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ABSTRACT In this paper, a multi depots capacitated electric vehicle routing problem where client demand

is composed of two-dimensional weighted items (2L-MDEVRP) is addressed. This problem calls for the

minimization of the transportation distance required for the delivery of the items which are demanded

by the clients, carried out by a fleet of electric vehicles in several depots. Since the 2L-MDEVRP is an

NP-hard problem, a heuristic algorithm combined variable neighborhood search algorithm (VNS) and space

saving heuristic algorithm (SSH) is proposed. The VNS algorithm is used to solve the vehicle routing

problem (VRP) sub-problem, and the SSH algorithm is used to solve the bin packing problem (BPP) sub-

problem. We propose the space saving heuristic to find the best matching solution between the next loading

item and the feasible loading position. The SSH-VNS algorithm is tested by using benchmark instances

available from the literature. The results show that the SSH-VNS algorithm has better performance compared

with other published results for solving capacity vehicle routing problem (CVRP) and two-dimensional

capacity vehicle routing problem (2L-CVRP). Some new best-known solutions of the benchmark problem

are also found by SSH-VNS. Moreover, the effectiveness of the proposed algorithm on 2L-MDEVRP is

demonstrated through numerical experiments and a practical logistic distribution case. In the last section,

the managerial implications and suggestions for future research are also discussed.

INDEX TERMS Vehicle routing problem, two-dimensional loading, electric vehicle, variable neighborhood

search, space saving heuristic.

I. INTRODUCTION

Vehicle routing problem (VRP) is an important and typical

distribution optimization problem in which a fleet of vehi-

cles is required to deliver items demanded by clients at a

minimized total cost [1]. Since the complexity in an actual

environment, the objectives and constraints encountered are

highly variable. Dantzig and Ramser [2] pioneered the study

on ‘‘truck dispatching’’ problems. Clarke and Wright [3]

were the first to incorporate more than one vehicle in the

problem formulation. This was considered one of the first

studies in VRP literature. Other versions of the VRP emerged

in the early 1970s for different types of problems and

The associate editor coordinating the review of this manuscript and

approving it for publication was Sabah Mohammed .

subjects, among all the above variants, researchers have

been particularly interested in the CVRP which is the

combi- nation of VRP and bin packing problem (BPP).

The research of CVRP has far-reaching practical signifi-

cance, because only by taking both loading and routing into

consideration can we make sure the delivery route is the

most economic and the items are completely and reasonably

loaded into the vehicles. In recent years, some attention

has been paid to 2L-CVRP, in which client demands are

defined as sets of non-stackable rectangular weighted items,

such as furniture, home appliances, or breakables. The 2L-

CVRP was first presented by Iori and Vigo [4]. There are

mainly four variants of the 2L-CVRP, namely, 2L-sequential

oriented loading (2|SO|L), 2L-sequential non-oriented

(rotated) loading (2|SR|L), 2L-unrestricted oriented loading

31934 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0003-3947-4580
https://orcid.org/0000-0003-4765-3562
https://orcid.org/0000-0003-3085-8297
https://orcid.org/0000-0002-7639-0696


X. Zhu et al.: Logistic Optimization for Multi Depots Loading Capacitated Electric VRP From Low Carbon Perspective

(2|UO|L), and 2L-unrestricted non-oriented (rotated) load-

ing (2|UR|L). Leung et al. [5] studied the two-dimensional

loading heterogeneous fleet vehicle routing problem (2L-

HFVRP), wherein clients were served by a heterogeneous

fleet of vehicles and proposed a simulated annealing with

heuristic local search (SA-HLS). Zhu et al. [6] addressed a

multi depot CVRP wherein the client demands comprised of

two-dimensional items (2L-MDCVRP). Dominguez et al. [7]

considered a realistic extension of the classical vehicle rout-

ing problem wherein both the delivery and pickup demands

comprised non- stackable items. They presented a hybrid

algorithm that integrated biased-randomized versions of vehi-

cle routing and packing heuristics into a large neighbor-

hood search metaheuristic framework. The 2L-CVRP in an

uncertain environment was also studied [8]. With another

meta-heuristic for solving 2L-CVRP, Zachariadis et al. [9]

proposed the promise routing-memory packing (PRMP).

Recently, more and more researches have been dedicated

to the electric vehicle routing problem (EVRP) since con-

cerns have been raised about the related technology and

development of electric vehicles for the international auto-

mobile market with the global financial crisis, environmen-

tal degradation, and energy depletion problems [10]–[13].

Electric vehicles have been used extensively for city dis-

tribution logistics. The driving distance of electric vehicles

has improved significantly since the development of battery

technology, yet not rapidly to meet the demand of large

city distribution. Therefore, at current state, changing battery

or recharging in public fast-recharging stations are the best

feasible solutions to extend the driving distance of electric

vehicles. Artmeier et al. [14] studied the most economical

one in terms of the energy consumption. This was considered

the first attempt to introduce electric vehicles. Later, Conrad

and Figliozzi [15] proposed a rechargeable vehicle routing

problem with time windows, which became the basis for

the studied EVRP with time windows. Schneider et al. [16]

studied a vehicle routing problem with intermediate stops

considering necessary visits at intermediate locations as the

EVRP required.

In recent years, studies have focused on various EVRPs.

Sassi et al. [17] addressed a vehicle routing problem with

a mixed fleet of conventional and heterogeneous electric

vehicles, denoted as VRP-MFHEV, and proposed amulti start

iterated Tabu Search (ITS) based on the large neighborhood

search (LNS). Desaulniers et al. [18] considered four variants

of the EVRP with time windows. They found that allowing

multiple as well as partial recharges helped in reducing rout-

ing costs and the number of employed vehicles, com- pared

to variants with single and with full recharges.

More recently, Sweda et al. [19] studied the problem of

finding an optimal adaptive routing and recharging policy for

an electric vehicle in a network=. They developed algorithms

for finding an optimal a priori routing and recharging pol-

icy and then presented solution approaches to an adaptive

problem that was built on the priori policy. Subsequently,

they presented two heuristic methods for finding adaptive

policies, one with adaptive recharging decisions only and

another with both adaptive routing and recharging decisions.

Barco et al. [20] proposed a model based on the longitudi-

nal dynamics equation of motion and estimated the energy

consumption of each Battery Electric Vehicle (BEV) with

a case study of an airport shuttle service scenario used to

demonstrate the feasibility of the proposed methodology.

Montoya et al. [21] extended current EVRP models to con-

sider nonlinear recharging functions. They proposed a hybrid

metaheuristic that combined simple components from litera-

ture and components specifically designed for this problem.

They found that neglecting nonlinear recharging could lead

to infeasible or overly expensive solutions.

As discussed above, studies on EVRP only focused on

the routing optimization. Few researches are conducted in

the combination of EVRP and BPP. Nevertheless, an overall

consideration given to loading and routing will contribute

to a more comprehensive and reasonable logistics optimiza-

tion. Besides, there are two main differences between elec-

tric vehicle distribution and conventional gasoline vehicle

distribution. First, the effect of items’ weight on the bat-

tery consumption should be considered in the electric vehi-

cle distribution. As a client is served, the items’ weight is

reduced, and the battery consumption decreased accordingly.

Therefore, it is not reasonable to set the battery consumption

between two clients as a fixed value. Second, electric vehicles

need to go to recharging stations for recharging or for battery

replacement during the distribution considering mileage lim-

itations. Thus, it is very important to decide when and where

to charge or replace the batteries in the distribution. However,

according to our observation, relatively few studies have been

conducted on these issues, which is the primary motivation of

this research.

The remainder of this paper is organized as follows. The

model development in the next section introduces the for-

mulation notations, constraints and complete mathematical

model of 2L-MDEVRP. Section 3 introduces a heuristic

algorithm combining variable neighborhood search algo-

rithm (VNS) and space saving heuristic algorithm (SSH)

for solving the 2L-MDEVRP model. Section 4 introduces

three groups of experiments based on benchmark instances

including multi deports CVRP, EVRP and 2L-CVRP.

Section 5 presents a case study of SH company. In the last

section, the key contributions of this research are discussed

along with the related managerial implications.

II. MODEL DEVELOPMENT

Considering the characteristics of electric vehicle for distri-

bution, we propose a model for multi depots electric vehicle

routing problem with two-dimensional loading constraints.

In this problem, the distribution tasks are executed by the

same type of electric vehicles. The electric vehicles belong

to several depots in different locations. Each electric vehicle

is subject to capacity constraint and electricity constraint.

An example of the routing solution and loading solution

of 2L-MDEVRP is shown in Fig. 1. Fig. 1(a) illustrates
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FIGURE 1. Illustration of 2L-MDEVRP.

the 2L-MDEVRP that includes two depots D1 and D2, two

recharging stations C1 and C2, nine clients and twenty-three

items. It can be seen from Fig.1(a) that there are two routes

in this example: (D1-1-2-C1-3-D1) and (D2-6-7-8-9-C2-

P4-5-D2). After serving clients 1 and 2, the vehicle from

depot D1 has to charge in recharging station C1 to continue

serving client 3 and subsequently return to depot D1. Simi-

larly, the vehicle from depot D2 has to enter the recharging

station C2 for recharging. Fig. 1(b) shows two feasible load-

ing solutions for the above two routes, respectively.

A. FORMULATION NOTATIONS

The following notations are used in the model presented in

this paper:

INDICES

t ∈ VT → Depots

p ∈ VP → Recharging stations

n, n′ ∈ VN → Clients

h ∈ Ht → Electric vehicles

i, i′ ∈ V → Nodes

k ∈ In → Items

SETS

VT → Set of depots

VP → Set of recharging stations

VN → Set of clients

V → Set of nodes, V = VT ∪ VP ∪ VN
Ht → Set of electric vehicles belonging to depot t

In → Set of items belonging to client n

PARAMETERS

G → Weight capacity of electric vehicle

Q → Battery capacity of electric vehicle

M → Unloading weight of electric vehicle

S → Area of loading surface of electric vehicle

L → Length of loading surface of electric vehicle

W → Width of loading surface of electric vehicle

v → Constant velocity of electric vehicle

cii′ → Distance from node i to node i
′

mn → Demanded quantity of client n

dn → Demanded weight of client n

sn → Demanded area of client n

α → Virtual coefficient

η → Virtual coefficient

CONTINUOUS VARIABLES

Qinthi → The battery capacity of vehicle h belong-

ing to depot t when entering node i

Qout thi → The battery capacity of vehicle h belong-

ing to depot t when leaving node i

INTEGER VARIABLES

xnk → The x-coordinate of front-left corner of item

k belonging to client n

ynk → The y-coordinate of front-left corner of item

k belonging to client n

gthi → The weight of all items loaded in electric

vehicle h belonging to depot t when entering

node i

BINARY VARIABLES

ath
ii′
(= 1) → if the electric vehicle h belonging to

depot t travelling from node i to node i′

bthi (= 1) → if the electric vehicle h belonging to

depot t visiting node

unk (= 1) → if the item k belonging to client n is

rotated

B. CONSTRAINTS

The 2L-MDEVRPmodel considered in this paper is based on

some constraints which can be classified into two categories:

routing constraints and loading constraints.

1) ROUTING CONSTRAINTS

The routing constraints of 2L-MDEVRP are given as follows:

•Closed-tour constraints: one client must be served by

a vehicle only once; every vehicle can visit all depots or

recharging stations at most once; every vehicle must leave

from the specific node where it enters.

•Sub-tour elimination constraint: there is no sub-tour in

each tour.

•Demand non-split constraint: all items of one client

should be loaded in a single vehicle.

Routing constraints that constitute the feasible domain

of the routing solution can be widely found in many VRP
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related studies [22]. According to the characteristics of the

2L-MDEVRP, we give the mathematical formulas of routing

constraints as follows:
∑

i
′
∈Vt

athii′ = bthi′ , ∀i ∈ V , ∀h ∈ Ht , ∀t ∈ VT (1)
∑

i∈V
athii′ = bthi′ , ∀i

′ ∈ V , ∀h ∈ Ht , ∀t ∈ VT (2)
∑

t∈Vt

∑

h∈Ht
bhti = 1, ∀i ∈ VN (3)

∑

t∈Vt

∑

h∈Ht
bhti ≤ 1, ∀i ∈ Vt ∪ Vp (4)

∑

i′∈V
athii′ =

∑

i′∈V
athi′i,

∀i∈V , ∀h∈Ht , ∀t ∈VT (5)
∑

i∈VN

bthi · di ≤ |S| , ∀h ∈ Ht , ∀t ∈ VT ,

∀S ⊂ V , 2 ≤ |S| ≤ N − 1 (6)
∑

i∈VN

bthi · di ≤ G, ∀h ∈ Ht , ∀t ∈ VT (7)
∑

i∈VN

bthi · si ≤ S, ∀h ∈ Ht , ∀t ∈ VT (8)

Equation (1) and (2) denote the conversion formulas of

variable ath
ii′

and variable bth
i′
, and the purpose of these two

equations is to simplify modeling process by increasing the

number of variables.

Equation (3) expresses that a client can be served only

once. Equation (4) expresses that every vehicle can visit

all depots or recharging stations at most once. Equation (5)

expresses that every vehicle must leave from the specific

node where it enters. Equation (3)-(5) satisfy the closed-tour

constraints. Equation (6) guarantees that no sub-tour will be

generated. The solution that satisfying the (3)-(6) constitutes

a Hamiltonian cycle.

Equation (7) expresses that the weight of items loaded

on each vehicle cannot exceed the capacity of the vehicle.

Equation (8) expresses that the area of items loaded on each

vehicle cannot exceed the area of loading surface of the

vehicle. Equation (7) and (8) guarantee that the loaded items

cannot exceed the vehicle capacity.

2) LOADING CONSTRAINTS

To ensure that all items can be loaded into the vehicles as

required, the loading constraints are introduced as follows:

•Rectangle constraint: the loading surface of each vehicle

and item can be considered as rectangle.

•Parallel constraint: all items must be loaded with their

edges parallel to the edges of the vehicles.

•Directional constraint: all items must be loaded and

unloaded straight from the rear door.

•Boundary constraint: all items are not allowed to surpass

loading surface area.

•Last-in-first-out (LIFO) constraint: items are not allowed

to be rearranged at client sites.

In order to describe the loading constraints in equations,

we need to introduce a Cartesian coordinate system which

is adopted with its origin in the container’s front-left corner,

and let (x, y) be the possible coordinates where the front-left

corner of an item can be placed. These positions along axes L

FIGURE 2. The Cartesian coordinate system and grid graph.

andW of the container belong to the sets: X = {0, 1, . . . ,L−

min(lnk ) and Y = {0, 1, . . . ,W − min(wnk ), respectively.

So, the container can be divided into many grids, as shown

in Fig. 2. If front-left corner of item k belonging to client n is

placed on point C (xnk , ynk), then the rectangle of ABCD will

be occupied.

It’s easy to find that the rectangle constraint, parallel con-

straint and directional constraint are natural satisfaction. Then

we need to address other loading constraints as following.

a: BOUNDARY CONSTRAINT

This constraint can be expressed as the coordinate occupied

by any item that cannot exceed the loading surface. If item

is not rotated, the x-coordinate of front-left corner plus the

length of item must be less than carriage length, and the

y-coordinate of front-left corner plus the width of item must

be less than carriage width. If item is rotated, the x-coordinate

of front-left corner plus the width of item must be less than

carriage width, and the y-coordinate of front-left corner plus

the length of item must be less than carriage length.

0 ≤ xnk ≤ (L − lnk) · (1 − unk) + (W − wnk) · unk , (9)

0 ≤ ynk ≤ (L − lnk) · unk + (W − wnk) · (1 − unk) , (10)

when k = 1, 2, . . . ,mn, ∀n ∈ Vn.

b: NON-STACKABLE CONSTRAINT

There are four possible position relationships between two

items as shown in Fig. 3, upper, lower, left and right. The

coordinate of front-left corner of item A is (x, y). The length

and the width of item A are lA and wA, respectively. The

coordinate of front-left corner of item B is (xB, yB). The

length and the width of item B are lB and wB, respectively.

Considering that item A or item B may be rotated, we use uA
and uB to denote whether the item A or item B is rotated.

If item B is on the right of item A(xA ≥ xB), then get

xB ≥ xA + (lA · (1 − uA) + wA · uA).

Considering the simplicity of the mathematical model,

we integrate the above four position relationships into one for-

mula. Set item A is the item k belonging to client n, and item

B is the item n belonging to client n′,
∣

∣n− n′
∣

∣+
∣

∣k − k ′
∣

∣ > 0.
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Firstly, we define llkk ′nn′ and wwkk ′nn′ as follows:

u
kk

′
nn

′ =
(

max
((

xnk + lnk · (1 − unk) + wnk · u
n
′
k
′

)

,
(

x
n
′
k
′ + l

n
′
k
′ ·

(

1 − u
n
′
k
′

)

+w
n
′
k
′ · unk

))

−min
(

xnk , xn′
k
′

))

−
(

lnk · (1 − unk) + wnk ·unk + l
n
′
k
′ ·

(

1 − u
n
′
k
′

)

+w
n
′
k
′ ·u

n
′
k
′

)

,

wwkk ′nn′ = (max ((ynk + wnk · (1 − unk) + lnk · unk) ,

(yn′k ′ + wn′k ′ · (1 − un′k ′)

+ ln′k ′ · un′k ′)) − min (ynk , yn′k ′))

− (wnk · (1 − unk ) + lnk · unk

+wn′k ′ · (1 − un′k ′) + ln′k ′ · un′k ′ ).

ll
kk

′
nn

′ denotes the value of the length projection on

x-axis of item A and item B minus the sum length of the two

items. ww
kk

′
ii

′ denotes the value of the width projection on

y-axis of item A and item B minus the sum width of the two

items. If the two items don’t overlap, then the maximal value

between ll
kk

′
ii

′ or ww
kk

′
ii

′ is not less than zero. Then we get

the constraint as following:

max (llkk ′nn′ ,wwkk ′nn′) ≥ 0 (11)

when

k = 1, 2, . . . ,mn,k
′

= 1, 2, . . . ,m
n
′ ,

bthn = bth
n
′ = 1,

∣

∣

∣
n− n

′
∣

∣

∣
+

∣

∣

∣
k − k

′
∣

∣

∣
> 0,

∀h ∈ Ht , ∀t∈VT , ∀n, n
′

∈VN .

And bthn = bth
n
′ = 1 express that client n and client n′ are

served by the same electric vehicle.

c: LIFO CONSTRAINT

Usual and practical request in transportation is that, the items

belonging to current visiting client can be unloaded from the

rear door of vehicle, without having to move items belonging

to successive clients along the route. This implies that the

portion of loading surface between each item of the client

being served and the opening of the vehicle must be empty.

The rear door of vehicle is exactly x-axis, as shown in Fig. 3.

According to the requirements of LIFO constraint, when

FIGURE 3. The position relations between two items.

vehicle h belonging to depot t travels from client n to client n
′
,

we can get the constraint as following:

max (wwkk ′nn′ , (xnk , xn′k ′)) ≥ 0,

k = 1, 2, . . .mn, k
′ = 1, 2, . . . ,mn′ , athnn′ = 1, (12)

when
∣

∣n− n′
∣

∣ +
∣

∣k − k ′
∣

∣ > 0, ∀h ∈ Ht ,

∀t ∈ VT , ∀n, n′ ∈ VN .

C. MATHEMATICAL MODEL

A complete 2L-MDEVRP mathematical model includes

objective functions, routing constraints, loading constraints,

recharging-discharging constraints, and the value range con-

straints of decision variables. Routing constraints (1) - (8) and

loading constraints (9) - (12) have already been proposed in

section 2.2. With the addition of objective function and the

value range constraints, a complete mathematical model can

be formed as follows:

minZ =
∑

h∈Hi

∑

i′∈V

∑

i∈V
c′ii · a

th
ii′ (13)

∑

i∈VT

athii′ = bthi′ ∀i ∈ V , ∀h ∈ Ht , ∀t ∈ VT (14)
∑

i∈V
athii′ = bthi′ ∀i′ ∈ V , ∀h ∈ Ht , ∀t ∈ VT (15)
∑

t∈Vt

∑

h∈Ht
bhti

= 1, ∀i ∈ VN (16)
∑

t∈Vt

∑

h∈Ht
bhti

≤ 1, ∀i ∈ VT ∪ Vp (17)
∑

i′∈V
athii′ =

∑

i′∈V
athi′i,

∀i ∈ V , ∀h ∈ Ht , ∀t ∈ VT

(18)
∑

i∈VN

bthi ≤ |S| , ∀h ∈ Ht , ∀t ∈ VT ,

∀S ⊂ V , 2 ≤ |S| ≤ N − 1 (19)
∑

i∈VN

bthi · di ≤ G, ∀h ∈ Ht , ∀t ∈ VT (20)
∑

i∈VN

bthi · si ≤ S, ∀h ∈ Ht , ∀t ∈ VT (21)

Qout thi = Q, i ∈ Vp, h ∈ Ht , t ∈ VT (22)

Qinthi ≥ 0.2 · Q, i, i′ ∈V , h∈Ht , t ∈VT

(23)

(0 ≤xnk ≤ (L−lnk )·(1−unk )+(W−wnk )·unk ,

k = 1, 2, . . . ,mn, ∀n ∈ Vn (24)

(0 ≤ynk ≤ (L−lnk )·unk+(W−wnk )·(1−unk ),

k = 1, 2, . . . ,mn, ∀n ∈ Vn (25)

max (llkk ′nn′ ,wwkk ′nn′)

≥ 0k = 1, 2, . . .mn,

k ′ = 1, 2, . . . ,mn′ , bthn = bthn′ = 1,
∣

∣

∣
n− n

′
∣

∣

∣
+

∣

∣

∣
k − k

′
∣

∣

∣

> 0, ∀h∈Ht , ∀t ∈ VT , ∀i, i
′

∈ VN (26)
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max
(

wwkk
′
nn

′ , (xnk , xn′k ′)
)

≥ 0, k = 1, 2, . . .mn,

k ′ = 1, 2, . . . ,mn′ , ann′ = 1,
∣

∣

∣
n− n

′
∣

∣

∣
+

∣

∣

∣
k − k

′
∣

∣

∣
> 0,

∀h ∈ Ht , ∀t∈VT , ∀n, n
′

∈VN

(27)

xnk ∈ N+, ynk ∈ N+, gthi ∈ N+, athii′ ∈ {0, 1} ,

bthii′ ∈ {0, 1} , unk ∈ {0, 1} (28)

Equation (13) is the objective function of 2L-MDEVRP

model that expresses the minimum total travelling distance

for all routes. The value range constraints of all decision

variables including continuous variables, integer variables,

and binary variables are all given in (28). The explanations

of (14) - (27) can be found in section 2.2.

III. SOLUTION ALGORITHM

In this section, we introduce the hybrid heuristic algorithm

for solving the 2L-MDEVRP model.

A. VARIABLE NEIGHBORHOOD SEARCH

VNS is a metaheuristic for solving the combinatorial and

global optimization problems based on the principle of sys-

tematic changes of neighborhoods within the search. Many

extensions of VNS have been studied for solving large scale

instances [23], [24].

In the classical implementation of VNS algorithm, four key

components should be specified: (i) method to construct an

initial solution; (ii) neighborhood structures NS; (iii) shak-

ing process; (iv) local search. The algorithm framework of

VNS is shown by Wei et al. (2015). With an initial solution,

a so-called shaking step in which randomly selects a solution

from the first neighborhood is performed followed by apply-

ing an iterative improvement algorithm. This procedure will

repeat until a new incumbent solution is found. Otherwise,

one switches to the next larger neighborhood and performs

a shaking step followed by the iterative improvement. Once

a new incumbent solution is identified, one starts with the

first neighborhood. Otherwise one proceeds with the next

neighborhood, and so forth.

1) INITIAL SOLUTION

There are many methods that can be used to construct an

initial solution, such as minimum spanning tree, random

procedure, saving algorithm and so on. However, all these

methods are not suitable for dealing with the 2L- MDEVRP

proposed in this paper since they cannot select the best time

for recharging stations to join the route. To solve this problem,

a method of generating initial solution based on scanning

algorithm is proposed. The basic idea is to set a rule to scan

nodes one by one and classify them into the current circuit as

shown in Fig. 4. The concrete implementation procedure of

scanning algorithm is as following:

FIGURE 4. Graphic illustration of scanning algorithm for initial solution.

(1) The polar coordinate is used to represent depots,

recharging stations and clients. We randomly select a depot

as the pole of polar coordinate, and draw a line connecting

the pole and any client as the polar axis.

(2) The polar axis is rotated clockwise or counterclock-

wise, and connected to the nodes scanned by the polar axis

(neglect the other depots) to generate a route that named

current route.

(3) Depending on the vehicle capacity, loading area and

battery power, it determines whether the node swept by

the polar axis joins the current route. If the swept node is

at recharging station, then it is added to the current route

directly, and the battery power of electric vehicle is set to full.

(4) If there is nomore nodes that can be added to the current

route, then we generate a feasible route, and eliminate the

clients on the current route from the polar coordinate.

Repeat step (1) to (4) until there is no client node on the

polar coordinate.

2) NEIGHBORHOOD STRUCTURES

Six neighborhoods include the 1-1 interchange (swap), two

types of the 2-0 shift, the 2-1 interchange, and two types

of the perturbation are used in this paper (i.e. k max=6).

The order of the neighborhoods is as follows: the 1-1 inter-

change is set as N1, the 2-0 shift of type 1 is set as N2, the

2-1 interchange is set as N3, the perturbation of type 1 is

set as N4, the perturbation of type 2 is set as N5, and the

2-0 shift of type 2 is set as N6. The six neighborhoods are

briefly described as follows:

The 1-1 interchange (the swap procedure): aims to identify

a feasible solution by swapping a pair of clients from two

routes. This procedure starts from taking a random client from

a random route and tries to swap it systematically with other

clients of all other routes. This procedure will not stop until a

feasible move is identified. The 2-0 shift (type 1 and type 2):

at the beginning of type 1, two consecutive random clients

from a random route are identified, and then are checked for

possible insertion in other routes. This procedure will repeat

until a feasible move is identified. Type 2 is similar to type 1

except that the two clients are considered for insertion into

two different routes. These insertion moves are performed

in a systematic manner. The 2-1 interchange: This type of

insertion attempts to shift two consecutive random clients

from a randomly chosen route to another route selected
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systematically while getting one client from the receiver route

until a feasible move is obtained.

Perturbation mechanisms (type 1 and type 2): This scheme

was first proposed by Salhi and Rand in VRP by considering

three routes simultaneously [25]. The process is to system-

atically take a client from a route and relocate it into another

route without considering capacity and time constraints in the

receiver route. A client from this receiver route is then shifted

to the third route when both capacity and time constraints for

the second and the third routes are not violated. This is the

perturbation of type 1. An extension of this perturbation is to

shift two consecutive clients from a route instead of removing

one client only. We call this as the perturbation of type 2, and

these moves are evaluated systematically.

3) SHAKING PROCESS

Shaking is a key process in the VNS algorithm design which

aims to extend the current solution search space and reduce

the possibility falling into the local optimal solution.

We propose two parameters in the shaking procedure:

solution S, and the number of iterations k . In each iteration,

a route is chosen randomly, and then it’s part of random

length is chosen so that a swap-location is not included in the

chosen part. Then each client from the selected part is moved

to another route, keeping the feasibility and deteriorating

the current objective value as low as possible. The obtained

solution is identified as the new incumbent solution S, and

the whole process will repeat until the maximum number of

iterations (i.e., k) is reached.

4) LOCAL SEARCH OPERATOR

In a VNS algorithm, local search procedures can search the

neighborhood of a new solution space obtained through shak-

ing in order to achieve a locally optimal solution. Local search

is the most time-consuming part in the entire VNS algorithm

framework and can decide the final solution quality, so com-

putational efficiencymust be considered in the design process

of local search algorithm.

In this paper, insertion, exchange and 2-opt are used for

local search operator in order to obtain the good quality local

optimal solution in a short period.

(1) Insertion: deleting edges (vi−1, vi), (vi, vi+1) and

(vj, vj+1), then adding edges (vi−1, vi), (vj, vi) and (vi, vj+1),

as shown in Fig. 5(a).

FIGURE 5. The feasible loading position. (a) Loading position after the
fist item. (b) Loading position after four items.

FIGURE 6. Space wasting and saving of loading surface. (a) Space
wasting of loading surface. (b) Space saving solution 1 of loading surface.
(c) Space saving solution 2 of loading surface.

(2) Exchange: deleting edges (vi−1, vi), (vi, vi+1), (vj−1, vj)

and (vj, vj+1), then adding edges (vi−1, vj), (vj, vi+1),

(vj−1, vi) and (vi, vj+1), as shown in Fig. 5(b).

(3) 2-opt: deleting edges (vi, vi+1) and (vj, vj+1), then

adding edges (vj, vi) and (vi+1, vj+1), as shown in Fig.5(c).

B. SPACE SAVING HEURISTIC

The optimized routing solution can be obtained by VNS algo-

rithm given in section 4. In this section, we will discuss how

to get the feasible loading solution. The quantity and shape

loaded on each vehicle are fixed, so the packing problem

in 2L-MDEVRP is just a sub problem of traditional pack-

ing problem. There are two loading steps of 2L-MDEVRP:

determine the items order and determine the feasible loading

position list. In addition, we process the space saving heuris-

tic to find the best matching solution between the next loading

item and the feasible loading position.

1) LOADING ORDER

For a certain tour, the visiting order of all clients on this tour

is fixed. For sequential model described in section 2, other

items in the vehicle cannot be moved when items of one client

are being unloaded. So the items in a vehicle are sorted in

descending order of visit, called OV. Then the order of items

belonging to different clients is fixed, and the order of items

of same client is not fixed.

For items of one client in sequential model or items of

all clients in unrestricted model, we use two orders O1, O2,

and O3 to determine their final order. For O1, O2, and O3,

items are sorted in descending order of area lw, length l and

width w, respectively. O1 is prior to O2 unless the bottom

areas of the two items are the same, and O2 is prior to

O3 unless the lengths of the two items are the same. The

orders of the items loaded for the example of section 2 can

be identified according to the above rules:

Rout1: I52 − I51 − I41− I33 − I32 − I31− I21 − I23 − I22−

I12 − I13 − I11. Rout2: I62 − I63 − I61− I71 − I72 − I81−

I82 − I92 − I91.

2) FEASIBLE LOADING POSITION

The feasible loading position list means all positions that can

place items, which will be changed after loading an item.

Generally speaking, there will be more than one feasible
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FIGURE 7. The assignment rules for the matching fitness values.

position for the next loading item. As shown in Fig. 5(a), the

feasible loading position list is updated as positionlist {a, b}.

After several times of loading operations, the feasible loading

position list may be updated as positionlist {a, b, c, d} as

shown in Fig. 5(b). The feasible loading position a and b are

closer to the rear door than all the other loading positions.

If an item is closer to the rear door than all adjacent items,

make a straight line along the internal edge close to the rear

door, as Line1 and Line2 shown in Fig. 5(b).

3) SPACE SAVING HEURISTIC

If the loading orders of items are kept the same while the

feasible loading position list is constantly updated, it is likely

to occur space wasting, which eventually results in the failure

to load all the items into the vehicle. As shown in Fig. 6(a),

if we load the next item R1 according to the loading order,

then the loading surface N will be wasted and no item can

be loaded on it. However, if we load item R2 as Fig. 6(b)

or load item R3 as Fig. 6(c) before loading item R1, then

the waste of loading surface will be avoided. So, we propose

a heuristic matching method of loading items and feasible

loading position based on space saving.

The matching fitness values (MFV) are used to indicate the

matching degree of loading items and feasible loading posi-

tions. There are ten situations on the relationship with loading

items and feasible loading positions as shown in Fig. 7(a) to

Fig. 7(j), where the grey area denotes already placed items

and the white area denotes space. There are some independent

spaces below the dotted line enclosed by the edges of carriage

and the loaded items as shown in Fig. 7. It’s better to make

full use of these independent spaces, thereby we can avoid the

waste of space to a great extent as shown in Fig. 6.

IV. NUMERICAL EXPERIMENTS

This section presents the computational results based on the

widely used benchmark instances and some new generated

instances. The SSH-VNS algorithm was coded in MATLAB,

an all experiments were executed on Intel Core i7-8700K

4.8GHz CPU and 16GB RAM running the Windows10 oper-

ating system.

A. RESULTS FOR CVRP AND 2L-CVRP INSTANCES

To test the proposed SSH-VNS algorithm’s performance on

2L-CVRP problemwe applied it to 180 2L-CVRP benchmark

instances introduced by Iori and Vigo [4]. These instances

were derived from 36 CVRP in- stances, described by Toth

and Vigo [26], where the customer demand is expressed as

a set of two-dimensional, weighted and rectangular items.

To generate the aforementioned item sets, five classes of

the item demand characteristics are introduced [4]. Class 1

defines a single 1 1 item for each client corresponding to

basic CVRP instances, so actually there is no difference

between class 1 and CVRP instances, and the experimental

results of class 1 can be considered as experimental results

of CVRP Classes 2-5 contain in- stances with non-unit item

sizes. The item size has been randomly generated to define

‘‘vertical’’ instances (width greater than length), ‘‘homoge-

nous’’ instances (square) and ‘‘horizontal’’ instances (length

greater than width). These instances can be seen at URL:

http://www.or.deis.unibo.it/research.html. Since there is one

depot and no recharging station in the 180 instances, we set

the number of depots as 1 and set the number of recharging

stations as 0.

Average results for classes 1-5 are presented in Table 1.

Row ‘‘Num Best’’ gives the number of times a method pro-

vides the best solution and ‘‘Num Record’’ gives the number

of times the method gives a solution strictly better than all

other methods. As can be observed, the SSH-VNS algorithm

refreshes the record of 11% instances (20 out of 180) and

achieved an average 1.2% improvement of the best solutions

obtained for instances of Classes 1-5. Thus, the proposed

SSH-VNS has a good performance for 2L-CVRP, as well
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TABLE 1. Comparison of results obtained by CPLEX and SSH-VNS on the EVRP instances.

as reducing the overall distances between the depot and the

clients.

The routing solution provided in this research utilizes elec-

tric vehicles to accomplish delivery assignments. Because

of the various structure of power generation and different

levels of clean energy generation, at the moment, there are

substantial variations in the testing and calculating of carbon

dioxide emissions of electric vehicles in numerous nations

in the whole world. Based on the data from Bloomberg

New Energy Finance, the average carbon dioxide emission

of gasoline vehicles in the world is 248.5 g / mile. Meantime,

the carbon dioxide emissions of electric vehicles in China are

189 g / mile, and the carbon dioxide emissions of electric

vehicles in the United States are 147 g / mile. Besides,

the carbon dioxide emissions of Japanese electric vehicles are

142 g / mile, German electric vehicles are 140 g / mile, and

the British electric vehicles are 76 g / mile. The case analyzed

in this paper is in Beijing, China, therefore we picked

189 g / mile as the electric vehicles’ coefficient of carbon

dioxide emission factor. According to the coefficient, we con-

trast the energy consumption of complete 2L-CVRP instances

adopting electric vehicles and conventional gasoline vehicles.
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TABLE 2. Results for class 1-5 of 2L-CVRP instances.

TABLE 3. Route details of the solution for instance 0703E.

Hence, we discover that the average carbon dioxide emissions

of every instance of the electric vehicle are more than 28%.

Among them, 23.9% of the contribution arises from the elec-

tric vehicles’ lower coefficient of carbon dioxide emission,

and 4.1% of the contribution originates from shorter delivery

distances.

B. RESULTS FOR 2L-MDEVRP INSTANCE

To illustrate the optimization results of SSH-VNS for

2L-MDEVRP model, we generate a new instance named

0703E based on the instance 07 of class 03. By retaining all

the data in instance 0703, we add a new depot D2 (300, 230)

and four recharging stations C1 (250, 210), C2 (250, 260), C3

(300, 210), C4 (300, 260).

The parameters of the electric vehicle are set as follows:

Q=25, M=1000, η = 0.8, α = 0.08, β = 120. The

maximum travelling distance of the electric vehicle without

any item is about 200, and the maximum travelling distance

of the electric vehicle with full items is about 70.

The optimization results of instance 0703E are shown

in Fig. 8. There are five routes in Fig. 8, three of them are

processed through depot D1 and two of them are through

depot D2. There are two routes through recharging stations:

route 1 through recharging station twice and route 4 through

FIGURE 8. Routing solution for instance 0703E.

recharging station once. It is worth noting that although the

distances of route 4 and route 5 are very close, due to the

lower weight of loading items, so it is not necessary for route

5 to go through the recharging station. The details of the five

routes are shown in Table 3.

For the distribution lines of electric vehicles, which require

to charge the extra driving distance in and out of the charging

VOLUME 8, 2020 31943



X. Zhu et al.: Logistic Optimization for Multi Depots Loading Capacitated Electric VRP From Low Carbon Perspective

station is increased. Consequently, the driving distance for the

electric vehicle is usually higher than the driving distance for

the gasoline vehicle. The best solution of instance 0703 was

given in Dominguez et al. [7]. The entire distance driven by

gasoline vehicles on the additional route of instance 0703 is

709.72. Furthermore, the total distance traveled by the elec-

tric vehicle, of instance 0703E extra route is 763.76. If a mile

is the distance unit, the carbon emissions between gasoline

vehicles and electric vehicles are 176.37kg and 144.35kg.

Moreover, the general carbon emissions of electric vehicles

and gasoline vehicles are diminished by 18.1%. It means that

even if the driving distance needs to increase due to midway

charging, the overall view is that the performance of the

electric vehicle can still notably diminish carbon emissions.

V. CASE STUDY

SH is a medium-sized logistics enterprise in Beijing, the main

business of which is to distribute power distribution cabinets

to construction sites in the city. This logistics enterprise

has three depots and fifty-two electric vehicles for the dis-

tribution. Considering the height of the power distribu-

tion cabinets, stacking is not allowed, hence making this a

two-dimensional routing problem. When the battery power is

not enough to complete the distribution task, it is necessary

to go to the recharging station for recharging. At the end

of December 2017, there were 1771 public recharging sta-

tions in Beijing. Considering the recharging cost, recharging

matching, traffic restrictions and convenience, seven public

recharging stations are selected as the recharging nodes for

all electric vehicles of company SH. In this case, company

SH needs to deliver several power distribution cabinets to

17 construction sites. Fig. 9 shows the locations of the depots,

recharging stations, and clients. We need to design the short-

est distribution route, select the most appropriate recharging

stations, and set a loading plan for each vehicle to facilitate

the delivery services for clients in need.

FIGURE 9. The Google map for depots, recharging stations and
construction sites.

FIGURE 10. The optimization routing solution of the practical case.

Deliveries of company SH in Beijing are handled by a fleet

of electric vehicles, which use lithium battery pack as the

power source. As shown in Fig. 10, the red circles represent

the depots, the black squares represent the construction sites,

and the blue triangles represent the recharging stations.

The demands are variety types of power distribution cabi-

nets which can be seen as different sizes of two- dimensional

rectangular items since one cannot be stacked on the top of

the other one. The vehicles are identical, while they have a

weight capacity and a rectangular two-dimensional loading

surface. To reduce the real problem to 2L-MDEVRP, we do

not consider time windows and pickup of damaged cabinets

at the construction sites. The distance between any two nodes

(depots, recharging stations and construction sites) is set to

the recommended route length of Google Maps, while eleva-

tion and slope are not considered in this case.

TABLE 4. Power cabinet size.

TABLE 5. Stock of depots.

The data of this instance such as distance, demand and

item size are shown in Table 4 - Table 7. The parameters

of vehicles: empty weight 4.6t, maximum load weight 2.8t,

length 4150mm, width 3300mm, battery capacity 75kWh.
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TABLE 6. Demands of construction sites.

TABLE 7. Distance data.

The values of the electric vehicle related to parameters

mentioned in (2) are set as: g = 9.8, f = 0.01,

CD = 0.3, A = 1.8, ρ = 1.2, ηte = 0.85, ηm =

0.85, Paccessory = 1000. There are five types of power

distribution cabinets: XL-21, XL-51, JXF1000, JXF2000 and

JXF3000. The size and weight of each type of cabinet

are shown in Table 4. The stock of each depot is shown

in Table 5, and the demand of each construction site is shown
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TABLE 8. The details of all tours of the practical instance.

in Table 6. The real distance between any two nodes is shown

in Table 7. As the distance unit applied, in this case, is kilo-

meters, the coefficient of carbon dioxide emission demands

to convert. Eventually, the converted coefficient of it is

117.44g / km.

By running the optimization algorithm, we get the optimal

solution of the practical instance which has four tours as

shown in Fig.10. As presented in Table 8, the four tours go

through four different recharging stations once in order to

complete distribution tasks. The more details of all tours are

shown in Table 8.

VI. CONCLUSION

This study investigates the 2L-MDEVRPwhich is a variant of

VRP. The main differences of the 2L-MDEVRP compared to

the VRP are: there is more than one depot; the delivery vehi-

cles are pure electric vehicles; there are several recharging

stations that can be used for recharging the electric vehicles;

the demand of clients consists of weighted, two-dimensional,

rectangular items. The aims of 2L-MDEVRP are generating

the minimum distance routes, feasibly packing items onto the

loading surfaces of the vehicles, and the order of recharging

stations on the tours.

The 2L-MDEVRP is of particular theoretical interest as

it combines two frequently studied combinatorial optimiza-

tion problems, namely the VRP and the two-dimensional

BPP which are both NP-hard problems. Spontaneously, the

2L-MDEVRP is also a NP-hard problem. To solve this

NP-hard optimization problem, this study proposes a per-

formance meta-heuristic algorithmic framework with VNS.

On one hand, this study improves a new method for the

generation of initial solution to get a better initial solution.

On the other hand, this study designs a new heuristic load-

ing algorithm named SSSH which successfully enhances

the probability of satisfying the feasible constraints. The

numerical experiment reveals that the proposed algorithm

can effectively solve the 2L-CVRP and 2L-MDEVRP. Com-

paredwith gasoline vehicles, the electric vehicles can remark-

ably decrease in carbon emissions. Moreover, this study

demonstrates the optimization process and optimized solu-

tion of a practical distribution case.

Based on the results of this research, the authors plan to

construct the model of multi depots electric vehicle rout-

ing problem with three-dimensional loading constraints and

apply the proposed new method in the future follow-up

research. In addition, the authors also consider a further

study of a new variant with one additional constraint: time

windows.
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