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Abstract

We propose a novel framework for the classification of single trial ElectroEn-
cephaloGraphy (EEG), based on regularized logistic regression. Framed in
this robust statistical framework no prior feature extraction or outlier re-
moval is required. We present two variations of parameterizing the regres-
sion function: (a) with a full rank symmetric matrix coefficient and (b) as a
difference of two rank=1 matrices. In the first case, the problem is convex
and the logistic regression is optimal under a generative model. The latter
case is shown to be related to the Common Spatial Pattern (CSP) algo-
rithm, which is a popular technique in Brain Computer Interfacing. The
regression coefficients can also be topographically mapped onto the scalp
similarly to CSP projections, which allows neuro-physiological interpreta-
tion. Simulations on 162 BCI datasets demonstrate that classification ac-
curacy and robustness compares favorably against conventional CSP based
classifiers.

1 Introduction

The goal of Brain-Computer Interface (BCI) research [1, 2, 3, 4, 5, 6, 7] is to provide a
direct control pathway from human intentions reflected in brain signals to computers. Such
a system will not only provide disabled people more direct and natural control over a neuro-
prosthesis or over a computer application (e.g. [2]) but also opens up a further channel of
man machine interaction for healthy people to communicate solely by their intentions.

Machine learning approaches to BCI have proven to be effective by requiring less subject
training and by compensating for the high inter-subject variability. In this field, a number
of studies have focused on constructing better low dimensional representations that combine
various features of brain activities [3, 4], because the problem of classifying EEG signals is
intrinsically high dimensional. In particular, efforts have been made to reduce the number
of electrodes by eliminating electrodes recursively [8] or by decomposition techniques e.g.,
ICA, which only uses the marginal distribution, or Common Spatial Patterns (CSP) [9]
which additionally takes the labels into account. In practice, often a BCI system has been
constructed by combining a feature extraction step and a classification step.

Our contribution is a logistic regression classifier that integrates both steps under the roof
of a single minimization problem and uses well controlled regularization. Moreover, the
classifier output has a probabilistic interpretation. We study a BCI based on the motor
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imagination paradigm. Motor imagination can be captured through spatially localized band-
power modulation in the µ- (10-15Hz) or β- (20-30Hz) band characterized by the second-
order statistics of the signal; the underlying neuro-physiology is well known as Event Related
Desynchronization (ERD) [10].

1.1 Problem setting

Let us denote by X ∈ Rd×T the EEG signal of a single trial of an imaginary motor move-
ment1, where d is the number of electrodes and T is the number of sampled time-points in
a trial. We consider a binary classification problem where each class, e.g. right or left hand
imaginary movement, is called positive (+) or negative (−) class. Let y ∈ {+1,−1} be the
class label. Given a set of trials and labels {Xi, yi}n

i=1, the task is to predict the class label
y for an unobserved trial X.

1.2 Conventional method: classifying with CSP features

In the motor-imagery EEG signal classification, Common Spatial Pattern (CSP) based clas-
sifiers have proven to be powerful [11, 3, 6]. CSP is a decomposition method proposed
by Koles [9] that finds a set of projections that simultaneously diagonalize the covariance
matrices corresponding to two brain states. Formally, the covariance matrices2 are defined
as:

Σc =
1
|Ic|

∑

i∈Ic

XiX
>
i (c ∈ {+,−}), (1)

where Ic is the set of indices belonging to a class c ∈ {+,−}; thus I+ ∪ I− = {1, . . . , n}.
Then, the simultaneous diagonalization is achieved by solving the following generalized
eigenvalue problem:

Σ+w = λΣ−w. (2)

Note that for each pair of eigenvector and eigenvalue (wj , λj), the equality λj = w>
j Σ+wj

w>
j Σ−wj

holds. Therefore, the eigenvector with the largest eigenvalue corresponds to the projection
with the maximum ratio of power for the “+” class and the “−” class, and the other-
way-around for the eigenvector with the smallest eigenvalue. In this paper, we call these
eigenvectors filters3; we call the eigenvector of an eigenvalue smaller (or larger) than one a
filter for the “+” class (or the “−” class), respectively, because the signal projected with
them optimally (in the spirit of eigenvalues) captures the task related de-synchronization in
each class. It is common practice that only the first nof largest eigenvectors and the last nof

smallest eigenvectors are used to construct a low dimensional feature representation. The
feature vector consists of logarithms of the projected signal powers and a Linear Discriminant
Analysis (LDA) classifier is trained on the resulting feature vector. To summarize, the
conventional CSP based classifier can be constructed as follows:

How to build a CSP based classifier:

1. Solve the generalized eigenvalue problem Eq. (2).
2. Take the nof largest and smallest eigenvectors {wj}J

j=1 (J = 2nof).

3. xi :=
{
log w>

j XiX
>
i wj

}J

j=1
(i = 1, . . . , n).

4. Train an LDA classifier on {xi, yi}n
i=1.

1For simplicity, we assume that the signal is already band-pass filtered and each trial is centered
and scaled as X = 1√

T
Xoriginal

`
IT − 1

T
11>

´
.

2Although it is convenient to call Eq. (1) a covariance matrix, calling it an averaged cross power
matrix gives better insight into the nature of the problem, because we are focusing on the task
related modulation of rhythmic activities.

3according to the convention by [12].



2 Theory

2.1 The model

We consider the following discriminative model; we model the symmetric logit transform
of the posterior class probability to be a linear function with respect to the second order
statistics of the EEG signal:

log
P (y = +1|X)
P (y = −1|X)

= f(X; θ) := tr
[
WXX>]

+ b, (3)

where θ := (W, b) ∈ Sym(d)× R, W is a symmetric d× d matrix and b is the bias term.

The model (3) can be derived by assuming a zero-mean Gaussian distribution with no
temporal correlation with a covariance matrix Σ± for each class as follows:

log
P (y = +1|X)
P (y = −1|X)

=
1
2
tr

[(−Σ+
−1 + Σ−−1

)
XX>]

+ const.. (4)

However training of a discriminative model is robust to misspecification of the marginal
distribution P (X) [13]. In another words, the marginal distribution P (X) is a nuisance
parameter; we maximize the joint log-likelihood, which is decomposed as log P (y, X|θ) =
log P (y|X, θ) + log P (X), only with respect to θ [14]. Therefore, no assumption about the
generative model is necessary. Note that from Eq. (4) normally the optimal W has both
positive and negative eigenvalues.

2.2 Logistic regression

2.2.1 Linear logistic regression

We minimize the negative log-likelihood of Eq. (3) with an additional regularization term,
which is written as follows:

min
W∈Sym(d),b∈R

1
n

n∑

i=1

log
(
1 + e−yif(Xi;θ)

)
+

C

2n

(
trΣP WΣP W + b2

)
. (5)

Here, the pooled covariance matrix ΣP := 1
n

∑n
i=1 XiX

>
i is introduced in the regularization

term in order to make the regularization invariant to linear transformation of the data; if
we rewrite W as W := Σ−1/2

P W̃Σ−1/2
P , one can easily see that the regularization term is

simply the Frobenius norm of a symmetric matrix W̃ ; the transformation corresponds to the
whitening of the signal X̃ = Σ−1/2

P X. By simple calculation, one can see that the loss term
is the negative logarithm of the conditional likelihood

∏n
i=1 1/(1 + e−yif(Xi;θ)), in another

words the probability of observing head (yi = +1) or tail (yi = −1) by tossing n coins with
probability P (y = +1|X = Xi, θ) (i = 1, . . . , n) for the head. From a general point of view,
the loss term of Eq. (5) converges asymptotically to the true loss where the empirical average
is replaced by the expectation over X and y, whose minimum over functions in L2(PX) is
achieved by the symmetric logit transform of P (y = +1|X) [15].

Note that the problem Eq. (5) is convex. The problem of classifying motor imagery EEG
signals is now addressed under a single loss function. Based on the criterion (Eq. (5)) we
can say how good a solution is and we know how to properly regularize it.

2.2.2 Rank=2 approximation of the linear logistic regression

Here we present a rank=2 approximation of the regression function (3). Using this approx-
imation we can greatly reduce the number of parameters to be estimated from a symmetric
matrix coefficient to a pair of projection coefficients and additionally gain insight into the
relevant feature the classifier has found.

The rank=2 approximation of the regression function (3) is written as follows:

f̄(X; θ̄) :=
1
2
tr

[(−w1w
>
1 + w2w

>
2

)
XX>]

+ b, (6)



where θ̄ := (w1, w2, b) ∈ Rd × Rd × R. The rationale for choosing this special form of
function is that the Bayes optimal regression coefficients in Eq. (4) is the difference of two
positive definite matrices; therefore two bases with opposite signs are at least necessary in
capturing the nature of Eq. (4) (incorporating more bases goes beyond the scope of this
contribution).

The rank=2 parameterized logistic regression can be obtained by minimizing the sum of the
logistic regression loss and regularization terms similarly to Eq. (5):

min
w1,w2∈Rd,b∈R

1
n

n∑

i=1

log
(
1 + e−yif̄(Xi; θ̄)

)
+

C

2n

(
w>

1 ΣP w1 + w>
2 ΣP w2 + b2

)
. (7)

Here, again the pooled covariance matrix ΣP is used as a metric in order to ensure the
invariance to linear transformations. Note that the bases {w1, w2} give projections of the
signal into a two dimensional feature space in a similar manner as CSP (see Sec. 1.2). We call
w1 and w2 filters corresponding to “+” and “−” classes, respectively, similarly to CSP. The
filters can be topographically mapped onto the scalp, from which insight into the classifier
can be obtained. However, the major difference between CSP and the rank=2 parameterized
logistic regression (Eq. (7)) is that in our new approach, there is no distinction between the
feature extraction step and the classifier training step. The coefficient that linearly combines
the features (i.e., the norm of w1 and w2) is optimized in the same optimization problem
(Eq. (7)).

3 Results

3.1 Experimental settings

We compare the logistic regression classifiers (Eqs. (3) and (6)) against CSP based classifiers
with nof = 1 (total 2 filters) and nof = 3 (total 6 filters). The comparison is a chronological
validation. All methods are trained on the first half of the samples and applied on the second
half. We use 60 BCI experiments [6] from 29 subjects where the subjects performed three
imaginary movements, namely “right hand” (R), “left hand” (L) and “foot” (F) according
to the visual cue presented on the screen, except 9 experiments where only two classes
were performed. Since we focus on binary classification, all the pairwise combination of
the performed classes produced 162 (= 51 · 3 + 9) datasets. Each dataset contains 70 to 600
trials (at median 280) of imaginary movements. All the recordings come from the calibration
measurements, i.e. no feedback was presented to the subjects. The signal was recorded from
the scalp with multi-channel EEG amplifiers using 32, 64 or 128 channels. The signal was
sampled at 1000Hz and down-sampled to 100Hz before the processing.

The signal is band-pass filtered at 7-30Hz and the interval 500-3500ms after the appearance
of visual cue is cut out from the continuous EEG signal as a trial X. The training data is
whitened before minimizing Eqs. (5) and (7) because both problems become considerably
simpler when ΣP is an identity matrix. For the prediction of test data, coefficients including
the whitening operation W = Σ−1/2

P W̃Σ−1/2
P for Eq. (3) and wj = Σ−1/2

P w̃j (j = 1, 2) for
Eq. (6) are used, where W̃ and w̃j denote the minimizer of Eqs. (5) and (7) for the whitened
data. Note that we did not whitened the training and test data jointly, which could have
improved the performance. The regularization constant C for the proposed method is chosen
by 5×10 cross-validation on the training set.

3.2 Classification performance

In Fig. 1, logistic regression (LR) classifiers with the full rank parameterization (Eq. (3);
left column) and the rank=2 parameterization (Eq. (6); right column) are compared against
CSP based classifiers with 6 filters (top row) and 2 filters (bottom row). Each plot
shows the bit-rates achieved by CSP (horizontal) and LR (vertical) for each dataset as
a circle. Here the bit-rate (per decision) is defined based on the classification test er-
ror perr as the capacity of a binary symmetric channel with the same error probability:
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Figure 1: Comparison of bit-rates achieved by the CSP based classifiers and the logistic
regression (LR) classifiers. The bit-rates achieved by the conventional CSP based classifier
and the proposed LR classifier are shown as a circle for each dataset. The proportion of
datasets lying above/below the diagonal is shown at top-left/bottom-right corners of each
plot, respectively. Only the difference between CSP with 2 filters and rank=2 approximated
LR (lower right) is significant based on Fisher sign test at 5% level.

1 −
(
perr log2

1
perr

+ (1− perr) log2
1

1−perr

)
. The proposed method improves upon the con-

ventional method for datasets lying above the diagonal. Note that our proposed logistic
regression ansatz is significantly better only in the lower right plot.

Figure 2 shows examples of spatial filter coefficients obtained by CSP (6 filters) and rank=2
parameterized logistic regression. The CSP filters for subject A (see Fig. 2(a)) include
typical cases (the first filter for the “left hand” class and the first two filters for the “right
hand” class) of filters corrupted by artifacts, e.g., muscle movements. The CSP filters for
the “foot” class in subject B (see Fig. 2(b)) are corrupted by strong occipital α-activity,
which might have been weakly correlated to the labels by chance. Note that CSP with 2
filters only use the first filter for each class, which corresponds to the first row in Figs. 2(a)
and 2(b). On the other hand the filter coefficients obtained by the logistic regression are
clearly focused on the area physiologically corresponding to ERD in the motor cortex (see
Figs. 2(c) and (d)).

4 Discussion

4.1 Relation to CSP

Here, we show that at the optimum of Eq. (7) the regression coefficients w1 and w2 are
generalized eigenvectors of two uncertainty weighted covariance matrices corresponding to
two motor imagery classes, which are weighted by the uncertainty of the decision 1−P (y =
yi|X = Xi) for each sample. Samples that are easily explained by the regression function
are weighed low whereas those lying close to the decision boundary or those lying on the
wrong side of the boundary are highly weighted. Although, both CSP and the rank=2
approximated logistic regression can be understood as generalized eigenvalue decomposition,
the classification-optimized weighting in the logistic regression yields filters that focus on



the task related modulation of rhythmic activities more clearly when compared to CSP, as
shown in Fig. 2.

Differentiating Eq. (7) with either w1 or w2, we obtain the following equality which holds
at the optimum.

±
n∑

i=1

e−zi

1 + e−zi
yiXiX

>
i w∗

j + CΣP w∗
j = 0 (j = 1, 2), (8)

where we define the short hand zi := yif̄(Xi; θ̄
∗) and ± denotes + and − for j = 1, 2,

respectively. Moreover, Eq. (8) can be rewritten as follows:

Σ−(θ̄
∗
, 0)w∗

1 = Σ+(θ̄∗, C)w∗
1, (9)

Σ+(θ̄∗, 0)w∗
2 = Σ−(θ̄

∗
, C)w∗

2, (10)

where we define the uncertainty weighted covariance matrix as:

Σ±(θ̄∗, C) =
∑

i∈I±

e−zi

1 + e−zi
XiX

>
i +

C

n

n∑

i=1

XiX
>
i .

Note that increasing the regularization constant C biases the uncertainty weighted covari-
ance matrix to the pooled covariance matrix ΣP ; the regularization only affects the right-
hand side of Eqs. (9) and (10). If C > 0, the optimal filter coefficients w∗

j (j = 1, 2) are the
generalized eigenvectors of Eqs. (9) and (10), respectively.

4.2 CSP is not optimal

When first proposed, CSP was rather a decomposition technique than a classification tech-
nique (see [9]). After being introduced to the BCI community by [11], it has proved to be
also powerful in classifying imaginary motor movements [3, 6]. However, since it is not op-
timized for the classification problem, there are two major drawbacks. Firstly, the selection
of “good” CSP components is usually done somewhat arbitrarily. A widely used heuristic is
to choose several generalized eigenvectors from both ends of the eigenvalue spectrum. How-
ever, as in subject B in Fig. 2, it is often observed that filters corresponding to overwhelming
strong power come to the top of the spectrum though they are not correlated to the label
so strongly. In practice, an experienced investigator can choose good filters by looking at
them, however the validity of the selection cannot be assessed because the manual selection
cannot be done inside the cross-validation. Secondly, simultaneous diagonalization of co-
variance matrices can suffer greatly from a few outlier trials as seen in subject A in Fig. 2.
Again, in practice one can inspect the EEG signals to detect outliers, however a manual
outlier detection is also a somewhat arbitrary, non-reproducible process, which cannot be
validated.

5 Conclusion

In this paper, we have proposed an unified framework for single trial classification of motor-
imagery EEG signals. The problem is addressed as a single minimization problem without
any prior feature extraction or outlier removal steps. The task is to minimize a logistic
regression loss with a regularization term. The regression function is a linear function with
respect to the second order statistics of the EEG signal.

We have tested the proposed method on 162 BCI datasets. By parameterizing the whole
regression coefficients directly, we have obtained comparable classification accuracy with
CSP based classifiers. By parameterizing the regression coefficients as the difference of two
rank-one matrices, improvement against CSP based classifiers was obtained.

We have shown that in the rank=2 parameterization of the logistic regression function,
the optimal filter coefficients has an interpretation as a solution to a generalized eigenvalue
problem similarly to CSP. However, the difference is that in the case of logistic regression
every sample is weighted according to the importance to the overall classification problem
whereas in CSP all the samples have uniform importance.



The proposed framework provides a basis for various future directions. For example, in-
corporating more than two filters will connect the two parameterizations of the regression
function shown in this paper and it may allow us to investigate how many filters are suf-
ficient for good classification. Since the classifier output is the logit transform of the class
probability, it is straightforward to generalize the method to multi-class problems. Also
non-stationarities, e.g. caused by a covariate shift (see [16, 17]) in the density P (X) from
one session to another, could be corrected by adapting the likelihood model.
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mouter, E. Taub, and H. Flor, “A spelling device for the paralysed”, Nature, 398: 297–298,
1999.

[3] G. Pfurtscheller, C. Neuper, C. Guger, W. Harkam, R. Ramoser, A. Schlögl, B. Obermaier,
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(a) Subject A. CSP filter coefficients
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Figure 2: Examples of spatial filter coefficients obtained by CSP and the rank=2 parame-
terized logistic regression. (a) Subject A. Some CSP filters are corrupted by artifacts. (b)
Subject B. Some CSP filters are corrupted by strong occipital α-activity. (c) Subject A.
Logistic regression coefficients are focusing on the physiologically expected “left hand” and
“right hand” areas. (d) Subject B. Logistic regression coefficients are focusing on the “left
hand” and “foot” areas. Electrode positions are marked with crosses in every plot. For CSP
filters, the generalized eigenvalues (Eq. (2)) are shown inside brackets.


