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Abstract

We introduce the notion of X-stable models parametrized by a given logic X. Such notion is based on a construction

that we call weak completions: a set of atoms M is an X-stable model of a theory T if M is a model of T, in the sense

of classical logic, and the weak completion of T (namely T [ : eM) can prove, in the sense given by logic X, every

atom in the set M. We prove that, for normal logic programs, the result obtained by these weak completions is

invariant with respect to a large family of logics. Two kinds of logics are mainly considered: paraconsistent logics

and normal modal logics. For modal logics we use a translation proposed by Gelfond that identifies :œa with :a.

As a consequence we prove that several semantics (recently introduced) for non-monotonic reasoning (NMR) are

equivalent for normal programs. In addition, we show that such semantics can be characterized by a fixed-point

operator. Also, as a side effect, we provide new results for the stable model semantics.

Keywords: Multivalued logic, paraconsistent logic, non-monotonic reasoning.

1 Introduction

The research community has long recognized the study of non-monotonic reasoning (NMR)
as a promising approach to model features of commonsense reasoning. On the other hand,
monotonic logics have been successfully applied as a basic building block in the formalization
of non-monotonic reasoning. This article follows a line of research that analyses how several
kinds of logics—such as multivalued, paraconsistent and modal logics—can be fitted into this
approach.

The idea of using modal logics to formalize NMR can be traced back to McDermott and
Doyle [20]. Subsequently, McDermott [19] attempted to define non-monotonic logics based
on the standard T, S4 and S5 logics. But he observed that, unfortunately, the non-monotonic
version of S5 collapses to ordinary logic S5. Moore [23] suggested the use of autoepistemic
logic (AEL) as an alternative formalization of NMR to avoid the problems encountered with
standard modal logics. Moore explains that the real problem with non-monotonic S5 is not
the S5 schema, but the adoption of œA! A as an axiom in the logic. He argues that ‘the S5
schema merely makes explicit the consequences of adopting œA! A as a premise schema
that are implicit in the logic’s natural semantics’ [23]. Gelfond [11] also showed that the
perfect models of stratified logic programs can be characterized in terms of extensions
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of the corresponding autoepistemic theory. His characterization is based on the interpretation
of not a as :œa. In fact, Baral [3] explains that the definition of stable models by Gelfond

and Lifschitz [12] was inspired by this transformation. Having in mind McDermott
and Doyle’s work, this idea can be interpreted as bounding introspection to objective

(non-modal) formulas. Schwarz [31] proved later the equivalence of AEL with the logic
KD45 and, more recently, Lifschitz was able to characterize the stable semantics of
disjunctive programs in terms of AEL via Gelfond’s translation [3]. Autoepistemic logic

gained a lot of interest (well-deserved) but, at the same time, the approach based on modal
logics was almost abandoned. We suggest the reader to review the work of Marek and
Truszczyński [18], where it is possible to find a detailed discussion of the development of

the field.
The term grounded in non-monotonic logics refers to the idea of enabling the agent to make

only assumptions that are ‘grounded’ in the world’s knowledge. According to Donini et al. [8]

the notion of groundedness was actually introduced by Konolige [16]. It is worth mentioning
that groundedness has a rather intuitive motivation: ‘‘it corresponds to discarding the
reasoning based on epistemic assumptions, which would enable, for example, to conclude that

something is true in the world just by assuming to know it’’ [8]. Donini et al. [8] renewed
interest in non-monotonic S5 (and other normal modal logics) by studying their grounded
versions. They showed, in particular, that grounded non-monotonic S5 does not collapse

with S5. We continue this line of research [29], but restricted to what we called K-basic
formulas (sentences with modalities applied only to literals).

Our approach is based on Gelfond’s original interpretation and the experience on stable

model semantics that shows how it suffices to apply modalities to literals, instead of arbitrary
complex formulas, in order to express interesting problems. With our restricted syntax, we
recently showed that all ground non-monotonic modal logics between T and S5 are equivalent

[29]. Furthermore, we also show that these logics are equivalent to a non-monotonic logic that
we constructed using the well-known FOUR bilattice [29]. We called this semantics GNM-S5
as a reminder of its origin in the logic S5. We also proved that GNM-S5 has the properties

of classicality and extended cut [29].
In this article, we show that for normal programs, GNM-S5 can be characterized by a

fixed-point semantics similar to the definition of the stable model semantics.
Pearce [30] presented a characterization of the stable model semantics in terms of

a collection of logics. He proved that a formula is ‘entailed by a disjunctive program in the

stable model semantics if and only if it belongs to every intuitionistically complete
and consistent extension of the program formed by adding only negated atoms’. Moreover,

he also showed that in place of intuitionistic logic, any proper intermediate logic can be used.
The strongest intermediate logic is Gödel’s 3-valued logic G3. We call weak completion the
construction used by Pearce.

In another recent study, we showed how to express G3 in Lukasiewicz’s 3-valued logic

(L3) [27]. Since G3 can also be used to express the stable model semantics, we found a new
characterization of stable models based on L3.

We also introduced a very similar 3-valued logic based in the L3 logic that we called G03 [27].
Based on weak completions over G03, we introduced a new semantics. We prove in this

article that such semantics is also equivalent to GNM-S5. Since G03 is related to paraconsistent
logics we decided to study a very large fragment of such logics. We consider all logics
stronger or equal to C!, the weakest paraconsistent logic, and weaker or equal to Pac,

a well-known maximal paraconsistent logic studied by Avron [1]. We prove in this
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article that the weak completions of all these logics are equivalent to each other for normal
programs and that, moreover, they are equivalent to GNM-S5. Hence, a large fragment
of logics that include many well-known modal and paraconsistent logics have this
invariant property. Finally, as a direct consequence of our discussion, we show that this
invariant property can be expressed as a fixed-point in a very similar way to the definition
of the stable semantics. Therefore, we claim that GNM-S5 is a good candidate for defining
non-monotonic semantics that are closer to the direction of classical logic. Our article, in fact,
presents some more results around the topics already mentioned with the aim to understand
non-monotonicity in further detail. Although the original motivation started with modal
logics, in this article we do not have to deal too much with them. This is because, following
one of our results in Osorio et al. [29], it is possible to understand them via FOUR (of course,
for K-basic formulas only). However, we refer the interested reader to the work of Goldblatt
[15] for a comprehensive introduction to modal logics.

Overall, our results help to establish interesting connections between different non-
monotonic formalisms, and suggest the possibility of a general and unifying approach to the
study of NMR.

The structure of our article is as follows. Section 2 describes the general background of the
study including a brief review of some logic systems that will be used throughout the article.
In Section 3, we present the logics G3 and G03 as particular cases of the 3-valued Lukasiewicz’s
logic. We also construct, in terms of the FOUR bilattice and an auxiliary modal logic
M-FOUR, a multivalued paraconsistent logic that we call P-FOUR. These logics will prove
to be very useful in later sections toward our main contributions. The section finishes with a
brief summary of all the logics presented and some of the relations that hold between each other.

In Section 4, we first introduce some classes of logic programs and then define the semantics
of stable models. We further give some notions about semantics defined in terms of weak
completions (Definition 4.3). We describe in particular the semantics built on top of the
logics G03 and P-FOUR introduced earlier, including a short summary of our previous results
about modal logics and M-FOUR [29]. We then introduce the notion of pstable models
based on a fixed-point operator (Definition 4.5). At the end of the section a few examples of the
semantics introduced are shown and the relations between them are made explicit: we prove
that every stable model is a pstable model, and that every pstable model is a minimal model.

In Section 5, we focus the discussion of the study toward proving the invariance of weak
completions for the main logics considered in the paper. We start by introducing some
inferences rules for normal programs that can be used to prove atoms. We also introduce the
concept of elementary logics as a tool for proving our principal result, Theorem 5.1, which
states that the weak completions of a large fragment of modal and paraconsistent logics are
actually equivalent to the pstable model semantics. Finally, in Section 6 we present the
conclusions of the article and some open problems.

This paper is a revised and extended version of an unpublished work written by the first
author of the current paper.

2 Background

In this section, we first introduce the syntax of logic formulas considered in this article. Then,
we present a few basic definitions of how logics can be built to interpret the meaning of such
formulas in order to, finally, give a brief introduction to several of the logics that are relevant
for the results of our later sections.
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2.1 Syntax of formulas

We consider a formal (propositional) language built from: an enumerable set L of elements

called atoms (denoted a, b, c, . . .); the binary connectives ^ (conjunction), _ (disjunction) and

! (implication); and the unary connective : (negation). Formulas (denoted A, B, C, . . .) are

constructed as usual by combining these basic connectives together. We also use A$ B to

abbreviate ðA! BÞ ^ ðB! AÞ and, following the tradition in logic programing, A B as

an alternate way of writing B! A. A theory is just a set of formulas and, in this article,

we only consider finite theories. Moreover, if T is a theory, we use the notation LT to stand for

the set of atoms that occur in the theory T.
Note, however, that the logic connectives that we have just introduced have no meaning

by themselves. The names of the connectives (e.g. ‘disjunction’ or ‘negation’) do state

some intuition of what the symbol is intended to mean, but their formal meaning can only

be given through a formally defined semantics. Even more confusingly, different semantics

might assign different meanings to the same symbol. To avoid possible ambiguities, we

sometimes use subscripts to distinguish such connectives, e.g. the symbols ^X and ^Y are two

different conjunction connectives as defined by the logics X and Y, respectively. The subscript

might be dropped if the relevant logic is clear by context, or if the formula is actually

parametrized by an unspecified logic and is intended to be evaluated under several different

semantics.

2.2 Logic systems

We consider a logic simply as a set of formulas that, moreover, satisfies the following

two properties: (i) is closed under modus ponens (i.e. if A and A! B are in the logic, then so

also is B) and (ii) is closed under substitution (i.e. if a formula A is in the logic, then any other

formula obtained by replacing all occurrences of an atom b in A with another formula B is

still in the logic). The elements of a logic are called theorems and the notation ‘X A is used

to state that the formula A is a theorem of X (i.e. A 2 X). We say that a logic X is weaker than

or equal to a logic Y if X � Y, similarly we say that X is stronger than or equal to Y if Y � X.
Given a set of atoms M and when a theory, or logic program, T is clear by context

we use the symbol eM to denote the set complement LT nM. Moreover, given a theory T,

we define the negation of the theory :T as the set f:F jF 2 Tg.

Hilbert style proof systems

There are many different approaches that have been used to specify the meaning of logic

formulas or, in other words, to define logics. In Hilbert style proof systems, also known as

axiomatic systems, a logic is specified by giving a set of axioms (which is usually assumed to

be closed by substitution). This set of axioms specifies, so to speak, the ‘kernel’ of the logic.

The actual logic is obtained when this ‘kernel’ is closed with respect to the inference rule of

modus ponens. Examples of Hilbert style definitions will be given in Section 2.3.
The notation ‘X F for provability of a logic formula F in the logic X is usually extended

within Hilbert style systems, given a theory T, using T ‘X F to denote the fact that the

formula F can be derived from the axioms of the logic and the formulas contained in T by

a sequence of applications of modus ponens. The well-known result of the deduction theorem,

which is valid in the logics considered in this article as explained in Section 2.3.1, gives an
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alternate interpretation to this notation. A formula F is a logical consequence of T, i.e.
T ‘X F, if and only if ‘X ðF1 ^ � � � ^ FnÞ ! F for some formulas Fi 2 T.

We further extend this notation, for any pair of theories T and U, using T ‘X U to state the
fact that T ‘X F for every formula F 2 U. If M is a set of atoms we also write T /X M when:
T ‘X M and M is a classical 2-valued model of T (i.e. atoms in M are set to true,
and atoms not in M to false; the set of atoms is a classical model of T if the induced
interpretation evaluates T to true). Some of these notations are not standard in literature,
they follow from our previous work [25, 28].

Recall that, in all these definitions, the logic connectives are parameterized by
some underlying logic, e.g. the expression ‘X ðF1 ^ � � � ^ FnÞ ! F actually stands for
‘X ðF1 ^X � � � ^X FnÞ !X F.

Multivalued logics

An alternative way to define the semantics for a logic is by the use of truth values and
interpretations. Multivalued logics generalize the idea of truth tables that are used to
determine the validity of formulas in classical logic. The core of a multivalued logic is
its domain of values D, where some of such values are special and identified as designated.
Logic connectives (e.g. ^, _ , ! ,:) are then introduced as operators over D according to
the particular definition of the logic.

An interpretation is a function I : L ! D that maps atoms to elements in the domain. The
application of I is then extended to arbitrary formulas by mapping first the atoms to values in
D, and then evaluating the resulting expression in terms of the connectives of the logic (which
are defined over D). A formula is said to be a tautology if, for every possible interpretation,
the formula evaluates to a designated value. The simplest example of a multivalued logic is
classical logic where: D ¼ f0, 1g, 1 is the unique designated value, and connectives are defined
through the usual basic truth tables. Further examples will be given later in Section 2.3.

Note that in a multivalued logic, so that it can truly be a logic, the implication connective
has to satisfy the following property: for every value x 2 D, if there is a designated value y 2 D
such that y! x is designated, then x must also be a designated value. This restriction
enforces the validity of modus ponens in the logic. The inference rule of substitution holds
without further conditions because of the functional nature of interpretations and how they
are evaluated.

Here, we also have to clarify that, in the context of multivalued logics, we have to interpret
the notation T ‘X F using the result of the deduction theorem as its definition. In other words,
T ‘X F is defined for a multivalued logic as ‘X ðF1 ^ � � � ^ FnÞ ! F for some formulas Fi 2 T.

It is customary to write � and talk about tautologies in the context of model theory
(e.g. multivalued logics), while the symbol ‘ is used when proving theorems in the framework
of proof theory (e.g. Hilbert style systems). In this article, in a slight abuse of notation,
we would not distinguish between these two situations writing ‘ and using the term theorems
in both cases.

2.3 Brief survey of logics

In this subsection, we will briefly introduce several logics that will be relevant for our purposes
in this article. We will present a Hilbert style definition for most of them, together with a few
notes and examples.
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2.3.1 Positive logic

Positive Logic, Pos, is defined by the following set of axioms:

Pos1 a ! (b! a)
Pos2 (a! (b! c))! ((a! b)! (a! c))
Pos3 a^ b! a
Pos4 a^ b! b
Pos5 a!(b!(a^ b))
Pos6 a!(a_ b)
Pos7 b!(a_ b)
Pos8 (a! c) !((b! c) !(a_ b! c))

Note that these axioms somewhat constraint the meaning of the!, ^ and _ connectives to

match our usual intuition. Positive logic however, as its name suggests, does not contain

formulas with negation.
It is a well-known result that in any logic satisfying axioms Pos1 and Pos2, and with

modus ponens as its unique inference rule, the deduction theorem holds (see e.g. 21).

The theorem holds, in particular, for all the logics stronger than Pos summarized later

in Figure 2.

2.3.2 The C! logic

The C! logic, the weakest paraconsistent logic due to daCosta [7], is defined as positive logic

plus the following two axioms:

Cw1 a_: a
Cw2 :: a! a

Note that a _ :a is a theorem of C! (it is an axiom of the logic), while the formula

ð:a ^ aÞ ! b is not. This non-theorem shows one of the motivations of paraconsistent logics:

they do allow, so to speak, ‘local inconsistencies’ (global inconsistencies are disallowed as

usual). All the paraconsistent logics that we consider in this article share the same property.

It follows that results such as the contrapositive of implication, i.e. ða! bÞ ! ð:b! :aÞ,

are no longer valid in paraconsistent logics.
An anonymous referee suggested a comparison of C! with a logic F defined in [6], we also

believe that it would be interesting to see how this logic fits into the proposed framework

and leave this topic for our future work.

2.3.3 The Pac logic

The Pac logic was extensively studied and axiomatized by Avron [1], who also proved that

it is a maximal paraconsistent logic. Pac can be obtained from C! by adding the following

set of axioms:

Pac1 ((a!b) !a) !a
Pac2 a!::a
Pac3 :(a_ b)$ (:a ^ :b)
Pac4 :(a^ b)$ (:a _ :bÞ
Pac5 :(a! b)$ (a^:b)
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Pac introduces De Morgan’s laws explicitly as axioms, it also allows to cancel out two

negations in a row, and allows the implication connective to be expressed in terms of

disjunction. All of these properties were not true for C!.
Perhaps the simplest way of generating a paraconsistent logic is to use a multivalued logic

with more than two truth values, the logic can be made paraconsistent by allowing the

valuation of both a formula and its negation to be designated. An alternative definition

of the semantics of Pac is therefore through a 3-valued logic with truth values in the

domain D ¼ f0, 1, 2g where both 1 and 2 are designated.1 The evaluation function of logic

connectives is then defined as follows: x ^ y ¼ minðx, yÞ; x _ y ¼ maxðx, yÞ; and the : and!

connectives are defined according to the truth tables given in Table 1.
The reader can verify, for instance, that the formula a ^ :a evaluates to the designated

value 1, when a is mapped also to 1 through a Pac interpretation. Following the results

of Avron [1, first prop. in Section 3.2.1] theorems in Pac are a subset of those in classical logic.

Moreover, two important fragments of the logic coincide with the corresponding classical

ones, these are the f:, ^ ,_g-fragment and the positive one (i.e. the f^, _ , !g-fragment).

2.3.4 Intuitionistic logic

Intuitionistic logic, I, is defined as positive logic plus the following axioms:

Int1 (a! b)! ((a!:b)!:a)
Int2 :a! (a! b)

These two axioms model the role of negation in intuitionistic logic. They allow one to do

proofs by contradiction but in some limited way; other constructions such as the law

of excluded middle (e.g. a _ :a) are not valid in intuitionistic logic. Note that this is the

opposite situation to C!: in intuitionistic logic ð:a ^ aÞ ! b is a theorem, but a _ :a is not.

Intermediate logics, located between intuitionistic and classical logics, also have this

same property.

2.3.5 The logic of Here and There

The logic of Here and There, HT, is obtained from intuitionistic logic by adding the following

axiom:

G3 (:b! a)! (((a! b)! a) ! a)

1 These values are usually denoted in literature by F, ? and T, respectively. In order to simplify notation we use 0,

1 and 2 instead.

TABLE 1. Truth tables of connectives in Pac

x :x ! 0 1 2

0 2 0 2 2 2
1 1 1 0 1 2
2 0 2 0 1 2
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This logic is actually equivalent to the well-known Gödel’s 3-valued logic G3. Gödel defined,
in fact, a family of multivalued logics Gi with truth values over the domain
D ¼ f0, 1, . . . , i� 1g and with i� 1 as the unique designated value. Logic connectives are
defined as:

� ? ¼ 0, x ^ y ¼ minðx, yÞ, x _ y ¼ maxðx, yÞ, and
� x! y ¼ i� 1 if x � y and y otherwise.

In this article we are, however, mainly interested in G3 only.

2.3.6 Classical logic

Classical logic, C, is obtained from intuitionistic logic by adding the following axiom:

CL1 (:a !a) !a

This axiom enables any sort of proofs by contradiction, and thus gives to the negation
connective its full deduction power. Classical logic, of course, coincides with the standard
‘truth table’ logic of two values. Note that G2 is, precisely, classical logic.

2.3.7 Lukasiewicz’s 3-valued logic

The Polish logician and philosopher Jan Lukasiewicz began to create systems of multivalued
logics in 1920. He developed, in particular, a system with a third value to denote ‘possible’
that could be used to express the modalities ‘it is necessary that’ and ‘it is possible that’. To
construct this logic, denoted L3, we have to first modify the syntax of our formulas to allow,
as primitive connectives, only: the 0-place connective ? (failure) and the 2-place connective!
(implication). These connectives operate over a domain D ¼ f0, 1, 2g, with 2 as the unique
designated value, and are defined as follows:

� ? ¼ 0,
� x! y ¼ minð2, ð2� xÞ þ yÞ.

Other connectives in L3 are introduced in terms of ? and ! as follows:

�A :¼ A!? > :¼ �?

A _ B :¼ ðA!BÞ!B A^B :¼ �ð�A_�BÞ

œA :¼ �ðA!�AÞ SA :¼ �A! A

We use the symbol �, and call it the native negation of L3, in order to distinguish it from other
negation connectives that will be introduced later in this article. The truth tables of most
connectives are shown in Table 2, the conjunction and disjunction connectives (not shown)
coincide with the min and max functions respectively. Minari [22] studies a syntactic
characterization of the modal content of L3, and checks the behaviour of modal operators
against some of the relevant modal principles. Minari also studied L3’s axiomatization [22] as
well as its relation with modal logics, particularly with S5.

3 Definition of new logics

In this section, we define a couple of multivalued logics, namely G03 and P-FOUR, that will be
very useful to define the semantics of logic programs in later sections. These two logics are
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based on other well-known logic formalisms, namely Lukasiewicz’s L3 logic and
Belnap’s FOUR bilattice, and provide the basis to lay out the main contributions of this
article.

3.1 Defining G3 and G03 via L3

Our main motivation in studying Lukasiewicz’s L3 logic is the fact that we found it possible to
express the semantics of other logics such as Gödel’s G3 logic. Moreover, we found it useful to
introduce another logic, which we called G03, that will play a central role in the results of later
sections to define semantics of logic programs.

We first define the connectives ! and : of the G3 and G03 logics as follows (connectives
that are not subscripted correspond to L3):

:G3
x :¼œ�x

x!G3
y :¼ ðx! yÞ ^ :G3

:G3
ð:G3
:G3

x! yÞ

:G0
3
x :¼ �œx

x!G0
3
y :¼ x!G3

y

Table 3 shows the truth tables of these connectives for the G3 and G03 logics. The reader can
easily verify that the definitions just given do reproduce the values shown in the tables.
Conjunction and disjunction are defined, just as in all other logics considered, as the min and
max functions respectively. Furthermore, the reader can verify, that this definition of G3

coincides with the one given in Section 2.3.5.
In Carnielli and Macros [5], G03 is introduced only to prove that a _ ða! bÞ is not

a theorem of C!. In particular, none of Pac1, Pac2 or Pac5 are theorems in G03. Nevertheless,
axioms Pac3 and Pac4, definitely are theorems in G03. It will be shown in Section 3.3 that
the set of theorems of G03 is a superset of those in C!, and it is a well-known fact that G3 is
a superset of I. This shows a very interesting relation between the G3 and G03 logics,
in particular a nice feature of the L3 logic: only with a slight change in the definition
of the negation connective one can toggle between defining an intermediate or a
paraconsistent logic.

It is quite obvious but still interesting to observe that in G03 one can still express the G3

logic, since :G03a ¼ a! G03 ð:G
0
3a ^ :G

0
3:G

0
3aÞ. An important point to observe is that

the definition of :G03, with respect to the original modal language of L3, is based on the
translation proposed by Gelfond [11]. In later sections, we will apply the same translation
to different modal logics.

TABLE 2. Truth tables of connectives in L3

x �x œx Sx ! 0 1 2

0 2 0 0 0 2 2 2
1 1 0 2 1 1 2 2
2 0 2 2 2 0 1 2
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3.2 Defining a paraconsistent logic via FOUR

This research work was started by the first authors of this article [24], and further developed in
subsequent publications [29]. In these previous publications, a study of ground non-
monotonic modal logics between T and S5 was carried out. It was shown that, for a specific
class of modal formulas, such logics are equivalent to a particular construction carried out
in FOUR.

Belnap [4] introduced a logic for dealing in an useful way with inconsistent and incomplete
information. This logic is based on a structure called FOUR with four truth values f0, 1, 2, 3g.
This values are usually identified with the symbols f?, f, t,>g that provide an intuition of the
meaning of the four truth values: the classical t and f, ? that intuitively denotes lack of
information (no knowledge), and > that indicates inconsistency (‘over’ knowledge). We will
use, however, numbers instead of these symbols in order to keep the notation simple. This
values have two different natural orderings shown in Figure 1.

(1) Measuring the truth: The minimal element is 1, the maximal element is 2 and the values
0, 3 are incomparable. Here we have the inverse involution :tr, and the meet and join
operators denoted, respectively, as ^tr and _tr.

(2) Reflecting differences in the amount of knowledge or information: The minimal element is
0, the maximal element is 3 and the values 1, 2 are incomparable. Here we have inverse
involution :kn, the meet and join operators denoted, respectively, as ^kn and _kn.

Ginsberg [14] proposed algebraic structures called bilattices that generalize
Belnap’s FOUR; his motivation for introducing bilattices was to provide a uniform
approach for a diversity of applications in computer science. The logical role that FOUR
has among bilattices is very similar to the one of two-valued algebra among Boolean
Algebras [2].

We now define a semantics for modal propositional theories, which we call modal FOUR
or justM-FOUR for short, where the primitive modal connectives are given by:

? :¼ :tr:kna ^kn a for some atom a

œA :¼ A ^kn :trA

A! B :¼ :tr:knA _kn B

It is easy to verify that, under these previous definitions, ? ¼ 0 and the other two
connectives have the truth tables shown in Table 4. Recall that there is no ‘typical’ implication
connective in FOUR, ours is an abbreviation in terms of other FOUR connectives.
The native negation connective ofM-FOUR is defined as � A :¼ A!?, while conjunction
and disjunction are defined to match their corresponding symbols in the knowledge ordering,
e.g. ^M-FOUR is ^kn.

TABLE 3. Truth tables of connectives in G3 and G03

x :G3
x :G0

3
x ! 0 1 2

0 2 2 0 2 2 2
1 0 2 1 0 2 2
2 0 0 2 0 1 2
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The native negation connective ofM-FOUR is used to construct the negation connective
:A :¼�œA using, one more time, the translation proposed by Gelfond [11]. The truth
tables of both negation connectives are also given in Table 4. Particularly in later sections,
when we use a modal logic to define the semantics of logic programs, the negation connective
always means the connective defined as :A :¼�œA where the symbol � represents the
native negation of the modal logic.

The final step required in order to useM-FOUR for reasoning is to choose its designated
values. As the tetravalent modal algebras (TMAs) do [10], we let the largest element 3 to be
our unique designated value.

The resulting f^, _ , ! ,:g-fragment of the logic that we have just constructed is what we
call P-FOUR. Later, in Section 4.2.2, this logic is further utilized to define semantics of logic
programs. P-FOUR, as well as G03 introduced earlier, shows some paraconsistent like
behaviour since, in particular, the formula ða ^ :aÞ ! b is not one of its theorems. Because
of this we will informally group all these logics together (C!, Pac, P-FOUR, G

0
3) and call

them paraconsistent logics. Some properties and relations of these logics are given in the
next section.

3.3 Relations between logics

In this final subsection, we will explicitly state many of the relations between the logics that
have been discussed so far. These relations are formally given by the following theorem.
Please note that we are comparing the f^, _ , ! ,:g-fragments of these logics; formulas
containing modal connectives, native negation (�) or other auxiliary connectives are not
considered when comparing two logics.

THEOREM 3.1
The relations between logics pictured in Figure 2 hold. An arrow between two logics
denotes proper inclusion of the logics, while the absence of a path between them denotes
incomparability.

tr

kn

1

3

2

0

FIGURE 1. FOUR identified with 0, 1, 2 and 3
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PROOF. The proof is broken up in several items.

� Pos is strictly weaker than C! and I. Follows trivially by the axiomatic definitions of these

logics.
� C! is weaker than Pac, G03 and P-FOUR. This follows easily recalling that modus ponens

preserves tautologies, and from the fact that each axiom of C! is a tautology in all these

three logics.
� G03, P-FOUR and Pac are incomparable. The formula :a ^ ::a! b is a theorem in

both G03 and P-FOUR but not in Pac; while the formula a! ::a is a theorem in Pac

but neither in G03 nor P-FOUR. On the other hand, the axiom Pac1 is valid in FOUR

and not in G03; while Pac3 is valid in G03 and not in FOUR. As a side effect this shows

that C! is strictly weaker than all three Pac, G03 and P-FOUR.
� I is strictly weaker than G3. It is a well-known result [see e.g. 21]. The hierarchy of Gi

logics lie, in fact, between I and G3, G2 is classical logic.
� Paraconsistent and intermediate logics are incomparable. In all paraconsistent logics,

namely C!, Pac, G
0
3 and P-FOUR, the formula a _ :a is a theorem, while ð:a ^ aÞ ! b

is not. In all intermediate logics, namely I and G3, the formula ð:a ^ aÞ ! b is a theorem,

but a _ :a is not.
� All other logics are strictly weaker than classical logic. The previous item already gave

examples of non-theorems for each logic which do are theorems in classical logic.

œ

TABLE 4. Truth tables of connectives inM-FOUR and P-FOUR

A œA ! 0 1 2 3 x � x :x

0 0 0 3 3 3 3 0 3 3
1 0 1 2 3 2 3 1 2 3
2 0 2 1 1 3 3 2 1 3
3 3 3 0 1 2 3 3 0 0

Pos

I

G3 = HT

C

Pac

C

G′3

FIGURE 2. Relations between the logics considered
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4 Semantics of logic programs

For our purposes a logic program is nothing more that a theory, i.e. a set of formulas.

A class of logic programs is, in turn, a set of logic programs that groups together

programs that satisfy certain property or syntactic limitation. Most of the

results presented in this article are concerned, for example, with the class of

normal logic programs. In a normal logic program all formulas, also known as clauses,

have the form

a b1 ^ � � � bn ^ :bnþ1 ^ � � � ^ :bnþm,

where a and all bi are atoms, n� 0, and m� 0. Since, in all logics considered in this article,

the conjunction connective is commutative; we will sometimes abbreviate an arbitrary

normal clause by the expression

a Bþ ^ :B�,

where Bþ and B� are supposed to be sets containing, respectively, the positive and

negative atoms that occur in the body of the clause, i.e. Bþ ¼ fb1, . . . , bng and

B
�
¼ fbnþ1, . . . , bnþmg. In general, we might write in the body of a normal clause

any conjunction of literals and/or sets of literals, e.g. a b ^ B, which is simply intended

to mean the conjunction of all such literals. The main focus of the results in this article

is the class of normal logic programs, which is both syntactically very simple but

also quite expressive. This class of programs, since it has been found useful in many

interesting and relevant applications, has been studied extensively in the logic programming

and NMR domains.
The class of disjunctive logic programs generalizes normal programs by allowing the use

of a disjunction in the head of the clause. More precisely, clauses in disjunctive programs

have the form

a1 _ � � � _ ak  b1 ^ � � � bn ^ :bnþ1 ^ � � � ^ :bnþm,

with k� 1. Note that the head of a disjunctive clause cannot be empty.
Given a class of logic programs C, a semantic operator is a function that assigns, to

each program P 2 C, some subset of the power set of LP. These sets of atoms, which

are called the semantic models of the program P, are usually some ‘preferred’ subset of the

classical (two-valued) models of P.
The most simple example of a semantic operator is the one of classical models, which merely

maps each program to its standard two-valued models. Another more interesting example is

the semantics of minimal models [17].

DEFINITION 4.1
A set of atoms M is a minimal model of P if M is a classical model of P and is

minimal (with respect to set inclusion) among the other classical models of P. We use

MM to denote the semantic operator of minimal models, i.e. MM(P) is the set of minimal

models of P.
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4.1 The stable model semantics

The original definition of the stable model semantics for normal logic programs was given by

Gelfond and Lifschitz [12]. A generalization for the class of disjunctive programs, given later

also by Gelfond and Lifschitz [13], is the following:

DEFINITION 4.2
Let P be a disjunctive program. For any set M of atoms from P, let PM be the program

obtained from P by deleting

(i) each clause that has a negative literal :b in its body with b 2M, and
(ii) all negative literals in the bodies of the remaining clauses.

Note that PM does not contain negation anymore. Then M is said to be a stable model of P if

M is a minimal model of the reduced program PM. We use Stable to denote the semantic

operator of stable models.
While most of the content of this article deals with normal programs, the previous

definition is given for the more general case of disjunctive programs. The only significative

difference is that, for normal programs, the reduct PM will always have exactly one minimal

model [17], and M is a stable model if this minimal model happens to be M. The purpose of

giving here the more general definition is 2-fold: first to be able to set our work within context

with related work and, second, to be able to discuss possible extensions and generalizations

for future work.
The following is a well-known result originally given by Pearce [30], which characterizes the

stable models of propositional theories in terms of intermediate logics, i.e. any logic between

G3 and I inclusive. Recall the notation introduced in Section 2.2.

THEOREM 4.1
Let P be a disjunctive program, M a set of atoms, and X an arbitrary intermediate logic. M is a

stable model of P iff P [ : eM /XM.
Note that our negation symbol ‘:’ corresponds to the default negation symbol ‘not’

commonly used in logic programming [e.g. 12]. We also point out that the definition of / is a
bit different from the one used in our previous work [25, 27, 28]. We have previously

interpreted the notation T /X M as T ‘=X? (i.e. T is consistent) and T ‘X M. In the context of

Theorem 4.1 both this definition and the one presented in Section 2.2 provide the same result.

But this is no longer the case for the logics G03 and Pac studied in this article, so that the

definition given in Section 2.2 must be used from now on.

4.2 The X-stable semantics

Theorem 4.1 already suggests a natural generalization of stable models for any arbitrary

logic X. We call the construct P [ : eM a weak completion of the program P (with respect

to the set of atoms M). Strong completions, of the form P [ : eM [ ::M, provide an

alternative generalization of the stable model semantics [see e.g. 28], but are not considered

in this article.

DEFINITION 4.3
Let P be any theory and X any logic. Also let M be a set of atoms. M is a X-stable model of P

if P [ : eM /X M.
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4.2.1 The G3-stable semantics

Of particular interest to us is the G03-stable semantics,2 which is the result of using the logic G03
in Definition 4.3. We have to emphasize that the reinterpretation of / is relevant. Our original

definition of G03-stable models [27] gives unwanted results: a very simple program such as

P ¼ fag has the undesirable 6 0 model. Such unexpected model appears because ða ^ :aÞ ! ?

is not a tautology in G03. With the new definition of / given in Section 2.2 we avoided such

problem.
It is also important to note that G3-stable models coincide exactly with the stable

model semantics defined by Gelfond and Lifschitz [12], this follows by Theorem 4.1 and the

fact that G3 is an intermediate logic. Moreover, the only difference between the two

semantics, G3- and G03-stable, is the definition of the negation connective. This small

difference in the definition of : has been already made explicit in Table 3. All this together

suggests that Lukasiewicz’s 3-valued logic provides a good framework for studying and

defining NMR systems.

EXAMPLE 4.1
Consider the following logic program P:

b :a:

a :b:

p :a:

p :p:

It is easy to verify that this program has two G03-stable models, which are fa, pg and fb, pg.

4.2.2 The P-FOUR-stable semantics

The very same Definition 4.3 invites to experiment with different kinds of logics and classes of

programs to construct semantics of logic programs. In this section we briefly review one such

definition that is given in terms of the logic P-FOUR of Section 3.2. This material was

originally introduced by Osorio et al. [24, 26], but an extended version of such work is also

available [29].
Most of our results in previous work were given for a large class ofM-FOUR formulas

(i.e. formulas including modal connectives and native negation) that were called K-basic [29].

For our current purposes, in terms of the P-FOUR fragment obtained after applying

Gelfond’s translation [11], such results are relevant to formulas in negation normal form; i.e.

the scope of the negation connective : is restricted to single atoms. Note, in particular, that

normal logic programs are in negation normal form. We refer the reader to the work of

Goldblat [15] for a comprehensive introduction to modal logics.

THEOREM 4.2
All semantics of X-stable models, induced by any modal logic KT � X � S5, as well as

the P-FOUR-stable model semantics, are equivalent for the class of formulas in negation

normal form.

2Originally called L3-WFS [27].
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Note that, in order to apply Definition 4.3 to a modal logic X we first have to apply

Gelfond’s translation [11]. This basically means that the negation :a actually represents �œa

where � is the native negation connective of the modal logic. In the same publication [29] we

also had a proof of the following very useful and important result.

COROLLARY 4.1. [29]
Let P be a normal logic program and let x be an atom. P ‘C x if and only if P ‘P-FOUR x.

In view of the new results and logics considered in this article, this result will be further

generalized in Section 5.1 to yield Proposition 5.1.

4.3 The pstable model semantics

The following definition is very similar to the well-known reduction due to Gelfond and

Lifschitz [12] used in the definition of stable models in Section 4.1.

DEFINITION 4.4
Let P be a normal program and M a set of atoms. We define

REDðP;MÞ :¼ fa Bþ ^ :ðB� \MÞ j a Bþ ^ :B� 2 Pg:

EXAMPLE 4.2
Take the following logic program P (already considered):

b :a:

a :b:

p :a:

p :p:

Given M ¼ fa, pg, it follows that RED(P,M) is the program:

b :a:

a:

p :a:

p :p:

Also, following a similar approach to Gelfond and Lifschitz [12], the previous reduction is

used to provide a semantics of logic programs using a fixed-point operator in terms of

classical logic.

DEFINITION 4.5
Let P be a normal program, and M a set of atoms. We say that M is a pstable model of P if

REDðP; MÞ /CM. We use PStable to denote the semantic operator of pstable models.
The main result of Section 5 will show that, in fact, both the G03-stable and the P-FOUR-

stable model semantics (as well as semantics based on many other paraconsistent and modal

logics) coincide, for the class of normal programs, with the pstable models just defined.

All this seems to provide further evidence that Definition 4.5, and the X-stable semantics

in general, provide a solid base to study and propose new semantics for logic programs.
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4.4 Examples

To conclude with this section we give some example programs together with their semantics.
Example 4.3. The following are examples of normal programs together with

their stable, pstable and minimal models as defined by Definitions 4.2, 4.5 and 4.1,

respectively.

� P1 : a :a: Stable(P1)={}

PStable(P1)={{a}}

MM(P1)={{a}}

� P2 : a :b: Stable(P2)={{a}}

PStable(P2)={{a}}

MM(P2)={{a}, {b}}

� P3 : a :b: Stable(P3)={{a}, {b}}

b :a: PStable(P3)={{a}, {b}}

MM(P3)={{a}, {b}}

� P4 : a :b: Stable(P4)={}

a :b: PStable(P4)={{a, b}}

b :a: MM(P4)={{a, b}}

� P5 : a :b: Stable(P5)={}

b :c: PStable(P5)={}

c :a: MM(P5)={{a, b}, {a, c}, {b, c}}

Note that P5 does not have pstable models.

4.5 Relating minimal, stable and pstable models

Now we turn our attention again to an interesting topic, the semantics of minimal models,

that is also related to the X-stable semantics that we have proposed. In one of our previous

works [28] characterization of minimal models in terms of provability in classical logic was

given as follows:

LEMMA 4.1 [28]
Let P be any theory, and M a set of atoms. P [ : eM /C M if and only if M is a minimal

model of P.
Note that the proof of this lemma is done for any arbitrary theory. For our current

purposes, however, we can restrict ourselves to the class of normal programs to provide the

following theorem as a straightforward consequence of this lemma.

THEOREM 4.3
Let P be a normal program, and M a set of atoms. If M is a pstable model of P then M is a

minimal model of P.

PROOF. Let M be a pstable model of P. Then, by definition, REDðP;MÞ ‘C M.

Hence REDðP;MÞ [ : eM /C M. Thus P [ : eM ‘C M and, by Lemma 4.1, M is a minimal

model of P. œ

An important remark is that, even if every X-stable model is minimal, the converse does not

hold. This is shown by the second program in Example 4.3.
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DEFINITION 4.6
A normal clause is called definite if it does not contain negation. Given a program P, we will
denote by DEF(P) the set formed by all definite clauses in P.

THEOREM 4.4
Let P be a normal program and M a set of atoms. If M is a stable model of P then M is a pstable
model of P.

PROOF. M is a stable model of P iff, by definition, M is a minimal model of the program
DEFðREDðP;MÞÞ (note that DEF deletes rules and RED negative literals as in conditions (i)
and (ii) of Definition 4.2, respectively). Since DEFðREDðP;MÞÞ is a definite program, then by
Theorem 6.2 in [17], we have that M ¼ fx 2 LP j DEFðREDðP;MÞÞ ‘C xg. Thus:

(a) M is a model of RED(P).
(b) REDðP;MÞ ‘C M by monotonicity, since DEFðREDðP;MÞÞ is a subset of REDðP;MÞ.

So REDðP;MÞ / M. Hence M is a pstable model of P. œ

Again, note that the converse of Theorem 4.4 is false. The counterexample is the first
program in Example 4.3.

5 Invariance of weak completions

The lesson that we have learned from the stable model semantics is that weak completions are
interesting to study. In this section we show that, for normal logic programs, the weak
completions of a large class of interesting logics are equivalent. First in Section 5.1 we present
a natural deduction system for normal programs, then in Section 5.2 we introduce several
definitions that will be later used in Section 5.3 to prove one of the main contributions
of this article.

Theorem 5.1 at the end of this section is the main contribution of the paper, since it gives us
a large class of logics in which semantics based on weak completions agree for normal
programs.

5.1 Classical deductions for normal programs

In this section, we briefly summarize some of our early work [29], where a natural deduction
system that can be used to prove atoms, with respect to classical logic, in the context
of normal logic programs was developed. Our main interest is Proposition 5.1 that will be
used in later sections.

It is a well-known result that resolution is sound and complete with respect to classical
logic. For propositional formulas in conjunctive normal form (CNF) resolution is based on
just one inference rule namely:

A _ c B _ :c

A _ B
Resolution

A formula F is derived in classical logic by a theory T, i.e. T ‘C F, if and only if the
conjunctive normal form of T [ f:Fg derives the empty formula (failure or contradiction).
When we try to study resolution techniques, restricted to normal logic programs, then
inference rules such as G, C and R appear.
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DEFINITION 5.1 [29]
We define the following inference rules for normal logic programs,

a B1 ^ d d B2
a B1 ^ B2

G
a B1 ^ c a B2 ^ :c

a B1 ^ B2
C

a B1 ^ c b B2 ^ :c

a :b ^ B1 ^ B2
R

where a, b, c and d are atoms, and the symbols B1, B2 represent arbitrary sets of literals.
We furthermore introduce the notation T ‘½½R		 F, where T is a theory, F a formula, and R a
list of names of inference rules; to denote the fact that the formula F can be derived from the
formulas in T by applying the inference rules listed in R.

LEMMA 5.1 [29]
Let P be a normal program and let a B be a normal clause. It follows that

P ‘C a B if and only if P [ T ‘½½GCR		 a B,

where T ¼ fa a j a 2 LPg.

LEMMA 5.2 [29]
Let P be a normal program and let a be an atom. If P ‘½½GCR		 a then P ‘½½GC		 a.

If we consider only single atoms, Lemma 5.1 states that a normal program can prove an
atom (with respect to classical logic) if and only if the atom can be derived by the same
program extended with the theory T ¼ fa a j a 2 LPg and using the set of inference rules
½GCR	. Lemma 5.2 allows us to reduce the set of rules required to ½GC	 only. This motivates
the following result.

PROPOSITION 5.1
Let P be a normal program and let a be an atom. P ‘C a if and only if P ‘C!

a.

PROOF. From Lemmas 5.1 and 5.2, if P ‘C a then P [ T ‘½½GC		 a, where the set
T ¼ fa! a j a 2 LPg. Now one can easily verify that: (i) a! a is a theorem of C!

(follows by axioms Pos1–Pos2), (ii) rule G is valid in C! (follows by axioms Pos1–Pos4), and
(iii) rule C is valid in C! (follows by axioms Pos1–Pos4, Pos8 and Cw1). Therefore, it follows
that P ‘C!

a.
The converse follows immediately since C! is weaker than C (Theorem 3.1). œ

COROLLARY 5.1
Let P be a normal program and let a be an atom. Let X, Y be any two logics C! � X,Y � C.
P ‘X a if and only if P ‘Y a.

PROOF. If P ‘X a then, since X is stronger than C!, P ‘C!
a and, by Proposition 5.1, P ‘C a

so that, since C is stronger than Y, P ‘Y a. Since X and Y are symmetrical in the statement
of the corollary, there is nothing left to prove. œ

5.2 Elementary multivalued logics

The following definition extracts some of the abstract similarities between several of the
multivalued logics presented in this article, and that will enable to carry out the proofs of
later results.
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DEFINITION 5.2
A multivalued logic E is elementary if there are three special elements 0, 1 and t in its domain

that satisfy the following properties:

� t is a designated value, and 0 is not.3

� The value assigned to 1!0 is not a designated value.
� The fragment {0, t} coincides with classical logic (for ^, ! ,:).
� The fragment {1, t} is closed with respect to the connectives ^ and !.
� The values assigned to the negation of 0 and 1 lie in the set {1, t}.
� The logic lies between C! and C, i.e. C! � E � C.

Note that G03, Pac and P-FOUR are all elementary logics. The following Lemmas 5.3 and

5.4 apply, in particular, to these three elementary logics. Later, in Section 5.3, we present our

main results that apply more generally to logics between C! and any elementary logic.

DEFINITION 5.3
Given an elementary logic E, an interpretation I is said to be definite if it maps atoms only to

the elements 0 or t.

LEMMA 5.3
Let P be a normal program and let M be a set of atoms such that every atom that appears in a

negated literal in P is also contained in M. Also let E be an elementary multivalued logic. If there

is a definite interpretation I such that I(P) is designated (w.r.t. E), then there is an

interpretation I0 such that

(1) I0ðxÞ ¼ IðxÞ for every x 2M,
(2) if IðxÞ ¼ 0 then I0ðxÞ ¼ 0,
(3) I0ð:xÞ 2{1, t} for every x =2M,
(4) I0ðPÞ 2{1, t}.

PROOF. Define I0 as follows:

I0ðxÞ ¼
IðxÞ if x 2 M,
0 if x =2 M and IðxÞ ¼ 0,
1 otherwise:

8<
:

Items 1 and 2 follow immediately by construction of I0. To prove item 3 take x =2M, then it

follows that I0ðxÞ 2 f0, 1g and, by definition of elementary logics, I0ð:xÞ 2 f1, tg.
Now, to prove item 4, since I is definite and I(P) is designated, it must be the case that

IðPÞ ¼t. Since, again by the definition of elementary logics, the definite fragment of E

coincides with classical logic, we have that Iðp Bþ ^ :B�Þ ¼ t for every rule p Bþ ^ :B�

in P. We now have two cases:

(1) IðBþ ^ B�Þ ¼ 0. The proof further splits in the following two cases:
(a) There is an atom x 2 Bþ with IðxÞ ¼ 0. By item 2 of the statement of the lemma, it

follows that also I0ðxÞ ¼ 0.
(b) There is an atom x 2 B� with Ið:xÞ ¼ 0 or, equivalently, IðxÞ ¼t. By hypothesis, and

since x 2 B�, it must be the case that x 2M; and therefore I0ðxÞ ¼ t, yielding I0ð:xÞ ¼ 0.

3Note that there might be more designated and non-designated values; these are just the minimum requirements.

In particular, the definition does not impose any restriction on the designated status of 1.

886 Logics with Common Weak Completions



In either case we have shown that I0ðBþ ^ :B�Þ ¼ 0 and Iðp Bþ ^ :B�Þ ¼ t.
(2) IðpÞ ¼ t, IðBþÞ ¼ t and Ið:B�Þ ¼ t. Following a similar argument to the one used in 1.(b),

it can be shown that I0ð:B�Þ ¼ t. Then, by definition of I0 and since I is definite, it must be

the case that both I0ðpÞ 2 f1, tg and I0ðBþÞ 2 f1, tg. Finally, by closure of elementary logics

in the fragment f1, tg, we have that also I0ðp Bþ ^ :B�Þ 2 f1, tg.

We have shown that every rule in the program P must evaluate to either 1 or t. Using the

closure of the f1, tg fragment for a final time, we can conclude that I0ðPÞ 2 f1, tg.

LEMMA 5.4
Let P be a normal program, let M be a set of atoms, and let E be an elementary logic. If

P [ : eM ‘E M then REDðP;MÞ ‘E M.

PROOF. We will prove the contrapositive of the statement, i.e. REDðP;MÞ ‘=EM implies

P [ eM ‘=EM. Take an atom x 2M such that REDðP;MÞ ‘=Ex. It follows, since C! � E � C

and applying Corollary 5.1, that REDðP;MÞ ‘=Cx. Then, there must be a classical (two-valued)

interpretation I such that IðRED ðP;MÞÞ ¼ 1 and IðxÞ ¼ 0. The interpretation I can then be

lifted to the domain of E to obtain an interpretation J with JðREDðP;MÞÞ ¼ t and JðxÞ ¼ 0.

By Lemma 5.3 there is an interpretation J0 such that J0ðxÞ ¼ 0, J0ðyÞ 2 f1, tg for every y =2M,

and J0ðREDðP;MÞÞ 2 f1, tg. From the last two results it is easy to verify that also

J0ðP [ : eMÞ 2 f1, tg. Finally, from the definition of elementary logics, we have that

J0ðP [ : eM! xÞ is not a designated value (since either 1! 0 is not a designated value, or

t! 0 evaluates 0 which is also not designated) so that, finally, P [ : eM ‘=E x. œ

The converse of Lemma 5.4 is also true, but it will follow as a simple corollary of the more

general Lemma 5.5.

5.3 Relating X-stable and pstable models

In the previous subsection we have encapsulated several general properties shared by all the

logics that we consider. Having these tools, we are now ready to present the main contribution

of this article. It states that, for a very large class of logics, the corresponding X-stable

semantics (where X is any of our logics) are all equivalent to each other at least up to normal

programs. Moreover we show that such X-stable models can be expressed by a simple fixed-

point operator and using classical logic. The precise statement is given in Theorem 5.1.

LEMMA 5.5
Let P be a normal program, let M be a set of atoms, and let E be an elementary logic.

Furthermore, let X be an any logic with C! � X � E. Then we have that REDðP;MÞ ‘X M iff

P [ : eM ‘X M.

PROOF. We will first show that REDðP;MÞ ‘X M implies P [ : eM ‘X M. Since

REDðP;MÞ ‘X M and by Corollary 5.1, REDðP;MÞ ‘C!
M. Also note that any formula in

REDðP;MÞ can be derived in C! from the set P [ : eM (follows by axioms Pos1–Pos2), i.e.

P [ : eM ‘C!
REDðP;MÞ. Therefore it easily follows, by transitivity of the proves relation that

P [ : eM ‘C!
M. Since X is stronger than C!, we can finally conclude that P [ : eM ‘X M.

For the other implication we start with P [ : eM ‘X M. Since E is stronger than X then we

also have that P [ : eM ‘E M. By Lemma 5.4 it then follows that REDðP;MÞ ‘E M and

finally, by Corollary 5.1, REDðP;MÞ ‘X M. œ
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LEMMA 5.6
Let P be a normal program and let M be a set of atoms. M is a classical model of P [ : eM iff it is
a classical model of REDðP;MÞ. œ

PROOF. Straightforward.

LEMMA 5.7
Let P be a normal program, let M be a set of atoms, and let E be an elementary logic.
Furthermore, let X be any logic with C! � X � E. M is an X-stable model of P iff M is a pstable
model of P.

PROOF. M is a X-stable model of P iff, by definition, P [ : eM /X M iff, by Lemmas 5.5 and
5.6, REDðP;MÞ /X M iff, by Corollary 5.1, REDðP;MÞ /CM iff, by definition, M is a pstable
model of P.

THEOREM 5.1
Let X be a logic such that

� X is any logic C! � X � Pac, or
� X is any logic C! � X � G03, or
� X is any logic C! � X � P-FOUR, or
� X is any modal logic T � X � S5.

Similarly, let Y be any of such logics. Given a normal program P and a set of atoms M it follows:

(a) M is a X-stable model of P iff M is a pstable model of P,
(b) M is a X-stable model of P iff M is a Y-stable model of P (invariance).

PROOF. Item (a) follows from previous results: the proof for the modal logics between T
and S5 follows by Theorem 4.2; any of the other logics satisfy the conditions of Lemma 5.7.
Item (b) is a direct consequence of (a).

6 Conclusions

In this article we study the notions of weak completions within the class of normal programs
using different logics. The coarse existing knowledge in the scope of the mathematical logic in
general, modal and multivalued logics in particular, allows us to study and better understand
logic programming. We find some properties shared by a large family of different
paraconsistent logics stronger than C!, some results about expressiveness of a given logic
in terms of another, and finally the relation between these logics (Section 3). Particularly, we
present a semantics defined over general theories that, within the class of normal programs, is
invariant among the large collection of paraconsistent logics studied previously: the PStable
semantics (our main result, Theorem 5.1). Studying the properties of this semantics we find
out that it is between the stable and minimal models (i.e. every stable model is a pstable model
and every pstable model is a minimal model as well). It is also important to note that, since
pstable models are defined in using a simple syntactical reduction and in terms of classical
logic, it is quite straightforward to build simple prototypes to compute pstable models using
a modern classical satisfiability solver [e.g. 9] as an inference back end.

Observe that not all of our results can be easily carried forward to the class of disjunctive
logic programs. It is easy to verify that part (b) of Theorem 5.1 will hold for disjunctive
programs, the problem with other results such as Theorem 4.4 is first to obtain a sensible
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generalization of pstable models for disjunctive programs. An ingenuous extension of the

reduction used in Definition 4.5 that does not modify the head of disjunctive clauses seems to

have some difficulties. A simple program such as a _ b, for instance, would not have any

pstable models, while it does have stable models. We feel that more research needs to

be carried out in order to obtain a suitable generalization and leave this topic for our

future work.
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