace gases trap and reradiate some of the
heat energy that the earth’s surface would other-
wise send back to space. As greenhouse gases build
up in the atmosphere, so does the reradiation, part
of which returns to the surface, leading to global
warming. As detailed, for example, by Lindzen
(1994, 1995, 1997), the analogy is superficial in its
treatment of important complicating mechanisms.
Much heat transfer in the atmosphere is due to
convective flows and to infrared radiation from
clouds. By far the largest component of a predicted
greenhouse effect comes from water vapor whose
amounts and distribution are controlled by uncer-
tain feedbacks from other atmospheric changes,
including sensitive effects from small amounts of
water vapor at high altitudes. Interactions and
heat transfers between oceans and atmosphere are
large, and since ocean currents are massive and
much slower than atmospheric movements they
can delay the arrival of detectable climate change.
Effects of ice, snow and rainfall on heat flows are
large, as are effects of plant life on carbon diox-
ide budgets. Such factors do not imply that global
warming is not a threat, but do suggest that the ef-
fects of the 30% increase in carbon dioxide that has
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occurred since the start of the industrial revolution,
and that seems unstoppable before reaching 100%
in the next century, may not be easily quantifiable,
or even separable at all from natural variability,
given the present state of knowledge.

The science of climate change is physical science.
As an outsider, my perception is that there are three
available types of evidence and associated reason-
ing. The first draws on description of small worlds
extracted from the large complex total system, such
as limited aspects of atmospheric circulation, or zon-
ally aggregated energy balances. After description
comes the task of understanding and explanation in
terms of causal processes. Discovery of phenomena
often depends on empirical analysis of small data
sets, such as the use of bivariate time series spectral
analysis in the case of the Julian–Madden oscilla-
tion (Madden and Julian, 1972) or correlation analy-
ses demonstrating teleconnections between El Niño
and distant climates (Glantz, Katz and Nicholls,
1991). The Lindzen papers illustrate this first tradi-
tion applied to the question of a possible greenhouse
effect.

The second type of analysis is represented in cli-
matology by “general circulation models,” or GCMs.
These are massive deterministic models that ad-
vance in time in perhaps half-hour steps, and may
be run to create a simulated climate of order of 1,000
years’ duration. GCMs aim to provide a meaning-
ful representation of a reasonably complete climate
system. While always pushing the limits of avail-
able computing power, they can in fact only achieve
representations that in many ways remain crude.
The most advanced GCMs currently used to study
climate change are CGCMs that jointly model at-
mosphere and ocean at a dozen or more levels and
have spatial resolutions down to 150–300 km. The
algorithms that generate GCMs are based on equa-
tions of classical physics and are close cousins of
the numerical models used for forecasting weather.
Weather models differ in assimilating extensive new
data every few hours, and in attempting to fore-
cast only up to a week or two. CGCMs have diffi-
culty matching slow-moving oceans with faster at-
mospheres, and generally require ad hoc flux cor-
rections between ocean and atmosphere, engineered
to insure simulations with long-term stability. Also,
since much climatological variability, such as that
of cloud and storm systems, takes place on smaller
spatial scales than the models can resolve, further
ad hoc parameterizations of the effects of these vari-
ables are introduced. The importance of GCMs to
the study of climate change comes from runs with
experimentally controlled forcings that, for exam-
ple, match increases in greenhouse gases estimated

from the past and expected in the future. These ex-
periments indicate a global warming threat that is
real (Houghton et al., 1996). Many traditional sci-
entists believe, however, that GCMs do not capture
enough of the relevant physical science to merit be-
ing taken seriously. Critical analysis as in Lindzen
(1994, 1995, 1997) points to specific model errors,
as in the distribution of water vapor, that call into
question GCM predictions of greenhouse warming.

A third type of scientific evidence and reason-
ing consists of statistical modeling and inference,
and offers scope for much future development. Sta-
tistical analysis of empirical data provides a piece
of the puzzle. After all, if the generally accepted
annual time series of global average temperatures
had not shown an upward trend since 1970 with
no sign of abating, then neither greenhouse the-
ories nor GCM experiments in themselves would
have prompted a major international effort. Statis-
tical analysis alone fails to provide a definitive an-
swer, and not only for the familiar reason that sta-
tistical relations by themselves are inadequate to
establish causation. If a statistical model could reli-
ably forecast a global average temperature increase
of, say, 3◦C over the next 50 years, then it would
matter little that underlying physical mechanisms
were poorly understood. In fact there are simple sta-
tistical analyses (Bloomfield, 1992; Bloomfield and
Nychka, 1992; Dempster and Liu, 1995) that show
fairly convincingly that plausible stochastic varia-
tion can be separated from a positive linear trend
over periods of roughly 1860 to 1990, and in the
case of Dempster and Liu the stochastic component
is even allowed to have nonstationary long mem-
ory. The main weakness of these analyses, as with
inferences from stand-alone GCM experiments, is
model error. The stochastic models in the examples
are linear systems. Nonlinear time series models for
use with plausible nonlinear physical systems have
not yet been developed, and when they are devel-
oped we will need to check whether their forecast
limits will be sufficiently wide as to cast doubt on
positive messages from linear statistical analyses.

In a mature science of climate change as I en-
visage it, the three methodologies will interact and
reinforce each other. For example, traditional phys-
ical reasoning suggests features that can profitably
be studied empirically in small world represen-
tations, and still other features that must be
accurately tracked in credible system-wide mod-
els, whether deterministic GCMs or multivariate
space–time stochastic processes. While statisticians
are accustomed to small applications, new stochas-
tic models are needed for the vastly larger and
more complex data structures that GCMs routinely
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track. Such models are needed in particular for “fin-
gerprint” analysis, whose aim is to match spatial
patterns of trend in empirical data with spatial pat-
terns predicted from GCM experiments (Schneider,
1994). How the concept is implemented in the cur-
rent literature of climate change is sketched below,
but first I attempt an idealistic look at how finger-
print analysis might look in mid-21st century, after
stochastic models and associated inference tech-
niques demonstrate their potential through wider
development and application.

One assumption is that measurement processes
will improve and their errors will be better under-
stood. Similarly, GCMs will improve along with un-
derstanding of their strengths and limitations, lead-
ing to greater convergence of opinion on their value.
Statistics will contribute stochastic models both for
the unknown true values underlying observed data,
and for errors defined as the differences of true and
observed, leading to Bayesian posteriors for the un-
known true space–time processes whose properties
are to be compared to outputs of model experiments.
A necessary feature of the models is that they in-
corporate a clear understanding of what is meant
by the effects of forcing factors such as changes in
greenhouse gases, and other explicitly introduced
experimental conditions such as those representing
anthropogenic or volcanic aerosol patterns, or natu-
ral variations in radiation from the sun. Since nat-
ural climate processes have sensitive dependence
on initial conditions, the simple concept of additive
models postulating a decomposition into signal plus
noise, or similar linear models common in statistics,
will very likely need to be replaced, along with the
Gaussian assumptions that are the best currently
available and computationally tractable stochastic
forms. The continuing advance of computing power
will make these developments possible.

On a more conceptual level, causal analysis will
be strengthened by introducing higher dimensional-
ity into the fingerprint patterns that are matched.
A basic principle of causal inference is to render
alternative explanations more difficult as the list
of congruences between observation and theory in-
creases. One possibility is to include precipitation
along with temperatures, and another is to include
three spatial dimensions in place of two. In the case
of surface temperature, it could be important to in-
clude day–night differences, and seasonal patterns,
alongside annual averages. Measures of change will
be decomposed into changes at various time scales,
as in Fourier or wavelet analyses. Similarly, spa-
tial patterns will be represented in terms of a pri-
ori coordinate systems such as spherical harmonics
whose characteristics can be estimated by pooling

over neighboring frequency ranges. Different spa-
tial characteristics over land, sea and ice are likely
to be needed.

The current focus of the fingerprint literature ad-
dresses development of procedures for “detection”
and “attribution” of climate change (Houghton et al.,
1996). Detection is defined by climatologists to mean
obtaining a statistically significant relation between
an observed spatial pattern of change and a pre-
dicted pattern obtained from a GCM experiment.36

The methodology and language here descend from
the language used by statisticians who treat statis-
tically significant “effects” from the analysis of vari-
ance as scientifically important, even as it is under-
stood that detecting effects in this manner does not
imply a causal interpretation associated with the
detected correlate. The further step of causal attri-
bution of a significant fingerprint is recognized to
require a more stringent test. A recent suggestion of
Hasselmann (1997) is equivalent to adding alterna-
tive explanatory variables to a regression model and
checking for consistency of the nominated causal ef-
fect across alternative linear models, an approach
familiar in social science statistics. A popular com-
peting explanation concerns effects due to an in-
creasing presence of atmospheric aerosol particles
which are generally thought to have a cooling effect
that may delay recognition of global changes due to
greenhouse gases, a conclusion that is tentatively
supported by recent papers. Skeptics, including my-
self, regard the use of added variables in regres-
sion as reflecting too narrow a range of alternative
causal explanations to be convincing. There is also
the nagging worry over the appropriateness of lin-
ear statistical models.

Evaluating a fingerprint study requires close con-
tact with details. In Tett et al. (1996), for exam-
ple, the observation is a spatial pattern of trends,
where trend is defined as a mean over years 1986–
1995 less the mean over 1961–1980 for a radiosonde
temperature data set covering the years 1961–1995,
and projected from 3D to 2D defined by latitude
and altitude. A control run of 700 years of a CGCM
is used to characterize natural variability by tak-
ing 129 staggered 35-year segments and computing
spatial patterns as for the observations. Also four
equally spaced time points on the control run are
used as starting values for replications of an exper-
iment that uses three different forcings, G, GS and
GSO, where G denotes GHG, S denotes aerosols and
O denotes stratospheric ozone. Signal patterns for
each of the three forcings are computed by aver-
aging estimates from the four replications. Visual
comparison of the observed pattern with each of
the three signals is suggestive of basic similarities.
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A computation resembling a nonparametric signifi-
cance test is carried out showing that a standard
correlation between the observed trend and each
signal is substantially greater than any of the anal-
ogous 129 correlations of control trends with the
same signals.

On first encounter, the high pattern correlations
are impressive, as are the placements of these corre-
lations relative to a bootstrapped “null” distribution.
Note, however, the assumption that the hypotheti-
cal world of the CGCM control run resembles how
the actual world would behave over a 700-year pe-
riod with stable forcing. In the actual world, warm
and cold centuries over large regions could plausi-
bly yield more interesting trend statistics than the
CGCM can provide. Moreover, the bootstrap sample
of 129 comes from only 20 nonoverlapping 35-year
periods, and even 20 may be large as an indicator of
equivalent independent sample size in the presence
of long temporal waves, let alone nonlinear regime
shifts. A more deliberate and principled approach to
modeling and inference is appropriate.

A concept of “optimal fingerprint” has been
developed by Hasselmann (1979, 1993) and im-
plemented in recent Hamburg reports (Hegerl et
al., 1996, 1997). An equivalent optimization prin-
ciple is used by Gerald North (Hegerl and North,
1996; North and Stevens, 1998) in Texas A &
M reports. Although couched in signal detection
terms, the proposal is familiar to statisticians as
“generalized least squares.” In place of using the
correlation coefficient between observed and signal
patterns, one performs an equivalent linear regres-
sion of observed on signal. Then the identification
of a nondiagonal spatial covariance for the error
term can lead to a more sensitive measure of as-
sociation. While such efficiency gains are worth
attempting, the important issue is credible formu-
lation of regression models, including specification
and estimation of several covariance structures,
on which optimal linear statistical analysis de-
pends. One feature of the climatologists’s approach
that will immediately puzzle mainstream applied
statisticians is the use of a control GCM run to
characterize the statistical properties of the error
term in the regression, in place of the standard
statistical practice of modeling the residuals of the
dependent variable. I believe that this difference is
symptomatic of a need to carry out separate statis-
tical modeling exercises on the empirical data and
on the “pseudodata” outputs of the GCM experi-
ments. The data structure with one signal term and
one noise term is misleading. There should be an
estimated signal from the observations alone, with
an error covariance that reflects measurement error

and perhaps deliberate exclusion of high-frequency
and high-wave-number effects, and an estimated
“pseudosignal” obtained from a multilevel factorial
analysis of the pseudodata from designed GCM ex-
periments, also with an error covariance deduced
from carefully thought out time–space modeling.
The task then would be to isolate major compo-
nents of signal and pseudosignal, such as low order
spherical harmonics that capture the spatial vari-
ation, and to ask whether these bear similarities
that shine through their respective error variances.

I have emphasized the ultimate problem of causal
inference. There are more limited aspects of the
study of climate change that are worthy of sustained
efforts by a statistical project. A prominent area con-
cerns modeling and inference related to basic empir-
ical measures. This is a very large field, including
at one end paleoclimatology (Crowley and North,
1991), where proxy measures for temperature create
histories as far back as a million years (DeMenocal
et al., 1993), and at the other extreme the evolv-
ing tasks of coping with huge flows from satellite
instruments in real time of many characteristics of
atmosphere and oceans, including surface phenom-
ena. In relation to fingerprint analyses of tempera-
ture records back to the mid-19th century, a large
body of empirical work has been done by dedicated
climatologists (e.g., Jones, 1994; Jones, Osborn and
Briffa, 1997; Parker, Folland and Jackson, 1995) to
recreate worldwide monthly average surface tem-
perature fields from historical records of land sta-
tions and reports from ships at sea. Much of this
work is concerned with expert assessment of mea-
surement biases. Methods for passing from station
data to gridded data involve ad hoc rules for coping
with inevitable widespread missingness. A major
opportunity exists for the development of stochastic
representation and Bayesian reconstruction of un-
known true historical fields, including meaningful
standard errors.

5. DISCUSSION

Over a lengthy career it has been my conviction
that the practice of statistical inference needs to
transcend the limitations of both frequentist and
Bayesian formulations. But it has been difficult to
attract attention to the logicist ideas that I ascribe
to R. A. Fisher, largely, I believe, because discus-
sions of inference do not peel back the skin hiding
basic elements of practice, such as the facts that
practice starts from the explicit creation of formal
data structures, and that formal subjective proba-
bility is a basic tool whose varied uses give statisti-
cal inference its unique flavor and power. Hence the
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present paper is in part a necessary prelude to an
exposition of the present state of inference (Demp-
ster, 1998b). Beyond this, however, statistical mod-
eling is the critical meeting ground for substantive
science and statistical technologies, so merits in it-
self enhanced recognition. One consequence of such
recognition may be reorientation of the directions of
theoretical enquiry to support the modeling needs
of examples like those I have sought to dramatize
as major challenges and opportunities.

6. NOTES

1. See note 11.
2. See, for example, the early exchanges among

Fisher, Neyman and Pearson following Neyman
(1935) and the reprise, Neyman (1961).

3. My position like that of Box (1976, 1980) is
that sampling distribution inferences and Bayesian
posterior inferences have different logical roles in
practice and do not imply conflicts of principle.

4. In a coda to Neyman (1967), Bill Cochran
writes, “I have often wondered, as I suppose does
Neyman, why Fisher seems not to have regarded
the power of the test as relevant, although he
developed the power functions of most of the com-
mon tests of significance” (Cochran, 1967). See also
Fisher (1955), where Fisher opines that long run
average theory is all right for the quality control
needs of the likes of the Royal Navy, but surely not
for science.

5. Fisher (1958) describes a specific probability
as providing a “well-specified state of logical uncer-
tainty” and when using it “we are making a state-
ment of uncertainty.”

6. Neyman maintained that Fisher’s interpre-
tations have “nothing in common with reasoning”
(Neyman, 1957). For the behaviorist Neyman, in-
ference is “taking a calculated risk.” Fisher would
have none of this. See Fisher (1956, pages 100–101
and 108–109).

7. I plan to write further about the differences be-
tween Fisher and Neyman (Dempster, 1998b). Many
statisticians think of Fisher as a “frequentist,” pre-
sumably due to the natural association between
sampling distributions and long run frequencies.
But even the most Bayesian among us is likely to
accept that frequencies are valued as sources of
probabilities in assumed models that express spe-
cific real-world uncertainties. The “frequentism”
of Neyman is quite another thing, however, be-
ing a theory of evaluating statistical procedures
from their long run properties. Nor is it correct
that Fisher was unambiguously anti-Bayesian. Al-
though some quotes such as the long passage from

Fisher (1925) reproduced by Neyman (1957) are
quite strong (e.g., “the theory of inverse probability
is founded upon an error, and must be wholly re-
jected”), there is also a caveat in the quoted passage
(“except in the trivial case when the population is
itself a sample of a super-population the specifica-
tion of which is known with accuracy”). In a late
paper, Fisher (1959) explicitly discusses situations
where the use of Bayesian priors is valid, drawing
contrasts with other cases where alternatives to
Bayes are needed. Similar attitudes on the neces-
sity of an empirical basis for priors can be found
in Edgeworth’s statistical writing, beginning with
the astute article, Edgeworth (1884), that expresses
positions very close to those of my paper. See the
lengthy discussions of Edgeworth in Stigler (1986,
1989). Edgeworth forms a bridge from the patch-
work discussions of the 19th century to the more
organized, dare I say ideological, theories of the
20th century.

8. Efron (1998) states that Fisher’s fiducial meth-
odology is “generally considered” his “biggest blun-
der” although a “fertile” one. I disagree about the
“blunder” characterization (Dempster, 1998a). It is
presumptuous in my opinion to believe that what
has lasting value among Fisher’s contributions to
inference can be folded into Neyman’s theories, and
that Fisher was otherwise prone to mistakes that he
would not admit. See also Dempster (1964, 1971).

9. Erich Lehmann wrote to me recently, “Ney-
man realized (fairly late) that his notion of frequen-
tist probability was too narrow and accordingly he
widened it. There are some interesting questions
here which I don’t understand well enough to write
about at this time.” I hope that Erich or others will
clarify Neyman’s late views.

10. The term “complementarity” was used in a
specific semitechnical sense by Niels Bohr, who pub-
lished about 30 philosophical papers on his concept
among a total of more than 100 published works
subsequent to his introduction of the concept in
1929 at age 43, originally in relation to the comple-
mentarity of wave and particle theories in physics,
and later in many areas of science and policy where
opposing positions can lead to controversy, and
even violence, and yet on careful consideration are
reconcilable as different aspects of a deeper unity
(Pais, 1991). For example, Laplace taught that ob-
jectively nature is governed by deterministic laws
while at the same time our subjective knowledge of
nature in given circumstances is probabilistic. See
note 12.

11. An interesting discussion on the sources of
this quote questioning who actually wrote the orig-
inal is to be found in Whitaker (1996).
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12. Theodore Porter points out that while the
concept of an all-seeing intelligence is “beyond
doubt the most famous of Laplace’s ideas,” he “had
need of this hypothesis : : : to make clear his concep-
tion of probability : : : ” (Porter, 1986). As Laplace
puts it, “The curve described by a simple molecule
of air or vapor is regulated in a manner just as
certain as the planetary orbits; the only differ-
ence between them is that which comes from our
ignorance. Probability is relative, in part to this ig-
norance, in part to our knowledge” (Laplace, 1814).
Science has moved on, but Laplace’s formaliza-
tion of how to quantify “our” uncertainty remains
apropos.

13. See Chapter 3 of Fisher (1956), entitled
“Forms of quantitative inference.”

14. See note 5. Bayesian estimation was consid-
ered part of normal practice by leading statisticians
in the early decades of this century, for example,
“till better [methods] are forthcoming” (Pearson,
1920). Neyman (1977) credits Churchill Eisenhart,
who was a student in London in the mid-1930s,
with suggesting that the theory in his lectures
“would look nicer if it were built from the start
without any reference to Bayesianism or priors.”
Egon Pearson (1962) suggests that he and Neyman
made a conscious decision to move away from the
classical Bayes–Laplace formulation because the
required priors were so rarely available.

15. In his Royal Statistical Society presidential
address, Nelder (1986) referred to “the cult of the
isolated data set” and commented that “much sta-
tistical expertise is displayed to make inferences
from a single isolated data set.” This together with
the “lack of emphasis on problems of combining in-
formation” constitutes “an unsatisfactory feature of
much statistical writing.”

16. “In order that the applied statistician be in
a position to cooperate effectively with the modern
experimental scientist, the theoretical equipment of
the statistician must include familiarity and capa-
bility of dealing with stochastic processes” (Neyman,
1960). Neyman practiced what he preached, putting
major effort into modeling and analysis of such phe-
nomena as physical particles (Neyman, 1955) and
carcinogenesis (Neyman, 1960).

17. Personal communication from David Draper.
There may be an original source unknown to us.

18. The mathematics of the main types of sto-
chastic processes developed in the 20th century in
parallel with that of statistical methods. Able statis-
ticians descended from a British tradition have been
adept at combining the two fields, as for example in
the work of M. S. Bartlett, D. R. Cox, E. J. Hannan
and P. A. P. Moran, among others.

19. Cox (1995) questions whether it is “sensible”
to regard a model such as “the Maxwell–Boltzmann
distribution” as “measuring uncertain knowledge.”
Granted, the motivation for much stochastic model-
ing is the description of aggregates. Still, the rich-
ness of the theory of probability rests on analo-
gies between complex systems and simple games of
chance. Because the theory can be applied to the
play of a specific deck of cards, it can by analogy
be applied to the positions of specific unobserved
molecules, although I agree we might rarely wish to
so apply it in that context. See note 12.

20. Repetition is also the lifeblood of physical
modeling, as when Navier–Stokes equations gov-
erning fluid dynamics are repeatedly invoked at all
points in space–time.

21. The banner for a separate probabilistic logic
of causation is at present carried by Judea Pearl
(e.g., Pearl, 1997). Earlier attempts can be found
in Good (1961–62) and Suppes (1970). Pearl’s ef-
fort is associated with the use of “graphical mod-
els,” a natural connection since causes rarely oper-
ate alone and often have series and parallel struc-
tures. On the other hand, “chain graphs” and similar
structures are also advocated for empirical model-
ing of data (Cox and Wermuth, 1996). Theoretical
and computational aspects of graphical models are
currently in a period of rapid development.

22. Cox (1990) uses the term “directly substan-
tive” for models that “aim to explain what is ob-
served in terms of processes (mechanisms), usually
via quantities that are not directly observed and
some theoretical notions as to how the system un-
der study ‘works’.” His example concerned random
bursts of rain from cloud cells.

23. A recent symposium features discussion pa-
pers by Draper (1995) and O’Hagan (1995). Bayes
factors are reviewed by Kass and Raftery (1995).
Aitkin (1997) and Dempster (1997) propose a dif-
ferent approach based on posterior distributions of
likelihood ratios.

24. Similar advocacy of Bayesian modeling of se-
lection mechanisms has been advocated by Zelen
(1986).

25. The paradox is that the applicability of Ney-
man’s principle of choice to a specific user in a spe-
cific situation evidently depends on the relevance of
expectations computed from the hypothesized sam-
pling model to the specific situation, while on the
contrary his theory of inductive behavior was de-
signed to avoid the case-specific interpretations of
probability that were natural to Fisher.

26. A news report in The New York Times May
27, 1997, quotes unnamed census officials saying
that “studies found an estimated 10 million went
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uncounted while another 6 million were counted
twice,” arriving at the same 4 million undercount
for 1990.

27. Finally upheld by the U.S. Supreme court in
March 1996.

28. The New York Times May 3, 11 and 27, 1997.
In June, the Republican congressional majority at-
tempted to ban sampling as part of the census
through an amendment to a disaster relief bill, but
withdrew the amendment after a Presidential veto.

29. Examples are the use of surrogate end points
as discussed in Day and Duffy (1996), or proposals
to move away from crude use of age by decade and
identifying menopause as a marker in breast can-
cer studies (Chalmers, 1993). Improvements such
as these require modeling, as formally adopted out
by Day and Duffy.

30. Smart et al. (1995) combine results from eight
large RPTs and, by excluding the large Canadian
study whose randomization has been seriously ques-
tioned, manage a p-value < 0:05 corresponding to
a 23% observed mortality reduction pooled over a
variety of treatment and control policies.

31. Reporter Gary Taubes gives detailed news re-
ports in Science 275 1056–1059 and 276 27–28. See
also letters in the March 14 and 21, 1997, issues.

32. An ideal experiment might have every mem-
ber of the treated group being screened on a pre-
cise schedule, and none of the control group ever
being screened. Neither group follows this protocol,
so, as with randomized clinical trials, there is an el-
ement of uncontrolled selection present. With RCTs
the “intent to treat” analysis is the easy way out,
but the science wants to know the effect of treat-
ment, assuming the protocol was followed precisely.
In the real world, this requires nontrivial modeling
of the selection process. With RPTs, the analogous
problem may be harder since a large fraction of the
controls may self-screen in various ways.

33. Only Moskowitz (1986), of the papers that I
have seen, makes quantitative estimates of lead-
time for women 40–49 of 2 to 3 years from then
available data.

34. A good illustration of detailed modeling asso-
ciated with modern Bayesian inference is the study
of HIV incidence by De Angelis, Gilks and Day
(1998).

35. The key chapter (Santer et al. 1996) of
Houghton et al. (1996) on “detection” and “attribu-
tion” concludes with the paragraph, “The body of
statistical evidence in Chapter 8, when examined
in the context of our physical understanding of the
climate system, now points towards a discernible
human influence on global climate. Our ability to
quantify the magnitude of this effect is currently

limited by uncertainties in key factors, including
the magnitude and patterns of long-term natu-
ral variability and the time-evolving patterns of
forcing by (and response to) greenhouse gases and
aerosols.” An earlier draft that was circulated on
the Web in April 1995 was more conservative, refer-
ring to “large uncertainties,” possibly “flawed” noise
estimates, and placing a “burden of proof” on the
scientists involved. A news report in Physics Today
of August 1996 describes some of the controversies
surrounding the wording of the final report. A news
report in Science by Richard A. Kerr (Kerr, 1997)
quotes a range of scientific opinion ranging from
cautious to skeptical, especially regarding whether
the science is really in place to justify claims of
anthropogenic effects.

36. A recent generalization involves “multifin-
gerprint” (Hegerl et al., 1997) or “multi-pattern
fingerprint” (Hasselman, 1997) analysis. These
terms mean the comparison of joint space–time pat-
terns not necessarily interpretable as trends over
specified intervals such as 30 or 50 years. The lin-
ear compounds of space–time variables used for
fingerprints and multifingerprints alike are typi-
cally derived from principal components analyses
whose multivariate covariance inputs are computed
by treating successive times as a sample.
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