(© 2012 IEEE. 2012 27th Annual ACM/IEEE Symposium on Logic in Computer Science

Logics of Dynamical Systems

(Invited Paper)

André Platzer
Computer Science Department
Carnegie Mellon University
Pittsburgh, USA
aplatzer@cs.cmu.edu

Abstract—We study the logic of dynamical systems, that is,
logics and proof principles for properties of dynamical systems.
Dynamical systems are mathematical models describing how the
state of a system evolves over time. They are important in mod-
eling and understanding many applications, including embedded
systems and cyber-physical systems. In discrete dynamical systems,
the state evolves in discrete steps, one step at a time, as described
by a difference equation or discrete state transition relation. In
continuous dynamical systems, the state evolves continuously along
a function, typically described by a differential equation. Hybrid
dynamical systems or hybrid systems combine both discrete and
continuous dynamics.

This is a brief survey of differential dynamic logic for specifying
and verifying properties of hybrid systems. We explain hybrid
system models, differential dynamic logic, its semantics, and
its axiomatization for proving logical formulas about hybrid
systems. We study differential invariants, i.e., induction principles
for differential equations. We briefly survey theoretical results,
including soundness and completeness and deductive power.
Differential dynamic logic has been implemented in automatic
and interactive theorem provers and has been used successfully to
verify safety-critical applications in automotive, aviation, railway,
robotics, and analogue electrical circuits.

Index Terms—logic of dynamical systems, dynamic logic,
differential dynamic logic, hybrid systems, axiomatization, de-
duction

I. INTRODUCTION

Dynamical systems study the mathematics of change [44].
Dynamical systems are mathematical models for describing
how the state of a system evolves over time in a state space.
They can describe, for example, the temporal evolution of the
state of an embedded system or of a cyber-physical system,
i.e., a system combining and integrating cyber (computation
and/or communication) with physical effects. Cars, aircraft,
robots, and power plants are prototypical examples. But dy-
namical systems are more general and can also describe and
analyze chemical processes, biological systems, medical mod-
els, and many other behavioral phenomena. Since dynamical
systems occur in so many different contexts, different varia-
tions of dynamical system models are relevant for applications,
including discrete dynamical systems described by difference
equations or discrete transitions relations, continuous dynam-
ical systems described by differential equations [44], and
hybrid dynamical systems alias hybrid systems combining
discrete and continuous dynamics [2], [9], [18], [30], [39],
[47]-[50], [54].

For many of the applications that can be understood as dy-
namical systems, we are interested in analyzing and predicting
their behavior, e.g., because the applications are safety-critical
or performance-critical. For car control systems, for example,
it is important to verify that the controllers choose only safe
control choices that can never lead to collisions with other
traffic participants at any later point in time.

This illustrates a central point about the analysis of dynami-
cal systems. Whether a current control choice is safe or unsafe
in a dynamical system depends on whether the states that the
dynamical system could reach after this control choice in the
future will be safe or unsafe. Whether a dynamical system
is safe or unsafe depends on whether it will always choose
safe control choices at all times. Whether we can find that out
depends on whether we can find a proof that the dynamical
system is safe or whether we can find a proof that it is unsafe.

What we can accept as a proof or other form of evidence
depends on how critical it is that the answer is right. If the an-
swer is that the dynamical system is unsafe, then a test scenario
demonstrating one bad behavior is good evidence, because it
can be used for debugging purposes. If the dynamical system
is suspected unsafe, then an expert’s engineering judgment
can be good evidence, because that would already prevent
premature manufacturing and/or deployment of a potentially
unsafe system design. If the answer is that the dynamical
system is safe, we prefer stronger evidence than a series of
successful test scenarios. After all, most dynamical systems
have large or even (uncountably) infinite state spaces, so that
no finite set of tests alone could demonstrate that the system
will be safe in the infinitely many other possible situations that
could not be tested. This issue is particularly daunting for the
complex systems found in practical applications, e.g., because
they follow complex control logic or many of their features
interact or because their physical interactions are difficult etc.

For those reasons, we pursue the question of what con-
stitutes a proof about a dynamical system and how we can
systematically obtain proofs to show whether the system is
safe or unsafe. Safety, in this introductory discussion, should
be broadly construed, because the approaches we study in this
article work for much more complicated properties than classi-
cal safety properties as well, including liveness, controllability,
reactivity, quantified parametrized properties and so on.

Our technical vehicle for answering these questions from
a logically foundational perspective is our study of logics of

ANDRE PLATZER

dynamical systems. In this tutorial, we survey differential dy-
namic logic (d£) [45], [47]-[50], [54] for studying properties
of the behavior of dynamical systems and proof approaches for
proving those properties deductively. Dynamic logic [64] has
been developed and used very successfully for conventional
discrete programs, both for theoretical [28], [29], [43], [72]
and practical purposes [8], [28], [67]. We emphasize that
the logic of dynamical systems approach we survey in this
article lends itself to many interesting theoretical investigations
as witnessed by a number of exciting and highly nontrivial
theoretical results [45], [47]-[55], while, at the same time,
enabling the practical verification of complex applications
across different fields [4], [37], [38], [41], [48], [50], [59],
[61], [68] and inspiring algorithmic approaches based on these
logics [48], [50], [57], [58], [60], [62], [68].

We see a number of advantages of the approach we focus
on here, which make it attractive for research and applications,
including soundness, completeness, compositionality, and ex-
tendability. Because dynamical systems can capture very com-
plex behavior, their analysis can become very challenging and
it is surprisingly difficult to get the reasoning sound [16], [56].
In logic, soundness is easier to achieve, because we just check
a small number of elementary proof rules for soundness once.
Everything that can be derived from those simple rules, no
matter how complicated, is correct. Soundness (everything we
prove is true) and completeness (we can prove everything that
is true) are separated by design. In logic, completeness is a
meaningful question to ask, not just in practice but also in
theory, and has been answered in detail for logic of dynamical
systems (Sect. II-D and [54]). More generally, theoretical ques-
tions and logically foundational questions, including relative
completeness [47], [53], [54] and relative deductive power
[49], [55], become meaningful in a logical setting.

The logics and proof systems we consider are composi-
tional. That is, the logics have a perfectly compositional,
denotational semantics, in which the semantics of a model
and the meaning of a formula are simple functions of the
respective semantics of their parts. Furthermore, the proof
systems are compositional, i.e., they exploit this compositional
semantics and systematically reduce a property of a complex
systems to a number of properties about simpler systems by
structural decomposition. This makes it possible to understand
complex dynamical systems in terms of their parts, which are
often much easier than the full system. In fact, completeness
results prove that decomposition is always successful. This
result translates into practice, where systems that are designed
according to good engineering practice adhering to modularity
principles are easier to verify than those that are not. Smart
decompositions can have a tremendous impact on the practical
verification complexity and can improve scalability [38].

Another beneficial phenomenon in logics of dynamical
systems is that they are easy to extend. Verification is based
on a proof calculus, which is a collection of simple proof
rules (and axioms). In order to verify a feature in a different
way, we can simply add new proof rules, which will improve
the verification since the previous proof rules are kept as

LOGICS OF DYNAMICAL SYSTEMS 2

alternatives. We will exercise this a number of times in this
article, particularly when we are adding more and more proof
rules to handle various sophisticated aspects of differential
equations. We start with simple rules using solutions of
differential equations, then study differential invariants [49], an
induction principle for differential equations, then differential
cuts [49], [55], a logical cut principle for differential equations,
and finally differential auxiliaries [55]. Differential refinement
and differential transformation rules are further extensions
[49], [50], but beyond the scope of this article. Temporal
logic extensions [46], [50] and extensions to differential-
algebraic hybrid systems [49], [50] are other illustrations of
how the logic and proof calculus can be extended easily just
by adding rules to cover more advanced temporal properties
and systems. For space reasons, extensions to quantified dif-
ferential dynamic logic for distributed hybrid systems [51],
[53], and stochastic differential dynamic logic for stochastic
hybrid systems [52] are beyond the scope of this brief survey
as well.

Another helpful aspect of logic is that it produces proofs
that can serve as readable evidence for the correctness of a
system for certification purposes. Concerns that are sometimes
voiced in the context of classical discrete systems about
theorem proving compared to model checking involve the
degree of automation and the ability to find counterexamples.
They are less relevant for general dynamical systems. Even
the verification of very simple classes of hybrid systems is
neither semidecidable nor co-semidecidable [6], [12], [30].
Consequently, quite unlike in finite-state systems and timed
automata [7], [15], exhaustive exploration of all states, even
in bisimulation quotients, does not terminate in general, so
that approximations and abstractions have to be used during
the reachability analysis, and counterexamples are no longer
reliable (see [14] for counterexample-guided abstraction re-
finement techniques). Some nontrivial applications [50], [57]-
[59], [61] have been proved fully automatically with the
approach we survey here. Improving automation and scala-
bility is, nevertheless, a permanently promising challenge in
verification. For complex systems, we find it advantageous that
proving is amenable to human guidance, because the designer
can specify the critical invariants of his system design, which
helps finding proofs when current automation techniques fail.

In this article, we take a view that we call multi-dynamical
systems, i.e., the principle to understand complex systems
as a combination of multiple elementary dynamical aspects.
This approach helps us tame the complexity of complex
systems by understanding that their complexity just comes
from combining lots of simple dynamical aspects with one
another. The overall system itself is still as complicated as the
whole application. But since differential dynamic logics and
proofs are compositional, we can leverage the fact that the
individual parts of a system are simpler than the whole, and
we can prove correctness properties about the whole system
by reduction to simpler proofs about their parts. This approach
demonstrates that the whole can be greater than the sum of all
parts. The whole system is complicated, but we can still tame

ANDRE PLATZER

its complexity by an analysis of its parts, which are simpler.
Completeness results are the theoretical justification why this
multi-dynamical systems principle works.

The results reported in this paper are based on previous
research on logics of dynamical systems [45], [47]-[50], [54],
[55]. We provide a very incomplete overview of the approach
of logic of dynamical systems here. It is, by no means, possible
to handle all material comprehensively in this brief survey. A
more comprehensive source on logic of hybrid systems is a
book [50] and subsequent extensions [54], [55].

II. DIFFERENTIAL DYNAMIC LOGIC FOR
HYBRID SYSTEMS

In this section, we study differential dynamic logic dC [47],
[54], the logic of hybrid systems, i.e., systems with interacting
discrete and continuous dynamics.

Hybrid systems [2], [9], [10], [18], [30], [47]-[50], [54]
are a fusion of continuous dynamical systems and discrete
dynamical systems. They freely combine dynamical features
from both worlds and play an important role, e.g., in modeling
systems that use computers to control physical systems. Hybrid
systems feature (iterated) difference equations for discrete
dynamics and differential equations for continuous dynamics.
They, further, combine conditional switching, nondeterminism,
and repetition.

As a specification and verification language for hybrid sys-
tems, we have introduced differential dynamic logic d [45],
[47], [50], [54]. The logic dL is based on first-order modal
logic [11], [34] and dynamic logic [28], [64] and internalizes
operational models of hybrid systems as first-class citizens,
so that correctness statements about the transition behavior
of hybrid systems can be expressed as logical formulas. In
addition to all operators of first-order real arithmetic, the logic
dl provides parametrized modal operators [a] and (o) that
refer to the states reachable by hybrid system « and can
be placed in front of any formula. The df formula [&]¢
expresses that all states reachable by hybrid system « satisfy
formula ¢. Likewise, («)¢ expresses that there is at least one
state reachable by « for which ¢ holds. These modalities can
be used to express necessary or possible properties of the
transition behavior of a.

We first explain the system model of hybrid programs
that dC provides for modeling hybrid systems (Sect.II-A).
Then we explain the logical formulas that dZ provides for
specification and verification purposes (Sect.II-B). We show
reasoning principles, axioms, and proof rules for verifying
dl formulas (Sect.II-C). We subsequently show soundness
and relative completeness theorems (Sect. II-D) and investigate
stronger proof rules for differential equations (Sect. I[I-E-II-H).
Finally, we briefly discuss an implementation in the theorem
prover KeYmaera and applications (Sect. II-I).

A. Regular Hybrid Programs

Differential dynamic logic uses (regular) hybrid programs
(HP) [45], [47], [50], [54] as hybrid system models. HPs
are a program notation for hybrid systems and combine

LOGICS OF DYNAMICAL SYSTEMS 3

differential equations with conventional program constructs
and discrete assignments. HPs form a Kleene algebra with tests
[36]. Atomic HPs are instantaneous discrete jump assignments
x:=0, tests 7 of a first-order formula! x of real arithmetic,
and differential equation (systems) x' = 6 & x for a continuous
evolution restricted to the domain of evolution y, where z’
denotes the time-derivative of . Compound HPs are generated
from atomic HPs by nondeterministic choice (U), sequential
composition (;), and Kleene’s nondeterministic repetition (*).
We use polynomials with rational coefficients as terms here,
but divisions can be allowed as well when guarding against
singularities of divisions by zero; see [50] for details.

Definition 1 (Hybrid program). HPs are defined by the
following grammar («, 3 are HPs, z a variable, 6 a term
possibly containing x, and x a formula of first-order logic
of real arithmetic):

a, B u=

The first three cases are called atomic HPs, the last three
compound. The zest action 7y is used to define conditions. Its
effect is that of a no-op if the formula y is true in the current
state; otherwise, like abort, it allows no transitions. That is,
if the test succeeds because formula x holds in the current
state, then the state does not change, and the system execution
continues normally. If the test fails because formula x does
not hold in the current state, then the system execution cannot
continue, is cut off, and not considered any further.

Nondeterministic choice « U/, sequential composi-
tion «a;f, and nondeterministic repetition a* of programs
are as in regular expressions but generalized to a semantics
in hybrid systems. Nondeterministic choice aU [3 expresses
behavioral alternatives between the runs of « and S. That
is, the HP o U 8 can choose nondeterministically to follow
the runs of HP «, or, instead, to follow the runs of HP S.
The sequential composition «; 8 models that the HP 3 starts
running after HP « has finished (8 never starts if « does not
terminate). In «; 3, the runs of « take effect first, until «
terminates (if it does), and then (3 continues. Observe that,
like repetitions, continuous evolutions within « can take more
or less time, which causes uncountable nondeterminism. This
nondeterminism occurs in hybrid systems, because they can
operate in so many different ways, which is as such reflected
in HPs. Nondeterministic repetition o* is used to express that
the HP « repeats any number of times, including zero times.
When following «*, the runs of HP « can be repeated over
and over again, any nondeterministic number of times (>0).

These operations can define all classical WHILE program-
ming constructs and all hybrid systems [50]. We, e.g., write
a’ = 6 for the unrestricted differential equation 2’ = 6 & true.
We allow differential equation systems and use vectorial
notation. Vectorial assignments are definable from scalar as-
signments and ; using auxiliary variables. Other program
constructs can be defined easily [50].

z:=0| |2 =0&x | aUB|aB|a"

IThe test ?x means “if x then skip else abort”. Our results generalize to
rich-test dZ, where 7 is a HP for any dC formula x (Sect. II-B).

ANDRE PLATZER

HPs have a compositional semantics. We define their se-
mantics by a reachability relation and refer to previous work
for their trace semantics [46], [50]. A state v is a mapping
from variables to R. The set of states is denoted S. We denote
the value of term 6 in v by [0],. We write v |= x iff first-order
formula y is true in state v (also defined in Sect.II-B).

Definition 2 (Transition semantics of HPs). Each HP «
is interpreted semantically as a binary reachability relation
p(a) € 8 x S over states, defined inductively by
o plx:=0)={(r,w) : w=v except that [z] = [0],}
e (") ={(vv) : vEX}
o pla' = 0&x) = {(p(0).0(r) : @(t) o' =0 and
p(t) = x for all 0 < ¢ <r for a solution ¢ : [0,7] = S
of any duration r}; i.e., with ©(¢)(a’) &f %2(”3)@), 7
solves the differential equation and satisfies x at all times
[47]
e plaUp) =p(a)
o plesB) = p(B) o
={(w): (v,p)
o pla*) = U pla™) 1th 0/”1
neN

w) € p(B)}

a™; o and a® = ?true.

We refer to our book [50] for a comprehensive background
and for an elaboration how the case » = 0 (in which the only
condition is ¢(0) |= x) is captured by the above definition.
Time itself is not special but implicit. If a clock variable ¢ is
needed in a HP, it can be axiomatized by ¢’ = 1.

Example 1 (Single car). As an example, consider a simple
car control scenario. We denote the position of a car by z,
its velocity by v, and its acceleration by a. From Newton’s
laws of mechanics, we obtain a simple kinematic model for
the longitudinal motion of the car on a straight road, which
can be described by the differential equation ' = v,v’ = a.
That is, the time-derivative of position is velocity (z' = v) and
the derivative of velocity is acceleration (v' = a). We restrict
the car to never drive backwards by specifying the evolution
domain constraint v > 0 and obtain the continuous dynamical
system x’ =v,v' = a& v > 0. In addition, suppose the car
controller can decide to accelerate (represented by a:= A) or
brake (a:=—b), where A > 0 is a symbolic parameter for
the maximum acceleration and b > 0 a symbolic parameter
describing the brakes. The HP a:= A U a:= —b describes a
controller that can choose nondeterministically to accelerate
or brake. Accelerating will only sometimes be a safe control
decision, so the discrete controller in the following HP requires
a test 7x to be passed in the acceleration choice:

(Ma=A)Ua:=-b); o’ =v,v =a&v>0)" (1)

This HP, which we abbreviate by cars, first allows a non-
deterministic choice of acceleration (if the test y succeeds)
or braking, and then follows the differential equation for an
arbitrary period of time (that does not cause v to enter v < 0).
The HP repeats nondeterministically as indicated by the * rep-
etition operator. Note that the nondeterministic choice (U) in
(1) can nondeterministically select to proceed with 7x;a:= A

LOGICS OF DYNAMICAL SYSTEMS 4

or with a:=—b. Yet the first choice can only continue if,
indeed, formula y is true about the current state (then both
choices are possible). Otherwise only the braking choice will
run successfully. With this principle, HPs elegantly separate
the fundamental principles of (nondeterministic) choice from
conditional execution (tests).

Which formula is suitable for x depends on the control
objective or property we care about. A simple guess for x like
v < 20 has the effect that the controller can only choose to
accelerate at lower speeds. This condition alone is insufficient
for most control purposes; see [50] for better models.

HPs are a program notation for hybrid systems. Hybrid
automata [30] are an automaton notation for hybrid systems.
Hybrid automata correspond to finite automata with guards
and reset relations annotated at edges and with differential
equations and evolution domain constraints annotated at nodes.
The car system in (1) can be represented by the hybrid
automaton in Fig. 1. Hybrid automata can be represented as

Y accel /:} brake
=0 @= ' =
C vV =a vV =a
v>0 ~ X -~ 0v>0

a:=A

Fig. 1. Hybrid automaton for a simple car
HPs [50] just like finite automata can be implemented in
classical WHILE programs.

To avoid technicalities, we consider only polynomial dif-
ferential equations here and refer to previous work [49], [50]
for how to handle hybrid systems with more general differen-
tial equations, including differential equations with fractions,
differential inequalities [75], differential-algebraic equations,
and differential-algebraic constraints with disturbances. Those
more general hybrid systems can be modeled by differential-
algebraic programs, for which there is an extension of dl
called differential-algebraic dynamic logic DAL [49], [50].
There also is an extension of dl to temporal properties that
gives hybrid programs a trace semantics. This extension is
called differential temporal dynamic logic dTL [46], [S0]. We
refer to [50] for details.

B. dC Formulas

Differential dynamic logic dC [45], [47], [50], [54] is a
dynamic logic [64] for hybrid systems. It combines first-order
real arithmetic [73] with first-order modal logic [11], [34]
generalized to hybrid systems. (Nonlinear) real arithmetic is
necessary for describing concepts like safe regions of the state
space and real-valued quantifiers are for quantifying over the
possible values of system parameters. The modal operators [«]
and (a) refer to all ([o]) or some ({«)) state reachable by
following HP «.

Definition 3 (dZ formula). The formulas of differential dy-
namic logic (dL) are defined by the grammar (where ¢, ¢ are

ANDRE PLATZER

dl formulas, 6,605 terms, x a variable, o a HP):

G n= 01=051601>602| | dpAY | V| [a]d

The operator {«) dual to [] is defined by ()¢ = —[a]—¢.
Operators >, <, <,V, —, <>, Jz can be defined as usual, e.g.,
Jx ¢ = -V —¢. We use the notational convention that quan-
tifiers and modal operators bind strong, i.e., their scope only
extends to the formula immediately after. Thus, [a]p A ¢ =
([2]d) A and Yz ¢ A = (Vz ¢) A). In our notation, we
also let — bind stronger than A, which binds stronger than V,
which binds stronger than —, <.

Definition 4 (dC semantics). The satisfaction relation v |= ¢
for dC formula ¢ in state v is defined inductively and as usual
in first-order modal logic (of real arithmetic):

o U ': (91 = 92) iff [[91]]V = [[QQHD.

o U): (91 Z 92) iff [[91]]1/ Z [[92]]D.

e v = —¢ iff it is not the case that v = ¢.

e vEOAYIff v E ¢ and v |E 9.

e vEVroiff vl = ¢ for all d € R.

o v Tx¢iff v? = ¢ for some d € R.
v = [a]¢ iff w = ¢ for all w with (v,w) € p(a).

o v E ()¢ iff w = ¢ for some w with (v,w) € p(a).
If v = ¢, then we say that ¢ is true at v. A dC formula ¢ is
valid, written E ¢, iff v |= ¢ for all states v.

A d_ formula of the form A — [a] B corresponds to a Hoare
triple [21], [33], but for hybrid systems. It is valid if, for all
states: if dC formula A holds (in the initial state), then d_
formula B holds for all states reachable by following HP «.
That is, A — [a]B is valid if B holds in all states reachable
by HP « from initial states satisfying A.

Example 2 (Single car). Consider a very simple d formula:
v>0ANA>0—=[a:=A;2" =v,0 =alv >0

This dC formula expresses that, when, initially, the velocity
v and maximal acceleration A are nonnegative, then all states
reachable by the HP in the [-] modality have a nonnegative
velocity (v > 0). The HP first performs a discrete assignment
a:= A setting the acceleration a to maximal acceleration A,
and then, after the sequential composition (;), follows the
differential equation ' = v, v’ = a where the derivative of the
position z is the velocity (z' = v) and the derivative of the
velocity is the chosen acceleration a (v = a). This dZ formula
is valid, because the velocity will never become negative
when accelerating. It could, however, become negative when
choosing a negative acceleration a < 0, which is what this
simple dZ formula does not allow.

The logic dC also supports more complicated nested prop-
erties and quantifiers like Ip [a](B)¢ which says that there
is a choice of parameter p (expressed by dp) such that for
all behaviors of HP « (expressed by [«]) there is a reaction
of HP § (i.e., (8)) that ensures that ¢ holds in the resulting
state. Likewise, Jp ([a]¢ A [B]y) says that there is a choice
of parameter p that makes both [a]¢ and [5]y true, simul-
taneously, i.e., that makes the conjunction [a]¢ A [B]¢ true,

LOGICS OF DYNAMICAL SYSTEMS 5

saying that formula ¢ holds for all states reachable by runs of
HP « and, independently, 1 holds after all runs of HP 3. This
results in a very flexible logic for specifying and verifying
even sophisticated properties of hybrid systems, including the
ability to refer to multiple hybrid systems at once in a single
formula. This flexibility is useful for computing invariants and
differential invariants [50], [57], [58].

C. Axiomatization

We do not only use df for specification purposes but
also for verification of hybrid systems. That is, we use d_
formulas to specify what properties of hybrid systems we are
interested in, and then use dC proof rules to verify them.
The axioms and proof rules of d_ are syntactic, which means
that we can use them to verify properties of hybrid systems
without having to recourse to their mathematical semantics.
In Sect.lI-D, we show that the semantics and proof rules
of dC match completely, so we are not losing anything by
taking on a syntactic perspective on verification. Syntactic
proof rules are crucial, because they can be implemented and
used computationally in a computer (Sect. II-I).

Our axiomatization of dZ is shown in Fig. 2. To highlight the
logical essentials, we use our axiomatization from our recent
result [54] that is simplified compared to our earlier work [47],
which was tuned for automation. The axiomatization we use
here is closer to that of Pratt’s dynamic logic for conventional
discrete programs [29], [64]. We use the first-order Hilbert
calculus (modus ponens MP and V-generalization rule V) as a
basis and allow all instances of valid formulas of first-order
real arithmetic as axioms. The first-order theory of real-closed
fields is decidable [73] by quantifier elimination. We write - ¢
iff dC formula ¢ can be proved with dZ rules from dC axioms
(including first-order rules and axioms); see Fig.2. That is, a
dZ formula is inductively defined to be provable in the dC
calculus if it is an instance of a d{ axiom or if it is the
conclusion (below the rule bar) of an instance of one of the
dZ proof rules G, MP, V, whose premises (above the rule bar)
are all provable. Our axiomatization in Fig.2 is phrased in
terms of [-]. Corresponding axioms hold for (-) by the defined
duality ()¢ = —[a]—¢; see [50] for explicit (-) rules.

Axiom [:=] is Hoare’s assignment rule. It uses substitutions
to axiomatize discrete assignments. To show that ¢(x) is true
after a discrete assignment, axiom [:=] shows that it has
been true before, when substituting the affected variable x
with its new value §. Formula ¢(6) is obtained from ¢(x)
by substituting 6 for x, provided x does not occur in the
scope of a quantifier or modality binding x or a variable
of . All substitutions in this paper require this admissibility
condition. A modality [«] containing z := or 2’ binds z (written
z € BV («) for bound variable). Only variables that are bound
by HP « can possibly be changed when running o.

Tests are proven by assuming that the test succeeds with
an implication in axiom [?], because test 7y can only make a
transition when condition x actually holds true. From left to
right, axiom [?] for d£ formula [?x]¢ assumes that formula x
holds true (otherwise there is no transition and thus nothing to

ANDRE PLATZER

[z :=0]p(x) < ¢(0)
7 [?xl¢ < (x — ¢)
[[2 =0 < V>0 [z :=y(t)]o &' (t) =0)

[+" = 0 & x]¢
& Yto=wo [2" = 0]([2" = —0](z0 > to = x) = ¢)

(U] [aUB]¢ < [a]o A [B]¢
] [o; Bl < [o][Ble
(1 [a"]¢ < ¢ Ala]lar]e
K al(¢ = ¢) = ([al¢ = [a]y)
I [a")(¢ = [ag) = (¢ — [a"]9)
[[V>0 (p(v) = (@)p(v — 1))

C L Ve (p(v) = (") <0 () (v o)
YV [a]p — [a]Va ¢ (z & a)
vV ¢—[a]é (FV(¢) N BV (a) = 0)
¢
T
= ¢
MP @ ——M
G
¢
A m
Fig. 2. Differential dynamic logic axiomatization

show) and shows that ¢ holds after the resulting no-op. The
converse implication from right to left is by case distinction.
Either y is false, then 7y cannot make a transition and there
is nothing to show. Or x is true, but then also ¢ is true.

In axiom ['], y(-) is the (unique [75, Theorem 10.VI]) solu-
tion of the symbolic initial-value problem y'(t) = 0, y(0) = x.
Given such a solution y(-), continuous evolution along that
differential equation can be replaced by a discrete assignment
x :=y(t) with an additional quantifier for the evolution time ¢.
It goes without saying that variables like ¢ are fresh in Fig. 2.
Notice that conventional initial-value problems are numerical
with concrete numbers z € R"™ as initial values, not symbols
x [75]. This would not be enough for our purpose, because
we need to consider all states in which the system could start,
which may be uncountably many. That is why axiom ['] solves
one symbolic initial-value problem, because we could hardly
solve uncountable many numerical initial-value problems.

Nondeterministic choices split into their alternatives in
axiom [U]. From right to left: If all « runs lead to states
satisfying ¢ (i.e., [@]¢ holds) and all 5 runs lead to states
satisfying ¢ (i.e., [8]¢ holds), then all runs of HP aUf,
which may choose between following « and following S, also
lead to states satisfying ¢ (i.e., [« U 5]¢ holds). The converse

LOGICS OF DYNAMICAL SYSTEMS 6

implication from left to right holds, because o U § can run all
runs of o and all runs of 5. A general principle behind the
dL axioms is most noticeable in axiom [U]. The equivalence
axioms of dL are primarily intended to be used by reducing
the formula on the left to the (structurally simpler) formula on
the right. With such a reduction, we symbolically decompose a
property of a more complicated system into separate properties
of easier fragments o and S. This decomposition makes the
problem tractable and is good for scalability purposes. For
these symbolic structural decompositions, it is very helpful
that d. is a full logic that is closed under all logical operators,
including disjunction and conjunction, for then both sides in
[U] are dC formulas again (unlike in Hoare logic [33]). This
is also an advantage for computing invariants [50], [57], [58].

Sequential compositions are proven using nested modalities
in axiom [;]. From right to left: If, after all a-runs, all S-runs
lead to states satisfying ¢ (i.e., [a][3]¢ holds), then also all
runs of the sequential composition «; [lead to states satisfying
¢ (i.e., [o; B]¢ holds). The converse implication uses the fact
that if after all a-run all S-runs lead to ¢ (i.e., [][5]#), then
all runs of a; 3 lead to ¢ (that is, [«o; B]¢), because the runs
of a; [are exactly those that first do any «-run, followed
by any [-run. Again, it is crucial that dC is a full logic that
considers reachability statements as modal operators, which
can be nested, for then both sides in [;] are dZ formulas again
(unlike in Hoare logic [33], where intermediate assertions need
to be guessed or computed as weakest preconditions for 3 and
¢). Note that dC can directly express weakest preconditions,
because the dC formula [8]¢ or any formula equivalent to it
already is the weakest precondition for 5 and ¢. Strongest
postconditions are expressible in d as well.

Axiom [*] is the iteration axiom, which partially unwinds
loops. It uses the fact that ¢ always holds after repeating «
(i.e., [@*]¢@), if ¢ holds at the beginning (for ¢ holds after
zero repetitions then), and if, after one run of «, ¢ holds after
every number of repetitions of «, including zero repetitions
(i.e., [a][a*]¢). So axiom [*] expresses that [a*]¢ holds iff
¢ holds immediately and after one or more repetitions of «.
Bounded model checking corresponds to unwinding loops N
times by axiom [*] and simplifying the resulting formula in the
d.l calculus. If the formula is invalid, a bug has been found,
otherwise IV increases. We use induction axioms I and C for
proving formulas that need unbounded repetitions of loops.

Axiom K is the modal modus ponens from modal logic [34].
It expresses that, if an implication ¢ — ¢ holds after all runs
of a (i.e., [&](¢ —) and ¢ holds after all runs of « (i.e.,
[a]¢@), then v holds after all runs of « (i.e., [@]t)), because 1
is a consequence in each state reachable by a.

Axiom I is an induction schema for repetitions. Axiom
I says that, if, after any number of repetitions of «, in-
variant ¢ remains true after one (more) iteration of « (i.e.,
[a*](¢ — [a]¢)), then ¢ holds after any number of repetitions
of a (i.e., [a*]¢) if ¢ holds initially. That is, if ¢ is true after
running o« whenever ¢ has been true before, then, if ¢ holds
in the beginning, ¢ will continue to hold, no matter how often
we repeat « in [a*]¢.

ANDRE PLATZER

Axiom C, in which v does not occur in « (written v & «),
is a variation of Harel’s convergence rule, suitably adapted to
hybrid systems over R. Axiom C expresses that, if, after any
number of repetitions of «, ¢(v) can decrease after some run
of a by 1 (or another positive real constant) when v > 0,
then, if ¢(v) holds for any v, then the variant ¢(v) holds for
some real number v < 0 after repeating « sufficiently often
(i.e., {(a*)Fv<0 (v)). This axiom shows that positive progress
with respect to ¢(v) can be achieved by running .

Axiom B is the Barcan formula of first-order modal logic,
characterizing anti-monotonic domains [34]. In order for it to
be sound for d£, x must not occur in «. It expresses that,
if, from all initial values of x, all runs of « lead to states
satisfying ¢, then, after all runs of «, ¢ holds for all values
of x, because the value of x cannot affect the runs of «, nor
can = change during runs of «, since = ¢ a. The converse of
B is provable? [34, BFCp. 245] and we also call it B.

Axiom V is for vacuous modalities and requires that no free
variable of ¢ (written F'V(¢)) is bound by «, because « then
cannot change any of the free variables of ¢. It expresses
that, if ¢ holds in a state, then it holds after all runs of
a, because, by FV(¢) N BV («) = (), no variable that « can
change occurs free in ¢. The converse of V holds, but we do
not need it. Note that, unlike the other axioms, B, V, and [*]
are not strictly required for proving dC formulas.

Rule G is Godel’s necessitation rule for modal logic [34].
It expresses that, if ¢ is valid, i.e., true in all states, then [a]¢
is valid. Note that, quite unlike rule G, axiom V crucially
requires the variable condition that ensures that the value of
¢ is not affected by running «.

Rules MP and V are as in first-order logic. Modus ponens
(MP) expresses that if we know that both ¢ — v and ¢ are
valid, then 1 is a valid consequence. The V-generalization rule
(V) expresses that if ¢ is valid, then so is Vz ¢.

The dL axiomatization in Fig.2 uses a modular dC axiom
[&] that reduces differential equations with evolution domain
constraints to differential equations without them by checking
the evolution domain constraint backwards along the reverse
flow. It checks x backwards from the end of the evolution
up to the initial time ¢, using that 2’ = —6 follows the same
flow as 2’ = 6, but backwards. See Fig.3 for an illustration.

x
revert flow and time zg;
check x backwards
= -0
1 t
to = Xo r
Fig. 3. “There and back again” axiom [&] checks evolution domain along

backwards flow over time

To simplify notation, we assume that the (vector) differential

2From Vx ¢ — ¢, derive [o](Vx¢ — ¢) by G, from which K and
propositional logic derive [a]Vx ¢ — [a]¢. Then, first-order logic derives
[a]Vz ¢ — Va [a]¢, as x is not free in the antecedent.

LOGICS OF DYNAMICAL SYSTEMS 7

equation =’ = 6 in axiom [&] already includes a clock z(, = 1
for tracking time. The idea behind axiom [&] is that the fresh
variable ¢y remembers the initial time zg, then x evolves
forward along z’ = 6 for any amount of time. Afterwards,
¢ has to hold if, for all ways of evolving backwards along
2’ = —6 for any amount of time, z¢ > tg — x holds, i.e., x
holds at all previous times that are later than the initial time
to. Thus, ¢ is not required to hold after a forward evolution
if the evolution domain constraint x can be left by evolving
backwards for less time than the forward evolution took.

The following loop invariant rule ind derives from G and
I. Convergence rule con derives from V-generalization, G, and
C (like in C, v does not occur in «):

¢ = [a¢
¢ = [a*]p

While this is not the focus of this paper, we note that we
have successfully used a refined sequent calculus variant of the
Hilbert calculus in Fig.2 for automatic verification of hybrid
systems, including trains, cars, and aircraft; see Sect.II-I.
Several different verification paradigms can be formulated for
the dC calculus by choosing in which order to use the axioms,
including proving by symbolic execution, proving by forward
image computation, proving by backward image computation,
proving by fixpoint loops, and full deduction [50].

Uses of real arithmetic, which, we denote by Rr, are decid-
able by quantifier elimination in real-closed fields [73].

) Av>0—= (a)p(v—1)
e(v) = (@) Fv<0p(v)

(ind) (con)

Example 3 (Single car). In order to illustrate how the dC
calculus can be used to prove dC formulas and identify pa-
rameter constraints required for them to be valid, we consider
a dC formula for the braking case of HP (1):

v>0Az<m—=[a:==ba =v,0 =adz<m ()

Formula (2) claims a car would never run a stoplight if it starts
before the stoplight (x < m) and is applying the brakes. Since
braking is the safest operation for cars, we might think that
car control would always be safe in this most conservative
scenario. But that is not the case. If the car starts off too
fast compared to the remaining distance to the stoplight, then
not even braking can prevent a crash. We can easily find out,
however, under which circumstance the dZ formula (2) is valid
by applying d axioms to it. The following dZ proof reveals
that (2) is valid if v? < 2b(m — x) holds, see Fig. 4.

v>0Az <m —v? < 2b(m—)
Bo>0A2 <m =v>0(Z22 +ot+a <m)
Sy >0nz<m —[a:=—bvt>0 (%12 + vt +x < m)
=y >0nz<m —a:==bVt>0[z := %tz—l—vt—i—m]xgm
HvEO/\xSm—)[a:
HvEO/\sz—)[a:

—bl[z' =v,v" =a]Jr <m

by’ =v,v =alx <m

Fig. 4. A dC proof for safe braking

ANDRE PLATZER

D. Soundness and Completeness

The dZ calculus is sound [47], [54], that is, every formula
that is provable using the dZ axioms and proof rules is valid,
i.e., true in all states. That is, for all d£ formulas ¢:

F ¢ implies F ¢ 3)

Soundness should be sine qua non for formal verification,
but, for fundamental reasons [16], [56], is so complex for
hybrid systems that it is sometimes inadvertently forsaken. In
logic, we ensure soundness just by checking locally once for
each axiom and proof rule. Thus, no matter how complicated
a proof, the proven d formula is valid, because it is a
(complicated) consequence of lots simple valid proof steps.

More intriguingly, however, our logical setting also enables
us to ask the converse: is the dC proof calculus complete, i.e.,
can it prove all that is true? That is, does the converse of (3)
hold? A simple corollary to Godel’s incompleteness theorem
shows that already the fragments for discrete dynamical sys-
tems and for continuous dynamical systems are incomplete
[47]. In logic, the suitability of an axiomatization can still be
established by showing completeness relative to a fragment
[17], [29]. This relative completeness, in which we assume we
were able to prove valid formulas in a fragment and prove that
we can then prove all others, also tells us how subproblems
are related computationally. It tells us whether one subproblem
dominates the others. Standard relative completeness [17],
[29], however, which works relative to the data logic, is
inadequate for hybrid systems, whose complexity comes from
the dynamics, not the data logic, first-order real arithmetic,
which is perfectly decidable [73].

We have shown that both the original d_ sequent calculus
[47] and the Hilbert-type calculus in Fig.2 [54] are sound
and complete axiomatizations of d£ relative to the continuous
fragment (FOD). FOD is the first-order logic of differential
equations, i.e., first-order real arithmetic augmented with
formulas expressing properties of differential equations, that
is, dC formulas of the form [z’ = 6]F with a first-order
formula F'. Note that axioms B and V are not needed for
the proof of the following theorem.

Theorem 1 (Relative completeness of dZ [47], [54]). The d_
calculus is a sound and complete axiomatization of hybrid
systems relative to FOD, i.e., every valid AL formula can be
derived from FOD tautologies:

= ¢ lﬁc TautFop b (]5

This central result shows that we can prove properties of hy-
brid systems in the dZ calculus exactly as good as properties of
differential equations can be proved. One direction is obvious,
because differential equations are part of hybrid systems, so
we can only understand hybrid systems to the extent that we
can reason about their differential equations. We have shown
the other direction by proving that all true properties of hybrid
systems can be reduced effectively to elementary properties
of differential equations. Moreover, the dZ proof calculus
for hybrid systems can perform this reduction constructively

LOGICS OF DYNAMICAL SYSTEMS 8

and, vice versa, provides a provably perfect lifting of every
approach for differential equations to hybrid systems.

Another important consequence of this result is that decom-
position can be successful in taming the complexity of hybrid
systems. The dL proof calculus is strictly compositional.
All proof rules prove logical formulas or properties of HPs
by reducing them to structurally simpler d£ formulas. As
soon as we understand that the hybrid systems complexity
comes from a combination of several simpler aspects, we can,
hence, tame the system complexity by reducing it to analyzing
the dynamical effects of simpler parts. This decomposition
principle is exactly how dC proofs can scale to interesting
systems in practice. Theorem 1 gives the theoretical evidence
why this principle works in general, not just in the case studies
we have considered so far. This is a good illustration of our
principle of multi-dynamical systems and even a proof that the
decompositions behind the multi-dynamical systems approach
are successful. Note that, even though Theorem 1 proves
(constructively) that every true property of hybrid systems
can be proved in the d calculus by decomposition from
elementary properties of differential equations, it is still an
interesting question which decompositions are most efficient.

For an even more surprising “converse” result proving a
sound and complete axiomatization of df relative to the
discrete fragment of dC, we refer to recent work [54]. That
proof is again a constructive reduction, proving that hybrid
dynamics, continuous dynamics, and discrete dynamics are
proof-theoretically equivalently reducible in the dZ calculus.
Even though the nature of each kind of dynamics is funda-
mentally different, they still enjoy a perfect proof-theoretical
correspondence. In a nutshell, we have shown that we can
proof-theoretically equate:

“hybrid = continuous = discrete”

A discussion of this fundamental result about the nature of
hybridness is beyond the scope of this paper; we refer to
previous work [54].

E. Differential Invariants

The d£ axiomatization in Fig.2 is sound and complete
relative to FOD. But Fig.2 only has a very simple proof rule
for differential equations ([']) based on computing a solution
of the differential equation. For proving more complicated
differential equations by induction, dZ provides differential
invariants and differential variants [49], which have been
introduced in 2008 [49] and later refined to a procedure that
computes differential invariants in a fixed-point loop [57], [58].
All premier proof principles for discrete loops are based on
some form of induction. Theorem 1 and its discrete converse
[54] prove that verification techniques that are successful for
discrete systems generalize to continuous and hybrid systems
and vice versa. Differential invariants and differential variants
can be considered as one (of many possible) constructive and
practical consequences of this result. Differential induction
defines induction for differential equations. It resembles in-
duction for discrete loops (rule ind) but works for differential

ANDRE PLATZER

0

equations instead and uses a differential formula (F',,, defined

in [49]) for the induction step.
x—F’ 2,

(Bh F—z' =0&x]F

This differential induction rule is a natural induction principle
for differential equations. The difference compared to ordinary
induction for discrete loops is that the evolution domain
constraint x is assumed in the premise (because the continuous
evolution is not allowed to leave its evolution domain con-
straint) and that the induction step uses the differential formula
F’ Z/ corresponding to formula F' and the differential equation
2’ = 0 instead of a statement that the loop body preserves
the invariant. Intuitively, the differential formula F’ Z, captures
the infinitesimal change of formula F' over time along 2’ = 6,
and expresses the fact that F' is only getting more true when
following the differential equation ' = #. The semantics of
differential equations is defined in a mathematically precise but
computationally intractable way using analytic differentiation
and limit processes at infinitely many points in time. The
key point about differential invariants is that they replace this
precise but computationally intractable semantics with a com-
putationally effective, algebraic and syntactic total derivative
F’ along with simple substitution of differential equations.
The valuation of the resulting computable formula F’ i, along
differential equations coincides with analytic differentiation.
The basic idea behind rule DI is that the premise of DI
shows that the total derivative F’ holds within evolution
domain y when substituting the differential equations z’ = 6
into F. If F holds initially (antecedent of conclusion), then F'
itself always stays true (succedent of conclusion). Intuitively,
the premise gives a condition showing that, within x, the
total derivative F” along the differential constraints is pointing
inwards or transversally to F' but never outwards to —F};
see left side of Fig.5 for an illustration. Hence, if we start

—F

Fig. 5. Differential invariant F' for safety and differential variant for progress

in F' and, as indicated by F”, the local dynamics never points
outside F', then the system always stays in F' when following
the dynamics. Observe that, unlike F”, the premise of DI is a
well-formed formula, because all differential expressions are
replaced by non-differential terms when forming F’ i,.

More advanced uses of differential invariants can be found
in previous work [49], [50], [55], [57], [59], [61]. Differential
dynamic logic proofs with differential invariants have been
instrumental in enabling the verification of more complicated
hybrid systems, including separation properties in complex
curved flight collision avoidance maneuvers for air traffic con-
trol [50], [59], advanced safety, reactivity and controllability

LOGICS OF DYNAMICAL SYSTEMS 9

properties of train control systems with disturbance and PI
controllers [50], [61], and properties of electrical circuits [50].
Differential invariants are also the proof technique of choice
for differential inequalities, differential-algebraic equations,
and differential equations with disturbances [49], [50].

We refer to previous work [49], [55] for details on the
structure of differential invariants and a complete investiga-
tion of the relative deductive power of several classes of
differential invariants; see Fig. 6 for an overview of classes of
differential invariants restricted to the operators as indicated,
where strict inclusions of the deductive power are indicated
by —, equivalences of deductive power are indicated by =,
and incomparable deductive powers are indicated by ~ .

DI DI> v

——DI>=nv
DI- ——DI_Av

o LI I

DI DIsny ——>DIs —pyv

DI

Fig. 6. Differential invariance chart

We also refer to previous work [49], [50] for the technique
of differential axiomatization, which is useful for transforming
sophisticated non-polynomial differential equations into poly-
nomial differential equations by introducing new variables.
This is beneficial because, even though the solutions of the
resulting polynomial differential equations are still equally
complicated, we never need the solutions when working with
differential invariants. Differential invariants depend on the
right-hand side of the differential equations, which is then
polynomial and, thus, leads to decidable arithmetic.

F. Differential Variants

Differential variants [49] use ideas similar to those behind
differential invariants, except that they use progress arguments
so that differential variants can be used to prove formulas of
the form (' = 0 & x)F. That is, differential variants prove
that the system can make progress along =’ = 6 to finally reach
F without having left y before; see previous work [49].

G. Differential Cuts

Differential cuts [49] are another fundamental proof princi-
ple for differential equations. They can be used to strengthen
assumptions in a sound way:

F—[2' =0&x]C F=' =0&(x NO)F

0O F—lz' =0&x|F

The differential cut rule works like a cut, but for differential
equations. In the right premise, rule DC restricts the system
evolution to the subdomain xy A C of x, which restricts the
system dynamics to a subdomain but this change is a pseudo-
restriction, because the left premise proves that the extra
restriction C' on the system evolution is an invariant anyhow
(e.g. using rule DI). Rule DC is special in that it changes the

ANDRE PLATZER

dynamics of the system (it adds a constraint to the system
evolution domain region that the resulting system is never
allowed to leave by Def.2), but it is still sound, because this
change does not reduce the reachable set. The benefit of rule
DC is that C' will (soundly) be available as an extra assumption
for all subsequent DI uses on the right premise of DC. The
differential cut rule DC can be used to strengthen the right
premise with more and more auxiliary differential invariants
C that cut down the state space and will be available as extra
assumptions to prove the right premise, once they have been
proven to be differential invariants in the left premise.

Differential cuts do not only help in practice, but are a
fundamental proof principle. We refuted the differential cut
elimination hypothesis [49]. Differential cuts have a simple
intuition. Similar to a cut in first-order logic, they can be used
to first prove a lemma and then use it. By the seminal cut
elimination theorem of Gentzen [24], standard logical cuts do
not change the deductive power and can be eliminated. Unlike
standard cuts, however, differential cuts actually increase the
deductive power [55]. There are properties of differential
equations that can only be proven using differential cuts, not
without them. Hence, differential cuts are a fundamental proof
principle for differential equations.

Theorem 2 (Differential cut power [55]). The deductive power
with differential cuts (rule DC) exceeds the deductive power
without differential cuts.

We refer to previous work [55] for details on the differential
cut elimination hypothesis [49], the proof of its refutation [55],
and a complete investigation of the relative deductive power
of several classes of differential invariants.

H. Differential Auxiliaries

Furthermore, the addition of auxiliary differential variables
increases the deductive power.

Theorem 3 (Auxiliary differential variable power [55]). The
deductive power with auxiliary differential variables exceeds
the deductive power without auxiliary differential variables
even in the presence of differential cuts.

L. Implementation and Applications

Differential dynamic logic [45], [47], [54] and its proof cal-
culus [45], [47], including differential invariants, differential
variants, and differential cuts [49] have been implemented
in the automatic and interactive theorem prover KeYmaera
[60],> which is based on KeY [8]. The name KeYmaera is a
homophone to Chimera, the hybrid animal from ancient Greek
mythology. KeYmaera implements a sequent calculus version
[47] of the axiomatization in Fig.2, because the sequent
calculus is more suitable for automation. Differential dynamic
logic forms the basis for an automatic proof search procedure
searching for invariants and differential invariants [50], [57],
[58] that has been implemented in KeYmaera.

3 Available at http://symbolaris.com/info/KeYmaera.html

LOGICS OF DYNAMICAL SYSTEMS 10

Differential dynamic logic and KeYmaera have been used
successfully for verifying system-level properties of local
lane controllers for highway car traffic [38], car controllers
for intersections [37], intelligent speed adaptation for vari-
able speed limit control and incident management by traf-
fic centers on highways [41], CICAS-SLTA left-turn assist
controllers for cars at intersections [4], flyable roundabout
collision avoidance maneuvers for aircraft [59], the cooper-
ation protocols of the European Train Control System ETCS
[61], and analog circuits [50]. KeYmaera has been used to
prove safety requirements of a distributed elevator controller,
medical robotic surgery systems, robotic factories, and to
study biological models. Properties proved about these systems
using d£ include safety, controllability, reactivity, liveness, and
characterization properties. More details about d and some of
its applications are described in a book [50] about the theory,
practice, and applications of dC and its extensions DAL for
differential-algebraic hybrid systems and dTL for temporal
properties.

III. RELATED WORK

Hybrid systems is a very active area of research, so a
comprehensive overview of all results is impossible. In this
tutorial, we focus on logic and proofs for hybrid systems. For
background on classical logic and proving, we refer to the
literature [20], [28], [34].

Model checking and reachability analysis have been used
successfully for hybrid systems. They work by state space
exploration and use various abstractions or approximations [2],
[30], [32], including numerical approximations [5], [13].

Verification tools are based on logic and proofs [47], [54],
[60], polyhedral reachability analysis [22], [31], reachability
analysis with support functions [23], [25], interval-constraint
propagation [66], and numerical PDE solving [40]. Constraint-
based verification approaches [26], [63], [71] have been con-
sidered, which are related to differential invariants.

Many languages have been proposed for modeling hybrid
systems, including extended duration calculus [76], hybrid
automata [30], hybrid programs [45], [47], guarded commands
[69], hybrid m-calculus [70], and process algebra x [74].

Logic has been used successfully for real-time systems [19],
[32] and for timed-automata based model checking [3], [7].
Details about real-time systems can be found in [7], [42].

The use of logic has been proposed for hybrid systems,
e.g., in a propositional modal p-calculus [18] or in early
work based on phase transition systems [39]. See [18] for
an excellent overview. We consider the first-order case, i.e.,
how to model and prove systems with concrete differential
equations like ' = v,v’ = a and concrete control decisions
like a := —b, instead of abstract propositional actions A, B, C'
of unknown effects that propositional modal p-calculi consider
[18], [65]. The use of theorem provers has been suggested
in hybrid systems, including STeP [35] and PVS [1]. Their
working principles are different from what we show here. They
separate hybridness from the logic and proof by compiling a
given global system invariant for a hybrid automaton into a

ANDRE PLATZER

single verification condition expressing that the invariant is
preserved under all transitions of the hybrid automaton.

In our approach, we, instead, take logic and hybridness
at face value by developing and studying logics for hybrid
systems, which directly integrate the logic and the hybrid
dynamics (or extensions) within a single language. That makes
it easier to identify the core logical reasoning principles and
transform formulas soundly in an entirely local way even for
more general properties than invariance checking. This view
enables the study of logically more foundational questions,
including completeness, deductive power, and relationships
of differential invariants and differential cuts. Benefits for
automation of proofs and for computing invariants and dif-
ferential invariants have been discussed elsewhere [50], [58].

IV. SUMMARY AND OUTLOOK

We have surveyed a (small) selection of topics about dif-
ferential dynamic logic for hybrid systems. We have recalled
dynamical system models, dynamic logics, their semantics,
their axiomatizations, and proof calculi for each of those
dynamical systems. We have surveyed important theoretical
results, including soundness and completeness, and results
about the relative deductive power of differential cuts and
of differential auxiliaries. The differential dynamic logics and
their induction techniques for differential equations, which are
captured in various forms of differential invariants and differ-
ential variants, have been instrumental in proving properties
for more advanced dynamical systems. While the use of the
theorem provers implementing differential dynamic logics is
beyond the scope of this article, we have given references to
more information, including a number of applications and case
studies.

Only a small selection of the important results about dif-
ferential dynamic logics are included in this survey. We still
hope to have given the reader a good first overview of logics
for dynamical systems. The reader should note that, for space
reasons, we could not cover differential-algebraic dynamic
logic (DAL) [49] for hybrid systems with differential-algebraic
constraints modeled in differential-algebraic program, the tem-
poral extension of differential temporal dynamic logic (dTL)
[50], quantified differential dynamic logic (QdL) for dis-
tributed hybrid systems [51], [53], and stochastic differential
dynamic logic (SAL) for stochastic hybrid systems [52].

The results summarized in this article demonstrate that logic
is a powerful tool, not just for studying discrete phenom-
ena, but also continuous phenomena. Extensions to infinite-
dimensional and stochastic phenomena are shown elsewhere
[51]-[53]. The logic dC is a strong logical foundation for
hybrid systems. Such stable foundations for the relatively
young area of logic of dynamical systems make it a very
promising direction for future research, including theoretical,
practical, and applied research. Given the tremendous progress
that logic for programs has made since its conception, we
expect to see no less from the area of logics for dynamical
systems.

LOGICS OF DYNAMICAL SYSTEMS 11

ACKNOWLEDGMENT

I am grateful to Jan-David Quesel for indispensable help
with implementing KeYmaera. My thanks go to Sicun Gao,
David Harel, David Henriques, Oded Maler, Jodo Martins,
Sayan Mitra, Vaughan Pratt, and Sriram Sankaranarayanan for
feedback on this article. This material is based upon work
supported by the National Science Foundation under NSF
CAREER Award CNS-1054246, NSF EXPEDITION CNS-
0926181, and under Grant Nos. CNS-1035800 and CNS-
0931985, by the ONR award N00014-10-1-0188, by the Army
Research Office under Award No. W911NF-09-1-0273, and by
the German Research Council (DFG) as part of the Transre-
gional Collaborative Research Center “Automatic Verification
and Analysis of Complex Systems” (SFB/TR 14 AVACS).

REFERENCES

[1] E. Abrahém—Mumm, M. Steffen, and U. Hannemann, “Verification of
hybrid systems: Formalization and proof rules in PVS.” in ICECCS,
S. F. Andler and J. Offutt, Eds. Los Alamitos: IEEE Computer Society,
2001, pp. 48-57.

[2] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine, “The algorithmic
analysis of hybrid systems,” Theor. Comput. Sci., vol. 138, no. 1, pp.
3-34, 1995.

[3] R. Alur and D. L. Dill, “A theory of timed automata,” Theor. Comput.
Sci., vol. 126, no. 2, pp. 183-235, 1994.

[4] N. Aréchiga, S. M. Loos, A. Platzer, and B. H. Krogh, “Using theorem
provers to guarantee closed-loop system properties,” in ACC, D. Tilbury,
Ed., 2012.

[5] E. Asarin, T. Dang, and A. Girard, “Reachability analysis of nonlin-
ear systems using conservative approximation,” in HSCC, ser. LNCS,
O. Maler and A. Pnueli, Eds., vol. 2623. Springer, 2003, pp. 20-35.

[6] E. Asarin and O. Maler, “Achilles and the tortoise climbing up the
arithmetical hierarchy,” J. Comput. Syst. Sci., vol. 57, no. 3, pp. 389-398,
1998.

[7]1 C. Baier, J.-P. Katoen, and K. G. Larsen, Principles of Model Checking.
MIT Press, 2008.

[8] B. Beckert, R. Hihnle, and P. H. Schmitt, Eds., Verification of Object-
Oriented Software: The KeY Approach, ser. LNCS. Springer, 2007, vol.
4334.

[9] M. S. Branicky, “General hybrid dynamical systems: Modeling, analysis,
and control,” in Hybrid Systems, ser. LNCS, R. Alur, T. A. Henzinger,
and E. D. Sontag, Eds., vol. 1066. Springer, 1995, pp. 186-200.

[10] M. S. Branicky, V. S. Borkar, and S. K. Mitter, “A unified framework
for hybrid control: Model and optimal control theory,” IEEE T. Automat.
Contr., vol. 43, no. 1, pp. 3145, 1998.

[11] R. Carnap, “Modalities and quantification,” J. Symb. Log., vol. 11, no. 2,
pp. 33-64, 1946.

[12] F. Cassez and K. G. Larsen, “The impressive power of stopwatches,” in
CONCUR, 2000, pp. 138-152.

[13] A. Chutinan and B. H. Krogh, “Computational techniques for hybrid
system verification,” IEEE T. Automat. Contr., vol. 48, no. 1, pp. 64-75,
2003.

[14] E. Clarke, A. Fehnker, Z. Han, B. Krogh, O. Stursberg, and M. Theobald,
“Verification of hybrid systems based on counterexample-guided abstrac-
tion refinement,” in TACAS 2003, ser. LNCS, H. Garavel and J. Hatcliff,
Eds., no. 2619, 2003, pp. 192-207.

[15] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking. Cam-
bridge, MA, USA: MIT Press, 1999.

[16] P. Collins, “Optimal semicomputable approximations to reachable and
invariant sets,” Theory Comput. Syst., vol. 41, no. 1, pp. 3348, 2007.

[17] S. A. Cook, “Soundness and completeness of an axiom system for
program verification.” SIAM J. Comput., vol. 7, no. 1, pp. 70-90, 1978.

[18] J. M. Davoren and A. Nerode, “Logics for hybrid systems,” IEEE,
vol. 88, no. 7, pp. 985-1010, July 2000.

[19] B. Dutertre, “Complete proof systems for first order interval temporal
logic,” in LICS. IEEE Computer Society, 1995, pp. 36-43.

[20] M. Fitting, First-Order Logic and Automated Theorem Proving, 2nd ed.
New York: Springer, 1996.

ANDRE PLATZER

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]
(31]

[32]

[33]
[34]
[35]
[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

R. W. Floyd, “Assigning meanings to programs,” in Mathematical
Aspects of Computer Science, Proceedings of Symposia in Applied
Mathematics, J. T. Schwartz, Ed., vol. 19. Providence: AMS, 1967,
pp. 19-32.

G. Frehse, “PHAVer: algorithmic verification of hybrid systems past
HyTech,” STTT, vol. 10, no. 3, pp. 263-279, 2008.

G. Frehse, C. L. Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel,
R. Ripado, A. Girard, T. Dang, and O. Maler, “SpaceEx: Scalable
verification of hybrid systems,” in CAV, ser. LNCS, G. Gopalakrishnan
and S. Qadeer, Eds., vol. 6806. Springer, 2011, pp. 379-395.

G. Gentzen, “Untersuchungen tiber das logische Schliefien. II,” Math.
Zeit., vol. 39, no. 3, pp. 405431, 1935.

C. L. Guernic and A. Girard, “Reachability analysis of hybrid systems
using support functions,” in CAV, ser. LNCS, A. Bouajjani and O. Maler,
Eds., vol. 5643. Springer, 2009, pp. 540-554.

S. Gulwani and A. Tiwari, “Constraint-based approach for analysis of
hybrid systems,” in CAV, ser. LNCS, A. Gupta and S. Malik, Eds., vol.
5123. Springer, 2008, pp. 190-203.

A. Gupta and S. Malik, Eds., Computer Aided Verification, CAV 2008,
Princeton, NJ, USA, Proceedings, ser. LNCS, vol. 5123. Springer,
2008.

D. Harel, D. Kozen, and J. Tiuryn, Dynamic logic.
Press, 2000.

D. Harel, A. R. Meyer, and V. R. Pratt, “Computability and completeness
in logics of programs (preliminary report),” in STOC. ACM, 1977, pp.
261-268.

T. A. Henzinger, “The theory of hybrid automata.” in LICS.
Alamitos: IEEE Computer Society, 1996, pp. 278-292.

T. A. Henzinger, P.-H. Ho, and H. Wong-Toi, “HyTech: A model checker
for hybrid systems,” STTT, vol. 1, no. 1-2, pp. 110-122, 1997.

T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine, “Symbolic model
checking for real-time systems,” in LICS. IEEE Computer Society,
1992, pp. 394-406.

C. A. R. Hoare, “An axiomatic basis for computer programming,”
Commun. ACM, vol. 12, no. 10, pp. 576-580, 1969.

G. E. Hughes and M. J. Cresswell, A New Introduction to Modal Logic.
Routledge, 1996.

Y. Kesten, Z. Manna, and A. Pnueli, “Verification of clocked and hybrid
systems,” Acta Inf., vol. 36, no. 11, pp. 837-912, 2000.

D. Kozen, “Kleene algebra with tests,” ACM Trans. Program. Lang.
Syst., vol. 19, no. 3, pp. 427-443, 1997.

S. M. Loos and A. Platzer, “Safe intersections: At the crossing of hybrid
systems and verification,” in ITSC, K. Yi, Ed. Springer, 2011, pp. 1181-
1186.

S. M. Loos, A. Platzer, and L. Nistor, “Adaptive cruise control: Hybrid,
distributed, and now formally verified,” in FM, ser. LNCS, M. Butler
and W. Schulte, Eds., vol. 6664. Springer, 2011, pp. 42-56.

O. Maler, Z. Manna, and A. Pnueli, “From timed to hybrid systems,” in
REX Workshop, ser. LNCS, J. W. de Bakker, C. Huizing, W. P. de Roever,
and G. Rozenberg, Eds., vol. 600. Springer, 1991, pp. 447-484.

I. M. Mitchell and J. A. Templeton, “A toolbox of Hamilton-Jacobi
solvers for analysis of nondeterministic continuous and hybrid systems,”
in HSCC, ser. LNCS, M. Morari and L. Thiele, Eds., vol. 3414.
Springer, 2005, pp. 480—494.

S. Mitsch, S. M. Loos, and A. Platzer, “Towards formal verification of
freeway traffic control,” in /CCPS, C. Lu, Ed. IEEE, 2012, pp. 171-180.
E.-R. Olderog and H. Dierks, Real-Time Systems: Formal Specification
and Automatic Verification. Cambridge Univ. Press, 2008.

R. Parikh, “The completeness of propositional dynamic logic,” in MFCS,
ser. LNCS, J. Winkowski, Ed., vol. 64. Springer, 1978, pp. 403-415.
L. Perko, Differential equations and dynamical systems, 3rd ed. New
York: Springer, 2006.

A. Platzer, “Differential dynamic logic for verifying parametric hy-
brid systems.” in TABLEAUX, ser. LNCS, N. Olivetti, Ed., vol. 4548.
Springer, 2007, pp. 216-232.

——, “A temporal dynamic logic for verifying hybrid system invariants.”
in LFCS, ser. LNCS, S. N. Artémov and A. Nerode, Eds., vol. 4514.
Springer, 2007, pp. 457-471.

——, “Differential dynamic logic for hybrid systems.” J. Autom. Reas.,
vol. 41, no. 2, pp. 143-189, 2008.

——, “Differential dynamic logics: Automated theorem proving for
hybrid systems,” Ph.D. dissertation, Department of Computing Science,
University of Oldenburg, Dec 2008, appeared with Springer.

Cambridge: MIT

Los

[49]
[50]

[51]

[52]

(53]

(54
[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]
[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]
[76]

LOGICS OF DYNAMICAL SYSTEMS 12

——, “Differential-algebraic dynamic logic for differential-algebraic
programs,” J. Log. Comput., vol. 20, no. 1, pp. 309-352, 2010.

——, Logical Analysis of Hybrid Systems: Proving Theorems for Com-
plex Dynamics. Heidelberg: Springer, 2010.

——, “Quantified differential dynamic logic for distributed hybrid
systems,” in CSL, ser. LNCS, A. Dawar and H. Veith, Eds., vol. 6247.
Springer, 2010, pp. 469-483.

——, “Stochastic differential dynamic logic for stochastic hybrid pro-
grams,” in CADE, ser. LNCS, N. Bjgrner and V. Sofronie-Stokkermans,
Eds., vol. 6803. Springer, 2011, pp. 431-445.

, “A complete axiomatization of quantified differential dynamic
logic for distributed hybrid systems,” Logical Methods in Computer
Science, 2012, special issue for selected papers from CSL’10.

, “The complete proof theory of hybrid systems,” in LICS.
Computer Society, 2012.

——, “The structure of differential invariants and differential cut elim-
ination,” Logical Methods in Computer Science, 2012, to appear.

A. Platzer and E. M. Clarke, “The image computation problem in hybrid
systems model checking.” in HSCC, ser. LNCS, A. Bemporad, A. Bicchi,
and G. C. Buttazzo, Eds., vol. 4416. Springer, 2007, pp. 473-486.
——, “Computing differential invariants of hybrid systems as fixed-
points,” in CAV, ser. LNCS, A. Gupta and S. Malik, Eds., vol. 5123.
Springer, 2008, pp. 176-189.

——, “Computing differential invariants of hybrid systems as fixed-
points,” Form. Methods Syst. Des., vol. 35, no. 1, pp. 98-120, 2009,
special issue for selected papers from CAV’08.

——, “Formal verification of curved flight collision avoidance maneu-
vers: A case study,” in FM, ser. LNCS, A. Cavalcanti and D. Dams,
Eds., vol. 5850. Springer, 2009, pp. 547-562.

A. Platzer and J.-D. Quesel, “KeYmaera: A hybrid theorem prover for
hybrid systems.” in IJCAR, ser. LNCS, A. Armando, P. Baumgartner,
and G. Dowek, Eds., vol. 5195. Springer, 2008, pp. 171-178.

, “European Train Control System: A case study in formal verifica-
tion,” in ICFEM, ser. LNCS, K. Breitman and A. Cavalcanti, Eds., vol.
5885. Springer, 2009, pp. 246-265.

A. Platzer, J.-D. Quesel, and P. Riimmer, “Real world verification,” in
CADE, ser. LNCS, R. A. Schmidt, Ed., vol. 5663. Springer, 2009, pp.
485-501.

S. Prajna, A. Jadbabaie, and G. J. Pappas, “A framework for worst-
case and stochastic safety verification using barrier certificates,” IEEE
T. Automat. Contr., vol. 52, no. 8, pp. 1415-1429, 2007.

V. R. Pratt, “Semantical considerations on Floyd-Hoare logic,” in FOCS.
IEEE, 1976, pp. 109-121.

——, “A decidable mu-calculus: Preliminary report,” in FOCS.
Computer Society, 1981, pp. 421-427.

S. Ratschan and Z. She, “Safety verification of hybrid systems by con-
straint propagation-based abstraction refinement,” Trans. on Embedded
Computing Sys., vol. 6, no. 1, p. 8, 2007.

W. Reif, G. Schellhorn, and K. Stenzel, “Proving system correctness with
KIV 3.0,” in CADE, ser. LNCS, W. McCune, Ed., vol. 1249. Springer,
1997, pp. 69-72.

D. W. Renshaw, S. M. Loos, and A. Platzer, “Distributed theorem
proving for distributed hybrid systems,” in ICFEM, ser. LNCS, S. Qin
and Z. Qiu, Eds., vol. 6991. Springer, 2011, pp. 356-371.

M. Ronkko, A. P. Ravn, and K. Sere, “Hybrid action systems.” Theor.
Comput. Sci., vol. 290, no. 1, pp. 937-973, 2003.

W. C. Rounds and H. Song, “The ¢-calculus: A language for distributed
control of reconfigurable embedded systems,” in HSCC, ser. LNCS, vol.
2623, 2003, pp. 435-449.

S. Sankaranarayanan, H. B. Sipma, and Z. Manna, “Constructing invari-
ants for hybrid systems,” Form. Methods Syst. Des., vol. 32, no. 1, pp.
25-55, 2008.

K. Segerberg, “A completeness theorem in the modal logic of programs,”
Notices AMS, vol. 24, p. 522, 1977.

A. Tarski, A Decision Method for Elementary Algebra and Geometry,
2nd ed. Berkeley: University of California Press, 1951.

D. A. van Beek, K. L. Man, M. A. Reniers, J. E. Rooda, and R. R. H.
Schiffelers, “Syntax and consistent equation semantics of hybrid Chi,”
J. Log. Algebr. Program., vol. 68, no. 1-2, pp. 129-210, 2006.

W. Walter, Ordinary Differential Equations. Springer, 1998.

C. Zhou, A. P. Ravn, and M. R. Hansen, “An extended duration calculus
for hybrid real-time systems.” in Hybrid Systems, ser. LNCS, R. L.
Grossman, A. Nerode, A. P. Ravn, and H. Rischel, Eds., vol. 736.
Springer, 1992, pp. 36-59.

IEEE

IEEE

