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Abstract. Security concerns have been raised since big data became a prominent tool in data
analysis. For instance, many machine learning algorithms aim to generate prediction models
using training data which contain sensitive information about individuals. Cryptography com-
munity is considering secure computation as a solution for privacy protection. In particular,
practical requirements have triggered research on the efficiency of cryptographic primitives.

This paper presents a practical method to train a logistic regression model while preserving
the data confidentiality We apply the homomorphic encryption scheme of Cheon et al. (ASI-
ACRYPT 2017) for an efficient arithmetic over real numbers, and devise a new encoding method
to reduce storage of encrypted database. In addition, we adapt Nesterov’s accelerated gradient
method to reduce the number of iterations as well as the computational cost while maintaining
the quality of an output classifier.

Our method shows a state-of-the-art performance of homomorphic encryption system in a real-
world application. The submission based on this work was selected as the best solution of Track
3 at iDASH privacy and security competition 2017. For example, it took about six minutes to
obtain a logistic regression model given the dataset consisting of 1579 samples, each of which
has 18 features with a binary outcome variable.
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1 Background

Machine learning (ML) is a class of methods in artificial intelligence, the characteristic feature
of which is that they do not give the solution of a particular problem but they learn the
process of finding solutions to a set of similar problems. The theory of ML appeared in the
early 60’s on the basis of the achievements of cybernetics [25] and gave the impetus to the
development of theory and practice of technically complex learning systems [7]. The goal of
ML is to partially or fully automate the solution of complicated tasks in various fields of
human activity.

The scope of ML applications is constantly expanding; however, with the rise of ML, the
security problem has become an important issue. For example, many medical decisions rely
on logistic regression model, and biomedical data usually contain confidential information
about individuals [24] which should be treated carefully. Therefore, privacy and security of
data are the major concerns, especially when deploying the outsource analysis tools.

There have been several researches on secure computation based on cryptographic prim-
itives. Nikolaenko et al. [20] presented a privacy preserving linear regression protocol on
horizontally partitioned data using Yao’s garbled circuits [30]. Multi-party computation tech-
nique was also applied to privacy-preserving logistic regression [8, 17, 16]. However, this ap-
proach is vulnerable when a party behaves dishonestly, and the assumption for secret sharing
is quite different from that of outsourcing computation.

Homomorphic encryption (HE) is a cryptosystem that allows us to perform certain arith-
metic operations on encrypted data and receive an encrypted result that corresponds to the
result of operations performed in plaintext. Several papers already discussed ML with HE



techniques. Wu et al. [28] used Paillier cryptosystem [21] and approximated the logistic func-
tion using polynomials, but it required an exponentially growing computational cost in the
degree of the approximation polynomial. Aono et al. [2] and Xie et al. [29] used an additive
HE scheme to aggregate some intermediate statistics. However, the scenario of Aono et al.
relies on the client to decrypt these intermediary statistics and the method of Xie et al.
requires expensive computational cost to calculate the intermediate information. The most
related research of this paper is the work of Kim et al. [12] which also used HE based ML.
However, the size of encrypted data and learning time were highly dependent on the number
of features, so the performance for a large dataset was not practical in terms of storage and
computational cost.

Since 2011, the iDASH Privacy and Security Workshop has assembled specialists in pri-
vacy technology to discuss issues that apply to biomedical data sharing, as well as main
stakeholders who provided an overview of the main uses of the data, different laws and regu-
lations, and their own views on privacy. In addition, it has began to hold annual competitions
on the basis of the workshop from 2014. The goal of this challenge is to evaluate the per-
formance of state-of-the-arts methods that ensures rigorous data confidentiality during data
analysis in a cloud environment.

In this paper, we provide a solution to the third track of iDASH 2017 competition,
which aims to develop HE based secure solutions for building a ML model (i.e., logistic
regression) over encrypted data. We propose a general practical solution for HE based ML
that demonstrates good performance and low storage costs. In practice, our output quality
is comparable to the one of an unencrypted learning case. As a basis, we use the HE scheme
for approximate arithmetic [6]. To improve the performance, we apply several additional
techniques including a packing method, which reduce the required storage space and optimize
the computational time. We also adapt Nesterov’s accelerated gradient [18] to improve the
convergence rate. As a result, we used less number of iterations than the other solutions,
resulting in a much faster time to learn a model.

We give an open-source implementation [4] to demonstrate the performance of our HE
based ML method. With our packing method we can encrypt the dataset with 1579 samples
and 18 features using 39MB of memory. The encrypted learning time is about six minutes.
We also demonstrate our implementation on the datasets used in [12] to compare the results.
For example, the training of a logistic regression model took about 3.6 minutes with the
storage about 0.02GB compared to 114 minutes and 0.69GB of Kim et al. [12] when a
dataset consists of 1253 samples, each of which has 9 features.

2 Methods

2.1 Logistic Regression

Logistic regression or logit model is a ML model used to predict the probability of occurrence
of an event by fitting data to a logistic curve [10]. It is widely used in various fields including
machine learning, biomedicine [15], genetics [14], and social sciences [9].

Throughout this paper, we treat the case of a binary dependent variable, represented by
±1. Learning data consists of pairs (xi, yi) of a vector of co-variates xi = (xi1, ..., xif ) ∈ R

f

and a dependent variable yi ∈ {±1}. Logistic regression aims to find an optimal β ∈ R
f+1

which maximizes the likelihood estimator

n
∏

i=1

Pr(yi|xi) =

n
∏

i=1

1

1 + exp(−yi(1,xi)Tβ)
,
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or equivalently minimizes the loss function, defined as the negative log-likelihood:

J(β) =
1

n

n
∑

i=1

log(1 + exp(−zTi β))

where zi = yi · (1,xi) for i = 1, . . . , n.

2.2 Gradient Descent

Gradient Descent (GD) is a method for finding a local extremum (minimum or maximum)
of a function by moving along gradients. To minimize the function in the direction of the
gradient, one-dimensional optimization methods are used.

For logistic regression, the gradient of the cost function with respect to β is computed
by

∇J(β) = −
1

n

n
∑

i=1

σ(−zTi β) · zi

where σ(x) = 1
1+exp(−x) . Starting from an initial β0, the gradient descent method at each

step t updates the regression parameters using the equation

β(t+1) ← β(t) +
αt

n

n
∑

i=1

σ(−zTi β
(t)) · zi

where αt is a learning rate at step t.

2.3 Nesterov’s Accelerated Gradient

The method of GD can face a problem of zig-zagging along a local optima and this behavior
of the method becomes typical if it increases the number of variables of an objective function.
Many GD optimization algorithms are widely used to overcome this phenomenon. Momentum
method, for example, dampens oscillation using the accumulated exponential moving average
for the gradient of the loss function.

Nesterov’s accelerated gradient [18] is a slightly different variant of the momentum up-
date. It uses moving average on the update vector and evaluates the gradient at this “looked-
ahead” position. It guarantees a better rate of convergence O(1/t2) (vs. O(1/t) of standard
GD algorithm) after t steps theoretically, and consistently works slightly better in practice.
Starting with a random initial v0 = β0, the updated equations for Nesterov’s Accelerated
GD are as follows:

{

β(t+1) = v(t) − αt · ▽J(v(t)),

v(t+1) = (1− γt) · β
(t+1) + γt · β

(t),
(1)

where 0 < γt < 1 is a moving average smoothing parameter.

2.4 Approximate Homomorphic Encryption

HE is a cryptographic scheme that allows us to carry out operations on encrypted data
without decryption. Cheon et al. [6] presented a method to construct a HE scheme for
arithmetic of approximate numbers (called HEAAN in what follows). The main idea is to treat
an encryption noise as part of error occurring during approximate computations. That is, an
encryption ct of message m ∈ R by a secret key sk for a ciphertext modulus q will have a
decryption structure of the form 〈ct, sk〉 = m+ e (mod q) for some small e.
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The following is a simple description of HEAAN based on the ring learning with errors
problem. For a power-of-two integer N , the cyclotomic polynomial ring of dimension N
is denoted by R = Z[X]/(XN + 1). For a positive integer ℓ, we denote Rℓ = R/2ℓR =
Z2ℓ [X]/(XN + 1) the residue ring of R modulo 2ℓ.

• KeyGen(1λ).

- For an integer L that corresponds to the largest ciphertext modulus level, given the
security parameter λ, output the ring dimension N which is a power of two.

- Set the small distributions χkey, χerr, χenc over R for secret, error, and encryption,
respectively.

- Sample a secret s← χkey, a random a← RL and an error e← χerr. Set the secret key
as sk← (1, s) and the public key as pk← (b, a) ∈ R2

L where b← −as+ e (mod 2L).

• KSGensk(s
′). For s′ ∈ R, sample a random a′ ← R2·L and an error e′ ← χerr. Output the

switching key as swk← (b′, a′) ∈ R2
2·L where b′ ← −a′s+ e′ + 2Ls′ (mod 22·L).

- Set the evaluation key as evk← KSGensk(s
2).

• Encpk(m). For m ∈ R, sample v ← χenc and e0, e1 ← χerr. Output v · pk + (m + e0, e1)

(mod 2L).

• Decsk(ct). For ct = (c0, c1) ∈ R
2
ℓ , output c0 + c1 · s (mod 2ℓ).

• Add(ct1, ct2). For ct1, ct2 ∈ R
2
ℓ , output ctadd ← ct1 + ct2 (mod 2ℓ).

• CMultevk(ct; c). For ct ∈ R
2
ℓ and a ∈ R, output ct′ ← c · ct (mod 2ℓ).

• Multevk(ct1, ct2). For ct1 = (b1, a1), ct2 = (b2, a2) ∈ R
2
ℓ , let (d0, d1, d2) = (b1b2, a1b2 +

a2b1, a1a2) (mod 2ℓ). Output ctmult ← (d0, d1) + ⌊2
−L · d2 · evk⌉ (mod 2ℓ).

• ReScale(ct; p). For a ciphertext ct ∈ R2
ℓ and an integer p, output ct′ ← ⌊2−p · ct⌉

(mod 2ℓ−p).

For a power-of-two integer k ≤ N/2, HEAAN provides a technique to pack k complex
numbers in a single polynomial using a variant of the complex canonical embedding map
φ : Ck → R. We restrict the plaintext space as a vector of real numbers throughout this
paper. Moreover, we multiply a scale factor of 2p to plaintexts before the rounding operation
to maintain their precision.

• Encode(w; p). For w ∈ R
k, output the polynomial m← φ(2p ·w) ∈ R.

• Decode(m; p). For a plaintext m ∈ R, the encoding of an array consisting of a power of

two k ≤ N/2 messages, output the vector w← φ−1(m/2p) ∈ R
k.

The encoding/decoding techniques support the parallel computation over encryption,
yielding a better amortized timing. In addition, the HEAAN scheme provides the rotation op-
eration on plaintext slots, i.e., it enables us to securely obtain an encryption of the shifted
plaintext vector (wr, . . . , wk−1, w0, . . . , wr−1) from an encryption of (w0, . . . , wk−1). It is nec-
essary to generate an additional public information rk, called the rotation key. We denote
the rotation operation as follows.

• Rotaterk(ct; r). For the rotation keys rk, output a ciphertext ct′ encrypting the rotated
plaintext vector of ct by r positions.

Refer [6] for the technical details and noise analysis.
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2.5 Database Encoding

For an efficient computation, it is crucial to find a good encoding method for the given
database. The HEAAN scheme supports the encryption of a plaintext vector and the slot-
wise operations over encryption. However, our learning data is represented by a matrix
(zij)1≤i≤n,0≤j≤f . A recent work [12] used the column-wise approach, i.e., a vector of specific
feature data (zij)1≤i≤n is encrypted in a single ciphertext. Consequently, this method required
(f + 1) number of ciphertexts to encrypt the whole dataset.

In this subsection, we suggest a more efficient encoding method to encrypt a matrix in
a single ciphertext. A training dataset consists of n samples zi ∈ R

f+1 for 1 ≤ i ≤ n, which
can be represented as a matrix Z as follows:

Z =











z10 z11 · · · z1f
z20 z21 · · · z1f
...

...
. . .

...
zn0 zn1 · · · znf











.

For simplicity, we assume that n and (f + 1) are power-of-two integers satisfying log n +
log(f + 1) ≤ log(N/2). Then we can pack the whole matrix in a single ciphertext in a row-
by-row manner. Specifically, we will identify this matrix with the k-dimensional vector by
(zij)1≤i≤n,0≤j≤f 7→ w = (wℓ)0≤ℓ<n·(f+1) where wℓ = zij such that ℓ = (f + 1)(i− 1) + j,
that is,

Z 7→ w = (z10, . . . , z1f , z20, . . . , z2f , . . . , zn0, . . . , znf ).

In a general case, we can pad zeros to set the number of samples and the dimension of a
weight vector as powers of two.

It is necessary to perform shifting operations of row and column vectors for the evalu-
ation of the GD algorithm. In the rest of this subsection, we explain how to perform these
operations using the rotation algorithm provided in the HEAAN scheme. As described above,
the algorithm Rotate(ct; r) can shift the encrypted vector by r positions. In particular, this
operation is useful in our implementation when r = f +1 or r = 1. For the first case, a given
matrix Z = (zij)1≤i≤n,0≤j≤f is converted into the matrix

Z ′ =











z20 z21 · · · z2f
...

...
. . .

...
zn0 zn1 · · · znf
z10 z11 · · · z1f











,

while the latter case outputs the matrix

Z ′′ =











z11 · · · z1f z20
z21 · · · z2f z30
...

...
. . .

...
zn1 · · · znf z10











over encryption. The matrix Z ′ is obtained from Z by shifting its row vectors and Z ′′ can
be viewed as an incomplete column shifting because of its last column.

2.6 Polynomial Approximation of the Sigmoid Function

One limitation of the existing HE cryptosystems is that they only support polynomial arith-
metic operations. The evaluation of the sigmoid function is an obstacle for the implementation
of the logistic regression since it cannot be expressed as a polynomial.
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Kim et al. [12] used the least squares approach to find a global polynomial approximation
of the sigmoid function. We adapt this approximation method and consider the degree 3, 5,
and 7 least squares polynomials of the sigmoid function over the domain [−8, 8]. We observed
that the inner product values zTi β

(t) in our experimentations belong to this interval. For
simplicity, a least squares polynomial of σ(−x) will be denoted by g(x) so that we have
g(zTi β

(t)) ≈ σ(−zTi β
(t)) when |zTi β

(t)| ≤ 8. The approximate polynomials g(x) of degree 3,
5, and 7 are computed as follows:











g3(x) = 0.5− 1.20096 · (x/8) + 0.81562 · (x/8)3,

g5(x) = 0.5− 1.53048 · (x/8) + 2.3533056 · (x/8)3 − 1.3511295 · (x/8)5,

g7(x) = 0.5− 1.73496 · (x/8) + 4.19407 · (x/8)3 − 5.43402 · (x/8)5 + 2.50739 · (x/8)7.

A low-degree polynomial requires a smaller evaluation depth while a high-degree polynomial
has a better precision. The maximum errors between σ(−x) and the least squares g3(x),
g5(x), and g7(x) are approximately 0.114, 0.061 and 0.032, respectively.

2.7 Homomorphic Evaluation of the Gradient Descent

This section explains how to securely train the logistic regression model using the HEAAN

scheme. To be precise, we explicitly describe a full pipeline of the evaluation of the GD
algorithm. We adapt the same assumptions as in the previous section so that the whole
database can be encrypted in a single ciphertext.

First of all, a client encrypts the dataset and the initial (random) weight vector β(0) and
sends them to the public cloud. The dataset is encoded to a matrix Z of size n× (f +1) and
the weight vector is copied n times to fill the plaintext slots. The plaintext matrices of the
resulting ciphertexts are described as follows:

ctz = Enc











z10 z11 · · · z1f
z20 z21 · · · z1f
...

...
. . .

...
zn0 zn1 · · · znf











, ct
(0)
β = Enc













β
(0)
0 β

(0)
1 · · · β

(0)
f

β
(0)
0 β

(0)
1 · · · β

(0)
f

...
...

. . .
...

β
(0)
0 β

(0)
1 · · · β

(0)
f













.

As mentioned before, both Z and β(0) are scaled by a factor of 2p before encryption to
maintain the precision of plaintexts. We skip to mention the scaling factor in the rest of this
section since every step will return a ciphertext with the scaling factor of 2p.

The public server takes two ciphertexts ctz and ct
(t)
β and evaluates the GD algorithm to

find an optimal modeling vector. The goal of each iteration is to update the modeling vector
β(t) using the gradient of loss function:

β(t+1) ← β(t) +
αt

n

n
∑

i=1

σ(−zTi β
(t)) · zi

where αt denotes the learning rate at the t-th iteration. Each iteration consists of the following
eight steps.

Step 1: For given two ciphertexts ctz and ct
(t)
β , compute their multiplication and rescale it

by p bits:

ct1 ← ReScale(Mult(ct
(t)
β , ctz); p).
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The output ciphertext contains the values zij · β
(t)
j in its plaintext slots, i.e.,

ct1 = Enc













z10 · β
(t)
0 z11 · β

(t)
1 · · · z1f · β

(t)
f

z20 · β
(t)
0 z21 · β

(t)
1 · · · z1f · β

(t)
f

...
...

. . .
...

zn0 · β
(t)
0 zn1 · β

(t)
1 · · · znf · β

(t)
f













.

Step 2: To obtain the inner product zTi β
(t), the public cloud aggregates the values of zijβ

(t)
j

in the same row. This step can be done by adapting the incomplete column shifting operation.

One simple way is to repeat this operation (f +1) times, but the computational cost can
be reduced down to log(f + 1) by adding ct1 to its rotations recursively:

ct1 ← Add(ct1, Rotate(ct1; 2
j)),

for j = 0, 1, . . . , log(f + 1) − 1. Then the output ciphertext ct2 encrypts the inner product
values zTi β

(t) in the first column and some “garbage” values in the other columns, denoted
by ⋆, i.e.,

ct2 = Enc











zT1 β
(t) ⋆ · · · ⋆

zT2 β
(t) ⋆ · · · ⋆

...
...

. . .
...

zTnβ
(t) ⋆ · · · ⋆











.

Step 3: This step performs a constant multiplication in order to annihilate the garbage
values. It can be obtained by computing the encoding polynomial c← Encode(C; pc) of the
matrix

C =











1 0 · · · 0
1 0 · · · 0
...

...
. . .

...
1 0 · · · 0











,

using the scaling factor of 2pc for some integer pc. The parameter pc is chosen as the bit
precision of plaintexts so it can be smaller than the parameter p.

Finally we multiply the polynomial c to the ciphertext ct2 and rescale it by pc bits:

ct3 ← ReScale(CMult(ct2; c); pc).

The garbage values are multiplied with zero while one can maintain the inner products in
the plaintext slots. Hence the output ciphertext ct3 encrypts the inner product values in the
first column and zeros in the others:

ct3 = Enc











zT1 β
(t) 0 · · · 0

zT2 β
(t) 0 · · · 0

...
...

. . .
...

zTnβ
(t) 0 · · · 0











.

Step 4: The goal of this step is to replicate the inner product values to other columns. Similar
to Step 2, it can be done by adding the input ciphertext to its column shifting recursively,
but in the opposite direction

ct3 ← Add(ct3, Rotate(ct3;−2
j))
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for j = 0, 1, . . . , log(f + 1)− 1. The output ciphertext ct4 has the same inner product value
in each row:

ct4 = Enc











zT1 β
(t) zT1 β

(t) · · · zT1 β
(t)

zT2 β
(t) zT2 β

(t) · · · zT2 β
(t)

...
...

. . .
...

zTnβ
(t) zTnβ

(t) · · · zTnβ
(t)











.

Step 5: This step simply evaluates an approximating polynomial of the sigmoid function,
i.e., ct5 ← g(ct4) for some g ∈ {g3, g5, g7}. The output ciphertext encrypts the values of
g(zTi β

(t)) in its plaintext slots:

ct5 = Enc











g(zT1 β
(t)) · · · g(zT1 β

(t))

g(zT2 β
(t)) · · · g(zT2 β

(t))
...

. . .
...

g(zTnβ
(t)) · · · g(zTnβ

(t))











.

Step 6: The public cloud multiplies the ciphertext ct5 with the encrypted dataset ctz and
rescales the resulting ciphertext by p bits:

ct6 ← ReScale(Mult(ct5, ctz); p).

The output ciphertext encrypts the n vectors g(zTi β
(t)) · zi in each row:

ct6 = Enc











g(zT1 β
(t)) · z10 · · · g(zT1 β

(t)) · z1f
g(zT2 β

(t)) · z20 · · · g(zT2 β
(t)) · z2f

...
. . .

...

g(zTnβ
(t)) · zn0 · · · g(zTnβ

(t)) · znf











.

Step 7: This step aggregates the vectors g(zTi β
(t)) to compute the gradient of the loss

function. It is obtained by recursively adding ct6 to its row shifting:

ct6 ← Add(ct6, Rotate(ct6; 2
j))

for j = log(f + 1), . . . , log(f + 1) + log n− 1. The output ciphertext is

ct7 = Enc











∑

i g(z
T
i β

(t)) · zi0 · · ·
∑

i g(z
T
i β

(t)) · zif
∑

i g(z
T
i β

(t)) · zi0 · · ·
∑

i g(z
T
i β

(t)) · zif
...

. . .
...

∑

i g(z
T
i β

(t)) · zi0 · · ·
∑

i g(z
T
i β

(t)) · zif











,

as desired.
Step 8: For the learning rate αt, it uses the parameter pc to compute the scaled learning rate
∆(t) = ⌊2pc · αt⌉. The public cloud updates β(t) using the ciphertext ct7 and the constant
∆(t):

ct8 ← ReScale(∆(t) · ct7; pc),

ct
(t+1)
β ← Add(ct

(t)
β , ct8).

Finally it returns a ciphertext encrypting the updated modeling vector

ct
(t+1)
β = Enc













β
(t+1)
0 β

(t+1)
1 · · · β

(t+1)
f

β
(t+1)
0 β

(t+1)
1 · · · β

(t+1)
f

...
...

. . .
...

β
(t+1)
0 β

(t+1)
1 · · · β

(t+1)
f













.

where β
(t+1)
j = β

(t)
j + αt

n

∑

i g(z
T
i β

(t)) · zij .
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2.8 Homomorphic Evaluation of Nesterov’s Accelerated Gradient

The performance of leveled HE schemes highly depends on the depth of a circuit to be
evaluated. The bottleneck of homomorphic evaluation of the GD algorithm is that we need
to repeat the update of weight vector β(t) iteratively. Consequently, the total depth grows
linearly on the number of iterations and it should be minimized for practical implementation.

For the homomorphic evaluation of Nesterov’s accelerated gradient, a clients sends one

more ciphertext ct
(0)
v encrypting the initial vector v(0) to the public cloud. Then the server

uses an encryption ctz of dataset Z to update two ciphertexts v(t) and ct
(t)
β at each iteration.

One can securely compute β(t+1) in the same way as the previous section. Nesterov’s accel-
erated gradient requires one more step to compute the second equation of (1) and obtain an

encryption of v(t+1) from ct
(t)
β and ct

(t+1)
β .

Step 9: Let ∆
(t)
1 = ⌊2pc · γt⌉ and let ∆

(t)
2 = 2pc −∆

(t)
1 . It obtains the ciphertext ct

(t+1)
v by

computing

ct(t+1)
v ← Add(∆

(t)
2 · ct

(t+1)
β , ∆

(t)
1 · ct

(t)
β ),

ct(t+1)
v ← ReScale(ct(t+1)

v ; pc).

Then the output ciphertext is

ct(t+1)
v = Enc













v
(t+1)
0 v

(t+1)
1 · · · v

(t+1)
f

v
(t+1)
0 v

(t+1)
1 · · · v

(t+1)
f

...
...

. . .
...

v
(t+1)
0 v

(t+1)
1 · · · v

(t+1)
f













,

which encrypts v
(t+1)
j = (1− γt) · β

(t+1)
j + γt · β

(t)
j in the plaintext slots.

3 Results

In this section, we present parameter sets with experimental results. Our implementation is
based on the HEAAN library [5] that implements the HE scheme of Cheon et al. [6]. The
source code is publicly available at github [4].

3.1 Parameters settings

We explain how to choose the parameter sets for the homomorphic evaluation of the (Nes-
terov’s) GD algorithm with security analysis. We start with the parameter L - the bitsize
of a fresh ciphertext modulus. The modulus of a ciphertext is reduced after the ReScale

operations and the evaluation of an approximate polynomial g(x).
The ReScale procedures after homomorphic multiplications (step 1 and 6) reduce the

ciphertext modulus by p bits while the ReScale procedures after constant multiplications
(step 3 and 8) require pc bits of modulus reduction. Note that the ciphertext modulus remains
the same for the step 9 for the Nesterov’s accelerated gradient if we compute step 8 and 9
together using some precomputed constants. We use a similar method with a previous work
for the evaluation of the sigmoid function (see [12] for details); the ciphertext modulus is
reduced by (2p + 3) bits for the evaluation of g3(x), and (3p + 3) bits for that of g5(x) and
g7(x). Therefore, we obtain the following lower bound on the parameter L:

L =

{

IterNum · (3p+ 2pc + 3) + L0 g = g3,

IterNum · (4p+ 2pc + 3) + L0 g ∈ {g5, g7},

9



Table 1. Implementation results for iDASH dataset with 10-fold CV

Sample Feature
deg g

Iter Enc Learn
Storage Accuracy AUC

Num Num Num Time Time

1579 18

3 9 4s 7.94min 0.04GB 61.72% 0.677

5 7 4s 6.07min 0.04GB 62.87% 0.689

7 7 4s 7.01min 0.04GB 62.36% 0.689

where IterNum is the number of iterations of the GD algorithm and L0 denotes the bit size
of the output ciphertext modulus. The modulus of the output ciphertext should be larger
than 2p in order to encrypt the resulting weight vector and maintain its precision. We take
p = 30, pc = 20 and L0 = 35 in our implementation.

The dimension of a cyclotomic ring R is chosen as N = 216 following the security esti-
mator of Albrecht et al. [1] for the learning with errors problem. In this case, the bit size L
of a fresh ciphertext modulus should be bounded by 1284 to ensure the security level λ = 80
against known attacks. Hence we repeat IterNum = 9 iterations of GD algorithm g = g3,
and IterNum = 7 iterations when g = g5 or g = g7.

The smoothing parameter γt is chosen in accordance with [18]. The choice of proper GD
learning rate parameter αt normally depends on the problem at hand. Choosing too small
αt leads to a slow convergence, and choosing too large αt could lead to a divergence, or a
fluctuation near a local optima. It is often optimized by a trial and error method, which
we are not available to perform. Under these conditions harmonic progression seems to be a
good candidate and we choose a learning rate αt =

10
t+1 in our implementation.

3.2 Implementation

All the experimentations were performed on a machine with an Intel Xeon CPU E5-2620 v4
at 2.10 GHz processor.

Task for iDASH challenge. In genomic data privacy and security protection competition
2017, the goal of Track 3 was to devise a weight vector to predict the disease using the
genotype and phenotype data. This dataset consists of 1579 samples, each of which has 18
features and a cohort information (disease vs. healthy). Since we use the ring dimension
N = 216, we can only pack up to N/2 = 215 dataset values in a single ciphertext but we
have totally 1579 × 19 > 215 values to be packed. We can overcome this issue by dividing
the dataset into two parts of sizes 1579× 16 and 1579× 3 and encoding them separately into
two ciphertexts. In general, this method can be applied to the datasets with any number of
features: the dataset can be encrypted as ⌈(f + 1) · n · (N/2)−1⌉ ciphertexts.

In order to estimate the validity of our method, we utilized 10-fold cross-validation (CV)
technique: it randomly partitions the dataset into ten folds with approximately equal sizes,
and uses every subset of 9 folds for training and the rest one for testing the model. The
performance of our solution including the average running time (encryption and evaluation)
and the storage (encrypted dataset) are shown in Table 1. This table also provides the
average accuracy and the AUC (Area Under the Receiver Operating Characteristic Curve)
which estimate the quality of a binary classifier.

Comparison. We present some experimental results to compare the performance of imple-
mentation to [12]. For a fair comparison, we use the same 5-fold CV technique on five
datasets - the Myocardial Infarction dataset from Edinburgh (Edinburgh) [11], Low Birth
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Table 2. Implementation results for other datasets with 5-fold CV

Dataset
Sample
Num

Feature
Num

Method deg g
Iter
Num

Enc Learn
Storage
(GB)

Accuracy
(%)

AUCTime Time

(sec) (min)

Edinburgh 1253 9

Ours 5 7 2 3.6 0.02 91.04 0.958

[12] 3 25 12 114 0.69 86.03 0.956

[12] 7 20 12 114 0.71 86.19 0.954

lbw 189 9

Ours 5 7 2 3.3 0.02 69.19 0.689

[12] 3 25 11 99 0.67 69.30 0.665

[12] 7 20 11 86 0.70 69.29 0.678

nhanes3 15649 15

Ours 5 7 14 7.3 0.16 79.22 0.717

[12] 3 25 21 23 1.15 79.23 0.732

[12] 7 20 21 208 1.17 79.23 0.737

pcs 379 9

Ours 5 7 2 3.5 0.02 68.27 0.740

[12] 3 25 11 103 0.68 68.85 0.742

[12] 7 20 11 97 0.70 69.12 0.750

uis 575 8

Ours 5 7 2 3.5 0.02 74.44 0.603

[12] 3 25 10 104 0.61 74.43 0.585

[12] 7 20 10 96 0.63 75.43 0.617

Weight Study (lbw), Nhanes III (nhanes3), Prostate Cancer Study (pcs), and Umaru Impact
Study datasets (uis) [13, 19, 22, 26]. All datasets have a single binary outcome variable.

All the experimental results are summarized in Table 2. Our new packing method could
reduce the storage of ciphertexts and the use of Nesterov’s accelerated gradient achieves
much higher speed than the approach of [12]. For example, it took 3.6 minutes to train a
logistic regression model using the encrypted Edinburgh dataset of size 0.02 GB, compared
to 114 minutes and 0.69 GB of the previous work, while keeping the good qualities of the
output models.

4 Discussion

The rapid growth of computing power initiated the study of more complicated ML algorithms
in various fields including biomedical data analysis [27, 23]. HE system is a promising solution
for the privacy issue, but its efficiency in real applications remains as an open question. It
would be great if we could extend this work to other ML algorithms such as deep learning.

One constraint in our approach is that the number of iterations of GD algorithm is limited
depending on the choice of HE parameter. In terms of asymptotic complexity, applying the
bootstrapping method of approximate HE scheme [3] to the GD algorithm would achieve a
linear computation cost on the iteration number.

5 Conclusion

In the paper, we presented a solution to homomorphically evaluate the learning phase of lo-
gistic regression model using the gradient descent algorithm and the approximate HE scheme.
Our solution demonstrates a good performance and the quality of learning is comparable to
the one of an unencrypted case. Our encoding method can be easily extended to a large-scale
dataset, which shows the practical potential of our approach.
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A Abbreviations

ML: Machine Learning; HE: Homomorphic Encryption; GD: Gradient Descent; CV: Cross
Validation; AUC: Area Under the receiver operating characteristic Curve

B Availability of data and material

All datasets are available in the Additional files provided with the publication. The HEAAN

library is available at https://github.com/kimandrik/HEAAN. Our implementation is avail-
able at https://github.com/kimandrik/HEML.
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