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Abstract

Background: Security concerns have been raised since big data became a prominent tool in data analysis. For

instance, many machine learning algorithms aim to generate prediction models using training data which contain

sensitive information about individuals. Cryptography community is considering secure computation as a solution for

privacy protection. In particular, practical requirements have triggered research on the efficiency of cryptographic

primitives.

Methods: This paper presents a method to train a logistic regression model without information leakage. We apply

the homomorphic encryption scheme of Cheon et al. (ASIACRYPT 2017) for an efficient arithmetic over real numbers,

and devise a new encoding method to reduce storage of encrypted database. In addition, we adapt Nesterov’s

accelerated gradient method to reduce the number of iterations as well as the computational cost while maintaining

the quality of an output classifier.

Results: Our method shows a state-of-the-art performance of homomorphic encryption system in a real-world

application. The submission based on this work was selected as the best solution of Track 3 at iDASH privacy and

security competition 2017. For example, it took about six minutes to obtain a logistic regression model given the

dataset consisting of 1579 samples, each of which has 18 features with a binary outcome variable.

Conclusions: We present a practical solution for outsourcing analysis tools such as logistic regression analysis while

preserving the data confidentiality.
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Background
Machine learning (ML) is a class of methods in arti-

ficial intelligence, the characteristic feature of which is

that they do not give the solution of a particular prob-

lem but they learn the process of finding solutions to a

set of similar problems. The theory of ML appeared in

the early 60’s on the basis of the achievements of cyber-

netics [1] and gave the impetus to the development of

theory and practice of technically complex learning sys-

tems [2]. The goal of ML is to partially or fully automate
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the solution of complicated tasks in various fields of

human activity.

The scope of ML applications is constantly expanding;

however, with the rise of ML, the security problem has

become an important issue. For example, many medical

decisions rely on logistic regression model, and biomed-

ical data usually contain confidential information about

individuals [3] which should be treated carefully. There-

fore, privacy and security of data are the major concerns,

especially when deploying the outsource analysis tools.

There have been several researches on secure computa-

tion based on cryptographic primitives. Nikolaenko et al.

[4] presented a privacy preserving linear regression pro-

tocol on horizontally partitioned data using Yao’s gar-

bled circuits [5]. Multi-party computation technique was
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also applied to privacy-preserving logistic regression

[6–8]. However, this approach is vulnerable when a party

behaves dishonestly, and the assumption for secret sharing

is quite different from that of outsourcing computation.

Homomorphic encryption (HE) is a cryptosystem that

allows us to perform certain arithmetic operations on

encrypted data and receive an encrypted result that corre-

sponds to the result of operations performed in plaintext.

Several papers already discussed ML with HE techniques.

Wu et al. [9] used Paillier cryptosystem [10] and approx-

imated the logistic function using polynomials, but it

required an exponentially growing computational cost in

the degree of the approximation polynomial. Aono et al.

[11] and Xie et al. [12] used an additive HE scheme

to aggregate some intermediate statistics. However, the

scenario of Aono et al. relies on the client to decrypt

these intermediary statistics and the method of Xie et al.

requires expensive computational cost to calculate the

intermediate information. The most related research of

this paper is the work of Kim et al. [13] which also used HE

based ML. However, the size of encrypted data and learn-

ing timewere highly dependent on the number of features,

so the performance for a large dataset was not practical in

terms of storage and computational cost.

Since 2011, the iDASH Privacy and Security Workshop

has assembled specialists in privacy technology to discuss

issues that apply to biomedical data sharing, as well as

main stakeholders who provided an overview of the main

uses of the data, different laws and regulations, and their

own views on privacy. In addition, it has began to hold

annual competitions on the basis of the workshop from

2014. The goal of this challenge is to evaluate the per-

formance of state-of-the-arts methods that ensures rig-

orous data confidentiality during data analysis in a cloud

environment.

In this paper, we provide a solution to the third track

of iDASH 2017 competition, which aims to develop HE

based secure solutions for building aMLmodel (i.e., logis-

tic regression) on encrypted data. We propose a general

practical solution for HE based ML that demonstrates

good performance and low storage costs. In practice,

our output quality is comparable to the one of an unen-

crypted learning case. As a basis, we use the HE scheme

for approximate arithmetic [14]. To improve the perfor-

mance, we apply several additional techniques including

a packing method, which reduce the required storage

space and optimize the computational time.We also adapt

Nesterov’s accelerated gradient [15] to increase the speed

of convergence. As a result, we could obtain a high-

accuracy classifier using only a small number of iterations.

We give an open-source implementation [16] to demon-

strate the performance of our HE basedMLmethod.With

our packing method we can encrypt the dataset with 1579

samples and 18 features using 39MB of memory. The

encrypted learning time is about six minutes. We also

demonstrate our implementation on the datasets used in

[13] to compare the results. For example, the training of

a logistic regression model took about 3.6 min with the

storage about 0.02GB compared to 114 min and 0.69GB

of Kim et al. [13] when a dataset consists of 1253 samples,

each of which has 9 features.

Methods

Logistic regression

Logistic regression or logit model is a ML model used

to predict the probability of occurrence of an event by

fitting data to a logistic curve [17]. It is widely used in var-

ious fields including machine learning, biomedicine [18],

genetics [19], and social sciences [20].

Throughout this paper, we treat the case of a binary

dependent variable, represented by ± 1. Learning data

consists of pairs (xi, yi) of a vector of co-variates xi =

(xi1, ..., xif ) ∈ R
f and a dependent variable yi ∈ {±1}.

Logistic regression aims to find an optimal β ∈ R
f+1

which maximizes the likelihood estimator

n
∏

i=1

Pr(yi|xi) =

n
∏

i=1

1

1 + exp(−yi(1, xi)Tβ)
,

or equivalently minimizes the loss function, defined as the

negative log-likelihood:

J(β) =
1

n

n
∑

i=1

log
(

1 + exp
(

−zTi β
))

where zi = yi · (1, xi) for i = 1, . . . , n.

Gradient descent

Gradient Descent (GD) is a method for finding a local

extremum (minimum or maximum) of a function by mov-

ing along gradients. To minimize the function in the

direction of the gradient, one-dimensional optimization

methods are used.

For logistic regression, the gradient of the cost function

with respect to β is computed by

∇J(β) = −
1

n

n
∑

i=1

σ

(

−zTi β
)

· zi

where σ(x) = 1
1+exp(−x) . Starting from an initial β0,

the gradient descent method at each step t updates the

regression parameters using the equation

β(t+1) ← β(t) +
αt

n

n
∑

i=1

σ

(

−zTi β(t)
)

· zi

where αt is a learning rate at step t.
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Nesterov’s accelerated gradient

The method of GD can face a problem of zig-zagging

along a local optima and this behavior of the method

becomes typical if it increases the number of variables of

an objective function. Many GD optimization algorithms

are widely used to overcome this phenomenon. Momen-

tum method, for example, dampens oscillation using the

accumulated exponential moving average for the gradient

of the loss function.

Nesterov’s accelerated gradient [15] is a slightly different

variant of the momentum update. It uses moving average

on the update vector and evaluates the gradient at this

“looked-ahead” position. It guarantees a better rate of con-

vergence O
(

1/t2
)

(vs. O(1/t) of standard GD algorithm)

after t steps theoretically, and consistently works slightly

better in practice. Starting with a random initial v0 = β0,

the updated equations for Nesterov’s Accelerated GD are

as follows:

{

β(t+1) = v(t) − αt · ▽J
(

v(t)
)

,

v(t+1) = (1 − γt) · β(t+1) + γt · β(t),
(1)

where 0 < γt < 1 is a moving average smoothing

parameter.

Approximate homomorphic encryption

HE is a cryptographic scheme that allows us to carry out

operations on encrypted data without decryption. Cheon

et al. [14] presented a method to construct a HE scheme

for arithmetic of approximate numbers (called HEAAN in

what follows). The main idea is to treat an encryption

noise as part of error occurring during approximate com-

putations. That is, an encryption ct of message m ∈ R

by a secret key sk for a ciphertext modulus q will have a

decryption structure of the form 〈ct, sk〉 = m+e (mod q)

for some small e.

The following is a simple description of HEAAN based on

the ring learning with errors problem. For a power-of-two

integer N, the cyclotomic polynomial ring of dimension N

is denoted by R = Z/
(

XN + 1
)

. For a positive integer ℓ,

we denoteRℓ = R/2ℓ
R = Z2ℓ [X] /

(

XN + 1
)

the residue

ring ofRmodulo 2ℓ.

• KeyGen
(

1λ
)

.

- For an integer L that corresponds to the

largest ciphertext modulus level, given the

security parameter λ, output the ring

dimension N which is a power of two.

- Set the small distributions χkey ,χerr ,χenc over

R for secret, error, and encryption,

respectively.

- Sample a secret s ← χkey , a random a ← RL

and an error e ← χerr . Set the secret key as

sk ← (1, s) and the public key as

pk ← (b, a) ∈ R
2
L where

b ← −as + e
(

mod 2L
)

.

• KSGensk(s
′). For s′ ∈ R, sample a random a′ ← R2·L

and an error e′ ← χerr . Output the switching key as

swk ← (b′, a′) ∈ R
2
2·L where b

′ ← −a′s + e′ + 2Ls′
(

mod 22·L
)

.

- Set the evaluation key as evk ← KSGensk(s
2).

• Encpk(m). Form ∈ R, sample v ← χenc and

e0, e1 ← χerr . Output v · pk + (m + e0, e1)
(

mod 2L
)

.

• Decsk(ct). For ct = (c0, c1) ∈ R
2
ℓ , output

c0 + c1 · s
(

mod 2ℓ
)

.

• Add(ct1, ct2). For ct1, ct2 ∈ R
2
ℓ , output

ctadd ← ct1 + ct2
(

mod 2ℓ
)

.

• CMultevk(ct; c). For ct ∈ R
2
ℓ and a ∈ R, output

ct′ ← c · ct
(

mod 2ℓ
)

.

• Multevk(ct1, ct2). For

ct1 = (b1, a1), ct2 = (b2, a2) ∈ R
2
ℓ , let

(d0, d1, d2) = (b1b2, a1b2 + a2b1, a1a2) (mod 2ℓ).

Output

ctmult ← (d0, d1) +
⌊

2−L · d2 · evk
⌉ (

mod 2ℓ
)

.

• ReScale(ct; p). For a ciphertext ct ∈ R
2
ℓ and an

integer p, output ct′ ← ⌊2−p · ct⌉
(

mod 2ℓ−p
)

.

For a power-of-two integer k ≤ N/2, HEAAN pro-

vides a technique to pack k complex numbers in a sin-

gle polynomial using a variant of the complex canonical

embedding map φ : Ck → R. We restrict the plaintext

space as a vector of real numbers throughout this paper.

Moreover, we multiply a scale factor of 2p to plain-

texts before the rounding operation to maintain their

precision.

• Encode(w; p). For w ∈ R
k , output the polynomial

m ← φ(2p · w) ∈ R.

• Decode(m; p). For a plaintextm ∈ R, the encoding

of an array consisting of a power of two k ≤ N/2

messages, output the vector w ← φ−1(m/2p) ∈ R
k .

The encoding/decoding techniques support the parallel

computation over encryption, yielding a better amortized

timing. In addition, the HEAAN scheme provides the rota-

tion operation on plaintext slots, i.e., it enables us to

securely obtain an encryption of the shifted plaintext

vector (wr , . . . ,wk−1,w0, . . . ,wr−1) from an encryption of

(w0, . . . ,wk−1). It is necessary to generate an additional

public information rk, called the rotation key. We denote

the rotation operation as follows.

• Rotaterk(ct; r). For the rotation keys rk, output a

ciphertext ct′ encrypting the rotated plaintext vector

of ct by r positions.

Refer [14] for the technical details and noise analysis.
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Database encoding

For an efficient computation, it is crucial to find a good

encoding method for the given database. The HEAAN

scheme supports the encryption of a plaintext vector and

the slot-wise operations over encryption. However, our

learning data is represented by a matrix (zij)1≤i≤n,0≤j≤f . A

recent work [13] used the column-wise approach, i.e., a

vector of specific feature data (zij)1≤i≤n is encrypted in

a single ciphertext. Consequently, this method required

(f +1) number of ciphertexts to encrypt the whole dataset.

In this subsection, we suggest a more efficient encoding

method to encrypt amatrix in a single ciphertext. A train-

ing dataset consists of n samples zi ∈ R
f+1 for 1 ≤ i ≤ n,

which can be represented as a matrix Z as follows:

Z =

⎡

⎢

⎢

⎢

⎣

z10 z11 · · · z1f
z20 z21 · · · z1f
...

...
. . .

...

zn0 zn1 · · · znf

⎤

⎥

⎥

⎥

⎦

.

For simplicity, we assume that n and (f + 1) are

power-of-two integers satisfying log n + log(f + 1) ≤

log(N/2). Then we can pack the whole matrix in a sin-

gle ciphertext in a row-by-row manner. Specifically, we

will identify this matrix with the k-dimensional vector by

(zij)1≤i≤n,0≤j≤f → w = (wℓ)0≤ℓ<n·(f+1) where wℓ = zij
such that ℓ = (f + 1)(i − 1) + j, that is,

Z → w = (z10, . . . , z1f , z20, . . . , z2f , . . . , zn0, . . . , znf ).

In a general case, we can pad zeros to set the number of

samples and the dimension of a weight vector as powers

of two.

It is necessary to perform shifting operations of row

and column vectors for the evaluation of the GD algo-

rithm. In the rest of this subsection, we explain how to

perform these operations using the rotation algorithm

provided in the HEAAN scheme. As described above, the

algorithm Rotate(ct; r) can shift the encrypted vector by

r positions. In particular, this operation is useful in our

implementation when r = f + 1 or r = 1. For the first

case, a given matrix Z = (zij)1≤i≤n,0≤j≤f is converted into

the matrix

Z′ =

⎡

⎢

⎢

⎢

⎣

z20 z21 · · · z2f
...

...
. . .

...

zn0 zn1 · · · znf
z10 z11 · · · z1f

⎤

⎥

⎥

⎥

⎦

,

while the latter case outputs the matrix

Z′′ =

⎡

⎢

⎢

⎢

⎣

z11 · · · z1f z20
z21 · · · z2f z30
...

...
. . .

...

zn1 · · · znf z10

⎤

⎥

⎥

⎥

⎦

over encryption. The matrix Z′ is obtained from Z by

shifting its row vectors and Z′′ can be viewed as an

incomplete column shifting because of its last column.

Polynomial approximation of the sigmoid function

One limitation of the existing HE cryptosystems is that

they only support polynomial arithmetic operations. The

evaluation of the sigmoid function is an obstacle for the

implementation of the logistic regression since it cannot

be expressed as a polynomial.

Kim et al. [13] used the least squares approach to find

a global polynomial approximation of the sigmoid func-

tion. We adapt this approximation method and consider

the degree 3, 5, and 7 least squares polynomials of the

sigmoid function over the domain [−8, 8]. We observed

that the inner product values zTi β(t) in our experimenta-

tions belong to this interval. For simplicity, a least squares

polynomial of σ(−x) will be denoted by g(x) so that we

have g
(

zTi β(t)
)

≈ σ

(

−zTi β(t)
)

when
∣

∣

∣
zTi β(t)

∣

∣

∣
≤ 8. The

approximate polynomials g(x) of degree 3, 5, and 7 are

computed as follows:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

g3(x) = 0.5 − 1.20096 · (x/8) + 0.81562 · (x/8)3,

g5(x) = 0.5 − 1.53048 · (x/8) + 2.3533056 · (x/8)3

−1.3511295 · (x/8)5,

g7(x) = 0.5 − 1.73496 · (x/8) + 4.19407 · (x/8)3

−5.43402 · (x/8)5 + 2.50739 · (x/8)7.

A low-degree polynomial requires a smaller evaluation

depth while a high-degree polynomial has a better preci-

sion. The maximum errors between σ(−x) and the least

squares g3(x), g5(x), and g7(x) are approximately 0.114,

0.061 and 0.032, respectively.

Homomorphic evaluation of the gradient descent

This section explains how to securely train the logistic

regression model using the HEAAN scheme. To be precise,

we explicitly describe a full pipeline of the evaluation of

the GD algorithm. We adapt the same assumptions as in

the previous section so that the whole database can be

encrypted in a single ciphertext.

First of all, a client encrypts the dataset and the initial

(random) weight vector β(0) and sends them to the pub-

lic cloud. The dataset is encoded to a matrix Z of size

n × (f + 1) and the weight vector is copied n times to fill
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the plaintext slots. The plaintext matrices of the resulting

ciphertexts are described as follows:

ctz =Enc

⎡

⎢

⎢

⎢

⎣

z10 z11 · · · z1f
z20 z21 · · · z1f
...

...
. . .

...

zn0 zn1 · · · znf

⎤

⎥

⎥

⎥

⎦

,

ct
(0)
β =Enc

⎡

⎢

⎢

⎢

⎢

⎢

⎣

β
(0)
0 β

(0)
1 · · · β

(0)
f

β
(0)
0 β

(0)
1 · · · β

(0)
f

...
...

. . .
...

β
(0)
0 β

(0)
1 · · · β

(0)
f

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

As mentioned before, both Z and β(0) are scaled by a fac-

tor of 2p before encryption to maintain the precision of

plaintexts. We skip to mention the scaling factor in the

rest of this section since every step will return a ciphertext

with the scaling factor of 2p.

The public server takes two ciphertexts ctz and ct
(t)
β and

evaluates the GD algorithm to find an optimal modeling

vector. The goal of each iteration is to update themodeling

vector β(t) using the gradient of loss function:

β(t+1) ← β(t) +
αt

n

n
∑

i=1

σ

(

−zTi β(t)
)

· zi

where αt denotes the learning rate at the t-th iteration.

Each iteration consists of the following eight steps.

Step 1: For given two ciphertexts ctz and ct
(t)
β , compute

their multiplication and rescale it by p bits:

ct1 ← ReScale

(

Mult

(

ct
(t)
β , ctz

)

; p
)

.

The output ciphertext contains the values zij · β
(t)
j in its

plaintext slots, i.e.,

ct1 = Enc

⎡

⎢

⎢

⎢

⎢

⎢

⎣

z10 · β
(t)
0 z11 · β

(t)
1 · · · z1f · β

(t)
f

z20 · β
(t)
0 z21 · β

(t)
1 · · · z1f · β

(t)
f

...
...

. . .
...

zn0 · β
(t)
0 zn1 · β

(t)
1 · · · znf · β

(t)
f

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

Step 2: To obtain the inner product zTi β(t), the pub-

lic cloud aggregates the values of zijβ
(t)
j in the same row.

This step can be done by adapting the incomplete column

shifting operation.

One simple way is to repeat this operation (f + 1)

times, but the computational cost can be reduced down to

log(f + 1) by adding ct1 to its rotations recursively:

ct1 ← Add
(

ct1,Rotate
(

ct1; 2
j
))

,

for j = 0, 1, . . . , log(f + 1)− 1. Then the output ciphertext

ct2 encrypts the inner product values zTi β(t) in the first

column and some “garbage” values in the other columns,

denoted by ⋆, i.e.,

ct2 = Enc

⎡

⎢

⎢

⎢

⎣

zT1 β(t) ⋆ · · · ⋆

zT2 β(t) ⋆ · · · ⋆

...
...
. . .

...

zTn β(t) ⋆ · · · ⋆

⎤

⎥

⎥

⎥

⎦

.

Step 3: This step performs a constant multiplication

in order to annihilate the garbage values. It can be

obtained by computing the encoding polynomial c ←

Encode(C; pc) of the matrix

C =

⎡

⎢

⎢

⎢

⎣

1 0 · · · 0

1 0 · · · 0
...
...
. . .

...

1 0 · · · 0

⎤

⎥

⎥

⎥

⎦

,

using the scaling factor of 2pc for some integer pc. The

parameter pc is chosen as the bit precision of plaintexts so

it can be smaller than the parameter p.

Finally we multiply the polynomial c to the ciphertext

ct2 and rescale it by pc bits:

ct3 ← ReScale(CMult(ct2; c); pc).

The garbage values are multiplied with zero while one can

maintain the inner products in the plaintext slots. Hence

the output ciphertext ct3 encrypts the inner product val-

ues in the first column and zeros in the others:

ct3 = Enc

⎡

⎢

⎢

⎢

⎣

zT1 β(t) 0 · · · 0

zT2 β(t) 0 · · · 0
...

...
. . .

...

zTn β(t) 0 · · · 0

⎤

⎥

⎥

⎥

⎦

.

Step 4: The goal of this step is to replicate the inner

product values to other columns. Similar to Step 2, it

can be done by adding the input ciphertext to its column

shifting recursively, but in the opposite direction

ct3 ← Add
(

ct3,Rotate
(

ct3;−2j
))

for j = 0, 1, . . . , log(f + 1) − 1. The output ciphertext ct4
has the same inner product value in each row:

ct4 = Enc

⎡

⎢

⎢

⎢

⎣

zT1 β(t) zT1 β(t) · · · zT1 β(t)

zT2 β(t) zT2 β(t) · · · zT2 β(t)

...
...

. . .
...

zTn β(t) zTn β(t) · · · zTn β(t)

⎤

⎥

⎥

⎥

⎦

.

Step 5: This step simply evaluates an approximating

polynomial of the sigmoid function, i.e., ct5 ← g(ct4) for

some g ∈ {g3, g5, g7}. The output ciphertext encrypts the

values of g
(

zTi β(t)
)

in its plaintext slots:
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ct5 = Enc

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

g
(

zT1 β(t)
)

· · · g
(

zT1 β(t)
)

g
(

zT2 β(t)
)

· · · g
(

zT2 β(t)
)

...
. . .

...

g
(

zTn β(t)
)

· · · g
(

zTn β(t)
)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Step 6: The public cloud multiplies the ciphertext ct5
with the encrypted dataset ctz and rescales the resulting

ciphertext by p bits:

ct6 ← ReScale(Mult(ct5, ctz); p).

The output ciphertext encrypts the n vectors g
(

zTi β(t)
)

·zi

in each row:

ct6 = Enc

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

g
(

zT1 β(t)
)

· z10 · · · g
(

zT1 β(t)
)

· z1f

g
(

zT2 β(t)
)

· z20 · · · g
(

zT2 β(t)
)

· z2f

...
. . .

...

g
(

zTn β(t)
)

· zn0 · · · g
(

zTn β(t)
)

· znf

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Step 7: This step aggregates the vectors g
(

zTi β(t)
)

to

compute the gradient of the loss function. It is obtained by

recursively adding ct6 to its row shifting:

ct6 ← Add
(

ct6,Rotate
(

ct6; 2
j
))

for j = log(f + 1), . . . , log(f + 1) + log n − 1. The output

ciphertext is

ct7 = Enc

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∑

i g
(

zTi β(t)
)

· zi0 · · ·
∑

i g
(

zTi β(t)
)

· zif
∑

i g
(

zTi β(t)
)

· zi0 · · ·
∑

i g
(

zTi β(t)
)

· zif

...
. . .

...
∑

i g
(

zTi β(t)
)

· zi0 · · ·
∑

i g
(

zTi β(t)
)

· zif

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

as desired.

Step 8: For the learning rate αt , it uses the parameter pc
to compute the scaled learning rate �(t) = ⌊2pc · αt⌉. The

public cloud updates β(t) using the ciphertext ct7 and the

constant �(t):

ct8 ← ReScale

(

�(t) · ct7; pc

)

,

ct
(t+1)
β ← Add

(

ct
(t)
β , ct8

)

.

Finally it returns a ciphertext encrypting the updated

modeling vector

ct
(t+1)
β = Enc

⎡

⎢

⎢

⎢

⎢

⎢

⎣

β
(t+1)
0 β

(t+1)
1 · · · β

(t+1)
f

β
(t+1)
0 β

(t+1)
1 · · · β

(t+1)
f

...
...

. . .
...

β
(t+1)
0 β

(t+1)
1 · · · β

(t+1)
f

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

where β
(t+1)
j = β

(t)
j +

αt
n

∑

i g
(

zTi β(t)
)

· zij.

Homomorphic evaluation of Nesterov’s accelerated

gradient

The performance of leveled HE schemes highly depends

on the depth of a circuit to be evaluated. The bottleneck of

homomorphic evaluation of the GD algorithm is that we

need to repeat the update of weight vector β(t) iteratively.

Consequently, the total depth grows linearly on the num-

ber of iterations and it should be minimized for practical

implementation.

For the homomorphic evaluation of Nesterov’s acceler-

ated gradient, a clients sends one more ciphertext ct
(0)
v

encrypting the initial vector v(0) to the public cloud. Then

the server uses an encryption ctz of dataset Z to update

two ciphertexts v(t) and ct
(t)
β at each iteration. One can

securely compute β(t+1) in the same way as the previous

section. Nesterov’s accelerated gradient requires onemore

step to compute the second equation of (1) and obtain an

encryption of v(t+1) from ct
(t)
β and ct

(t+1)
β .

Step 9: Let �
(t)
1 = ⌊2pc · γt⌉ and let �

(t)
2 = 2pc − �

(t)
1 . It

obtains the ciphertext ct
(t+1)
v by computing

ct(t+1)
v ← Add

(

�
(t)
2 · ct

(t+1)
β ,�

(t)
1 · ct

(t)
β

)

,

ct(t+1)
v ← ReScale

(

ct(t+1)
v ; pc

)

.

Then the output ciphertext is

ct(t+1)
v = Enc

⎡

⎢

⎢

⎢

⎢

⎢

⎣

v
(t+1)
0 v

(t+1)
1 · · · v

(t+1)
f

v
(t+1)
0 v

(t+1)
1 · · · v

(t+1)
f

...
...

. . .
...

v
(t+1)
0 v

(t+1)
1 · · · v

(t+1)
f

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

which encrypts v
(t+1)
j = (1 − γt) · β

(t+1)
j + γt · β

(t)
j in the

plaintext slots.

Results
In this section, we present parameter sets with experimen-

tal results. Our implementation is based on the HEAAN

library [21] that implements the approximate HE scheme

of Cheon et al. [14]. The source code is publicly available

at github [16].

Parameters settings

We explain how to choose the parameter sets for the

homomorphic evaluation of the (Nesterov’s) GD algo-

rithm with security analysis. We start with the parameter

L - the bitsize of a fresh ciphertext modulus. The modulus

of a ciphertext is reduced after the ReScale operations

and the evaluation of an approximate polynomial g(x).

The ReScale procedures after homomorphic multi-

plications (step 1 and 6) reduce the ciphertext modulus
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by p bits while the ReScale procedures after constant

multiplications (step 3 and 8) require pc bits of modulus

reduction. Note that the ciphertext modulus remains the

same for the step 9 for the Nesterov’s accelerated gradient

if we compute step 8 and 9 together using some precom-

puted constants. We use a similar method with a previous

work for the evaluation of the sigmoid function (see [13]

for details); the ciphertext modulus is reduced by (2p+ 3)

bits for the evaluation of g3(x), and (3p+3) bits for that of

g5(x) and g7(x). Therefore, we obtain the following lower

bound on the parameter L:

L =

{

ITERNUM · (3p + 2pc + 3) + L0 g = g3,

ITERNUM · (4p + 2pc + 3) + L0 g ∈ {g5, g7},

where ITERNUM is the number of iterations of the GD

algorithm and L0 denotes the bit size of the output cipher-

text modulus. The modulus of the output ciphertext

should be larger than 2p in order to encrypt the resulting

weight vector and maintain its precision. We take p = 30,

pc = 20 and L0 = 35 in our implementation.

The dimension of a cyclotomic ring R is chosen as

N = 216 following the security estimator of Albrecht et al.

[22] for the learning with errors problem. In this case, the

bit size L of a fresh ciphertext modulus should be bounded

by 1284 to ensure the security level λ = 80 against known

attacks. Hence we repeat ITERNUM = 9 iterations of GD

algorithm g = g3, and ITERNUM = 7 iterations when

g = g5 or g = g7.

The smoothing parameter γt is chosen in accordance

with [15]. The choice of proper GD learning rate parame-

ter αt normally depends on the problem at hand. Choos-

ing too small αt leads to a slow convergence, and choosing

too large αt could lead to a divergence, or a fluctuation

near a local optima. It is often optimized by a trial and

error method, which we are not available to perform.

Under these conditions harmonic progression seems to be

a good candidate and we choose a learning rate αt = 10
t+1

in our implementation.

Implementation

All the experimentations were performed on a machine

with an Intel XeonCPUE5-2620 v4 at 2.10 GHz processor.

Task for the iDASH challenge. In genomic data pri-

vacy and security protection competition 2017, the goal of

Track 3 was to devise a weight vector to predict the dis-

ease using the genotype and phenotype data (Additional

file 1: iDASH). This dataset consists of 1579 samples, each

of which has 18 features and a cohort information (disease

vs. healthy). Since we use the ring dimension N = 216, we

can only pack up to N/2 = 215 dataset values in a sin-

gle ciphertext but we have totally 1579 × 19 > 215 values

to be packed. We can overcome this issue by dividing the

dataset into two parts of sizes 1579 × 16 and 1579 × 3

and encoding them separately into two ciphertexts. In

general, this method can be applied to the datasets with

any number of features: the dataset can be encrypted into

⌈(f + 1) · n · (N/2)−1⌉ ciphertexts.

In order to estimate the validity of our method, we

utilized 10-fold cross-validation (CV) technique: it ran-

domly partitions the dataset into ten folds with approx-

imately equal sizes, and uses every subset of 9 folds for

training and the rest one for testing the model. The per-

formance of our solution including the average running

time per fold of 10-fold CV (encryption and evaluation)

and the storage (encrypted dataset) are shown in Table 1.

This table also provides the average accuracy and the

AUC (Area Under the Receiver Operating Characteristic

Curve) which estimate the quality of a binary classifier.

Comparison We present some experimental results to

compare the performance of implementation to [13]. For

a fair comparison, we use the same 5-fold CV technique

on five datasets - the Myocardial Infarction dataset

from Edinburgh [23] (Additional file 2: Edinburgh), Low

Birth Weight Study (Additional file 3: lbw), Nhanes III

(Additional file 4: nhanes3), Prostate Cancer Study

(Additional file 5: pcs), and Umaru Impact Study datasets

(Additional file 6: uis) [24–27]. All datasets have a single

binary outcome variable.

All the experimental results are summarized in Table 2.

Our new packing method could reduce the storage of

ciphertexts and the use of Nesterov’s accelerated gradi-

ent achieves much higher speed than the approach of [13].

For example, it took 3.6 min to train a logistic regression

model using the encrypted Edinburgh dataset of size 0.02

GB, compared to 114 min and 0.69 GB of the previous

work [13], while achieving the good qualities of the output

models.

Discussion
The rapid growth of computing power initiated the study

of more complicated ML algorithms in various fields

Table 1 Implementation results for iDASH dataset with 10-fold CV

Sample Feature
deg g

Iter Enc Learn
Storage Accuracy AUC

num num num time time

1579 18 3 9 4s 7.94 min 0.04 GB 61.72% 0.677

5 7 4s 6.07 min 0.04 GB 62.87% 0.689

7 7 4s 7.01 min 0.04 GB 62.36% 0.689
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Table 2 Implementation results for other datasets with 5-fold CV

Dataset
Sample Feature

Method deg g
Iter Enc Learn

Storage Accuracy AUC
num num num time time

Edinburgh 1253 9 Ours 5 7 2s 3.6 min 0.02 GB 91.04% 0.958

[13] 3 25 12s 114 min 0.69 GB 86.03% 0.956

[13] 7 20 12s 114 min 0.71 GB 86.19% 0.954

lbw 189 9 Ours 5 7 2s 3.3 min 0.02 GB 69.19% 0.689

[13] 3 25 11s 99 min 0.67 GB 69.30% 0.665

[13] 7 20 11s 86 min 0.70 GB 69.29% 0.678

nhanes3 15649 15 Ours 5 7 14s 7.3 min 0.16 GB 79.22% 0.717

[13] 3 25 21s 235 min 1.15 GB 79.23% 0.732

[13] 7 20 21s 208 min 1.17 GB 79.23% 0.737

pcs 379 9 Ours 5 7 2s 3.5 min 0.02 GB 68.27% 0.740

[13] 3 25 11s 103 min 0.68 GB 68.85% 0.742

[13] 7 20 11s 97 min 0.70 GB 69.12% 0.750

uis 575 8 Ours 5 7 2s 3.5 min 0.02 GB 74.44% 0.603

[13] 3 25 10s 104 min 0.61 GB 74.43% 0.585

[13] 7 20 10s 96 min 0.63 GB 75.43% 0.617

including biomedical data analysis [28, 29]. HE system is

a promising solution for the privacy issue, but its effi-

ciency in real applications remains as an open question. It

would be great if we could extend this work to other ML

algorithms such as deep learning.

One constraint in our approach is that the number of

iterations of GD algorithm is limited depending on the

choice of HE parameter. In terms of asymptotic complex-

ity, applying the bootstrappingmethod of approximate HE

scheme [30] to the GD algorithm would achieve a linear

computation cost on the iteration number.

Conclusion
In the paper, we presented a solution to homomorphically

evaluate the learning phase of logistic regression model

using the gradient descent algorithm and the approximate

HE scheme. Our solution demonstrates a good perfor-

mance and the quality of learning is comparable to the

one of an unencrypted case. Our encoding method can be

easily extended to a large-scale dataset, which shows the

practical potential of our approach.
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Additional file 1: iDASH. iDASH challenge dataset (TXT 59 kb)

Additional file 2: Edinburgh. The Myocardial Infarction dataset from

Edinburgh (TXT 24 kb)
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Additional file 4: nhanes3. Nhanes III dataset (TXT 745 kb)

Additional file 5: pcs. Prostate Cancer Study dataset (TXT 9 kb)

Additional file 6: uis. Umaru Impact Study dataset (TXT 11 kb)
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