
Logics for Hybrid Systems

J. M. DAVOREN, MEMBER, IEEE, AND ANIL NERODE, MEMBER, IEEE

Invited Paper

Hybrid systems are heterogenous dynamical systems charac-
terized by interacting continuous and discrete dynamics. Such

mathematical models have proved fruitful in a great diversity of
engineering applications, including air-traffic control, automated
manufacturing, and chemical process control. The high-profile
and safety-critical nature of the application areas has fostered a
large and growing body of work on formal methods for hybrid
systems: mathematical logics, computational models and methods,
and computer-aided reasoning tools supporting the formal speci-
fication and verification of performance requirements for hybrid
systems, and the design and synthesis of control programs for
hybrid systems that are provably correct with respect to formal
specifications. This paper offers a synthetic overview of, and
original contributions to, the use of logics and formal methods in
the analysis of hybrid systems.

Keywords—Automata, computer-aided analysis, com-
puter-aided software engineering, design automation, formal
languages, hybrid control systems, logic, software verification,
temporal logic.

I. INTRODUCTION

A basic hybrid dynamical system is one whose state

may either evolve continuously for some duration of time

according to one set of differential equations or be abruptly

reset to a new value from which evolution is governed

by another set of differential equations, with the switches

typically triggered by the occurrence of some discrete event.

The coordinate variables of the state may take their values

in the real numbers or in a discrete (usually finite) set. The

hybrid phenomena captured by such mathematical models is

manifested in a great diversity of complex engineering ap-

plications, including air-traffic control, automotive control,

robotics, automated manufacturing, and chemical process

Manuscript received October 18, 1999; revised March 14, 2000. This
work was supported by U.S. ARO under Grant DAA H04-96-1-0341.
The work of J. M. Davoren was supported by U.S. ONR under Grant N
00014-98-1-0535.

J. M. Davoren is with the Computer Sciences Laboratory, Research
School of Information Sciences and Engineering, Australian National
University, Canberra, Australia (e-mail: j.m.davoren@anu.edu.au).

A. Nerode is with the Department of Mathematics, Cornell University,
Ithaca, NY 14853 USA (e-mail: anil@math.cornell.edu).

Publisher Item Identifier S 0018-9219(00)06456-2.

control, as illustrated in companion papers in this special

issue. The last decade has seen considerable research effort

in both computer science and control theory directed at the

study of mixed discrete and continuous systems [1]–[10].

In particular, the high-confidence and safety-critical nature

of the application areas has fostered a large and growing

body of work on formal methods for hybrid systems:

mathematical logics, computational models and methods,

and computer-aided reasoning tools supporting the formal

specification and verification of performance requirements

for hybrid systems, and the design and synthesis of control

structures for hybrid systems that are provably correct with

respect to formal specifications. Broadly stated, formal

methods are a means to mathematicize, and thence to mech-

anize, or render computational, what it means for a system

design to “get it right”: to correctly implement or satisfy

precisely stated, unambiguous performance specifications.

This paper offers a tutorial survey and a fresh perspective

on the use of logics and formal methods in the analysis and

synthesis of hybrid control systems.

A. Overview: Logics and Formal Methods for Hybrid

Systems

The theory and practice of formal methods in the anal-

ysis of computer hardware and software is well established.

The field has been active for over 30 years, and has more

recently enjoyed some industrial and commercial success;

the recent survey paper [11] gives an overview. Hardware

systems and software programs are traditionally modeled as

purely discrete systems: state variables take their values in

discrete (finite or countable) sets, and state transitions are

modeled as occurring in a discrete, step-wise fashion. The

elementary system model is that of a finite-state automaton,

the mathematics of which forms the core theory of computer

science. Within the discrete realm, these sequential state ma-

chines have been enriched in many and various ways to incor-

porate features of reactive, concurrent, and distributed com-

puter systems. In the move to real-time and hybrid systems,

researchers in the computer science tradition have similarly

sought to extend formal methods by enriching their system

0018–9219/00$10.00 © 2000 IEEE

PROCEEDINGS OF THE IEEE, VOL. 88, NO. 7, JULY 2000 985

models and formal logics to deal with real-valued state vari-

ables and state transitions that model evolution according to

differential equations.

Formal methods for the analysis of discrete systems fall

roughly into three overlapping camps, which have carried

over to hybrid discrete+continuous systems:

• logic-based approaches [12]–[23];

• automata-theoretic approaches [18], [20], [24]–[28];

• process algebra approaches [28], [29];

with the reference lists intended as representative samples.

Our focus is on logic-based approaches, although in the

course of this paper, we will briefly discuss and give some

pointers to the other two approaches and note some inter-re-

lationships between the three.

Given the tutorial nature of this paper and the breadth of

its intended audience, we adopt the pedagogical course of

making a first pass through the key conceptual and technical

ingredients, in several introductory subsections, with a view

to equipping the reader with a big picture overview of the

enterprise, before embarking on the detailed technical devel-

opment in the body of this paper.

In structuring our exposition, we draw on a paradigm

framework for logic-based formal methods set out in the

influential work of Manna and Pnueli in [12]–[14] and [30]

and widely used in the field; the functional parts of the

framework are illustrated in the lower gray box in Fig. 1.

In [13], the framework is applied first to discrete reactive

systems, then to real-time extensions of reactive systems,

and finally to a class of hybrid systems. Each system in

the classes under consideration is formally represented

as some form of transition system model , which is a

generalization of a finite automaton, and behavioral specifi-

cations are formally encoded by formulas of a temporal

logic extending the logic linear temporal logic (LTL). The

formal mathematical semantics of these so-called linear or

sequence-based temporal logics are such that a formula is

true in , written , exactly when every execution

sequence or trajectory of the system represented by has

the property encoded by . The logic LTL, along with the

so-called branching or state-based temporal logics such as

computation tree logic (CTL) or (CTL), are discussed

in this special issue [31]. The syntactic primitives and the

corresponding semantic constructs of the latter temporal

logics allow one to express behavioral properties of some

execution sequences, as well as all execution sequences,

starting from a state, and the formal semantics are such

that means every state in satisfies the property

expressed by .

In this paper, following [23] and [32], we will look to the

larger family of modal logics [33]–[35], which includes all

the standard temporal logics, and in particular, to the richly

expressive “parent logic” called the propositional modal -

calculus (L) [33], [36], [37]. The -calculus is well known

in the hybrid system literature, notably from the work of Hen-

zinger and coworkers [20], [21], [38]. In earlier work on the

control theory of purely discrete systems, it was essentially

Fig. 1. Paradigm framework for logic-based formal methods.

rediscovered under the name modular feedback logic by Ra-

madge and Wonham in [39] as a formalism for stating and

solving supervisory control problems for discrete event sys-

tems (DESs) [40].

We return to an introductory discussion of the logics and

computational approaches to determining whether

a little later. At this stage, the essential point is that a system

and its properties are formally represented as models and for-

mulas of a mathematical logic. To be able to demonstrate

the degree of faithfulness of such formal representations, we

must first develop “preformal” mathematical models of hy-

brid systems, and then identify and characterize in natural

mathematical language both the trajectories of such systems

and the sorts of properties we would like to reason formally

about. This elementary point is illustrated in the upper part

of Fig. 1. Note this is a separate issue from whether a partic-

ular mathematical model is an adequate representation of the

concrete physical system it is intended to model. The latter

issue is addressed in several branches of control theory, in-

cluding studies of system identification, and studies of ro-

bustness. We return to robustness issues later in this paper;

the idea there is that one has a nominal model of a system to-

gether with an uncertainty class characterizing how the true

model might differ from the nominal one [25].

B. Overview: Mathematical Models

As our basic mathematical model, we take a class of sys-

tems known as hybrid automata, which have gained wide ac-

ceptance since their introduction in [18] and [19]. The same

model or generalizations of it are used in several other papers

in this special issue [31], [41]–[43], and the switched sys-

tems considered in [44] are close relatives. A (basic) hybrid

automaton is a closed system with a “built-in” control struc-

ture determining when and how the system switches between

its various discrete modes, where the continuous behavior in

each discrete mode is governed by a vector differential equa-

tion (or differential inclusion).

In contrast, the supervisory control perspective on hybrid

systems retains a clear separation between plant and control;

the theory is developed in this special issue [45] and adapts

DES control theory to the hybrid setting. A hybrid control

986 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 7, JULY 2000

system consists of a finite control automaton operating in a

closed feedback loop with a continuous plant, with commu-

nication via AD and DA interface maps. This quintessentially

hybrid configuration is closely related to the switching con-

troller architecture in [41] and is the focus of earlier work

by the second author [46], among many others. In Section II,

we show how the resulting closed-loop system gives rise to a

basic hybrid automaton, and is thus amenable to logic-based

formal specification and analysis. As an illustrative example,

to which we return throughout the text, we consider the hy-

brid control of a simple double-integrator plant in ; the

example is well known in the DES-based hybrid systems lit-

erature and appears again in [45]. In the class of control prob-

lems we examine, the task is to construct a hybrid control

system so that the associated hybrid automaton satisfies a pri-

oritized list of performance specifications, the first of which

is safety property.

Safety or invariance properties have gained the most

attention in studies of hybrid systems. These are prop-

erties of the form: “All state trajectories of a system

starting from a set of initial states remain in a

prescribed set at all times;” equivalently, in terms of

reachability: “The set of states -reachable from

is contained in .” For example, in an air-traffic control

example, the “good” set could be the set of states in

which the distance between any pair of aircraft is greater

than some minimum separation value [42], [43]. Given

this relation between safety and reachability, a good deal

of research effort has focused directly on techniques

for either computing exactly, or else approximating, the

reachable regions for various classes of hybrid systems,

with diverse approaches drawn from optimal control,

game theory, and computational geometry; see, for

example, [41] and [42]. Other properties investigated

and formalized include qualitative temporal notions of

liveness (non-Zenoness, and switching modes infinitely

often), deadlock freedom, eventuality, and fairness along

infinite trajectories; qualitative ordering of events along

trajectories; and quantitative timing properties of hybrid

or real-time trajectories [12], [13], [15], [16], [20], [21].

From the perspective of control and systems theory, the

classical concerns center on notions of stability and of ro-

bustness of systems. For example, one basic notion of sta-

bility is the property: “For every , there is a

such that every -trajectory that starts within distance

from an -invariant set always remains within of .”

While a variety of mathematical formulations of these con-

cepts have been proposed for hybrid and switched dynam-

ical systems (stability is surveyed in this issue in [44]), there

has been little work to date on integrating these concerns

within a framework for formal methods [25], [47]. There is

perhaps good reason for this. Coming as they do from com-

puter science, formal methods traditionally lie in the realm

of discrete mathematics, while these notions from control

theory lie squarely in the realm of continuous mathematics.

Well before hybrid systems, the classic systems theory text

of Kalman et al. [48] sought commonality between the two

competing realms. In a chapter entitled “Automata theory:

the rapprochement with control theory” (written by Arbib),

we find:

“One thing an automata theorist must often envy a

control theorist is the use of continuity” (p. 179).

For hybrid automata theorists, it should go beyond envy. De-

veloping ideas in [23], [46] and [49]–[51], we argue that a

common ground is to be found by adopting the language

and viewpoint of general topology, and that natural and im-

posed topological and metric structure on the state spaces of

system models, and concepts of continuity with respect to

such topologies, can and should be reflected in one’s formal

models and logics.

C. Overview: Computational Models and Methods

Work on formal methods for hybrid and real-time sys-

tems has produced a large variety of formal or computational

models. The common core is to be found in a very simple

class of structures called labeled transition systems or LTS

models for short. An LTS model is an abstract structure

consisting simply of a state space of arbitrary cardinality;

a collection of binary relations ; and a collection

of distinguished sets of states [33], [52].

An LTS model is best viewed as an abstract dynam-

ical system, or an abstract machine, whose mathematical

structure is uniform across the discrete-continuous divide.

When is a finite set and the collections of relations (cor-

responding to an input alphabet) and of distinguished sub-

sets (output alphabet) are both finite, such an is just a

notational variant of a nondeterministic finite automaton.

In representing a basic hybrid automaton as an LTS

model , the system state space is an uncountable set

where is a finite set of control modes

and . One of the key insights in the hybrid sys-

tems literature, dating back to [12], [13], and [18] and

earlier work on (real-) timed automata [53], is that both

sorts of system dynamics—continuous evolution according

to differential equations and discrete switches or resets of

state—can be uniformly and faithfully represented as bi-

nary transition relations over a hybrid state space. The dis-

tinguished state sets include initial states, target or avoid-

ance regions, and structural components of the hybrid au-

tomaton.

Computational or algorithmic problems in formal verifi-

cation take the form:

-

Given a formal of a system design,

together with a specification formula

encoding a system property,

the task is to ,

and if not, produce a counter-example

witnessing how to satisfy .

For a demarcated class of formal models and class of spec-

ification formulas, an algorithmic solution is a “black-box”

computer program, which takes as input a pair in

the given class and returns as output either the answer ,

preferably with a transcript of the steps taken to arrive at this

DAVOREN AND NERODE: LOGICS FOR HYBRID SYSTEMS 987

answer, or else a concrete counter-example to extracted

from the model .

The computational focus brings out the issue of the formal

description of models, as identified in Fig. 1. In order for

it to be data for a computer program, the components of

the formal model , and the underlying system model out

of which is formed, must be precisely described in the

syntax of some formalism, such as a programming language,

a graphical formalism like statecharts, or a more general-pur-

pose formalism like first-order logic.

Some further introductory discussion of mathematical

logics is in order. First-order logic or predicate logic [34] is

just the logic that is used informally in the language of ev-

eryday mathematics. For example, the standard definition of

a function being continuous at a point with

respect to a metric on is written in “informal” first-order

logic, with variables ranging over the real numbers, as

This is “informal” since we use as an abbre-

viation for and for

, and the terms and would

formally be expanded to expressions built from the primi-

tive function and constant symbols of the first-order language

in use. For example, could be if

the language contained these

function symbols, plus constants for the integers and the re-

lation symbol . In the formula above, the variable is not

bound by an or quantifier, so it is called a free variable.

Writing for that formula, the set-theoretical expression

means the subset of all points in at which

is continuous with respect to , and is said to define

this set.

A low-level formal description of an LTS model of a basic

hybrid automaton consists of a finite list of first-order for-

mulas: formulas defining the state sets

, where the variable ranges over the fi-

nite set of discrete states and the variables range over

(technically, this is multisorted or typed first-order logic),

and formulas with two

discrete variables and real-valued variables, defining the

relations . The semantics of high-level hybrid

programming languages such as SHIFT [54] and

[55] can be given in terms of hybrid automata, and so admit

a low-level formal description of this kind.

Modal and temporal logics are best viewed as fundamen-

tally second-order logics for reasoning about sets of states,

and operations on sets of states, as distinct from first-order

logics in which one reasons about elements in the domain of

interpretation and functions and predicates of elements.

The formal semantics of the -calculus, and its (state-

based) modal and temporal sublogics, define the meaning or

denotation set of a formula in a model .

Formulas are built up starting from propositional constants

that name the state sets in a model, and compounds are

formed using the standard logical connectives or Boolean op-

erations (“not”), (“and”), (“or”), (“if...then...”) and

(“iff”), together with various modal or temporal operators,

which reflect the effect of state transitions according to the

relations of a model. Among the basic modal operators are

the (relativized) box and diamond operators. For relations , a

formula reads “All -successors satisfy ” or “ -actions

necessarily bring about ,” while reads “Some -suc-

cessor satisfies ” or “ -actions can possibly bring about .”

Intuitively, is the set of states that satisfy in , and

exactly when .

The two main methods for the verification of modal or

temporal logic properties are model checking algorithms

and deductive proof systems. The essential task of a model

checking algorithm is to recursively compute the denotation

set , and if the complement is

nonempty, these states provide the required counter-exam-

ples. For hybrid systems, this necessarily falls under the

heading symbolic model checking, since over an infinite

state space, one needs a finitary syntactic or symbolic means

of representing sets of states and operations on them; over

a finite state space, one can resort to explicit enumeration.

When the component state sets and relations of a model

are formally defined in first-order logic, one can seek to use

the same representation (and in particular, quantifier-free

first-order formulas) in the course of model checking. As

examined in [31] in this special issue, the decidability,

or possibility of an algorithmic solution guaranteed to

terminate on all inputs, for model checking of temporal

logic properties for various classes of hybrid automata,

depends crucially on the syntactic complexity and form

of the first-order formulas defining the components of the

systems.

The other approach to formal verification is deductive, and

there are usually several different types of deductive proof

systems that can be developed for a logic. The simplest is

called a Hilbert-style or axiomatic proof system, which con-

sists of a collection of formulas designated as axioms, and a

collection of inference rules of the form

A Hilbert-style proof system is said to be sound with re-

spect to a class of models if for each in , each of the

axioms of is true in and whenever all of the premises of

an inference rule in are true in , then the conclusion of

that rule is also true in . Deductive verification of

starts with a list of formulas such that is im-

mediate from the formal description of , or has otherwise

already been established, and then seeks a formal proof, or

sequence of inference steps in , demonstrating that is

a deductive consequence of . By soundness, one can then

conclude . Hilbert-style axiomatizations are impor-

tant for clarifying and understanding a logic, and are easy

enough to use manually, but they do not readily lend them-

selves to automated proof search or to the construction of

counter-examples. Other types of deductive systems such as

tableaux systems or Gentzen-style proof systems [34], [56],

which produce labeled tree or graph-style proofs, are better

suited to these tasks.

988 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 7, JULY 2000

A number of the logics developed for hybrid and real-time

systems consist of multisorted first-order logic combined

with some temporal operators to give a single formalism for

both description of system components and specification of

system properties; for example, temporal logics of actions

TLA+ and cTLA [16], [17] and extended duration calculus

EDC [15], [28]. For these, deductive verification is the only

available approach.

The bulk of the work on logics and formal methods for

hybrid systems, as for discrete systems, has focused on the

“after-the-fact” verification of a completed system design.

We are interested in ways in which the same technical ma-

chinery of model checking and deductive proof systems can

be used for the synthesis or construction of a system from an

incomplete design.

-

Given a performance specification formula ,

and an or -

description of a formal model,

the task is to "fill in the blanks"

and an

or else determine that no such exists.

In the example control problem we consider in Section II,

the blanks to fill in are an AD map and a finite control au-

tomaton; together with the given plant model and DA map,

the closed-loop system forms “a” hybrid automaton. We first

describe the construction in general terms, then return to it

in later sections to show how modal logics can be used not

only to formalize the performance requirements, but also to

formalize lower level decisions and computations required in

the course of the construction; we generate a list of simpler

formulas that are true by construction, and from these we can

deductively derive the desired specification formulas, so es-

tablishing that the construction is correct.

For comparison, [41] in this special issue considers a class

of control problems in which one starts with a complete hy-

brid automaton , and the synthesis task is to find the largest

subsystem such that satisfies a safety property.

While [41] does not use a logic framework, we will briefly

sketch in Section V-C how that type of construction can be

formalized in the -calculus, and its relation to similar max-

imal invariant subset constructions in DES control theory

[39].

The body of this paper is roughly structured around

Fig. 1. In Section II, we examine mathematical models of

hybrid systems and their elementary properties and set up

our hybrid control example. Section III covers transition

system models, and the formal representation of hybrid

automata, plus a brief discussion of automata-theoretic and

process algebra approaches to hybrid systems. The longer

Section IV introduces and develops modal and temporal

logics for the specification of system properties, while Sec-

tion V surveys model checking and deductive proof systems,

and logic-based approaches to the design and synthesis

of control structures for hybrid systems. The concluding

Section VI discusses related and ongoing work.

II. MATHEMATICAL MODELS

A. Preliminaries

For reference, we include a glossary of notation in Table I,

with the right-hand column giving the subsection in which

the notation is defined.

As identified in the introduction, the elementary mathe-

matical objects of interest are relations or set-valued func-

tions, which are the nondeterministic analog of functions.

Following the useful convention in set-valued analysis [57],

the notation will be used to mean

is a set-valued function, with set-values for each

(possibly), or equivalently, is

a relation, sometimes called the graph of a set-valued func-

tion. For points and , the expressions ,

, , and are to be read as synony-

mous; in words, is an -successor of , or is an -pre-

decessor of . The domain of a relation is the

set . In computer science

and DES theory, a relation is said to be enabled at points

. Unlike single-valued functions, every relation

has a natural converse (or inverse) ,

given simply by: iff .

Some elementary relations of interest include: the identity

function ; partial functions

formed by restricting to a domain , so

iff and ; and set-valued constant maps

, which means for each .

The (sequential) composition of relations and

will be written (abbreviated) in

sequential (word) order, as is usual in computer science, but

the reverse of the usual order for functional composition; see

[57] and [58]. Composition is explicitly defined by

iff and . Given relations

and , their relational union (sum or choice)

is just the union of and considered as

subsets of . For , the -fold composition

for is defined inductively by and

. The Kleene star operation (reflexive-transitive closure)

produces the relation by taking the infinite union

of all the for . A regular expression of relations is

one formed using the operations of sequential composition,

finite union and Kleene star.

A (nondeterministic) finite automaton is a structure

, where is the finite set of states,

is the finite input alphabet, is the finite output alphabet,

is the transition relation, and is

the output relation. The input–output relation of

is given by iff and

. A finite automaton is called deterministic if the

transition map and the output map are both single-valued

functions (but possibly only partial functions).

We also use some elementary notions from general

topology; [59] is a useful text, and [58] and [60] develop

the general topology of relations/set-valued maps. Recall

that a topology on a set is abstractly defined as a family

of subsets of that contains and and is

closed under finite intersections and arbitrary unions. The

DAVOREN AND NERODE: LOGICS FOR HYBRID SYSTEMS 989

Table 1
GLOSSARY OF NOTATION

sets in are called open, and their complements are

called closed. The topological interior of a set

is the largest open set contained in , while the

dual closure is the smallest closed set containing .

Sets will be equipped with the standard Euclidean

metric (subspace) topology unless otherwise indicated.

B. Basic Hybrid Automata and Their Trajectories

We take the standard ingredients of the popular hybrid

automaton model [18]–[20], [31], but reformulate them

slightly, keeping in clear view their subsequent representa-

tion in a transition system model.

A continuous dynamical system on a

set given by a Lipschitz continuous vector field

has, for each initial state , a unique so-

lution (or integral curve) where contains

0, for all , and .

Under additional assumptions—for example, is compact

and is continuously differentiable—the time domain of the

solutions may be extended to all of , and the system has a

global flow with [61].

For our purposes, it suffices to know that a flow is con-

tinuous in both arguments separately and satisfies the flow

laws: and for all

and , i.e., it respects as an additive group.

A semiflow is just a flow defined on the

nonnegative time axis.

A more general class of systems is obtained by allowing

the continuous dynamics to be governed by a differential in-

clusion , where is a set-valued

vector field. As examined in the companion paper [31], there

is particular interest in dynamics of the form ,

where is a rectangle or box

in , so and are fixed lower and upper bounds on the

rate of change in the coordinate . The associated set-valued

flow is then given by the formula

. While the framework developed here can

be adapted to deal with differential inclusions, we focus on

the simpler and conceptually clearer basic case.

Definition 1: A (basic) hybrid automaton (HA) is a

system

where:

• is a finite set of discrete states, also called control

modes or control locations;

• is the discrete transition relation or control

graph;

• is the continuous state space, the valuation

space for a vector of real-valued variables;

• for each discrete control mode :

– is a flow on , giving the contin-

uous dynamics in mode ;

– is the set of invariant states for mode ,

or the domain of permitted evolution within mode

;

• for each discrete transition pair :

– is a reset relation, defining the

possible successors of a point

upon switching from to ;

– is the guard region

or enabling event for a switch from to .

The state space is . The subset of admissible

states is . A set of initial states

may also be given. HA are usually represented

graphically as in Fig. 2.

The system is permitted to evolve according to only

while the state is in . The sets can arise from

physical modeling considerations or decisions in system de-

sign. In general, the reset relations can be arbitrary set-valued

maps, and are operationally thought of as nondeterministic

assignments triggered by the event of reaching a guard set.

Particular reset relations of interest include the restriction

to of the identity function (i.e., the partial function

) [41] or the restriction to of a func-

tion that is the identity on some real-valued coordinates and

set-valued constant on the remainder [31].

Definition 2: A trajectory of a hybrid automaton is a

finite or infinite sequence such that for

each :

990 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 7, JULY 2000

Fig. 2. Graphical representation of a basic hybrid automaton.

• the duration , with only if

is finite and ;

• the discrete state ;

• the curve is such that for all

, and ; i.e.,

is a continuous curve along the flow that lies

entirely inside , with interval if ;

• if , then and the adjacent

end-points satisfy .

The cumulative duration of a trajectory is the sum

. A -trajectory will be called jump-

finite (jump-infinite) if is finite (infinite); time-finite (time-

infinite) if ; and finite if it is so in

both senses.

The -reachability relation is defined by

there is a finite -trajectory

such that and

and and

In the reminder of this subsection, we develop just enough

of the mathematics of this class of systems to ground our

subsequent work in stating and solving a control problem,

and formalizing system behavior and properties in formal

model and logics.

The time line along a hybrid trajectory is a lexicographi-

cally ordered subset of , and a time position is a pair

where is the step number and ; the state

of at time position is , and the cumulative

time at position is . Note that the reset

actions are assumed to occur instantaneously, between the

time positions and , which have the same

cumulative time.

For each in an -trajectory , the defini-

tion entails that and

. This means that if a flow can leave without

first reaching a set , any trajectory with that behavior

will hit a dead end or become blocked at the topological

boundary of . Also, if for some

, then trajectories reaching can also be

blocked.

A finite -trajectory may

be concatenated with another (arbitrary) -trajectory

, with the resulting trajectory written

, provided and . The

collection of all -trajectories is partially ordered by the

prefix or extension relation , defined by iff either

or there is a -trajectory such that .

An -trajectory is maximal with respect to iff either it is

jump-infinite, or it is jump-finite and time-infinite, with the

flow from remaining invariantly in , or

else it is finite with the last state a blocked

state.

A jump-infinite liveness property of a HA is the condition

that every maximal -trajectory starting from a given set

is jump-infinite. A distinct liveness property is the

non-Zeno condition: there are no -trajectories that are

jump-infinite but time-finite. Such trajectories are mathe-

matically possible but not physically realizable; the Zeno

phenomena is a manifestation of chattering in classical con-

trol theory. A simple sufficient (but not necessary) condition

for a trajectory to be non-Zeno is the

existence of a such that for all .

For a state , the set is the collection

of all states that are reached by some -trajectory

starting from , and the domain

is just the admissible states. For any set ,

the -reachable region from is the direct image

. When is

given, the set is often referred to as , the

reachable region of . A set is -invariant if

implies ; equivalently, every -trajectory

that starts in always remains within . In particular,

postimage sets (and) are immediately

-invariant.

C. Closed-Loop Hybrid Control and Hybrid Automata

A quintessentially hybrid control configuration is a finite

control automaton operating in a closed feedback loop with

a continuous plant, depicted in Fig. 3. This is the focus of a

DES approach to the control of hybrid systems, developed in

detail in this issue in [45]. Our purpose here is to show how

such hybrid closed-loop systems give rise to basic hybrid

automata and to lay the groundwork for the formulation of

a class of synthesis problems.

Under the DES approach, the finite control automaton is

usually taken to be deterministic, and both the AD-interface

map (“generator”) and the DA-interface map

(“actuator”) are total, single-valued functions.

On the DA side, a control action symbol is mapped

to a single constant input vector , which

is fed into the plant equation for use until

the next control switch. The function thus determines a

finite family of flows indexed by .

On the AD side, the function determines a finite partition

DAVOREN AND NERODE: LOGICS FOR HYBRID SYSTEMS 991

Fig. 3. Closed-loop hybrid control system.

of the plant state space , with equivalence classes

indexed by plant events

. The discrete plant event signal instantaneously changes

from to , and the new sent as input to the control au-

tomaton, when the plant state hits (or crosses) the common

boundary of the disjoint plant event re-

gions and . (Recall the topological boundary operator

satisfies .)

In [45], a chief object of study is the finite DES plant au-

tomaton, formed by taking the plant together with the AD

and DA interface maps, with a view to adapting and applying

the Ramadge–Wonham DES theory to the purely discrete

closed-loop system of DES controller and plant. Their for-

mulation also differs slightly in that it associates plant events

with dimensional hypersurfaces, which separate into

disjoint regions; any finite collection of hypersurfaces will

define a partition of , with the common boundary of any

two equivalence classes’ lying in one of the hypersurfaces.

The definition in [45] of the closed-loop trajectories on

of their hybrid control systems is also more involved in that

it allows a fixed time delay between the time a new plant

event symbol is sent as input to the controller and the time

the controller outputs a new control action to the plant. We

ignore that complication for now but return to it briefly in

Section III-B.

Proposition 3: Given a hybrid control loop as in Fig. 3,

with single-valued AD and DA interface maps, there is a

hybrid automaton such that the trajectories of are in

one–one correspondence with the closed-loop trajectories of

.

In general, there will be many such hybrid automata .

For the simplest such system, suppose all we know about the

finite control automaton is its input–output relation

(which in general is set-valued even when the automaton

is deterministic). A pair can be read as a basic

instruction of the controller: in the plant region , apply con-

trol action . So an obvious choice for the set of con-

trol modes of the hybrid automaton is

; for each , take , and take

as the mode-invariant. Edges

in the hybrid automaton control graph

encode the (zero-delay) switching behavior of closed-loop

trajectories by taking and

taking the reset relation as .

The two interface maps and determine discretizations

of the plant state space and the plant input space

, respectively. A richer class of discretizations is

obtained by allowing set-valued interface maps, as indicated

in Fig. 3. A set-valued DA map associates with

each control action symbol a set of input vectors

; the plant is then governed by the differential in-

clusion , where ,

as in the generalized hybrid automata considered in [31].

Developing ideas in [46], our interest here is more in the

other side. A set-valued AD map determines

a family of possibly overlapping plant event regions

indexed by . When

is total [dom], such a family defines a finite cover

, and conversely, any finite cover of de-

termines a total AD map . In defining what

we mean by the closed-loop trajectories of a system with

a set-valued AD map, the simplest way to do so is directly

in terms of an associated hybrid automaton, so that the ex-

tension of Proposition 3 to the set-valued case will become

true by definition. Assume the cover is nondegenerate, so

for . Then as before, let be the hybrid

automaton in which , but now simply take

and for . If it is pos-

sible to evolve under action from a plant state in

into a state in , so causing a change in the set

of symbols sent by to the controller, and if ,

then put an edge , and take

and . Coming

full circle, the hybrid automaton representation can be used

to produce a realization of a finite control automaton with the

given I/O relation by taking itself as the internal

states, defining by iff

and , and taking as

projection onto .

The focus in [46], followed up in [62], is on the finite

topology generated from a finite cover by taking

all (finite) unions and intersections. In particular, when each

of the cover sets is open in the standard topology on

, the resulting finite topology is a subtopology of the

standard topology on . We briefly return to a discussion of

finite topologies in Section IV-H.

For synthesis, our interest is in general recipes for building

hybrid automata, from the ground up, so that the resulting

system is guaranteed to satisfy a list of performance specifi-

cations. We consider the following class of problems.

Problem 4: Given , and a plant model

, together with a finite control action alphabet

and a DA map , the task is to complete the

control loop by constructing a finite plant event alphabet

, an AD map , and a controller I/O relation

, so that the associated hybrid automaton

satisfies a prioritized list of performance specifications of

the following form.

992 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 7, JULY 2000

1) Safety: Given a proscribed set , no -tra-

jectory shall ever enter the set ; the construction

must produce a set that is invariant

under -trajectories, which will be taken as a set of

initial states.

2) Event sequence behavior: Given a finite collection of

sets , , with , and a

set-valued map prescribing an order

of traversal through the regions , every maximal

-trajectory starting in shall be such that when-

ever it ever enters an , it remains there continually

and until it crosses into for some .

3) Liveness: Every maximal -trajectory starting from

shall be jump-infinite and time-infinite (hence

nonZeno).

To ensure the problem is well posed, assume that each ,

as well as and the whole space , are connected sub-

sets of ; for each , is also

connected; and there is a connected set such that

covers . This initial cover will then be

refined to produce a cover that gives an AD map.

D. Example Control Problem and Solution

We illustrate a general synthesis construction by way of a

simple example. The same double integrator plant also ap-

pears in [45], with different control objectives. The plant dy-

namics over and are given by

i.e.,

The input-parametrized flow is defined

by degree 2 polynomials

For the control action alphabet, we take ,

and take a single-valued DA map given by

, and , for some fixed

control value . The resulting three flows are illustrated

in Fig. 4.

Our concrete performance specifications are that the

region is the unit disk and the prescribed event sequence be-

havior is to proceed with a clockwise motion. Visually, we

are steering a point around the disk using sequences

chosen from three primitive control actions.

To solve this problem, we start by fixing a margin of

metric tolerance, with , and let be the open

-ball around the unit disk (using the Euclidean metric on

), so . We

strengthen the safety requirement by this tolerance margin,

and will look for the invariant set within the comple-

ment of . To encode the clockwise motion requirement,

for each , let be the set of points

Fig. 4. Three flows of double integrator plant.

lying in the open th quadrant of and outside the closed

unit disk, together with a -overlap into the th quad-

rant, where if and if .

For example

The prescribed order of traversal is then given by

(single-valued), and the connected sets in

form an initial cover of with -overlaps. The syn-

thesis procedure then consists of three stages.

Stage 1—Refining the Initial Cover: The strategy is to

identify all the subregions of from which a safety viola-

tion is possible under one of the controls . For each

and , let - be the set of points in that

are within distance of some point in from which -con-

trolled evolution can possibly lead into . And let

be the set of points in from which -controlled evolution

always remains outside . By construction, -

and overlap with metric width . The subregions

of then consist of the nonempty connected com-

ponents of all possible combinations of intersections

-

for subsets .

Fig. 5 illustrates such a cover. For example, is

- , which (by hand

calculation) is explicitly defined by conjunctions of degree

2 polynomial inequalities

Similarly, is - -

, and are the two connected compo-

nents of , and is

- - . along with

is too small to draw, so its location in Fig. 5 is indicated

by ; likewise for and . For each , let

be the all- -unsafe region - . In

the example, is that part of in the

open annulus of inner and outer radii 1 and . Set

, to give a

cover of 25 sets.

Stage 2—Determining the Control Modes and Controller

I/O Relation: . From the cover , the

DAVOREN AND NERODE: LOGICS FOR HYBRID SYSTEMS 993

Fig. 5. Finite cover of X = .

first subtask is to determine a control law ad-

equate for the safety requirement. Our solution strengthens

the safety condition a little more by using the set

, which is the open disk of radius ;

we will ensure that the complement of will be in-

variant. Take to be the full product minus any

modes for which - . For ex-

ample, , , and are each

discarded. For the danger regions , this will

discard all modes , so these need to be separately

considered. In the example, we put back in to the modes

, , , and , as-

signing default control actions in these danger zones. For the

core failure region , we extend the control alphabet by

adjoining a special symbol , with the associated trivial

flow for all (i.e.), and put

.

The second subtask is to further refine to a subset

which is adequate for the event sequence require-

ment. Control mode pairs must be discarded

if -evolution on leads directly to where

(for example, discard), or if

-evolution in never leaves and

(for example, discard and). For the

positive content of this until property, must be such

that for each , there is at least one

sequence in , with for

, that defines a switching sequence (with

no cycles in the sub-regions) that leads from to

for some . The absence of such a sequence

is the reason for discarding and .

Before setting , we must also check for coverage

of the space : for each region , we need at least one

control action such that . This ensures

that as an I/O relation, is total, and that in the final hybrid

automaton , for each , there is a such that

.

Stage 3—Determining the Control Graph: .

We put if ,

and if and where ,

then -evolution can lead from into (i.e.,

edges into regions within only require overlap). For

the jump-infinite liveness requirement, the graph must be

further checked to ensure that for each , ,

every point in can -evolve into some overlap switching

region , for some .

Our hybrid automaton solution is illustrated in Fig. 6,

with the labels for guards and resets omitted for readability.

The required -invariant set is , and

we further claim that all -trajectories starting in re-

main in until they cross into , and that all max-

imal -trajectories starting in are both jump-infinite

and non-Zeno. Note that regions, with their default

control actions, could cause pathologies, if a trajectory were

ever to reach them. For example, an evolution from a point

in would head straight for . From points in

, we could produce a Zeno trajectory by switching

between modes and after successive

time durations , for some sufficiently large

, so the trajectory would always remain in .

We return to this example at various points in the rest of

this paper. In particular, we will show how to succinctly char-

acterize in modal logics the operations on sets used to con-

struct the sets - and from and ,

and to formalize the decisions required in the course of the

construction, so those decisions could be resolved using a

suitable model checking tool. A more detailed account of this

synthesis procedure is given in a separate paper [32], and an

extension that directly addresses robustness is given in [63].

III. COMPUTATIONAL AND FORMAL LOGIC MODELS

A. Labeled Transition Systems

We now turn to a more detailed examination of abstract

transition system models, which provide both a formal

computational model of system behavior and a formal logic

model for the semantics of modal and temporal logics.

Definition 5: A labeled transition system (LTS model or

generalized Kripke model) of signature is a structure

where

• is the state space, of arbitrary cardinality;

• for each relation label (transition or action label)

, is a relation on states;

• for each atomic proposition (state predicate, event

label) , is a fixed subset of states.

The signature of an LTS model is just the pair

of alphabets, possibly infinite, indexing the relations and the

state sets of . Anticipating the logics in Section IV, where

and will occur in the formal syntax of the

logic languages, the relation and the state set are

the semantic denotations in of the symbols and , re-

spectively.

994 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 7, JULY 2000

Fig. 6. Hybrid automaton solution for double integrator problem.

An LTS model is transparently a generalization of a finite

automaton, obtained by merely dropping any assumptions of

finiteness. The system transition relation for

is the consolidation of the component transition relations:

iff , and for the output map ,

define iff ; the output or observation at a

state is thus the set of all atomic propositions satisfied by .

The discrete origins of transition system models are em-

phasized in the notation of [20], [21], [31], and [38], which

use for the state space and write the global transition rela-

tion as a three-place relation . We modify the

notation because we want to render transparent the generality

of LTS models as abstract dynamical systems and the way in

which trajectories and executions sequences are formed from

the composition of the component transition relations.

Automata-theoretic approaches to formal methods are in-

timately related to logic-based work using linear temporal

logics [64], [65] and overlap significantly with DES control

theory [40], [66]. The common focus is on the behavior of an

abstract machine as characterized by an automaton formal

language of finite or infinite words over an alphabet, with

words encoding the qualitative ordering of events and/or ac-

tions.

Definition 6: An execution sequence (computation se-

quence, path, run) of an LTS model is a finite or infinite

sequence over such that for

all , either or else and ,

where is the empty word. (This is one way to treat

finite and infinite sequences together.) The observational

trace of is the sequence or word over the

alphabet , where the th observation

. For each state ,

the set of traces of all execution sequences

starting from is called the language over generated by

. When a set of initial states is given, via , the

language generated by , written , is the union of all

languages for .

In automata-theoretic approaches to formal verification,

properties of a machine are specified by another ma-

chine of the same class (and signature). The veri-

fication question in a logic-based approach

is replaced by a question of behavioral inclusion between

and ; the basic relation is of language inclusion:

. For some automata-theoretic work,

and for linear temporal logics such as LTL, the definition

of is usually restricted to infinite words (-words)

[31], and the trace alphabet may be just the ob-

servation/event alphabet , or the transition/action

alphabet .

B. LTS Models of Hybrid Systems

In representing a hybrid automaton as an LTS model,

one could, as a first pass, simply take the hybrid reacha-

bility relation as the sole transition relation

over the state space . With this relation, properties of the

form “Some (all) -trajectories starting from ” can be

reexpressed in terms of relational successors, as “Some (all)

-successors of ,” since a -successor is any state lying

on any -trajectory starting from . The temporal logic con-

structs “At some time ” and “At all times ” can be given

a clean semantics over -trajectories just using the rela-

tion.

For both computational and conceptual reasons, this will

not suffice. Computationally, the relation is intractable

since it will very rarely have an explicit first-order descrip-

tion; conceptually, it is a compound that needs analyzing.

Going back to the definition of a hybrid trajectory, we

need the notion of control action or flow applied within a

prescribed region.

Definition 7: For any semiflow and set

, define a relation of (positive)

evolution along within by

That is, is a -successor of iff is a flow suc-

cessor of along and in addition, all intermediate points

along the flow between and lie inside . A point thus

has either a continuum of successors under , namely,

every point on the maximal integral curve of lying inside

and starting from , or it has just itself, or it has none if

. The (positive, or future) orbit relation [58]

is the unconstrained evolution relation: .

Direct from the flow laws, the relation is reflexive, tran-

sitive and weakly connected (meaning that if and

then either or), and

shares the same properties except reflexivity is restricted to

the domain . The evolution relation can be further decom-

posed via the equation exactly

when the set is -convex, in the sense that if

and , then [51]. For example, each

DAVOREN AND NERODE: LOGICS FOR HYBRID SYSTEMS 995

of the cover sets in the synthesis problem in Sec-

tion II-D is convex with respect to each of the flows ,

, and .

Definition 8: An LTS model for a hybrid automaton

includes the following components:

• state space ;

• for each , the evolution relation

• for each , the reset relation

• a finite collection of distinguished subsets of , in-

cluding for each , and

for each ,

plus any other sets of states of interest for the particular

system.

The transition alphabet for includes symbols

for and for . It follows from the

definition that and

.

The definition here is equivalent to that in [19], [21], and

[31]. Close relatives of these LTS models include the integra-

tion graphs of [67]; the generalized Kripke structures of [26];

and the phase transition systems of [12]–[14]. The latter in-

clude a distinguished real-valued variable for global time,

with the coordinate dynamics within any evolution,

and the identity constraint in any reset relation.

We can now simply characterize the hybrid reachability

relation.

Proposition 9: Given a hybrid automaton over state

space , let be the finite unions

and of the component evolution

and reset relations of . Then the -reachability relation

is such that

iff

Hence, as a regular expression, .

The proof just appeals to the definition of the sequen-

tial composition (and union) of relations. For each -tra-

jectory , there is a corresponding

execution sequence

in alternating form. And conversely,

for each execution sequence with alternating evolutions

and resets, of the form , there is

a unique -trajectory which realizes this sequence.

The constrained evolution relations are called “time-ab-

stract” (or better, “time-indeterminate”), since the time

duration along the integral curve is “quantified out” [20].

This indeterminacy is exactly what is needed to capture the

event driven nature of hybrid trajectories. Variations can

be obtained by modifying the time quantification: upper

time-bounded or lower time-bounded variants of

replace by or , respec-

tively, for some constant , and an exact-time variant

drops and substitutes in the body. The

trajectories of systems with time delays between switching

flows, as in [45], may be characterized using more complex

regular expressions involving these time-bounded relations.

In our synthesis procedure in Section II-D, the initial data

of the problem all live in the continuous world , and

discrete states have to be constructed. This naturally leads

to a “purely continuous” LTS model, called , with

the plant state space and atomic propositions naming the

initial cover sets and . One can then work with

evolution relations and, once the final

cover is constructed, reset relations .

The example also illustrates how the very generic structure

of an LTS model can be used to represent static or structural

relations on a space, as well as dynamic transition relations.

Recall our use of a metric tolerance parameter . Define

a relation by: iff .

So the set image is just the -ball around , and the

relation is reflexive and symmetric, but not transitive. A

point lies in the set - iff and there

is an that is a result of applying the composite

relation to . We resume this discussion in

Section IV-D.

The notion of continuity for automata developed by Arbib

in [48, § 6.4], is based on an abstract tolerance spaces ,

for any reflexive and transitive relation, rather than topolog-

ical spaces. Our source for the notion of a tolerance relation,

as was Arbib’s, was work of the topologist Zeeman from the

early 1960s.

C. Richer Formal Models of Hybrid Systems

Process algebra approaches to formal methods focus on

the algebraic character of operations used in the formation

of complex systems out of simpler ones, parallel composition

being one such constructor. The work on HCSP in [28] ex-

tends Hoare’s formalism of communicating sequential pro-

cesses (CSPs) to include continuous evolution as a primi-

tive process, in addition to discrete actions and asynchronous

communication, and the process constructors include quanti-

tative timing constructs. To make the connection with transi-

tion systems, the HCSP process expressions could be given

a semantics as relations in an LTS model over a valuation

space of continuous and discrete variables plus communi-

cation channels. The work in [29] uses Dijkstra’s predicate

transformers [68] to reason about the effect of actions or pro-

cesses; these are essentially the same as the basic operators

of modal logic, as discussed in Section IV below.

In work on discrete systems, there is a huge and well-es-

tablished literature on the use of petri nets (in their many

variations) for modeling systems consisting of a network of

interacting subsystems in which the state is distributed; more

recently, some of this work has been extended to timed and

hybrid systems. The recent dissertation by Cook [69] is a sub-

stantial resource. In that work, a hybrid net model is given a

formal representation as an LTS model, and property speci-

fication is given in the modal -calculus.

996 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 7, JULY 2000

Other formal models of open or reactive hybrid systems,

whose behavior is influenced by that of an external environ-

ment, are hybrid I/O automata (HIOA), introduced in [27]

and used in this issue in [43], and hybrid reactive modules

[70]. The state space for both these models is essentially of

the form , where , and are the valu-

ation spaces of internal or private variables, input or control

interface variables, and output or external variables, respec-

tively, and actions of such systems can represented as transi-

tion relations on the product state space.

IV. PROPERTY SPECIFICATION LANGUAGES AND LOGICS

A. Overview of Modal and Temporal Logics

The well-known temporal logics such as LTL or CTL,

first formulated for program and hardware verification in the

late 1970s and early 1980s in landmark papers [71], [72], be-

long to a larger and older family of modal logics. Modal logic

was originally the province of philosophers interested in an-

alyzing the concepts of necessity and possibility. Symbolic

modal logics first appeared in 1912 in the work of Lewis,

and modern approaches derive from the work of Kripke [73]

in the early 1960s, who gave a formal semantics over models

with a single “accessibility” relation between states referred

to as “possible worlds;” these structures are known as Kripke

models, and LTS models are their generalization to multiple

relations. The survey articles [33], [37], [56], and [65], and

the textbooks [30], [34], [35], and [74], are good resources

for modal and temporal logics.

Fig. 7 is a schematic diagram of the family of logics with

semantics over transition system models. The solid arrows

indicate relations of inclusion or subsumption between

logics, in the sense that everything expressible in the first

can also be expressed in the second. Among logics with

semantics over LTS models, indicated by boxes with solid

outlines, the propositional -calculus L [33], [36], [37]

is the most expressive. Among the “nontemporal” modal

logics, there is propositional dynamic logic (PDL) [75],

[76], and modal logics for reasoning about the knowledge

of an agent or process in a distributed system [74]. Boxes

with broken outlines indicate logics that require some

extension or adaption of LTS models. These are topological

modal logics [23], real-time extensions of temporal logics

[20], [21], [53], [77], interval temporal logics [15], [28],

[78], [79], and alternating temporal logic (ATL) over

game models [80]; the latter logic has an extension to an

alternating -calculus, indicated by the broken line arrow.

Since virtually all the work on logic-based specification of

hybrid systems, and discrete systems before them, has been

within the narrower subfamily of temporal logics, our break

with tradition needs some further explanation.

In Pnueli’s landmark paper [71], he identified the then

new temporal logics as falling under an endogenous or “in-

ternal” approach to property specification. In branching tem-

poral logics such as CTL or CTL (reviewed in this issue in

[31], next-step formulas have the semantics: “Some

Fig. 7. Family of propositional modal and temporal logics.

one-step successor satisfies ,” where the one-step relation

is and the component relations are abstracted

away. Behavior along execution sequences is captured by

taking the Kleene star of the one-step relation, and the al-

ways formula has the semantics: “Along all execu-

tion sequences, all states satisfy .” The key point is that

in temporal logics, one can reason directly about execution

sequences of a single system, but there is no facility within

their formal languages to talk about how the behavior of any

one system is composed from its internal parts, or to compare

the behavior of two or more systems.

The endogenous approach is in contrast with the ex-

ogenous or “external” approach, exemplified by the poly-

modal logic PDL [75], [76], in which the component tran-

sition relations of LTS models are “first-class objects,” ex-

plicitly named in the syntax of the logic. In PDL, one

reasons directly about the primitive relations of a model,

and compound relations formed from them using the reg-

ular expression constructors of composition, finite union

and Kleene star, and others such as the constructor.

While the exogenous approach has been highly successful

for purely discrete systems, where the component transi-

tion relations have a homogeneous character, it is worthy

of reexamination in the case of hybrid systems, where the

internal components are necessarily heterogenous in na-

ture.

We start with an exposition of the base logic, propositional

poly-modal logic (PML), which can be taken as the common

core of all modal and temporal logics over LTS models, and

illustrate how to use it to express finitary properties of re-

lations, and in particular, various steps in our synthesis pro-

cedure from Section II-D. We then turn to L , which adds

to PML the power to reason about infinitary constructions

of relations such as the Kleene star (so subsuming PDL), as

well as all the operators of temporal logics, and illustrate how

it can be used to cleanly and simply express a wide variety of

properties of hybrid automata. We also survey the literature

on temporal and modal logics for hybrid and timed systems,

with a focus on quantitative real-time properties beyond what

is expressible in L , and on topological extensions of PML

and L .

DAVOREN AND NERODE: LOGICS FOR HYBRID SYSTEMS 997

B. Propositional Poly-Modal Logic

Definition 10: The set of formulas of PML in

the signature is inductively defined by the grammar

for atomic propositions and relation labels .

The other propositional connectives can be defined in a

standard way: conjunction ,

implication , and equivalence

. In addition, we

introduce (“true”) as an abbreviation for any fixed propo-

sitional tautology, such as for some , and

“false” . The modal operators are pronounced

“diamond- ,” and the dual “box- ” operators are defined by

. In the syntax of the branching temporal

logic CTL [31], the single next-step operator replaces

all the separate modal operators for , and a single

replaces all the operators .

Semantically, a formula will denote a set of

states. The Boolean operations of negation and disjunction

clearly correspond to the set-theoretic operations of comple-

ment and union. For modal formulas and , we need

operators built from the relations .

Analogous to the inverse-image operator of a

single-valued function, any relation deter-

mines a dual pair of preimage operators Pre :

mapping sets to sets, defined by

In words, iff there is some -successor of

that lies in , while iff all -successors of

lie in . Note that the latter still holds when ,

so there are no -successors of , hence

for any set . The duality between the oper-

ators is with respect to set complement, and is given by:

.

The preimage operators have appeared under various

names and notations, and in diverse settings, throughout

mathematics and computer science. From Dijkstra’s

famous text [68], they are known as predicate trans-

formers. In that work, the set is referred to

as , the weakest liberal precondition of under

a relation , while the weakest precondition

is taken as , where

. A related transformer is the

postimage operator Post , also called the

direct-image . For Dijkstra, this is , the strongest

postcondition of under . In general topology, the purely

topological notions of continuity for relations/set-valued

maps are defined using the operators and

[57], [60]; we return to point this in Section IV-H.

Definition 11: For formulas , the denotation

set in an LTS model of signature is

defined by induction on the structure of formulas. For the

base case of , the denotation sets are given as

components of , and for compound formulas

for

For formulas , we say: is satisfied at state

in , written , if , and is true in ,

written , if .

Let be the

family of all sets of states in denoted by PML formulas.

Then forms a Boolean algebra of sets, which is gen-

erated from the atomic state sets for . The “top”

element of the Boolean algebra is , the “bottom”

element is , and it is partially ordered by inclu-

sion , which corresponds to the implication connective in

the sense that iff .

The algebraic theory of relations and their operators on

sets was developed in the 1940s and 1950s in the work of

Tarski and Jónsson [81], [82]. In terms of that work, the

algebra is a Boolean algebra with operators, which

is closed under [and hence also] for

each . In more modern terms, is a modal al-

gebra [33], [51], the smallest of all modal algebras of sets

for , and we refer to it as the minimal modal

algebra for .

C. Finitary Relational Properties in PML

The axioms for a Hilbert-style proof system for PML con-

sist of the axioms of (classical) propositional logic PL (see

[34]) plus the following:

The corresponding axioms and are ob-

tained by Boolean duality. The inference rules for PML

consist of the classical modus ponens, MP: from

and , infer , and the rule of modal necessitation,

Nec: from , infer . (The soundness of the latter

rule says if then .) These axioms

and rules characterize normal modal operators [35]. A

dominant theme within general modal logic is the study

of the correspondence between elementary properties of

binary relations and formulas of modal logic [35], [56]. For

example, the properties of reflexivity, transitivity, and weak

connectedness, as possessed by the orbit relation of a

flow, are characterized by the formula schemes , , and

(the names being historical within modal logic)

998 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 7, JULY 2000

Together with the normality axioms, these three formula

schemes axiomatize the modal logic S4.3.

The preimage operators are well behaved with respect to

the regular expression constructors of sequential composi-

tion and finite unions, justifying the definitional extension of

PML by and . We

can also conservatively extend PML with defined modalities

for compound relation symbols formed from formulas

, with the semantics . In the syntax of

PML, define .

The expressiveness of PML can be properly increased

by adjoining modalities and for the converse rela-

tions, interpreted by the postimage operators; the temporal

logic analogs are referred to as past operators. The additional

axiom schemes are

In work on deductive verification using temporal logic,

such as [12]–[14], and [30], it is standard practice to supple-

ment the syntax of temporal logic with additional notation

to express safety verification or correctness conditions. The

so-called Hoare triple notation is transcribed into

the language of PML by the formula , which reads:

“If holds, then all -successors satisfy ;” in particular,

asserts that the set of -states is (future-)invariant

under the relation .

Working in an LTS model of a hybrid au-

tomaton , we have and

. The formula asserts that

meets the sensible design condition that resets under

always lead to . Extending the signature of by ad-

joining relations for the unconstrained flow or orbit re-

lations on (replacing with

in the definition of in Definition 8), the formula

asserts that the flow cannot stay in for-

ever.

Within PML, we are limited to the expression of proper-

ties of -trajectories with a finite number of jumps. Let

and denote the relational unions and , respectively, of

the component evolution and reset relations. Then for a fixed

, the modal formula denotes the set of states

from which there is some -trajectory with dis-

crete jumps that reaches a -state, while denotes

the set of states from which every -trajectory

with discrete jumps reaches the set of -states, and remains

there throughout its final evolution interval. In order to reason

about arbitrary -trajectories, and to define modalities

and , which correspond to the preimage operators of the

-reachability relation , we have to move to the

-calculus.

D. Example Control Problem Revisited

Before making the infinitary move, we return to the ex-

ample synthesis problem in Section II-D. As discussed at the

end of Section III-B, we can work in an LTS model with

. Define the semantics of relation symbols by

and . Then the sets

- and have the modal characterizations

-

This is because denotes the set of points within of

some -state, so the -“closure,” while the dual de-

notes the -“interior,” meaning the set of points all of whose

-neighbors are still -states. The “fattening” with the outer

operator in - creates the overlaps. The sub-

regions are then modally defined by conjunctions of

- ’s and ’s. The nominated invariant set

is characterized by

The fact that each of the cover sets are convex

with respect to each of the flows is expressed by the for-

mula

where , and likewise for the initial quadrant

regions . This in turn implies

The safety control law is constructed so as

to ensure that for each

is true in . In refining to deal with the event sequence

requirement, the reason for discarding is because

is true in , which means is fu-

ture-invariant under the flow . The mode

is discarded because the set is

nonempty. For the positive content of the event sequence re-

quirement, we have to produce a subset such that

for each , there is at least one switching

sequence starting from in control

and leading through and into , with no cycles in

the subregions. For example, for each ,

we keep because

is true in ; this says -evolution in inevitably leads

to . Then we can keep because

Each quadrant can be systematically searched, starting

with the subregions that overlap with .

E. Propositional Modal -Calculus

The propositional modal -calculus L [36] is a logic ex-

tending PML by adjoining least () and greatest () fixed-

point quantifiers. Semantically, this adds the mathematically

DAVOREN AND NERODE: LOGICS FOR HYBRID SYSTEMS 999

common and highly useful construct “the least set such

that ” or “the greatest set such that

,” where is an inclusion-monotone

function mapping sets to sets. This fixed-point construct is

the essence of the notion of inductive definability, including

the iteration construct of the Kleene-star of regular expres-

sions. The -calculus occupies a paramount place in formal

methods: the expressive power of the fixed-point quantifiers

are such that it subsumes virtually all modal and temporal

logics over LTS models, and formal verification by model

checking for all such logics is essentially based on a transla-

tion into the -calculus [37]. In DES control theory, the mod-

ular feedback logic in [39] consists of propositional logic,

Dijkstra’s predicate transformers, and least and greatest fixed

points.

Definition 12: Let be a set of propositional

variables (second-order or set-valued variables). The set

of formulas of L in the signature is

inductively defined by the grammar

for atomic propositions , propositional variables

, and relation labels , with a further syntactic

restriction that is in only if every free oc-

currence of in is within the scope of an even number of

negations. Analogous with first-order quantification, a vari-

able in the scope of or is said to be bound, and

free otherwise. A formula will be called a

sentence if it contains no free variables, and the set of all

sentences will be denoted .

Propositional variables are our means to talk

about any or all subsets of states , in addition

to particular constant sets . The fixed-point

constructors give a special kind of quantification over

subsets of states. Formulas are informally read “The

smallest set such that ,” while the dual

is read “The largest set

such that .” The expression means

the formula resulting from by substituting for all free

occurrences of , with a side condition to avoid unintended

clashes of variable names.

Definition 13: A variable assignment in an LTS

model , is any function

: . For formulas and variable

assignments , the denotation set in an LTS

model of signature is defined by induction on

the structure of formulas. For the propositional connectives

and modal operators in L , the semantic clauses are as for

PML, with the addition of a subscript

where is the assignment that is the same as except

for assigning the set to the variable . For formulas

and assignments in , we say:

is satisfied at state in , written , if

, and is true in , written , if

for all assignments in .

For sentences , their denotation is indepen-

dent of any variable assignment, and so written . Model

checking for L applies only to sentences since the denota-

tion has to be computed. Note that PML formulas are

all L sentences; i.e., .

The formal semantics say the set is the least

prefixed point (the intersection of all such prefixed points)

of the operator on sets given by

. The syntactic restriction on

-formulas ensures that this operator is -monotone. The

Tarski–Knaster theorem for monotone operators on complete

lattices [such as] guarantees that the least pre-fixed

point exists, and is equal to the least fixed point.

In order to try to compute the denotation of a fixed-point

formula, as is required for model checking, one appeals to the

Hitchcock–Park fixed-point theorem. This result says the set

may be characterized as a union of an -increasing

chain of approximations, starting with , and formed by it-

erating the operator until a fixed-point set is reached.

The finite stages of the approximation sequence are explic-

itly described by the denotations of formulas , where

the “unwinding” sequence is recursively defined by

and for

The approximation up to stage (the ordinal number of)

is the union over , but in general, the approxima-

tion sequence may proceed past and through transfinite

ordinals, of cardinality less than or equal to that of , be-

fore convergence occurs. There is a well-developed theory

of approximations of fixed points; for our purposes, it suf-

fices to know that when the semantic operator dis-

tributes over unions of countable -increasing chains of sets

(a property also called “ -continuous” [33], [52]), the or-

dinal of convergence for is at worst . In particular,

for the Kleene star constructor on relations, which is defin-

able in the -calculus by , one has

The notion of a bisimulation relation on or between LTS

models is of fundamental importance, and a central concern

of [31] in this special issue. A bisimulation equivalence is

a type of congruence that respects the component relations

and distinguished subsets of an LTS model. The fundamental

property of truth preservation is the following.

Proposition 14 ([33]): Given an LTS model of signa-

ture , if is a bisimulation equivalence on , then

for all sentences and all states

A corollary is that if has a bisimulation equivalence

of finite index , then for each sentence , its approx-

1000 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 7, JULY 2000

imation sequence is guaranteed to converge at some stage

, so

This is because Proposition 14 entails that the denotation set

of each L sentence must be a union of equivalence classes.

The quotient LTS model is then a fully discrete finite

automaton simulacrum of the original , which satisfies and

makes true all the same -calculus sentences.

F. Formalizing Properties of Hybrid Automata in

The modal -calculus provides a very rich formalism in

which to formally express properties of hybrid automata.

With the use of defined modalities from PDL, the formulas

can be rendered “human readable,” circumventing a standard

critique of the inscrutability of -calculus notation.

Let be an LTS model of a hybrid automaton . Since

the -reachability relation satisfies , the diamond

and box modalities for can be defined by

and thus

1) Invariance: denotes the largest -invariant set

contained in the set of -states, provided (where

) and hence ; in general,

denotes the largest -invariant set contained in the set

of -states, the latter also including all of .

2) Safety: is true in iff every -tra-

jectory that starts in a -state always remains in the set of

-states.

3) Reachability: denotes the region -reachable

from the set of -states, where .

Applying the axioms -1 and -2, the formulas

and are equivalent.

4) Jump-Infinite Liveness: Every maximal -trajectory

starting in a -state makes infinitely many discrete jumps,

iff the sentence

is true in . The first conjunct says that from all states

-reachable from -states, it is possible to evolve into one

of the guard sets, and the second says that for each , the flow

will eventually leave , and all resets from that part of

that is -reachable from must lead to .

5) Inevitability: says that from every state

-reachable from a -state, there is a -trajectory leading

to a -state.

6) Eventuality: says that for

every -trajectory from a -state, if it ever reaches a

-state, then it has a further extension that eventually

reaches a -state.

7) Non-Zeno Liveness: A sufficient, but not necessary,

condition for the non-Zenoness of all -trajectories starting

in a -state is the existence of a such that

where is the (strict) -upper-bounded evolution rela-

tion.

8) Instances of Stability: For fixed and ,

define

and likewise for . Then the sentence

says that is a -invariant set, and that every -trajectory

that starts within of always remains within of .

With propositional variables ranging over all subsets of the

state space, we have the machinery to compare relations. The

relational inclusion holds iff

iff , i.e., for all possible assignments of a

set to the free variable .

Comparison of relations allows us to formalize questions

of approximate verification in L . Suppose we wish to verify

a safety sentence in a system with complex nonlinear dy-

namics, for which model checking is not possible (discussed

in Section V-A). One then seeks out a simpler system

that is an overapproximation of , and for which model

checking is possible. For example, could be chosen so

that each of the component evolution relations satisfy

, and the reset relations are the same, so , and hence

. Then the approximate safety sentence

entails the desired safety sentence . How-

ever, if model checking returned the answer that

is not true, so , then the implication

does not allow us to conclude anything about

. The metric tolerance relations can also be used

to formalize notions of tightness of approximations.

The high-level idea of robustness is that for a given nom-

inal model , and an uncertainty class of models

that are possible variations of in some well-quantified re-

spects, one wants to ascertain whether each of the models

possess the same qualitative or quantitative properties

as [25]. As one approach to formalizing robustness, con-

sider a class consisting of hybrid automata that differ

from in at most their evolution relations; for some fixed

DAVOREN AND NERODE: LOGICS FOR HYBRID SYSTEMS 1001

, suppose the evolution relations satisfy

for each . This says that if is an integral curve of

witnessing an evolution in a variant , then

there is an integral curve of starting from , witnessing

in the nominal system , such that lies within a

-tube around (see [25] and [47], which consider -tubes

around time sequences). Translating this relational inclusion

into modal formulas, we have

and hence

where

So for the verification of a robust safety property, it would

suffice to prove , since this entails for

any such variant . One can also work with the finitary ver-

sions of the hybrid reachability relations restricted to some

bounded finite number of resets.

G. Temporal Logics for Hybrid and Timed Systems

There are numerous proposals in the literature for the ex-

tension to hybrid and timed systems of temporal logics de-

veloped for discrete systems. Our focus here is on exten-

sions of temporal logics, which specifically address issues

that arise from working with real time, including the expres-

sion of quantitative temporal requirements.

1) Branching Temporal Logics: Real-time extensions

of branching temporal logics include Timed CTL (TCTL)

[53], Integrator CTL (ICTL), and Timed -calculus (TL)

[20], [21]. These logics were developed for reasoning about

quite restricted classes of hybrid automata: timed automata,

in which all real-valued coordinates are clocks, with dy-

namics , and (so-called) linear hybrid automata,

with straight line flows for some slope

or rate vector ; for both classes, all reset relations

and distinguished subsets are restricted to those definable

by Boolean combinations of inequalities ,

for constants . However, their semantics can be

cleanly extended to arbitrary hybrid automata in the manner

developed here.

The first issue addressed is the appropriate semantics for

the until operators. Intuitively, we would like a state

to satisfy iff there is some -trajectory from

along which there is an -successor state at which

is satisfied, and is continuously satisfied at all -interme-

diate states between and . In standard CTL,

is characterized by the -calculus translation

, with iteration of the “next-step” operator . Over

LTS models of hybrid automata, where is , this

fails to capture the intended meaning of holding continu-

ously. The key to the solution in [20], [21] is a means to refer

to regions of the state space through which a trajectory may

pass. We reformulate this idea in our modal framework.

Any subset of hybrid states has a unique

decomposition . Then for each con-

trol mode , define the relativized -evolution relation

by

and for each discrete transition , define the rela-

tivized -reset relation by

For any -calculus sentence , de-

fine relations and

. So is just

and likewise is just . Then define

Hence, , as one would expect. The char-

acterization of in [20] and [21] replaces with

in the body of the -calculus formula because they want

to retain the implication ; for the defini-

tion here, we have instead , and

.

The hybrid all-until construct, which expresses notions of

inevitability, is a yet more complicated creature, and we do

not give a detailed treatment here. Intuitively, is

satisfied at a state if along every maximal -trajec-

tory starting from , there is an -successor at which

is satisfied, and is satisfied at all -intermediate states be-

tween and . For example, the event sequence requirement

in our example control problem in Section II-D is formalized

by the sentence

In [21], an operator for hybrid trajectories is shown to

be -calculus definable, using and time-bounded all-

until operators .

Quantitative time-bounded properties can be formalized

by extending the branching-time languages with specifica-

tion clocks, which are additional real-valued variables dis-

tinct from system coordinate variables. If is a hybrid au-

tomata over state space , then formulas in

the enriched language containing specification clock vari-

ables are interpreted in an expanded LTS model over

. Specification clocks have the continuous dy-

namics in all control modes , and remain constant

under reset relations. The additional constructs of the lan-

guage are atomic clock constraints, of the form

with constants , which can be treated as

extra atomic propositions, and the “freeze” or “clock-reset”

construct , which corresponds to the action of starting a

timer from zero. The formula is satisfied at all extended

1002 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 7, JULY 2000

states such that satisfies . For

example, the TCTL formula

asserts that along all trajectories, a -state is followed by a

-state within 17 time units.

2) Linear Temporal Logics: Formulas of linear temporal

logics are interpreted with respect to execution sequences or

traces of transition system models (Definition 6). An LTL

formula in true in if it is satisfied by all infinite execution

sequences starting from the designated set of initial states

of . This semantics can be related to the state-based se-

mantics by working in a derived LTS model whose state

space is a suitable set of -length execution sequences or

traces of [33].

Much of the work on timed and hybrid extensions of linear

temporal logics has concentrated on the theory of timed

-words, extending the rich relationship between (untimed)

-languages, formulas of LTL, and Büchi automata over

-words [65], [77]. Over an arbitrary LTS model , a timed

execution sequence is a pair , where

is an infinite execution sequence of , and is

an infinite sequence of positive reals , interpreted

as the delay between the successive states and under

the transition . A timed trace is defined

similarly. Logics such as metric temporal logic MTL [13]

are obtained by extending LTL with (integer endpoint)

interval-bounded versions of the until, always, and some-

times temporal operators, and formulas are interpreted over

timed execution sequences or timed traces. For example,

is read “ holds until does, and that hap-

pens in between 3 and 17 time units.” A similar extension of

LTL with time-bounded temporal operators is developed in

[83]. The survey paper [77] examines the decidability and

complexity of model checking for several variants of MTL

with respect to LTS models of timed automata.

3) Interval Temporal Logics: Hybrid temporal logic

(HTL) [78], [79] extended duration calculus (EDC) of [15]

and [28] are both first-order temporal logics that replace

states as instantaneous valuations of variables, with state

functions over an interval of time. In [78] and [79], the basic

semantic objects are phases , where

(or) is a time interval, and is a vector of

type-consistent functions of time and

that are piece-wise continuous (or smooth) if variable is

real-valued, and piecewise-constant for discrete . Both

HTL and EDC have a “chop” operator, from which the until,

always, and sometimes temporal operators are definable and

include a means to refer to the duration for which a formula

has been satisfied.

H. Expressing Topological and Continuity Properties

Work on temporal logics for hybrid systems has focussed

on the metric aspects of real time. Here, we turn our attention

to the metric and more general topological structure of real

space. We have already seen how within the framework of

(plain) modal logic PML, we can reason about some metric

structure using modalities and for concrete -tolerance

relations on metric spaces , and use these to

formalize some notions of stability and robustness. In [23]

and [50], we show how modal logic also provides a means to

represent a topology on the state space of an LTS or Kripke

model.

Formally, we extend the syntax of PML or L to include

an additional “plain” or “unlabeled” box modality , and

its dual diamond , with . A topological

LTS model is an LTS

model in which is a topological space. From Tarski

and McKinsey [84], the axioms for the box modality of the

well-studied modal logic S4 correspond exactly to the Kura-

towski axioms for the topological interior operator , and

dually the S4 diamond corresponds to the topological clo-

sure . The additional semantic clauses for the extended

language interpreted in topological LTS models are then

Call the resulting logics TopPML and TopL (the prefix T

already being used for timed extensions of temporal logics).

The S4 axioms for are as follows:

In the enriched language, we can simply express topolog-

ical properties of sets of states. A sentence denotes an open

(closed) set in iff () is true in .

The sentence denotes the topological boundary

.

We now have the resources with which to formalize

notions of continuity. In purely topological terms, a

single-valued function is continuous

if for every open set in , the inverse-image

is open in . The corresponding notions for set-valued

maps were introduced by Kuratowski and Bouligand in the

1930s and use the preimage operators instead of the inverse

image [57], [58], [60].

Definition 15: A relation is said

to be lower semicontinuous (lsc) if for every open set in

, the preimage is open in ; is

said to be upper semicontinuous (usc) if for every open set

in , the preimage is open in ,

or equivalently, for every closed set in , the set

is closed in ; and is called continuous

if it is both usc and lsc.

For a relation in a topological LTS model

, the semicontinuity properties are simply expressed by

the formulas

-

-

DAVOREN AND NERODE: LOGICS FOR HYBRID SYSTEMS 1003

The - formula asserts that for every subset , the in-

clusion holds,

and this is equivalent to the lsc property for ; likewise for

the usc property. From these simple modal characterizations,

we can give a purely formal proof within the axiomatic proof

system that each of the semicontinuity properties is inherited

under finite compositions and finite unions of relations. For

the infinitary Kleene star operation, if is lsc then is lsc,

but the corresponding result for usc relations does not hold in

general (basically because the infinite intersection of a family

of open sets need not be open).

We briefly mention two lines of enquiry opened up by con-

sideration of semi-continuity properties of relations. The first

confirms our interest in finite topologies as combinatorial

structures, which shed some light on discretizations of con-

tinuous and hybrid spaces, and notions of stability for such

discretizations. From [51], an LTS model has a bisim-

ulation equivalence of finite index exactly when there is a

finite topology on such that each of the transition rela-

tions are continuous with respect , and each

of the atomic sets is clopen (both closed and open)

in . The partition determined by an equivalence relation

gives the extreme case where all open sets are also closed, so

is actually a Boolean algebra.

Returning to the example in Section II-D, the cover

generates a finite topology

on . As it stands, this is not a subtopology of the

standard topology on (c.f. [46]), since will be

open-intersect-closed, but with an extra operator in the

modal characterization, it could be made so. As noted in

[46], violations in continuity conditions for finite topologies

can be finitarily detected. Looking at Fig. 5, we can see

that for the set in , its -pre-image

, which cuts across , is

not in . One can iteratively construct a finer topology

with respect to which each of the relations

for are both lsc and usc by adding more

preimage sets.

The second line of enquiry looks at the semicontinuity

properties with respect to the standard topology as primitive

forms of metric stability. From [57] and [58], under the hy-

potheses that is a compact metric space and the set image

is a closed for each , the semicontinuity proper-

ties have an a - characterization: a relation is

usc iff for all and all , there is a such that

for all

and

and

In words, if is close to then the set image is nearly

contained in , in the sense that is contained in the

-ball or tube around , as illustrated in Fig. 8 for set-

images that are curves from . Similarly,

is lsc iff whenever is close to then the set-image

nearly contains , in the sense that is contained in

the -ball around .

Fig. 8. The usc property in the compact metric setting.

For a hybrid automaton , consider the bounded-jump

versions of the -reachability relation

given by . So is the set of all

states lying on some -trajectory from that has at most

discrete jumps. Let and be

the projections of and onto . Then under the

hypotheses required for the metric - characterizations, the

semicontinuity properties for and express elemen-

tary notions of stability of hybrid trajectories. A preliminary

study of the usc property for hybrid reachability relations is

given in [23].

V. METHODS AND TOOLS FOR FORMAL VERIFICATION AND

SYNTHESIS

A. Symbolic Model Checking

Model checking for all standard propositional modal and

temporal logics proceeds by first giving a translation into the

-calculus. The task is to compute the set , and

so determine whether . The high-level algorithm for

computing for a -calculus sentence is just the induc-

tive definition of the formal semantics in Definitions 11 and

13, recursively breaking a sentence into its subsentences. For

fixed-point sentences , one calls a recursive subproce-

dure that computes the approximation sequence and

returns the answer if the sequence con-

verges at stage .

The question then becomes: For which classes of LTS

models is it the case that the high-level algorithm for

model checking L sentences is a) effectively implementable

and b) guaranteed to terminate in a finite number of steps on

all inputs ?

The question would not be asked if one were only inter-

ested in finite LTS models. Indeed, a good measure of the suc-

cess of formal methods for discrete systems can be attributed

to the tractability of model checking over finite LTS models.

For example, for CTL and the small fragment of L needed

to capture CTL, there are model-checking algorithms of time

and space complexity ; for the full -calculus,

the time complexity is - [37]. Binary decision

diagrams (BDDs) provide an efficient means to represent fi-

nite sets of states, and the Boolean and modal operations on

them, and have been successfully used for model checking

systems with upwards of states [37].

For general classes of LTS models, a primary means of

addressing the issue b) of finite termination is via Proposi-

tion 14. It suffices to identify classes of LTS models, all

of which have a finite bisimulation quotient. As surveyed in

[31], finite bisimulation results have been established, on the

one hand, for the restricted class of timed automata [24] and

1004 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 7, JULY 2000

some extensions, and on the other, for the mathematically

richer class of o-minimal hybrid automata [85], whose com-

ponent flows , sets and , and resets in

are all first-order definable in an o-minimal (model-

theoretic) structure expanding

the reals as an ordered Abelian group, but subject to the fur-

ther restriction that the reset maps are set-valued con-

stant (see also [51]). O-minimality is statable as a syntactic

condition on first-order definability, but its core content is a

topological finiteness property: every set first-order

definable in an o-minimal structure has only finitely many

connected components [86]. The class of o-minimal struc-

tures over is quite rich. It includes the structure

of as a real closed field; the quan-

tifier-free first-order formulas in the language

are Boolean combinations of equalities

and inequalities of polynomials , and the sets

so definable are called semialgebraic sets. The

class of o-minimal structures also includes the richer struc-

ture obtained by adding the exponential function;

the structure obtained by adding finitely many an-

alytic functions restricted to a bounded rectangle; their com-

bination ; and yet further expansions [85], [86].

Proof of finite termination is only half the question. For the

issue a) of an effective implementation, one needs a finitary

syntactic means of representing sets of states that is closed

under the Boolean and preimage operators, and furthermore,

that representation must be decidable in the sense that it can

be determined by finite computation whether distinct rep-

resentations are semantically equal. This requires that there

be an effectively representable and decidable modal algebra

for such that (see [20] and [38]).

Of the o-minimal structures over , the richest known

to have the required effectiveness and decidability is .

By the famous Tarski–Seidenberg results, there is an algo-

rithm that transforms any first-order formula in the language

into a quantifier-free formula in that

is equivalent over , so proving that all sets first-order

definable in are semialgebraic, and furthermore, the

semialgebraic sets are decidable. In contrast, the richer struc-

ture does not have the quantifier elimination prop-

erty (although it does have the weaker but significant prop-

erty called model completeness), and the decidability of its

first-order theory is still an open question.

For LTS models of hybrid automata, it suffices to con-

sider the underlying LTS model over . Let

, , and

be a list of formulas in

defining the components of . The following recursive

translation map takes as input an L sentence ,

and if it terminates, it returns

for the least such that

Note that termination is not problematic for PML sentences.

Applying the best available algorithm by Basu et al. [87]

(which significantly improves the version of Collins’ cylin-

drical algebraic decomposition currently implemented in the

computer algebra tool REDLOG [88]), the number of arith-

metical operations required to perform this QElim procedure

is bounded by , when the body of the ar-

gument formula is defined by a total of polynomials in

variables, each of at most degree . Checking equivalence or

emptiness (unsatisfiability) of formulas in has a

bound of . The translation also extends to topolog-

ical LTS models and sentences of topological extensions of

PML and L , where the topology is the standard metric

topology from ; this is because is semialgebraic

whenever is semialgebraic, with a computable description

in [86].

In our synthesis procedure illustrated by the example

in Section II-D, each of the computations and decisions

required in the course of the construction can be formulated

as a model checking task for finitary PML sentences [32].

The procedure can thus be effectively implemented for

instances of Problem 4 where the input data of the flows

for and the specification sets and are

all semialgebraic. Our explicit semialgebraic description

of the set is an example of the output of quantifier

elimination. By applying [89], this sort of procedure can

also be used when the continuous dynamics are given by

certain classes of linear differential equations whose flows

contain some exponential terms but for which the flow

preimage is semialgebraic whenever is

semi-algebraic. Note that the presence of the exact reset

maps as well as the metric tolerance

relations mean that the LTS model of the final hybrid

automaton is unlikely to have a finite quotient that meets

the bisimulation conditions for all of the relations of the

model, but this does not pose a problem if one is not model

checking infinitary fixed-point sentences.

The model checking tool HYTECH [90] is designed for the

restricted class of linear or polyhedral hybrid automata, all of

whose real components are first-order definable by Boolean

combinations of equalities and inequalities of linear terms

. Rather than use quantifier elim-

ination, a later version of HYTECH represents state sets in

as finite unions of convex polyhedra, given a vertex rep-

resentation, and the Boolean operations and preimage oper-

ator are implemented using a library of standard polyhedral

operations [21]. The work in [41] in this special issue de-

scribes an algorithm for approximate reachability and safety

analysis of hybrid automata with linear differential equa-

tions, where the state sets are represented as special kinds

of convex polyhedra, and applies this technology to a class

of synthesis problems. The model checking tools KRONOS

[91], COSPAN [92], and UPPAAL [93], all for the restricted

DAVOREN AND NERODE: LOGICS FOR HYBRID SYSTEMS 1005

class of timed automata, represent convex data regions in

by integer-valued matrices, with operations performed using

standard matrix operations.

B. Deductive Proof Systems

Deductive methods for verification and analysis differ

from model checking in their methodology, their scope,

and their degree of automation. Whereas model checking

seeks to translate a specification formula into the lower

level system description logic, or some other symbolic

representation, deductive methods work by directly ma-

nipulating formulas in the high-level temporal or modal

specification logic. Model checking can be implemented

as a completely automated analysis tool, but its scope is

restricted to sentences of the -calculus (or its sublogics

or extensions) and to LTS models whose components have

a sufficiently tractable first-order description. In contrast,

deductive methods have a broader scope. They are appli-

cable to all formulas of the specification logic, including

such L and TopL formulas with free as those

expressing relational comparison and continuity properties.

Moreover, the inferences of a proof system are valid over

the largest class of formal models for which that system is

sound, often the universal class of all models. Deductive

methods can be used not just for the verification of single

properties, considered one at a time, but also for the larger

enterprise of building up a deductive theory or knowledge

base of formulas true in a model. The flip side is that

implementations of deductive verification methods tend to

only be semiautomated, typically combining some degree of

automated proof search, user-interactive proof construction,

and automated proof checking.

The Hilbert-style proof system for L is due to Kozen

[36]. On top of the axioms and rules for PML, this proof

system for L has the fixed-point axiom

-f.p.

and the inference rules

Subst.

-f.p

For formulas , we write if there is a

formal proof of in this proof system for L and say is a

theorem of L . The soundness of this proof system is quite

straightforward. This says, of all formulas ,

if then is universally valid, meaning for

all LTS models , of arbitrary cardinality and character.

The validity problem for L , of determining whether a for-

mula is valid, is EXPTIME complete [33].

More recently, the completeness of Kozen’s axiomatization

has been established, namely, that if is valid, then .

A drawback of the proof of this result in [94] is that it does

not extend in any modular fashion to axiomatic extensions,

such as that for TopL , which adds the S4 axioms for

(Section IV-H).

In trying to establish that using a proof system

for L or TopL , one seeks to show that is a deductive

consequence of a list of formulas such that is

already known. In selecting , one has at one’s disposal a

hierarchy of formulas that form a knowledge base about :

• formulas that are theorems of the proof system, that are

true in all LTS models;

• formulas that are true in all models in the intended

class, such as the LTS models of hybrid automata; these

arise as deductive consequences of definitions in L

of modal/temporal operators like and , and

formula schemes such as , and (Sec-

tion IV-C) for symbols for the orbit relations of flows;

• formulas that have already been directly verified as true

in , either deductively, or for sentences, perhaps by

a call to a separate model checking tool.

To see a proof system in action, we give a formal proof

in TopL that if a relation is lsc, then so is its

Kleene star

Assumption

theorem

: Mono

: Subst

:

theorem

: Mono

:

: -f.p

: Def.

Mono is the derived rule for any modal operator (box

or diamond): from , infer , and PL is

propositional logic.

From the L characterization of together with the dual

inference rule -f.p in L , one can readily derive an

obvious invariance induction rule for proving safety proper-

ties of hybrid automata

Inv-

for each

for each

The premises of the rule assert that the set of -states is in-

variant under both evolution and reset relations, and that

is intermediate between and . This is a cleaner -cal-

culus analog of the invariance rule in LTL-based logics used

for the verification of safety properties for hybrid automata

in [12]–[14] and implemented in the verification tool

[95].

In the course of our controller synthesis construction in

Section II-D, we generate a list of PML formulas that are true

in a model over the state space , using

1006 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 7, JULY 2000

a suitable model checking tool; a partial list is given in Sec-

tion IV-D. The idea is that the synthesis is self-verifying, in

the sense that the correctness of construction can be demon-

strated by formally deducing the L formulas encoding per-

formance specifications (given in Sections IV-F and IV-G)

from this list of PML formulas. For ease of discussion, we

continue to work in rather than shift the analysis up to

the hybrid model over .

For the safety property , we use

Inv- . We only need to check ,

since the initiality condition and the

evolution invariance are already

established. For each ,

the reset , so it follows that

. We

then need to prove ,

but this is a propositional tautology, so we are done.

The jump-infinite liveness property can also be formally

verified using Inv- to prove .

For the non-Zeno liveness property, we need to calculate

a lower bound on the time duration between resets,

which could be done using the semialgebraic descrip-

tions of the cover sets . For the event sequence

requirement expressed using (Section IV-G),

the idea is that chains of local inevitability formulas

such as and

will entail

.

The example illustrates how inference rules like

Inv- can be used in conjunction with model

checking tools. Similar ideas are developed in [14], using

the tool . This verification tool combines the model

checking capability of automatically generating first-order

translations of candidate invariant sentences , such as

, with proof systems for LTL-based

logics. In related work, envisaged for discrete systems but

more generally applicable, the general-purpose verification

environment prototype verification system (PVS) [96] is

used to give an integration of model checking and theorem

proving; this is achieved by encoding the propositional

-calculus within the (classical) simply typed higher order

logic on which PVS is based.

C. Controller Synthesis

In our example in Section II-D, we demonstrate one

way of formulating a controller synthesis problem

for hybrid systems within our logic framework.

The cover and AD map was found using

some custom-designed predecessor operators on

sets, namely, - and

, applied to .

By the nature of that construction, it did not involve any

iteration, but subject to the restriction on inclusion-mono-

tonicity (which holds for - , but not for), we

can iterate any set operator of our design.

Fixed points of operators on sets are a dominant theme in

work on controller synthesis for hybrid systems, and for DES

systems before them. Translating Ramadge and Wonham’s

modular feedback logic [39] into modal logic (and extending

it from single-valued partial functions to arbitrary relations),

the maximal control invariant subset of a set of states

is obtained as the greatest fixed point of the operator

where is the subalphabet of uncontrollable

events and is the component relation for event

of the system transition relation . In

words, is the set of states in such that for each un-

controllable event , the -successors of are all in .

Control is effected by a supervisor’s being able to override

the system transition relation and disable controllable events

at states . A state feedback supervisor

is a map such that for all , and

is disabled by at if . From any con-

trol invariant set , one can construct a state feedback

supervisor whose application renders an invariant set; the

maximal control invariant subset of then gives rise to the

least restrictive supervisor to enforce the invariance of . In

[39], modularity is considered with respect to conjunction of

predicates; working within L , a richer level of modularity

is attainable.

The construction in [39] is specifically adapted to hybrid

systems in [97], where the system model is essentially a hy-

brid automaton over state space and ,

with reset maps indexed by events , and

for , a supervisor can override and disable a reset

at states . Earlier work on controller synthesis for

timed automata in [98] is along the same general lines.

In work on controller synthesis in this special issue, [41]

considers a class of control problems in which one starts with

a complete hybrid automaton , and the synthesis task is

to find the largest subsystem , in the sense that

the state space and flows are the same, but

and (with the resets always

), such that the subsystem satisfies a safety

property. Their solution is a greatest fixed-point construction

using a customized predecessor operator on subsets of hy-

brid states. Transcribed in modal logic, this operator is of the

form

where denotes the relativized evolution relation de-

fined in Section IV-G, requiring the substitution of a

sentence to give it concrete meaning. In words, is in

iff is in , and either for some , there is a -evolution

from that remains in for all time, or else it is possible

DAVOREN AND NERODE: LOGICS FOR HYBRID SYSTEMS 1007

to -evolve from for some time, while remaining within ,

and then switch and still be in .

The controller synthesis problems considered in [42] are

more complex—their hybrid automata have continuous con-

trol and disturbance inputs, and the task is to construct a

feedback control map (with both discrete and continuous

values), which restricts the behavior of the system so as to

satisfy a safety property. But there again, we see a greatest

fixed-point construction of a maximal controlled invariant

subset. Due to quantification over control and disturbance

functions and on a time interval

(rather than values in and), their controllable and uncon-

trollable predecessor operators, and their two-place Reach

operator, require reformulation to be expressible using modal

operators. In earlier work in hybrid systems (with differing

system models), fixed points of operators on sets were used

in [99]–[101] to characterize the viability kernel of a set of

states as the largest subset invariant under hybrid trajectories

and from which all hybrid trajectories are jump-infinite.

In a separate development, generalizations of LTS models

have been formulated for settings where the natural model

is a game between two or more agents, with logics called

alternating temporal logic and alternating -calculus devel-

oped for the specification of system properties [80]. The for-

malisms are general enough to cover the supervisory con-

trol framework of discrete event systems, as well module

checking and receptiveness problems for open discrete and

hybrid systems.

VI. CONCLUSION

The primary goal of this work was to seek out and render

perspicuous unifying threads in the substantial literature on

logics and formal methods for hybrid systems. The key to

such a unification is to be found by appreciating the gener-

icness of relational transition system models as abstract dy-

namical systems, and the power and simplicity of the -cal-

culus as the “parent logic” for reasoning about them. A larger

theme is how old resources—formal models, logics, proof

systems, decision procedures—can be put to new uses in the

formal analysis and synthesis of hybrid systems.

Of the many suggested in the text, several lines of future

research warrant special mention.

First, given the demand for maximally powerful model

checking tools, there is a pressing need for investigation of

efficient quantifier elimination for the pre- or postimages of

polynomial flows applied to semialgebraic sets, starting with

a study of [87].

Given the intrinsic limits on algorithmic model checking,

further investigation is required of the theory and practice of

approximating systems with complex nonlinear dynamics by

systems with tractable semialgebraic (or simpler) flows.

There is much more to be done in deductive methods for

the -calculus and its extensions; in particular, tableaux

proof systems offer the best available automated theorem

provers [56]. Further work is also needed on clean architec-

tures for combining model checking and deductive methods,

building on [95], [96].

To get full value out of our modal representation of topo-

logical and metric structure, more study is needed of notions

of stability and robustness for hybrid systems framed in the

language of the general topology of relations and their inte-

gration with the concepts developed from classical control

theory.

Given the natural occurrence of distributed, multiagent hy-

brid systems, there is a clear need for further investigation of

logics for these systems, applying and building on [74] and

[80].

ACKNOWLEDGMENT

The authors’ view of hybrid systems and logics for rea-

soning about them has benefited from fruitful conversations

and exchanges with many people; in particular, they would

like to thank J. Remmel, W. Kohn, A. Yakhnis, S. Artemov,

D. Kozen, D. Cook, J. Miller, K. Rudie, A. Walz, S. Sastry,

G. Lafferriere, G. Pappas, J. Lygeros, M. Prandini, J. Hes-

panha, R. Goré, N. Bonnette, B. Anderson, T. Brinsmead, S.

Dey, and T. Moor. They also thank X. Krump for excellent

tutorials on computer graphics.

REFERENCES

[1] R. Grossman, A. Nerode, A. P. Ravn, and H. Rischel, Eds., Hybrid

Systems: Springer-Verlag, 1993. LNCS 736.
[2] P. J. Antsaklis, W. Kohn, A. Nerode, and S. Sastry, Eds., Hybrid

Systems II: Springer-Verlag, 1995. LNCS 999.
[3] A. Pnueli and J. Sifakis, Eds., Theoret. Comput. Sci., 1995, vol. 138.

(Special Issue on Hybrid Systems).
[4] R. Alur, T. A. Henzinger, and E. D. Sontag, Eds., Hybrid Systems

III: Springer-Verlag, 1996. LNCS 1066.
[5] O. Maler, Ed., Hybrid and Real-Time Systems: International Work-

shop HART’97: Springer-Verlag, 1997. LNCS 1201.
[6] P. J. Antsaklis, W. Kohn, A. Nerode, and S. Sastry, Eds., Hybrid

Systems IV: Springer-Verlag, 1997. LNCS 1273.
[7] P. J. Antsaklis and A. Nerode, Eds., IEEE Trans. Automat. Contr.,

Apr. 1998, vol. 43. (Special Issue on Hybrid Control Systems).
[8] T. A. Henzinger and S. Sastry, Eds., Hybrid Systems: Computation

and Control (HSCC’98): Springer-Verlag, 1998. LNCS 1386.
[9] P. J. Antsaklis, W. Kohn, M. Lemmon, A. Nerode, and S. Sastry,

Eds., Hybrid Systems V: Springer-Verlag, 1999. LNCS 1567.
[10] F. W. Vaandrager and J. H. van Schuppen, Eds., Hybrid Systems:

Computation and Control (HSCC’99): Springer-Verlag, 1999.
LNCS 1569.

[11] E. M. Clarke and J. M. Wing, “Formal methods: State of the art
and future directions,” ACM Comput. Surveys, vol. 28, pp. 626–643,
Dec. 1996. Rep. Strategic Directions in Computing Research Formal
Methods Working Group, ACM Workshop, Aug. 1996.

[12] Z. Manna and A. Pnueli, “Verifying hybrid systems,” in Hybrid Sys-

tems, R. Grossman, A. Nerode, A. P. Ravn, and H. Rischel, Eds:
Springer-Verlag, 1993, pp. 4–35. LNCS 736.

[13] , “Models for reactivity,” Acta Informatica, vol. 30, pp.
609–678, 1993.

[14] Z. Manna and H. B. Sipma, “Deductive verification of hybrid
systems using STeP,” in Hybrid Systems: Computation and Control

(HSCC’98), T. A. Henzinger and S. Sastry, Eds: Springer-Verlag,
1998, pp. 305–318. LNCS 1386.

[15] Z. Chaochen, A. P. Ravn, and M. R. Hansen, “An extended dura-
tion calculus for hybrid real-time systems,” in Hybrid Systems, R.
Grossman, A. Nerode, A. P. Ravn, and H. Rischel, Eds: Springer-
Verlag, 1993, pp. 36–59. LNCS 736.

[16] L. Lamport, “Hybrid systems in TLA+,” in Hybrid Systems,
R. Grossman, A. Nerode, A. P. Ravn, and H. Rischel, Eds:
Springer-Verlag, 1993, pp. 77–102. LNCS 736.

[17] P. Herrmann, G. Graw, and H. Krumm, “Compositional specification
and structured verification of hybrid systems in cTLA,” in Proc. 1st

IEEE Int. Symp. Object-Oriented Real-Time Distributed Computing,
1998, pp. 335–340.

1008 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 7, JULY 2000

[18] R. Alur, C. Courcoubetis, T. A. Henzinger, and P.-H. Ho, “Hybrid au-
tomata: An algorithmic approach to the specification and verification
of hybrid systems,” in Hybrid Systems, R. Grossman, A. Nerode, A.
P. Ravn, and H. Rischel, Eds: Springer-Verlag, 1993, pp. 209–229.
LNCS 736.

[19] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine, “The algorithmic
analysis of hybrid systems,” Theoret. Comput. Sci., vol. 138, pp.
3–34, 1995.

[20] T. A. Henzinger, “The theory of hybrid automata,” in Proc. 11th

Annu. IEEE Symp. Logic Comput. Sci. (LICS’96), 1996, pp.
278–292.

[21] R. Alur, T. A. Henzinger, and P.-H. Ho, “Automatic symbolic veri-
fication of embedded systems,” IEEE Trans. Software Eng., vol. 22,
pp. 181–201, 1996.

[22] Y. Zhang and A. K. Mackworth, “Constraint nets: A semantic model
for hybrid dynamic systems,” Theoret. Comput. Sci., vol. 138, pp.
211–239, 1995.

[23] J. M. Davoren, “On hybrid systems and the modal �-calculus,” in
Hybrid Systems V, P. J. Antsaklis, W. Kohn, M. Lemmon, A. Nerode,
and S. Sastry, Eds: Springer-Verlag, 1999, pp. 38–69. LNCS 1567.

[24] R. Alur and D. L. Dill, “A theory of timed automata,” Theoret.

Comput. Sci., vol. 126, pp. 183–235, 1994.
[25] C. Horn and P. J. Ramadge, “Robustness issues for hybrid systems,”

in Proc. 34th Int. Conf. Decision Contr., CDC’95, 1995, pp.
1467–1472.

[26] Y. Zhang and A. K. Mackworth, “Specification and verification of
hybrid dynamic systems with timed 8-automata,” in Hybrid Systems

III, R. Alur, T. A. Henzinger, and E. D. Sontag, Eds: Springer-Verlag,
1996, pp. 587–603. LNCS 1066.

[27] N. A. Lynch, R. Segala, F. Vaandrager, and H. B. Weinberg, “Hybrid
I/O automata,” in Hybrid Systems III, R. Alur, T. A. Henzinger, and
E. D. Sontag, Eds: Springer-Verlag, 1996, pp. 496–510. LNCS 1066.

[28] Z. Chaochen, W. Ji, and A. P. Ravn, “A formal description of hybrid
systems,” in Hybrid Systems III, R. Alur, T. A. Henzinger, and E. D.
Sontag, Eds: Springer-Verlag, 1996, pp. 511–530. LNCS 1066.

[29] M. Rönkkö and A. P. Ravn, “Actions systems with continuous
behaviour,” in Hybrid Systems V, P. J. Antsaklis, W. Kohn, M.
Lemmon, A. Nerode, and S. Sastry, Eds: Springer-Verlag, 1999, pp.
304–323. LNCS 1567.

[30] Z. Manna and A. Pnueli, Temporal Verification of Reactive Systems:

Safety. New York: Springer-Verlag, 1995.
[31] R. Alur, T. A. Henzinger, G. Lafferriere, and G. Pappas, “Discrete

abstractions of hybrid systems,” Proc. IEEE, vol. 88, pp. xxx–xxx,
July 2000.

[32] J. M. Davoren, “Using modal logics for the formal analysis
and synthesis of hybrid control systems,” Australian National
University, Computer Sciences Laboratory, RSISE, Tech. Rep.
TR-ARP-02-2000, Jan. 2000.

[33] C. Stirling, “Modal and temporal logics,” in Handbook of Logic in

Computer Science, S. Abramsky, D. M. Gabbay, and T. Maibaum,
Eds. Oxford, U.K.: Oxford Univ. Press, Clarendon, 1992, vol. 2,
pp. 477–563.

[34] A. Nerode and R. Shore, Logic for Applications, 2nd ed. Berlin,
Germany: Springer-Verlag, 1997. Graduate Texts in Computer Sci-
ence.

[35] R. Goldblatt, Logics of Time and Computation, 2nd ed. Stanford,
CA: CLSI Publications, 1992.

[36] D. Kozen, “Results on the propositional �-calculus,” Theoret.

Comput. Sci., vol. 27, pp. 333–354, 1983.
[37] E. A. Emerson, “Model checking and the mu-calculus,” in Descrip-

tive Complexity and Finite Models, N. Immerman and P. G. Kolaitis,
Eds: AMS, 1997, pp. 185–208.

[38] T. A. Henzinger and R. Majumdar, “A classification of symbolic
transition systems,” in Proc. 17th Int. Symp. Theoret. Aspects of

Computer Science (STACS’00): Springer-Verlag, 2000. LNCS.
[39] P. J. Ramadge and W. M. Wonham, “Modular feedback logic for dis-

crete event systems,” SIAM J. Contr. Optim., vol. 25, pp. 1202–1218,
1987.

[40] P. J. Ramadge and W. M. Wonham, “The control of discrete event
systems,” Proc. IEEE, vol. 77, pp. 81–98, 1989.

[41] E. Asarin, O. Bournez, T. Dang, O. Maler, and A. Pnueli, “Effective
synthesis of switching controllers for linear systems,” Proc. IEEE,
vol. 88, pp. 1011–1025, July 2000.

[42] C. J. Tomlin, J. Lygeros, and S. S. Sastry, “A game theoretic ap-
proach to controller design for hybrid systems,” Proc. IEEE, vol.
88, pp. 949–970, July 2000.

[43] C. Livadas, J. Lygeros, and N. A. Lynch, “High-level modeling
and analysis of the air traffic alert and collision avoidance system
(TCAS),” Proc. IEEE, vol. 88, pp. 926–948, July 2000.

[44] R. De Carlo, M. Branicky, S. Pettersson, and B. Lennartson, “Per-
spectives and results on the stability and stabilizability of hybrid sys-
tems,” Proc. IEEE, vol. 88, pp. 1069–1082, July 2000.

[45] X. D. Koutsoukos, P. J. Antsaklis, J. A. Stiver, and M. D. Lemmon,
“Supervisory control of hybrid systems,” Proc. IEEE, vol. 88, pp.
1026–1049, July 2000.

[46] A. Nerode and W. Kohn, “Models for hybrid systems: Automata,
topologies, controllability, observability,” in Hybrid Systems,
R. Grossman, A. Nerode, A. P. Ravn, and H. Rischel, Eds:
Springer-Verlag, 1993, pp. 297–316. LNCS 736.

[47] V. Gupta, T. A. Henzinger, and R. Jagadeesan, “Robust timed au-
tomata,” in Hybrid and Real-Time Systems: International Workshop

HART’97, O. Maler, Ed: Springer-Verlag, 1997, pp. 331–345. LNCS
1201.

[48] R. E. Kalman, P. L. Falb, and M. A. Arbib, Topics in Mathematical

System Theory. New York: McGraw-Hill, 1969.
[49] S. N. Artemov, J. M. Davoren, and A. Nerode, “Logic, topological

semantics and hybrid systems,” in Proc. 36th Int. Conf. Decision

Contr., CDC’97, 1997, pp. 698–701.
[50] J. M. Davoren, “Modal Logics for Continuous Dynamics,” Ph.D.

thesis, Dept. Mathematics, Cornell Univ., Jan. 1998.
[51] , “Topologies, continuity and bisimulations,” Theoret. Inform.

Applicat., vol. 33, pp. 357–381, 1999.
[52] J. Sifakis, “A unified approach for studying the properties of transi-

tion systems,” Theoret. Comput. Sci., vol. 18, pp. 227–258, 1982.
[53] R. Alur, C. Courcoubetis, and D. L. Dill, “Model-checking in dense

real-time,” Inform. Computat., vol. 104, pp. 2–34, 1993.
[54] A. Deshpande, A. Göllü, and P. Varaiya, “SHIFT: A formalism and a

programming language for dynamic networks of hybrid automata,”
in Hybrid Systems IV, P. J. Antsaklis, W. Kohn, A. Nerode, and S.
Sastry, Eds: Springer-Verlag, 1997, pp. 113–133. LNCS 1273.

[55] V. Gupta, R. Jagadeesan, and V. A. Saraswat, “Hybrid cc, hybrid
automata and program verification,” in Hybrid Systems III, R. Alur,
T. A. Henzinger, and E. D. Sontag, Eds: Springer-Verlag, 1996, pp.
52–75. LNCS 1066.

[56] R. Goré, “Tableaux methods for modal and temporal logics,”
in Handbook of Tableaux Methods, M. D’Agistino et al.,
Eds. Norwell, MA: Kluwer, 1999, pp. 297–396.

[57] J.-P. Aubin and H. Frankowska, Set-Valued Analysis. Boston, MA:
Birkhäuser, 1990.

[58] E. Akin, The General Topology of Dynamical Sys-

tems. Providence, RI: American Mathematical Society, 1993.
[59] J. R. Munkres, Topology: A First Course. Englewood Cliffs, NJ:

Prentice-Hall, 1975.
[60] C. Berge, Topological Spaces, Including a Treatment of Multi-Valued

Functions, Vector Spaces and Convexity. New York: Dover, 1997.
[61] J. Palis and W. de Melo, Geometric Theory of Dynamical Sys-

tems. New York: Springer-Verlag, 1982.
[62] M. S. Branicky, “Topology of hybrid systems,” in Proc. 32nd Conf.

Decision Contr., 1993, pp. 2309–2314.
[63] J. M. Davoren and T. Moor, “Logic-based design and synthesis of

controllers for hybrid systems,” Australian National Univ., Dept.
Syst. Eng., RSISE, Canberra, Australia, Tech. Rep., July 2000.

[64] M. Y. Vardi and P. Wolper, “Automata-theoretic techniques in
the modal logics of programs,” J. Comput. Syst. Sci., vol. 32, pp.
182–221, 1986.

[65] E. A. Emerson, “Temporal and modal logic,” in Handbook of Theo-

retical Computer Science, J. van Leeuwen, Ed. Amsterdam: Else-
vier, 1990, pp. 997–1072.

[66] J. G. Thistle and W. M. Wonham, “Control of infinite behavior of
finite automata,” SIAM J. Contr. Optim., vol. 32, pp. 1075–1097,
1994.

[67] Y. Kesten, A. Pnueli, J. Sifakis, and S. Yovine, “Decidable inte-
gration graphs,” in Hybrid Systems, R. Grossman, A. Nerode, A.
P. Ravn, and H. Rischel, Eds: Springer-Verlag, 1993, pp. 179–208.
LNCS 736.

[68] E. W. Dijkstra, A Discipline of Programming. Englewood Cliffs,
NJ: Prentice-Hall, 1976.

[69] D. D. Cook, “A study in the modeling, verification and control of
hybrid systems,” Ph.D. dissertation, Dept. Electrical and Electronic
Engineering, Univ. of Melbourne, September 1999.

DAVOREN AND NERODE: LOGICS FOR HYBRID SYSTEMS 1009

[70] R. Alur and T. A. Henzinger, “Modularity for timed and hybrid sys-
tems,” in CONCUR 97: Concurrency Theory, A. Mazurkiewicz and
J. Winkowski, Eds: Springer-Verlag, 1997, pp. 74–88. Lecture Notes
in Computer Science.

[71] A. Pnueli, “The temporal logic of programs,” in Proc. 18th Annu.

IEEE Symp. Foundations of Computer Science (FOCS’77), 1977, pp.
46–57.

[72] E. A. Emerson and E. M. Clarke, “Characterizing correctness prop-
erties of parallel programs as fixpoints,” in Proc. 7th Int. Coll. Au-

tomata, Languages and Programming: Springer-Verlag, 1981, pp.
169–181. LNCS 85.

[73] S. Kripke, “Semantical analysis of modal logic I: Normal proposi-
tional calculi,” Zeitschrift für mathematische Logik und Grundlagen

der Mathematik, vol. 9, pp. 67–96, 1963.
[74] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi, Reasoning About

Knowledge. Cambridge, MA: MIT Press, 1995.
[75] V. R. Pratt, “Semantical considerations on Floyd-Hoare logic,” in

Proc. 17th Annu. IEEE Symp. Foundations of Computer Science

(FOCS’76), 1976, pp. 109–121.
[76] D. Kozen and J. Tiuryn, “Logics of programs,” in Handbook of The-

oretical Computer Science, J. van Leeuwen, Ed. Amsterdam: El-
sevier Science, 1990, pp. 789–840.

[77] T. A. Henzinger, “It’s about time: Real-time logics reviewed,” in
CONCUR 97: Concurrency Theory, D. Sangiorgi and R. de Simone,
Eds: Springer-Verlag, 1998, pp. 439–454. LNCS 1466.

[78] T. A. Henzinger, Z. Manna, and A. Pnueli, “Toward refining
temporal specifications into hybrid systems,” in Hybrid Systems,
R. Grossman, A. Nerode, A. P. Ravn, and H. Rischel, Eds:
Springer-Verlag, 1993, pp. 60–76. LNCS 736.

[79] A. Kapur, T. A. Henzinger, Z. Manna, and A. Pnueli, “Proving safety
properties of hybrid systems,” in FTRTFT 94: Formal Techniques

in Real-time and Fault-tolerant Systems, H. Langmaack, W.-P. de
Roever, and J. Vytopil, Eds: Springer-Verlag, 1994, pp. 431–454.
LNCS 863.

[80] R. Alur, T. A. Henzinger, and O. Kupferman, “Alternating-time tem-
poral logic,” in Proc. 38th Annu. Symp. Foundations of Computer

Science, 1997, pp. 100–109.
[81] A. Tarski, “On the calculus of relations,” J. Symbolic Logic, vol. 6,

pp. 73–89, 1941.
[82] B. Jónsson and A. Tarski, “Boolean algebras with operators, part I,”

Amer. J. Math., vol. 73, pp. 891–939, 1951.
[83] Y. Zhang and A. K. Mackworth, “Synthesis of hybrid constraint-

based controllers,” in Hybrid Systems III, R. Alur, T. A. Henzinger,
and E. D. Sontag, Eds: Springer-Verlag, 1996, pp. 552–567. LNCS
1066.

[84] J. C. C. McKinsey and A. Tarski, “The algebra of topology,” Ann.

Math., vol. 45, pp. 141–191, 1944.
[85] G. Lafferriere, G. J. Pappas, and S. Sastry, “O-minimal hybrid sys-

tems,” Math. Contr., Signals, Syst., vol. 13, pp. 1–21, 2000.
[86] L. van den Dries, Tame Topology and O-minimal Struc-

tures. Cambridge, U.K.: Cambridge Univ. Press, 1998. London
Math. Soc. Lecture Notes 2483.

[87] S. Basu, R. Pollack, and M.-F. Roy, “On the combinatorial and al-
gebraic complexity of quantifier elimination,” J. ACM, vol. 43, pp.
1002–1045, 1996.

[88] A. Dolzmann, T. Sturm, and V. Weispfenning, “Real quantifier elim-
ination in practice,” in Algorithmic Algebra and Number Theory, B.
Matzat, G. Greuel, and G. Hiss, Eds. Berlin, Germany: Springer-
Verlag, 1998, pp. 221–248.

[89] G. Lafferriere, G. J. Pappas, and S. Yovine, “A new class of decid-
able hybrid systems,” in Hybrid Systems: Computation and Con-

trol (HSCC’99), F. W. Vaandrager and J. H. van Schuppen, Eds:
Springer-Verlag, 1999, pp. 137–151. LNCS 1569.

[90] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi, “A user guide to
HyTech,” in TACAS 95: Tools and Algorithms for the Construction

and Analysis of Systems, E. Brinksma, W. R. Cleaveland, K. G.
Larsen, T. Margaria, and B. Steffen, Eds: Springer-Verlag, 1995,
pp. 41–71. LNCS 1019.

[91] C. Daws, A. Olivero, S. Tripakis, and S. Yovine, “The tool KRONOS,”
in Hybrid Systems III, R. Alur, T. A. Henzinger, and E. D. Sontag,
Eds: Springer-Verlag, 1996, pp. 208–219. LNCS 1066.

[92] R. Alur and R. P. Kurshan, “Timing analysis in COSPAN,” in Hy-

brid Systems III, R. Alur, T. A. Henzinger, and E. D. Sontag, Eds:
Springer-Verlag, 1996, pp. 220–231. LNCS 1066.

[93] J. Bengtsson, K. G. Larsen, F. Larsson, P. Pettersson, and W. Yi,
“UPPAAL: A tool suite for automatic verification of real-time sys-
tems,” in Hybrid Systems III, R. Alur, T. A. Henzinger, and E. D.
Sontag, Eds: Springer-Verlag, 1996, pp. 232–243. LNCS 1066.

[94] I. Walukiewicz, “A note on the completeness of Kozen’s axiomati-
zation of the propositional �-calculus,” Bull. Symbolic Logic, vol. 2,
pp. 349–366, 1996.

[95] Z. Manna, N. Bjorner, and A. Browne et al., “An update on STeP:
Deductive-algorithmic verification of reactive systems,” in Tool

Support for System Specification, Development and Verification:
Springer-Verlag, 1998. LNCS.

[96] S. Owre, S. Rajan, J. M. Rushby, N. Shankar, and M. K.
Srivas, “PVS: Combining specification, proof checking, and
model checking,” in Computer-Aided Verification, CAV’96:
Springer-Verlag, 1996, pp. 411–414. LNCS 1102.

[97] H. Chen and H.-M. Hanisch, “Control synthesis of hybrid systems
based on predicate invariance,” in Hybrid Systems V, P. J. Antsaklis,
W. Kohn, M. Lemmon, A. Nerode, and S. Sastry, Eds: Springer-
Verlag, 1999, pp. 1–15. LNCS 1567.

[98] O. Maler, A. Pnueli, and J. Sifakis, “On the synthesis of discrete
controllers for timed systems,” in Proceedings of STACS’95, E. W.
Mayr and C. Puech, Eds: Springer-Verlag, 1995, pp. 229–242. LNCS
900.

[99] A. Nerode, J. B. Remmel, and A. Yahknis, “Controllers as fixed-
points of set-valued operators,” in Hybrid Systems II, P. J. Antsaklis,
W. Kohn, A. Nerode, and S. Sastry, Eds: Springer-Verlag, 1995, pp.
344–358. LNCS 999.

[100] W. Kohn, A. Nerode, J. B. Remmel, and A. Yahknis, “Viability in
hybrid systems,” Theoret. Comput. Sci., vol. 138, pp. 141–168, 1995.

[101] A. Deshpande and P. Varaiya, “Viable control of hybrid systems,”
in Hybrid Systems II, P. J. Antsaklis, W. Kohn, A. Nerode, and S.
Sastry, Eds: Springer-Verlag, 1995, pp. 128–147. LNCS 999.

J. M. Davoren (Member, IEEE) received
the B.A. (Hons.) degree in mathematics and
philosphy from the University of Melbourne,
Victoria, Australia, in 1991, and the M.S. degree
in computer science and the Ph.D. degree in
mathematics from Cornell University, Ithaca,
NY, in 1994 and 1998, respectively.

From 1998 to 1999, she was a Postdoctoral
Fellow at the Center for Foundations of Intel-
ligent Systems at Cornell University, with a
visiting position in the Department of Electrical

Engineering and Computer Science at the University of California,
Berkeley, from February to April 1999. Since September 1999, she has
been a Research Fellow at the Computer Sciences Laboratory in the
Research School of Information Sciences and Engineering, Australian
National University, Canberra, Australia. Her research interests lie in the
fields of mathematical logic, theoretical computer science, systems and
control theory, and general topology.

Anil Nerode (Member, IEEE) received the Ph.D.
degree in mathematics from the University of
Chicago, Chicago, IL, in 1956.

He was an NSF Postdoctoral Fellow with
K. Gödel at the Institute for Advanced Studies
(1957–1958) and a Visiting Assistant Professor
at the University of California, Berkeley, with
A. Tarski (1958–1959). In 1959, he joined the
Faculty of Cornell University, Ithaca, NY, as
an Assistant Professor in Mathematics, and
served as the Director of the Center for Applied

Mathematics from 1964 to 1965. He was also Chairman of the Department
of Mathematics from 1982 to 1987 and the Director of the Mathematical
Sciences Institute from 1987 to 1996. He is currently the Director of the
Center for Foundations of Intelligent Systems and the Goldwin Smith
Professor of Mathematics and Computer Science. His research interests
include mathematical logic, computer science, and control engineering.
He has published more than 150 papers and several books, and a sum-
mary of his research up to 1993 appears in J. N. Crossley et al. (Eds.),
Logical Methods: A Symposium in Honor of Anil Nerode’s 60th Birthday

(Birkhäuser: Boston, MA, 1993).

1010 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 7, JULY 2000

