
Logistic Model Trees

Niels Landwehr1,2, Mark Hall2, and Eibe Frank2

1Department of Computer Science
University of Freiburg
Freiburg, Germany

landwehr@informatik.uni-freiburg.de

2Department of Computer Science
University of Waikato

Hamilton, New Zealand
{eibe, mhall}@cs.waikato.ac.nz

Abstract. Tree induction methods and linear models are popular tech-
niques for supervised learning tasks, both for the prediction of nominal
classes and continuous numeric values. For predicting numeric quanti-
ties, there has been work on combining these two schemes into ‘model
trees’, i.e. trees that contain linear regression functions at the leaves. In
this paper, we present an algorithm that adapts this idea for classifica-
tion problems, using logistic regression instead of linear regression. We
use a stagewise fitting process to construct the logistic regression models
that can select relevant attributes in the data in a natural way, and show
how this approach can be used to build the logistic regression models at
the leaves by incrementally refining those constructed at higher levels in
the tree. We compare the performance of our algorithm against that of
decision trees and logistic regression on 32 benchmark UCI datasets, and
show that it achieves a higher classification accuracy on average than the
other two methods.

1 Introduction

Two popular methods for classification are linear logistic regression and tree
induction, which have somewhat complementary advantages and disadvantages.
The former fits a simple (linear) model to the data, and the process of model
fitting is quite stable, resulting in low variance but potentially high bias. The
latter, on the other hand, exhibits low bias but often high variance: it searches a
less restricted space of models, allowing it to capture nonlinear patterns in the
data, but making it less stable and prone to overfitting. So it is not surprising
that neither of the two methods is superior in general — earlier studies [10] have
shown that their relative performance depends on the size and the characteristics
of the dataset (e.g., the signal-to-noise ratio).

It is a natural idea to try and combine these two methods into learners that
rely on simple regression models if only little and/or noisy data is available
and add a more complex tree structure if there is enough data to warrant such
structure. For the case of predicting a numeric variable, this has lead to ‘model
trees’, which are decision trees with linear regression models at the leaves. These
have been shown to produce good results [11]. Although it is possible to use
model trees for classification tasks by transforming the classification problem



into a regression task by binarizing the class [4], this approach produces several
trees (one per class) and thus makes the final model harder to interpret.

A more natural way to deal with classification tasks is to use a combination of
a tree structure and logistic regression models resulting in a single tree. Another
advantage of using logistic regression is that explicit class probability estimates
are produced rather than just a classification. In this paper, we present a method
that follows this idea. We discuss a new scheme for selecting the attributes to be
included in the logistic regression models, and introduce a way of building the
logistic models at the leaves by refining logistic models that have been trained
at higher levels in the tree, i.e. on larger subsets of the training data.

We compare the performance of our method against the decision tree learner
C4.5 [12] and logistic regression on 32 UCI datasets [1], looking at classification
accuracy and size of the constructed trees. We also include results for two learn-
ing schemes that build multiple trees, namely boosted decision trees and model
trees fit to the class indicator variables [4], and a different algorithm for building
logistic model trees called PLUS [8]. From the results of the experiments we
conclude that our method achieves a higher average accuracy than C4.5, model
trees, logistic regression and PLUS, and is competitive with boosted trees. We
will also show that it smoothly adapts the tree size to the complexity of the data
set.

The rest of the paper is organized as follows. In Section 2 we briefly review
logistic regression and the model tree algorithm and introduce logistic model
trees in more detail. Section 3 describes our experimental study, followed by
a discussion of results. We discuss related work in Section 4 and draw some
conclusions in Section 5.

2 Algorithms

This section begins with a brief introduction to the application of regression for
classification tasks and a description of our implementation of logistic regression.
A summary of model tree induction is also provided as this is a good starting
point for understanding our method.

2.1 Logistic Regression

Linear regression performs a least-squares fit of a parameter vector β to a nu-
meric target variable to form a model

f(x) = βT · x,

where x is the input vector (we assume a constant term in the input vector to
accommodate the intercept). It is possible to use this technique for classification
by directly fitting linear regression models to class indicator variables. If there
are J classes then J indicator variables are created and the indicator for class j

takes on value 1 whenever class j is present and value 0 otherwise. However, this
approach is known to suffer from masking problems in the multiclass setting [7].



1. Start with weights wij = 1/n, i = 1, . . . , n, j = 1, . . . , J, Fj(x) = 0
and pj(x) = 1/J ∀j

2. Repeat for m = 1, . . . , M :
(a) Repeat for j = 1, . . . , J :

i. Compute working responses and weights in the jth class

zij =
y∗

ij − pj(xi)

pj(xi)(1− pj(xi))

wij = pj(xi)(1− pj(xi))

ii. Fit the function fmj(x) by a weighted least-squares regression
of zij to xi with weights wij

(b) Set fmj(x)← J−1

J
(fmj(x)− 1

J

∑J

k=1
fmk(x)), Fj(x)← Fj(x) + fmj(x)

(c) Update pj(x) = e
Fj (x)∑

J

k=1
eFk(x)

3. Output the classifier argmaxjFj(x)

Fig. 1. LogitBoost algorithm for J classes.

A better method for classification is linear logistic regression, which models
the posterior class probabilities Pr(G = j|X = x) for the J classes via linear
functions in x while at the same time ensuring they sum to one and remain in
[0,1]. The model has the form1

Pr(G = j|X = x) =
eFj(x)

∑J

k=1 eFk(x)
,

J∑

k=1

Fk(x) = 0,

where Fj(x) = βT
j · x are linear regression functions, and it is usually fit by

finding maximum likelihood estimates for the parameters βj .
One way to find these estimates is based on the LogitBoost algorithm [6]. Log-

itBoost performs forward stage-wise fitting of additive logistic regression models,
which generalize the above model to Fj(x) =

∑
m fmj(x), where the fmj can

be arbitrary functions of the input variables that are fit by least squares regres-
sion. In our application we are interested in linear models, and LogitBoost finds
the maximum likelihood linear logistic model if the fmj are fit using (simple or
multiple) linear least squares regression and the algorithm is run until conver-
gence. This is because the likelihood function is convex and LogitBoost performs
quasi-Newton steps to find its maximum.

The algorithm (shown in Figure 1) iteratively fits regression functions fmj

to a ‘response variable’ (reweighted residuals). The x1, . . . , xn are the training
examples and the y∗

ij encode the observed class membership probabilities for
instance xi, i.e. y∗

ij is one if xi is labeled with class j and zero otherwise. One
can build the fmj by performing multiple regression based on all attributes
present in the data, but it is also possible to use a simple linear regression,

1 This is the symmetric formulation [6].



selecting the attribute that gives the smallest squared error. If the algorithm is
run until convergence this will give the same final model because every multiple
linear regression function can be expressed as a sum of simple linear regression
functions, but using simple regression will slow down the learning process and
thus give a better control over model complexity. This allows us to obtain simple
models and prevent overfitting of the training data: the model learned after a
few iterations (for a small M) will only include the most relevant attributes
present in the data, resulting in automatic attribute selection, and, if we use
cross-validation to determine the best number of iterations, a new variable will
only be added if this improves the performance of the model on unseen cases.

In our empirical evaluation simple regression together with (five fold) cross-
validation indeed outperformed multiple regression. Consequently, we chose this
approach for our implementation of logistic regression. We will refer to it as the
SimpleLogistic algorithm.

2.2 Model Trees

Model trees, like ordinary regression trees, predict a numeric value given an
instance that is defined over a fixed set of numeric or nominal attributes. Unlike
ordinary regression trees, model trees construct a piecewise linear (instead of a
piecewise constant) approximation to the target function. The final model tree
consists of a decision tree with linear regression models at the leaves, and the
prediction for an instance is obtained by sorting it down to a leaf and using the
prediction of the linear model associated with that leaf.

The M5’ model tree algorithm [13] — a ‘rational reconstruction’ of Quinlan’s
M5 algorithm [11] — first constructs a regression tree by recursively splitting the
instance space using tests on single attributes that maximally reduce variance in
the target variable. After the tree has been grown, a linear multiple regression
model is built for every inner node, using the data associated with that node
and all the attributes that participate in tests in the subtree rooted at that
node. Then the linear regression models are simplified by dropping attributes
if this results in a lower expected error on future data (more specifically, if
the decrease in the number of parameters outweighs the increase in the observed
training error). After this has been done, every subtree is considered for pruning.
Pruning occurs if the estimated error for the linear model at the root of a subtree
is smaller or equal to the expected error for the subtree. After pruning has
terminated, M5’ applies a ‘smoothing’ process that combines the model at a leaf
with the models on the path to the root to form the final model that is placed
at the leaf.

2.3 Logistic Model Trees

Given this model tree algorithm, it appears quite straightforward to build a
‘logistic model tree’ by growing a standard classification tree, building logistic
regression models for all nodes, pruning some of the subtrees using a pruning
criterion, and combining the logistic models along a path into a single model in



some fashion. However, the devil is in the details and M5’ uses a set of heuristics
at crucial points in the algorithm — heuristics that cannot easily be transferred
to the classification setting.

Fortunately LogitBoost enables us to view the combination of tree induction
and logistic regression from a different perspective: iterative fitting of simple lin-
ear regression interleaved with splits on the data. Recall that LogitBoost builds
a logistic model by iterative refinement, successively including more and more
variables as new linear models fmj are added to the committee Fj . The idea is
to recursively split the iterative fitting process into branches corresponding to
subsets of the data, a process that automatically generates a tree structure.

As an example, consider a tree with a single split at the root and two leaves.
The root node N has training data T and one of its sons N ′ has a subset of the
training data T ′ ⊂ T . Following the classical approach, there would be a logistic
regression model M at node N trained on T and a logistic regression model M ′

at N ′ trained on T ′. For classification, the class probability estimates of M and
M ′ would be averaged to form the final model for N ′.

In our approach, the tree would instead be constructed by building a logistic
model M at N by fitting linear regression models trained on T as long as this
improves the fit to the data, and then building the logistic model M ′ at N ′

by taking M and adding more linear regression models that are trained on T ′,
rather than starting from scratch. As a result, the final model at a leaf consists of
a committee of linear regression models that have been trained on increasingly
smaller subsets of the data (while going down the tree). Building the logistic
regression models in this fashion by refining models built at higher levels in the
tree is computationally more efficient than building them from scratch.

However, a practical tree inducer also requires a pruning method. In our
experiments ‘local’ pruning criteria employed by algorithms like C4.5 and M5’
did not lead to reliable pruning. Instead, we followed the pruning scheme em-
ployed by the CART algorithm [2], which uses cross-validation to obtain more
stable pruning results. Although this increased the computational complexity, it
resulted in smaller and generally more accurate trees.

These ideas lead to the following algorithm for constructing logistic model
trees:

– Tree growing starts by building a logistic model at the root using the Logit-
Boost algorithm. The number of iterations (and simple regression functions
fmj to add to Fj) is determined using five fold cross-validation. In this pro-
cess the data is split into training and test set five times, for every training
set LogitBoost is run to a maximum number of iterations (we used 200) and
the error rates on the test set are logged for every iteration and summed up
over the different folds. The number of iterations that has the lowest sum of
errors is used to train the LogitBoost algorithm on all the data. This gives
the logistic regression model at the root of the tree.

– A split for the data at the root is constructed using the C4.5 splitting cri-
terion [12]. Both binary splits on numerical attributes and multiway splits
on nominal attributes are considered. Tree growing continues by sorting the



LMT(examples){
root = new Node()
alpha = getCARTAlpha(examples)

root.buildTree(examples, null)
root.CARTprune(alpha)

}

buildTree(examples, initialLinearModels) {
numIterations = crossValidateIterations(examples, initialLinearModels)
initLogitBoost(initialLinearModels)

linearModels = copyOf(initialLinearModels)
for i = 1...numIterations

logitBoostIteration(linearModels,examples)
split = findSplit(examples)

localExamples = split.splitExamples(examples)
sons = new Nodes[split.numSubsets()]
for s = 1...sons.length

sons.buildTree(localExamples[s], nodeModels)
}

crossValidateIterations(examples,initialLinearModels) {
for fold = 1...5

initLogitBoost(initialLinearModels)
//split into training/test set

train = trainCV(fold)
test = testCV(fold)

linearModels = copyOf(initialLinearModels)
for i = 1...200

logitBoostIteration(linearModels,train)

logErrors[i] += error(test)
numIterations = findBestIteration(logErrors)

return numIterations
}

Fig. 2. Pseudocode for the LMT algorithm.

appropriate subsets of data to those nodes and building the logistic models
of the child nodes in the following way: the LogitBoost algorithm is run on
the subset associated with the child node, but starting with the committee
Fj(x), weights wij and probability estimates pij of the last iteration per-
formed at the parent node (it is ‘resumed’ at step 2.a in Figure 1). Again,
the optimum number of iterations to perform (the number of fjm to add to
Fj) is determined by five fold cross validation.

– Splitting continues in this fashion as long as more than 15 instances are at
a node and a useful split can be found by the C4.5 splitting routine.

– The tree is pruned using the CART pruning algorithm as outlined in [2].

Figure 2 gives the pseudocode for this algorithm, which we call LMT. The
method LMT constructs the tree given the training data examples. It first calls
getCARTAlpha to cross-validate the ‘cost-complexity-parameter’ for the CART
pruning scheme implemented in CARTPrune. The method buildTree grows the
logistic model tree by recursively splitting the instance space. The argument
initialLinearModels contains the simple linear regression functions already
fit by LogitBoost at higher levels of the tree. The method initLogitBoost

initializes the probabilities/weights for the LogitBoost algorithm as if it had
already fitted the regression functions initialLinearModels (resuming Logit-
Boost at step 2.a). The method crossValidateIterationsdetermines the num-



ber of LogitBoost iterations to perform, and logitBoostIteration performs a
single iteration of the LogitBoost algorithm (step 2), updating the probabili-
ties/weights and adding a regression function to linearModels.

Handling of Missing Values and Nominal Attributes To deal with missing
values we calculate the mean (for numeric attributes) or mode (for categorical
ones) based on all the training data and use these to replace them. The same
means and modes are used to fill in missing values when classifying new instances.

When considering splits in the tree, multi-valued nominal attributes are han-
dled in the usual way. However, regression functions can only be fit to numeric
attributes. Therefore, they are fit to local copies of the training data where
nominal attributes with k values have been converted into k binary indicator
attributes.

Computational Complexity The asymptotic complexity for building a logis-
tic regression model is O(n · v2 · c) if we assume that the number of LogitBoost
iterations is linear in the number of attributes present in the data2 (n denotes
the number of training examples, v the number of attributes, and c the number
of classes). The complexity of building a logistic model tree is O(n ·v2 ·d ·c+k2),
where d is the depth and k the number of nodes of the initial unpruned tree.
The first part of the sum derives from building the logistic regression models,
the second one from the CART pruning scheme. In our experiments, the time for
building the logistic regression models accounted for most of the overall runtime.
Compared to simple tree induction, the asymptotic complexity of LMT is only
worse by a factor of v. However, the nested cross-validations (one to prune the
tree, one to determine the optimum number of LogitBoost operations) constitute
a large (albeit constant) multiplying factor.

In the algorithm outlined above, the optimum number of iterations is deter-
mined by a five fold cross-validation for every node. This is the most compu-
tationally expensive part of the algorithm. We use two heuristics to reduce the
runtime:

– In order to avoid an internal cross-validation at every node, we determine
the optimum number of iterations by performing one cross-validation in the
beginning of the algorithm and then using that number everywhere in the
tree. This approach works surprisingly well: it never produced results that
were significantly worse than those of the original algorithm. This indicates
that the best number of iterations for LogitBoost does depend on the dataset
— just choosing a fixed number of iterations for all of the datasets lead
to significantly worse results — but not so much on different subsets of a
particular dataset (as encountered in lower levels in the tree).

– When performing the initial cross-validation, we have to select the number of
iterations that gives the lowest error on the test set. Typically, the error will

2 Note that in our implementation it is actually bounded by a constant (500 for stan-
dalone logistic regression and 200 at the nodes of the logistic model tree)



first decrease and later increase again because the model overfits the data.
This allows the number of iterations to be chosen greedily by monitoring the
error while performing iterations and stopping if the error starts to increase
again. Because the error curve exhibits some spikes and irregularities, we
keep track of the current minimum and stop if it has not changed for 25
iterations. Using this heuristic does not change the behavior of the algorithm
significantly.

We included both heuristics in the final version of our algorithm, and all results
shown for LMT refer to this final version.

3 Experiments

In order to evaluate the performance of our method and compare it against other
state-of-the-art learning schemes, we applied it to several real-world problems.
More specifically, we seek to answer the following questions in our experimental
study:

1. How does LMT compare to the two algorithms that form its basis, i.e., logis-
tic regression and C4.5? Ideally, we would never expect worse performance
than either of these algorithms.

2. How does LMT compare to methods that build multiple trees? We include
results for boosted C4.5 trees (using the AdaBoostM1 algorithm [5] and 100
boosting iterations), where the final model is a ’voting committee’ of trees
and for the M5’ algorithm, which builds one tree per class when applied to
classification problems.

3. How big are the trees constructed by LMT? We expect them to be much
smaller than simple classification trees because the leaves contain more in-
formation. We also expect the trees to be pruned back to the root if a linear
logistic model is the best solution for the dataset.

We will also give results for another recently developed algorithm for inducing
logistic model trees called ‘PLUS’ (see Section 4 for a short discussion of the
PLUS algorithm).

3.1 Datasets and Methodology

For our experiments we used 32 benchmark datasets from the UCI repository [1],
given in the first column of Table 1. Their size ranges from under hundred to a
few thousand instances. They contain varying numbers of numeric and nominal
attributes and some contain missing values. For more information about the
datasets, see for example [4].

For every dataset and algorithm we performed ten runs of ten fold stratified
cross-validation (using the same splits into training/test set for every method).
This gives a hundred data points for each algorithm and dataset, from which we
calculated the average accuracy (percentage of correctly classified instances) and



Table 1. Average classification accuracy and standard deviation.

Data Set LMT C4.5 SimpleLogistic M5’ PLUS AdaBoost.M1
anneal 99.5±0.8 98.6±1.0 • 99.5±0.8 98.6±1.1 99.4±0.8 (c) 99.6±0.7
audiology 84.0±7.8 77.3±7.5 • 83.7±7.8 76.8±8.6 • 80.6±8.3 (c) 84.7±7.6
australian 85.0±4.1 85.6±4.0 85.2±4.1 85.4±3.9 85.2±3.9 (m) 86.4±4.0
autos 75.8±9.7 81.8±8.8 75.1±8.9 76.0±10.0 76.6±8.7 (c) 86.8±6.8 ◦

balance-scale 90.0±2.5 77.8±3.4 • 88.6±3.0 87.8±2.2 • 89.7±2.8 (m) 76.1±4.1 •

breast-cancer 75.6±5.4 74.3±6.1 75.6±5.5 70.4±6.8 • 71.5±5.7 (c) • 66.2±8.1 •

breast-w 96.3±2.1 95.0±2.7 96.2±2.3 95.9±2.2 96.4±2.2 (c) 96.7±2.2
german 75.3±3.7 71.3±3.2 • 75.2±3.7 75.0±3.3 73.3±3.5 (m) 74.5±3.3
glass 69.7±9.5 67.6±9.3 65.4±8.7 71.3±9.1 69.3±9.7 (c) 78.8±7.8 ◦

glass (G2) 76.5±8.9 78.2±8.5 76.9±8.8 81.1±8.7 83.2±11.1(c) 88.7±6.4 ◦

heart-c 82.7±7.4 76.9±6.6 • 83.1±7.4 82.1±6.7 78.2±7.4 (s) 80.0±6.5
heart-h 84.2±6.3 80.2±8.0 84.2±6.3 82.4±6.4 79.8±7.8 (c) 78.3±7.1 •

heart-statlog 83.6±6.6 78.1±7.4 • 83.7±6.5 82.1±6.8 83.7±6.4 (m) 80.4±7.1
hepatitis 83.7±8.1 79.2±9.6 84.1±8.1 82.4±8.8 83.3±7.8 (m) 84.9±7.8
horse-colic 83.7±6.3 85.2±5.9 82.2±6.0 83.2±5.4 84.0±5.8 (c) 81.7±5.8
hypothyroid 99.6±0.4 99.5±0.4 96.8±0.7 • 99.4±0.4 99.1±0.4 (c) • 99.7±0.3
ionosphere 92.7±4.3 89.7±4.4 • 88.1±5.3 • 89.9±4.2 89.5±5.2 (c) 94.0±3.8
iris 96.2±5.0 94.7±5.3 96.3±4.9 94.9±5.6 94.3±5.4 (c) 94.5±5.0
kr-vs-kp 99.7±0.3 99.4±0.4 97.4±0.8 • 99.2±0.5 • 99.5±0.4 (c) 99.6±0.3
labor 91.5±10.9 78.6±16.6• 91.9±10.4 85.1±16.3 89.9±11.5(c) 88.9±14.1
lymphography 84.7±9.6 75.8±11.0• 84.5±9.3 80.4±9.3 78.4±10.2(c) 84.7±8.4
pima-indians 77.1±4.4 74.5±5.3 77.1±4.5 76.6±4.7 77.2±4.3 (m) 73.9±4.8 •

primary-tumor 46.7±6.2 41.4±6.9 • 46.7±6.2 45.3±6.2 40.7±6.1 (c) • 41.7±6.5 •

segment 97.1±1.2 96.8±1.3 95.4±1.5 • 97.4±1.0 96.8±1.1 (c) 98.6±0.7 ◦

sick 98.9±0.6 98.7±0.6 96.7±0.7 • 98.4±0.6 • 98.6±0.6 (c) 99.0±0.5
sonar 76.4±9.4 73.6±9.3 75.1±8.9 78.4±8.8 71.6±8.0 (c) 85.1±7.8 ◦

soybean 93.6±2.5 91.8±3.2 93.5±2.7 92.9±2.6 93.6±2.7 (c) 93.3±2.8
vehicle 82.4±3.3 72.3±4.3 • 80.4±3.4 78.7±4.4 • 79.8±4.0 (m) 77.9±3.6 •

vote 95.7±2.8 96.6±2.6 95.7±2.7 95.6±2.8 95.3±2.8 (c) 95.2±3.3
vowel 94.1±2.5 80.2±4.4 • 84.2±3.7 • 80.9±4.7 • 83.0±3.7 (c) • 96.8±1.9 ◦

waveform-noise 87.0±1.6 75.3±1.9 • 86.9±1.6 82.5±1.6 • 86.7±1.5 (m) 85.0±1.6 •

zoo 95.0±6.6 92.6±7.3 94.8±6.7 94.5±6.4 94.5±6.8 (c) 96.3±6.1
◦, • statistically significant win or loss

standard deviation. To correct for the dependencies in the estimates we used the
corrected resampled t-test [9] instead of the standard t-test on these data points
to identify significant wins/losses of our method against the other methods at a
5% significance level.

Table 1 gives the average classification accuracy for every method and dataset,
and indicates significant wins/losses compared to LMT. Table 2 gives the num-
ber of datasets on which a method (column) significantly outperforms another
method (row). Apart from PLUS all algorithms are implemented in Weka 3.3.6
(including LMT and SimpleLogistic)3. Note that PLUS has three different modes
of operation: one to build a simple classification tree, and two modes that build
logistic model trees using simple/multiple logistic regression models. For all
datasets, we ran PLUS in all three modes and selected the best result, indi-
cated by (c),(s) or (m) in Table 1.

3.2 Discussion of Results

To answer our first question, we observe from Table 1 that the LMT algorithm
indeed reaches at least accuracy levels comparable to both SimpleLogistic and
3 Weka is available from www.cs.waikato.ac.nz/˜ml



Table 2. Number of datasets where algorithm in column significantly outperforms
algorithm in row

LMT C4.5 SimpleLogistic M5’ PLUS AdaBoost.M1
LMT - 0 0 0 0 6
C4.5 13 - 6 5 5 13
SimpleLogistic 6 3 - 4 4 10
M5’ 8 0 1 - 1 12
PLUS 4 1 1 2 - 0
AdaBoost.M1 7 1 3 1 0 -

Table 3. Tree size

Data Set LMT C4.5 PLUS Data Set LMT C4.5 PLUS
anneal 1.8 38.0 ◦ 15.8 ◦ ionosphere 4.6 13.9 ◦ 13.5 ◦

audiology 1.0 29.9 ◦ 47.6 ◦ iris 1.1 4.6 ◦ 6.1 ◦

australian 2.5 22.5 ◦ 2.0 kr-vs-kp 8.0 29.3 ◦ 42.6 ◦

autos 3.0 44.8 ◦ 42.2 ◦ labor 1.0 4.2 ◦ 5.1 ◦

balance-scale 5.3 41.6 ◦ 1.9 • lymphography 1.2 17.3 ◦ 14.9 ◦

breast-cancer 1.1 9.8 ◦ 9.1 ◦ pima-indians 1.0 22.2 ◦ 1.2
breast-w 1.4 12.2 ◦ 1.2 primary-tumor 1.0 43.8 ◦ 26.7 ◦

german 1.0 90.2 ◦ 4.3 ◦ segment 12.0 41.2 ◦ 65.9 ◦

glass 7.0 23.6 ◦ 25.2 ◦ sick 14.1 27.4 ◦ 30.0 ◦

glass (G2) 4.6 12.5 ◦ 15.5 ◦ sonar 2.7 14.5 ◦ 13.2 ◦

heart-c 1.0 25.7 ◦ 6.2 ◦ soybean 3.7 61.1 ◦ 42.4 ◦

heart-h 1.0 6.3 ◦ 5.1 vehicle 3.5 69.5 ◦ 1.0 •

heart-statlog 1.0 17.8 ◦ 1.0 vote 1.1 5.8 ◦ 5.8 ◦

hepatitis 1.1 9.3 ◦ 1.5 vowel 5.2 123.3 ◦ 156.9 ◦

horse-colic 3.7 5.9 6.6 waveform-noise 1.0 296.5 ◦ 1.0
hypothyroid 5.6 14.4 ◦ 12.9 ◦ zoo 1.0 8.4 ◦ 9.5 ◦

◦, • statistically significant increase or decrease

C4.5, it is never significantly less accurate. It outperforms SimpleLogistic on six
and C4.5 on 13 datasets, and both methods simultaneously on two datasets. Sim-
pleLogistic performs surprisingly well on most datasets, especially the smaller
ones. However, on some larger datasets (‘kr-vs-kp’, ‘sick’, ‘hypothyroid’) its per-
formance is a lot worse than that of any other method. Linear models are prob-
ably too restricted to achieve good performance on these datasets.

With regard to the second question, we can say that LMT achieves sim-
ilar results as boosted C4.5 (although with strengths/weaknesses on different
datasets). Comparing LMT with M5’, we find better results for LMT on almost
all datasets. Note that LMT also outperforms PLUS, even though the selection
of the best result from the three modes for PLUS introduces an optimistic bias.

To answer our third question, Table 3 gives the observed average tree sizes
(measured in number of leaves) for LMT, C4.5 and PLUS. It shows that the trees
built by the LMT algorithm are always smaller than those built by C4.5 and
mostly smaller than those generated by PLUS. For many datasets the average
tree size for LMT is very close to one, which essentially means that the algorithm
constructs a simple logistic model. To account for small random fluctuations, we
will say the tree is pruned back to the root if the average tree size is less than
1.5. This is the case for exactly half of the 32 datasets, and consequently the
results for LMT on these datasets are almost identical to those of SimpleLogistic.



It can be seen from Table 1 that on all datasets (with the exception of ‘vote’)
where the tree is pruned back to the root, the result for LMT is better than
that for C4.5, so it is reasonable to assume that for these datasets using a simple
logistic regression model is indeed better than building a tree structure. Looking
at the sixteen datasets where the logistic model tree is not pruned back to the
root, we observe that on 13 of them LMT is more accurate than SimpleLogistic.
This indicates a tree is only built if this leads to better performance than a
single logistic model. From these two observations we can conclude that our
method reliably makes the right choice between a simple logistic model and a
more elaborate tree structure.

We conclude that the LMT algorithm achieves better results than C4.5, Sim-
pleLogistic, M5’ and PLUS, and results that are competitive with boosted C4.5.
Considering that a single logistic model tree is easier to interpret than a boosted
committee of C4.5 trees we think that LMT is an interesting alternative to boost-
ing trees. Of course, one could also boost logistic model trees — but because
building them takes longer than building simple trees this would be computa-
tionally expensive.

4 Related Work

As mentioned above, model trees form the basis for the ideas presented here,
but there has also been some interest in combining regression and tree induc-
tion into ‘tree structured regression’ in the statistics community. For example,
Chaudhuri et al. [3] investigate a general framework for combining tree induction
with node-based regression models that are fit by maximum likelihood. Special
cases include poisson regression trees (for integer-valued class variables) and lo-
gistic regression trees (for binary class variables only). Chaudhuri et al. apply
their logistic regression tree implementation to one real-world dataset, but it is
not their focus to compare it to other state-of-the-art learning schemes.

More recently, Lim presents an implementation of logistic regression trees
called ‘PLUS’ [8]. There are some differences between the PLUS system and
our method: first, PLUS does not consider nominal attributes when building
the logistic regression models, i.e. it reverts to building a standard decision tree
if the data does not contain numeric attributes. Second, PLUS uses a different
method to construct the logistic regression models at the nodes. In PLUS, every
logistic model is trained from scratch on the data at a node, whereas in our
method the final logistic model consists of a committee of linear models trained
on nested subsets of the data, thus naturally incorporating a form of ‘smoothing’.
Furthermore, our approach automatically selects the best attributes to include
in a logistic model, while PLUS always uses all or just one attribute (a choice
that has to be made at the command line by the user).



5 Conclusions

This paper introduces a new method for learning logistic model trees that builds
on earlier work on model trees. This method, called LMT, employs an efficient
and flexible approach for building logistic models and uses the well-known CART
algorithm for pruning. Our experiments show that it is often more accurate than
C4.5 decision trees and standalone logistic regression on real-world datasets, and,
more surprisingly, competitive with boosted C4.5 trees. Like other tree induction
methods, it does not require any tuning of parameters.

LMT produces a single tree containing binary splits on numeric attributes,
multiway splits on nominal ones, and logistic regression models at the leaves, and
the algorithm ensures that only relevant attributes are included in the latter.
The result is not quite as easy to interpret as a standard decision tree, but much
more intelligible than a committee of multiple trees or more opaque classifiers
like kernel-based estimators.

Acknowledgments

Many thanks to Luc de Raedt and Geoff Holmes for enabling Niels to work on
his MSc at Waikato. Eibe Frank was supported by Marsden Grant 01-UOW-019.

References

1. C.L. Blake and C.J. Merz. UCI repository of machine learning databases, 1998.
[www.ics.uci.edu/∼mlearn/MLRepository.html].

2. L. Breiman, H. Friedman, J. A. Olshen, and C. J. Stone. Classification and Re-
gression Trees. Wadsworth, 1984.

3. P. Chaudhuri, W.-D. Lo, W.-Y. Loh, and C.-C. Yang. Generalized regression trees.
Statistica Sinica, 5:641–666, 1995.

4. Eibe Frank, Yong Wang, Stuart Inglis, Geoffrey Holmes, and Ian H. Witten. Using
model trees for classification. Machine Learning, 32(1):63–76, 1998.

5. Yoav Freund and Robert E. Schapire. Experiments with a new boosting algorithm.
In Proc. Int. Conf. on Machine Learning, pages 148–156. Morgan Kaufmann, 1996.

6. Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Additive logistic regres-
sion: a statistical view of boosting. The Annals of Statistic, 38(2):337–374, 2000.

7. Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statis-
tical Learning: Data Mining, Inference, and Prediction. Springer-Verlag, 2001.

8. T.-S. Lim. Polytomous Logistic Regression Trees. PhD thesis, Department of
Statistics, University of Wisconsin, 2000.

9. C. Nadeau and Yoshua Bengio. Inference for the generalization error. In Advances
in Neural Information Processing Systems 12, pages 307–313. MIT Press, 1999.

10. C. Perlich and F. Provost. Tree induction vs logistic regression. In Beyond Clas-
sification and Regression (NIPS 2002 Workshop), 2002.

11. J. R. Quinlan. Learning with Continuous Classes. In 5th Australian Joint Confer-
ence on Artificial Intelligence, pages 343–348, 1992.

12. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.
13. Y. Wang and I. Witten. Inducing model trees for continuous classes. In Proc of

Poster Papers, European Conf. on Machine Learning, 1997.


