
Chen et al. BMCMedical Genomics 2018, 11(Suppl 4):81

https://doi.org/10.1186/s12920-018-0397-z

RESEARCH Open Access

Logistic regression over encrypted data
from fully homomorphic encryption
Hao Chen1, Ran Gilad-Bachrach1, Kyoohyung Han2, Zhicong Huang3, Amir Jalali4, Kim Laine1*

and Kristin Lauter1

From iDASH Privacy and Security Workshop 2017
Orlando, FL, USA. 14 October 2017

Abstract

Background: One of the tasks in the 2017 iDASH secure genome analysis competition was to enable training of
logistic regression models over encrypted genomic data. More precisely, given a list of approximately 1500 patient
records, each with 18 binary features containing information on specific mutations, the idea was for the data holder to
encrypt the records using homomorphic encryption, and send them to an untrusted cloud for storage. The cloud
could then homomorphically apply a training algorithm on the encrypted data to obtain an encrypted logistic
regression model, which can be sent to the data holder for decryption. In this way, the data holder could successfully
outsource the training process without revealing either her sensitive data, or the trained model, to the cloud.

Methods: Our solution to this problem has several novelties: we use a multi-bit plaintext space in fully homomorphic
encryption together with fixed point number encoding; we combine bootstrapping in fully homomorphic encryption
with a scaling operation in fixed point arithmetic; we use a minimax polynomial approximation to the sigmoid
function and the 1-bit gradient descent method to reduce the plaintext growth in the training process.

Results: Our algorithm for training over encrypted data takes 0.4–3.2 hours per iteration of gradient descent.

Conclusions: We demonstrate the feasibility but high computational cost of training over encrypted data. On the
other hand, our method can guarantee the highest level of data privacy in critical applications.

Keywords: Cryptography, Homomorphic encryption, Logistic regression

Background

Since 2014, iDASH (integrating Data for Analysis,

Anonymization, and Sharing) has hosted yearly interna-

tional contests around the theme of genomic and biomed-

ical privacy. Teams from around the world participate to

test the limits of secure computation on genomic and

biomedical tasks, and benchmark solutions on real data

sets. Such contests serve to bring together experts in secu-

rity, cryptography, and bioinformatics to quickly make

progress on interdisciplinary challenges. The task for out-

sourced storage and computation this year was to imple-

ment amethod for private outsourced training of a logistic

regression model.

*Correspondence: kim.laine@microsoft.com
1Microsoft Research, Redmond, WA USA
Full list of author information is available at the end of the article

Motivation

Machine Learning (ML) over encrypted data has impor-

tant applications for cloud security and privacy. It allows

sensitive data, such as genomic and health data, to be

stored in the cloud in encrypted form without los-

ing the utility of the data. For the third task in the

2017 iDASH Secure Genome Analysis Competition, par-

ticipants were challenged to train a machine learning

model on encrypted genomic data that will predict dis-

ease based on a patient’s genome. In a non-interactive

(with outsourced storage) setting, training ML models

on encrypted data had up until now only been done for

very simple models, such as Linear Means Classifiers and

Fisher’s Linear Discriminant Analysis [1]. Interactive set-

tings, where multiple parties hold shares of the data and

communicate throughout the training process, have been

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12920-018-0397-z&domain=pdf
mailto: kim.laine@microsoft.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Chen et al. BMCMedical Genomics 2018, 11(Suppl 4):81 Page 4 of 55

developed for several more complicated models, but they

require high communication costs and a non-colluding

assumption between several clouds [2].

The 2017 iDASH competition task was to train a logistic

regression model, and although in theory it can be done

using Fully Homomorphic Encryption (FHE) [3, 4], until

now the feasibility and efficiency of this approach had not

been studied.

Summary of results

In this work, we show that training a logistic regression

model over binary data is possible using FHE. In par-

ticular, we use gradient descent and stochastic gradient

descent algorithms with mini-batches, and demonstrate

that it takes several minutes to one hour to run each

gradient descent step. Our solution can run for an arbi-

trary number of steps, as opposed to the now com-

monly used practical homomorphic encryption (PHE)

approach [5], where the size of the computation is

determined beforehand, and parameters chosen once and

for all to support a computation of that size. This is

possible using Craig Gentry’s bootstrapping operation

[4], which we have implemented for the first time

for the Fan-Vercauteren scheme [6] using the pub-

licly available homomorphic encryption library SEAL

(http://sealcrypto.org; accessed on 9 April, 2018).

More precisely, in fully homomorphic encryption each

ciphertext contains a component called the noise, which

grows in all homomorphic operations, and eventu-

ally reaches a maximum value. Once this maximum is

reached, the ciphertext cannot be decrypted correctly

anymore. Bootstrapping is the process of “refreshing” FHE

ciphertexts to reduce the noise levels during deep com-

putations to ensure correct decryption at the end of the

computation.

Another challenge in the approach we take is the plain-

text data type supported by the homomorphic encryp-

tion scheme. Namely, it is only possible to encrypt

fairly small integers with SEAL, and indeed with many

homomorphic encryption schemes. In machine learn-

ing the model weights are typically rational numbers,

which need to be scaled to integers. Unfortunately, this

quickly causes an overflow to occur in our rather small

integer data type, unless the integers can be scaled

down. We describe a modified bootstrapping operation

which merges bootstrapping and such a scaling into

one step, significantly reducing the complexity of our

algorithm.

Besides noise growth and message expansion, another

challenge in implementing Logistic Regression with FHE

is applying the sigmoid function. We present two meth-

ods to approximate this function with a polynomial, and

compare them both in terms of the accuracy of the trained

model and in terms of computation time.

Related work

At the time of writing this, very little directly compara-

ble prior work exists. The closest to our approach is [7],

where the authors achieve remarkably good performance

in training small logistic regression models; in their solu-

tion it is necessary that the number of features is very

small (logarithmic in the number of training records).

A slightly different approach is taken in [8], where

the authors use the homomorphic encryption library

HEAAN, that natively supports scaling down of plaintext

numbers [9, 10]. The authors report good performance

numbers, but unlike us and [7] they only allow a very small

number of iterations. Extending to more iterations will be

computationally very costly, and require bootstrapping.

Methods

Fan-Vercauteren scheme

Fully Homomorphic Encryption (FHE) refers to a type of

encryption scheme, envisioned already a few decades ago

[3], that allows arbitrary computations to be performed

directly on encrypted data. A blueprint for a solution

was first proposed by Gentry [4] in 2009, and since then

numerous schemes have been proposed. In this work we

use the Fan-Vercauteren scheme (FV) [6], and its imple-

mentation in the SEAL library [11].

Parameters and notation.

We start by defining the parameters of the FV scheme.

Let q ≫ t be positive integers and n a power of 2; often

t is a prime such that 2n | (t − 1). Denote � = ⌊q/t⌋.
We define R = Z/(xn + 1), Rq = Zq[x] /(x

n + 1), and

Rt = Zt[x] /(x
n + 1). Here, Z is the set of polynomials

with integer coefficient andZq[x] is the set of polynomials

with integer coefficient in range [0, q−1). Therefore, Rq is

the set of polynomials of degree at most n − 1, with coef-

ficients integers modulo q. Multiplications of polynomials

in Rq is similar to usual polynomial multiplication, except

that xn should in every step be replaced by − 1. In the

FV scheme plaintext elements are polynomials in Rt , and

ciphertext elements are pairs of polynomials in Rq × Rq.

Let χ denote a narrow (centered) discrete Gaussian error

distribution. In practice, most implementations of homo-

morphic encryption use σ [χ]≈ 3.2. Finally, letUk denote

the uniform distribution on Z∩[−k/2, k/2).

Key generation

The first step in using the FV scheme is generating a

public-secret key pair (pk,sk). To do this, sample s ←
Un
3 , a ← Un

q , and e ← χn; here s, a, and e are all con-

sidered as elements of Rq, where the n coefficients are

sampled independently from the given distributions. To

form the keys, we let

pk = ([−(as + e)]q, a) ∈ R2
q ,

http://sealcrypto.org

Chen et al. BMCMedical Genomics 2018, 11(Suppl 4):81 Page 5 of 55

where [·]q denotes the (coefficient-wise) reduction mod-

ulo q. In reality there are other types of keys involved, in

particular so-called evaluation keys and Galois keys, but

for the sake of simplicity we will omit discussing them

here, and refer the reader to [6, 11].

Encryption.

Letm ∈ Rt be a plaintext message. To encrypt m with the

public key pk = (p0, p1) ∈ R2
q, sample u ← Un

3 , a ← Un
q ,

and e1, e2 ← χn. Consider u, a, and ei as elements of Rq as

in key generation, and create the ciphertext

ct = ([�m + p0u + e1]q , [p1u + e2]q) ∈ R2
q .

Decryption.

To decrypt a ciphertext ct = (c0, c1) given a secret key

sk = s, write

t

q
(c0 + c1s) = m̂ + v + bt ,

where c0 + c1s is computed as an integer coefficient poly-

nomial, and scaled by the rational number t/q, b is an

integer coefficient polynomial, m̂ the underlying message,

and v the leftover fractional part.

It is easy to see that when q is sufficiently larger than

t, then m̂ = m, and ‖v‖∞ ≪ 1/2. This means that the

original message can be recovered by computing

m =
⌊
t

q
(c0 + c1s)

⌉

t

,

where ⌊·⌉ denotes rounding to the nearest integer. For

details, see [6, 11].

Homomorphic computations

A final fundamental piece in the puzzle is how to enable

additions andmultiplications of two ciphertexts. For addi-

tion, this is easy; we define an operation ⊕ between two

ciphertexts ct1 = (c0, c1) and ct2 = (d0, d1) as follows:

ct1 ⊕ ct2 = ([c0 + d0]q , [c1 + d1]q) ∈ R2
q .

We denote this homomorphic sum by ctsum =
(csum0 , csum1), and note that if

t

q
(c0+c1s) = m1+v1+b1t ,

t

q
(d0+d1s) = m2+v2+b2t ,

then

t

q
(csum0 + csum1 s) =[m1 + m2]t +v1 + v2 + bsumt ,

as long as ‖v1 + v2‖∞ < 1/2. Thus, ⊕ passes through the

encryption to the underlying plaintexts, and results in an

encryption of the sum [m1+m2]t as long as ‖v1+v2‖∞ <

1/2.

It is similarly possible to define an operation ⊗ between

two ciphertexts, that results in a ciphertext decrypting to

[m1m2]t , as long as ‖v1‖∞ and ‖v2‖∞ are small enough.

Since⊗ is muchmore difficult to describe than⊕, we refer

the reader to [6, 11] for details.

Noise

In the decryption formulas presented above the ratio-

nal coefficient polynomials v are assumed to have small

enough infinity-norm, namely less than 1/2. This is clearly

necessary, as otherwise the ciphertext will result in the

incorrect plaintext being recovered. Given a ciphertext

ct = (c0, c1) encrypting a plaintextm, let v ∈ Q[x] /(xn+1)

such that

t

q
(c0 + c1s) = m + v + bt .

The polynomial v is called the noise polynomial, ‖v‖∞ is

called the noise, and the ciphertext decrypts correctly as

long as the noise is less than 1/2 [11].

When operations such as addition and multiplication

are applied to encrypted data, the noise in the result may

be larger than the noise in the inputs; this is referred

to as noise growth. This noise growth is very small in

homomorphic additions, but substantially larger in homo-

morphic multiplications. Thus, given a specific set of

encryption parameters (n, q, t,χ), one can only evaluate

computations of a bounded size (in practice, of bounded

multiplicative depth), until the noise grows too large mak-

ing the ciphertext impossible to decrypt even with the

correct secret key.

To mitigate the problem of high noise growth rates

Craig Gentry [4] described a clever approach which is

commonly known as bootstrapping. In this process, an

encrypted version of the secret key is used to decrypt the

message using homomorphic operations. Therefore, the

result of this process is similar to a freshly encrypted mes-

sage and hence it has only a small amount of noise. This

bootstrapping process is considered to be a very costly

operation in most schemes [10, 12, 13], but not in all

[14, 15].

Batching

The FV scheme (and many other homomorphic encryp-

tion schemes) inherently support SIMD operations. This

capability is commonly called “batching” in literature, and

is explained in detail e.g. in [11] in the context of the SEAL

library that we use.

The idea is that by choosing the plaintext modulus t

appropriately, the plaintext space Rt is isomorphic as a

ring to the k-fold product Ftn/k × . . . × Ftn/k , for some

k | n. In other words, operations in Rt translate automat-

ically into k concurrent operations in the extension field

Ftn/k , for example allowing us to perform k-fold SIMD

operations on integers up to t by using only the subfield

Zt ⊂ Ftn/k .

Chen et al. BMCMedical Genomics 2018, 11(Suppl 4):81 Page 6 of 55

Using batching efficiently can be non-trivial, and typi-

cally requires one to carefully design the computation to

maximize the benefit.

Logistic regression

Logistic Regression is a common tool used in machine

learning to build a model that can discriminate between

samples from two or more classes. It arises from the need

to model the posterior probabilities of K classes via linear

functions of input x ∈ RD. In this work we consider two-

class classification, so K = 2. To simplify the notation, we

assume the input vector x always has 1 as the first element,

which accounts for the bias term in the linear function.

Then the logistic regression model has the form

log

[
Pr(Y = 0 | X = x)

Pr(Y = 1 | X = x)

]
= wTx ,

where Y denotes the class, and w ∈ RD is the weight vec-

tor that we need to learn in model training. The above

model is specified in terms of log-odds ratio, reflecting the

constraint that the probabilities sum to one. An alternative

and more common form is to represent it as the following

posterior probability for class 0:

Pr(Y = 0 | X = x) = 1

1 + e−wTx
= σ(wTx) ,

where σ(t) = 1/(1 + e−t) is known as the sigmoid

function. Next we present two algorithms for learning w.

Training algorithms

Our goal is to evaluate a training algorithm for a logistic

regression model on homomorphically encrypted data. In

this section we present the two training algorithms that

we evaluated for this purpose.

Gradient descent

The standard method for training logistic regression is

gradient descent. To fix notation, let D be the number of

(binary) features, andN the number of training records of

the form (X, y), where X ∈ RN×D, y ∈ RN . In this case the

weight vector w is in RD.

Gradient descent proceeds in iterations, where in each

iteration the weight vector w is updated as

w ← w − α(σ(Xw) − y)XT ,

where σ is the sigmoid function, and α > 0 a learning rate

parameter. We formalize the gradient descent algorithm

below.

Algorithm 1 Gradient Descent for Logistic Regression

Require: X ∈ RN×D, y ∈ RN , α > 0

Ensure: w ∈ RD

1: Initialize weight vector: w ← 0

2: for iter in [0,T) do

3: for i in [0,N) do

4: Vi ← 〈�Xi,w〉
5: Ui ← σ(Vi)

6: end for

7: for j in range [0,D) do

8: gj ← ∑
i(Ui − yi)Xij

9: wj ← wj − αgj
10: end for

11: end for

1-bit gradient descent

A direct application of Algorithm 1 suffers from the prob-

lem of quickly growing plaintext size—a problem which

was briefly mentioned in “Summary of results”. Namely,

the parameter t in the homomorphic encryption scheme

is typically quite small, causing integer plaintext data to

quickly become reduced modulo t. This is similar to the

problem using a too small data type in normal program-

ming, except that in this case it is difficult to switch to a

larger one. For this reason, we need to be able to control

the growth of our encrypted numbers either by scaling

them down, and/or by designing our computation in a way

that minimizes the increase in the size of the numbers.

For the first approach, we need a homomorphic floor

function, which we discuss in “Fixed point arithmetic over

plaintext data”. For the second approach, we note that

multiplying by just a sign never increases the size of a

number, so replacing one multiplicand by its sign allows

the plaintext size to remain much smaller. Unfortunately,

homomorphic sign extraction is very difficult, but turns

out to be still faster than the homomorphic floor function.

For this reason, we opt to use sign information instead

of evaluating floor function to make our homomorphic

training faster. By using the 1-Bit Gradient Descent (1-Bit

GD) algorithm, which was invented to compress the gra-

dient in order to reduce communication during training

[16], our homomorphic training becomes much faster.

In the 1-Bit GD method, in each iteration we update

each weight by a learning rate multiplied by the sign of

the corresponding coordinate of the current gradient, plus

a residue term. The unused part of the gradient is then

added back into the residue. We also introduce a new

parameter β , which reduces the magnitude of the accu-

mulated residues in the past. Our modified 1-Bit GD is

presented formally in Algorithm 2.

Chen et al. BMCMedical Genomics 2018, 11(Suppl 4):81 Page 7 of 55

Algorithm 2 Modified 1-Bit Gradient Descent for Logis-

tic Regression

Require: X ∈ RN×D, y ∈ RN , α > 0, β > 0

Ensure: w ∈ RD

1: Initialize weight vector w ← 0; Initialize residue

vector r ← 0.

2: for iter in [0,T) do

3: for i in [0,N) do

4: Vi ← 〈�Xi,w〉
5: Ui ← σ(Vi)

6: end for

7: for j in range [0,D) do

8: gj ← ∑
i(Ui − yi)Xij

9: rj ← β · rj + gj
10: (Extract sign) sign = 1 ifrj > 0 else − 1

11: wj ← wj − α · sign
12: rj ← rj − α · sign
13: end for

14: end for

The 1-Bit GD approach can be done easily also in

the stochastic setting, where either individual records or

mini-batches are processed at a time. In this work, for

the sake of simplicity, we will only focus on full gradient

descent.

Fixed point arithmetic

Fixed point arithmetic over plaintext data

Logistic Regression is naturally performed over floating

point numbers. However, in the FV scheme there is no

easy way to encrypt numbers of this type directly, so they

need to be first scaled to integers of some fixed precision.

In fixed point number representation we choose an inte-

ger base p (in this work we will fix p to be an odd prime),

the number of integral digits l, and the number of frac-

tional digits f. Then a fixed point number is a rational

number x of the form

x =
l−1∑

i=−f

xip
i ,

with xi ∈[−(p − 1)/2, . . . , (p − 1)/2]∩Z. That is, every
fixed point number has l integral digits and f fractional

digits in base p. We need f extra digits to hold an interme-

diate result from multiplication, hence we let r = l + 2f

and set the modulus to be pr (see also [17]). To encode a

number, we multiply by pf and round to an integer, i.e. the

representation of x is x̃ = pf x. See

To add/subtract two fixed numbers, we simply

add/subtract their representations modulo pr . To multiply

two fixed point numbers x and y, we compute

z̃ =
⌊
x̃ỹ (mod pr)

pf

⌋
.

Note that although standard fixed point arithmetic

requires us to perform scaling after every multipli-

cation, it is not strictly needed. For example, if we

are going to compute
∑n

i=1 xiyi, then it is possible to

not scale after each product, but only scale after the

sum. This may not save a lot of work over plaintext,

since scaling is fast; however, since scaling is expen-

sive over encrypted data, this technique is useful in our

setting.

Bootstrapping

Even for relatively small examples, Algorithm 1 and Algo-

rithm 2 result in (multiplicatively) high-depth arithmetic

circuits; the depth is equal to the number of itera-

tions times the depth of a single iterative step. Recalling

the noise growth problem discussed above in “Noise”, a

straightforward implementation will have to use boot-

strapping regularly to maintain the correctness of the final

result. Since bootstrapping is a costly operation, we intro-

duce below in “Combining bootstrapping with scaling” a

modification to this step that does both the noise clean-

ing and also scaling, which is used to prevent plaintext size

expansion.

We modified the bootstrapping algorithm from [13],

where the crucial part of the bootstrapping procedure is

a homomorphic digit removal process. Namely, suppose

the plaintext modulus of our homomorphic encryption

scheme is a prime power t = pr , and the plaintext is (for

simplicity) just an integer m ∈ Zpr . Then as an inter-

mediate result in bootstrapping we have an encryption

of M = pe−rm + v, where e > r, pe is an intermedi-

ate plaintext modulus, and |v| < pr/2 is the noise to be

removed. If we have a polynomial which removes the low-

est e − r digits in an integer modulo pe, then applying

it to M will give us pe−rm, which is a scalar multiple of

the original message. In the FV scheme the scalar mul-

tiple can be easily removed when the plaintext modulus

is divided by the scalar value. So the bootstrapping pro-

cedure finishes by removing the scalar value. Below in

“Combining bootstrapping with scaling” we apply these

ideas to achieve bootstrapping together with scaling down

of encrypted numbers, resulting in encrypted fixed point

arithmetic.

Combining bootstrappingwith scaling

In order to perform the scaling functionality over

encrypted data, we need to express the functionality as a

polynomial. This is possible, however the polynomial will

often have large degree, forcing us to perform bootstrap-

ping to refresh the noise after each scaling over encrypted

data. It turns out that these two steps can be combined for

improved performance.

Suppose we have an encryption of a message m mod-

ulo pr , and we wish to obtain an encryption of ⌊m/pi⌋.

Chen et al. BMCMedical Genomics 2018, 11(Suppl 4):81 Page 8 of 55

First, we can apply a free division operation in FV (see

e.g. [17]) to obtain an encryption of ⌊m/pi⌋ + pr−1α with

full noise, where α represents some “upper garbage”. Then

we perform modulus-switching followed by a dot prod-

uct with the bootstrapping key (see e.g. ([13], Section 4.1))

to obtain a low-noise encryption of v + pe−r⌊m/pi⌋ +
pe−iα (mod pe), with |v| ≤ pe−r/2. Then we follow the

bootstrapping algorithm and homomorphically evaluate a

polynomial of degree epe−r to remove the v term. Finally,

we apply one extra step to remove the α term. This

can be done in a similar fashion, by evaluating a digit

removal polynomial of degree rpr−i. As a result, we obtain

an encryption of ⌊m/pi⌋. We will use FHE.bscale(·, i) to

denote the above bootstrapping plus scaling down by i

digits in base p. For convenience of notation, we set the

default value of i to be 1. The total degree of the procedure

is epe−r · rpr−i = erpe−i.

Results

In this section we describe experiments with the tech-

niques described in previous sections.

Dataset description

We used two datasets to test the performance of our

homomorphic machine learning algorithm.

iDASH 2017 competition dataset

The dataset provided by the iDASH competition organiz-

ers consists of 1579 training samples, where each sample

contains a binary phenotype (cancer/no cancer), and 108

binary genotypes. In the evaluation of the solution, the

organizers selected 18 genotypes to use as the features and

therefore, in the experiments reported below only these

18 features were used.

MNIST dataset

The MNIST dataset [18] consists of hand written digits,

stored as images, and it is commonly used as benchmark

for machine learning systems. Each image in the original

dataset is a 28 × 28 pixel map, where each pixel is rep-

resented in a 256 level gray-scale code. We first selected

1500 images containing handwritten digits ‘3’ and ‘8’ to

obtain a binary classification problem. Then we com-

pressed each image into 196 features with each feature an

integer in the range [0, 8), by dividing each pixel value

by 32 and performing average pooling with window of

size 2 × 2.

Parameter selection

Selecting the right parameters can make a big difference

in performance in terms of speed, space, and accuracy.

Here we described the parameter tuning performed in the

experiments.

FHE parameters

The FHE parameters need to be chosen carefully in order

to achieve correctness, security, and performance. There

are three crucial FHE parameters to be chosen: the ring

dimension n, the ciphertext modulus q and the plaintext

modulus t.

Smaller n and q imply better speed, while in order

to support bootstrapping and scaling operations n

and q need to be sufficiently large. In our experi-

ments we chose n = 215 and q ≈ 21020, as

these parameters are just large enough for bootstrap-

ping and scaling, yet as small as possible for optimal

performance. More precisely, we chose q as a prod-

uct of 17 primes—each 60 bits in size—as required by

SEAL. These parameters guarantee around 100 bits of

security.

The value of t determines the precision of our

computation: the larger t is, the more correct digits we

will expect to see in the result. On the other hand, if t is

too large, bootstrapping and scaling cannot be supported

unless we also increase the value of q. We chose to use t =
pr = 1273 to balance between precision and performance.

This configuration supports 64 slots per ciphertext (recall

“Batching”, and see “Data batching method” below).

ML parameters

We use two training algorithms. The first one uses a lin-

ear approximation of the sigmoid function together with

1-bit GD (Algorithm 2), while the second algorithm uses a

degree 3 approximation of the sigmoid function and nor-

mal gradient descent (Algorithm 1). Note that we chose

to use a linear approximation of the sigmoid function in

the 1-bit GD method, because there is no need to use

higher degree approximation due to only the sign being

considered. For the iDASH dataset we let the training

algorithm perform 36 iterations over the training data,

while for theMNIST dataset we perform 10 iterations. For

the iDASH dataset, the learning parameters were set to

α = 0.1 and β = 0.2 for Algorithm 2, and α = 0.0002

for Algorithm 1. For the MNIST data set, we used α =
0.01 and β = 0.2 for Algorithm 2, and α = 10−5 for

Algorithm 1.

Approximating the sigmoid function

There are several methods to find an approximate

polynomial for a given function. The best known method

is probably Taylor polynomials, but it minimizes the error

only in the vicinity of one point. For this reason, we

instead use an approach similar to [19], and use a so-called

minimax approximation.

Let Pd denote the set of polynomials of degree at most d,

and for a continuous function f ∈ C[a, b] denote ‖f ‖ =
max{|f (x)| : x ∈[a, b] }.

Chen et al. BMCMedical Genomics 2018, 11(Suppl 4):81 Page 9 of 55

Definition 1 p ∈ Pd is a d-th minimax approximation

of f ∈ C[a, b] if

‖f − p‖ = inf{‖f − q‖ : q ∈ Pd}.

For more details, we refer the reader to [20].

A minimax approximation algorithm (or uniform

approximation) is a method to find the polynomial p in

the above definition. The Remez algorithm [21] is an iter-

ative minimax approximation algorithm, and yields the

following results for the interval [−5, 5] and degrees 1

and 3:

σ1(x) = 0.125x+0.5 , σ3(x) = −0.004x3+0.197x+0.5 .

These functions are illustrated in Fig. 1 and Fig. 2, respectively.

Data batching method

In order to efficiently use the batching capabilities in

SEAL (recall “Batching”), we encode the training dataset

“vertically”, i.e. each ciphertext will store one single geno-

type/phenotype from k samples, where k is the number

of slots in one plaintext. For example, the FHE parame-

ters presented above in “Parameter selection” yield k = 64

slots. On the other hand, we will need D plaintexts to rep-

resent the weights, where within each plaintext vector the

weight is repeatedly encoded k times. As a result, the data

matrix X is encoded into a ⌈N/k⌉ × D matrix X of plain-

texts, and the vector of labels y is encoded into a vector Y

of plaintexts. These plaintexts are then encrypted and sent

to the untrusted party (e.g. cloud service), which performs

the homomorphic training computation, resulting in an

encrypted logistic regression model. The gradient descent

training algorithm over encrypted data (Algorithm 3) is

presented below.

Fig. 1 Linear minimax approximate for sigmoid: f (x) = 0.5 + 0.125x

Algorithm 3 Gradient Descent over encrypted data using

batching

Require: X ,Y

Ensure: W

InitializeW = (Enc(0), . . . , Enc(0))

for iter in range [1,T] do

for i in range [0,N ′) do
V [i] := FHE.innerproduct(X [i] , �W)

U[i]= FHE.evalPoly*(V [i] , σ3)

U ′[i]= FHE.sub(Y[i] ,U[i])

end for

for j in range [0,D) do

�[j]= FHE.innerproduct(U ′,X [·] [j])
�[j]= FHE.sumslots(�[j])

W[j] := FHE.sum(W[j] , FHE.plainmult*(α,�[j]))

end for

end for

In Algorithm 3, we put a ‘*’ after the evalPoly and

plainmult functions to indicate that the corresponding

functions are combined with the bootstrapping/scaling

function bscale in order to emulate fixed point arithmetic.

More details about evaluating σ3 and multiplying α is in

‘incorporating scaling’ section below.

The only other place that requires further explanation is

the FHE.sumslots function. The input to this function is a

batched encryption of a vector v = (v0, v1, . . . , vk−1), and

the output is an encryption of v′ = (
∑

i vi, . . . ,
∑

i vi). In

general, this function can be implemented based on the

slot rotation functionality. More precisely, our choice of

FHE parameters guarantees that we can cyclically rotate

the values in an encrypted vector. Note that the number of

slots k is a divisor of the FHE parameter n, hence is always

a power of 2. Let k = 2ℓ, and let FHE.rotate(c,j) denote the

operation of cyclic rotation to the right by j slots, i.e., it

Fig. 2 Degree 3 minimax approximate for sigmoid:
f (x) = 0.5 + 0.197x − 0.004x3

Chen et al. BMCMedical Genomics 2018, 11(Suppl 4):81 Page 10 of 55

sends an encryption of (v0, . . . , vk−1) to an encryption of

(vk−1, v0, . . . , vk−2). Then the FHE.sumslots function is as

presented in Algorithm 4.

Algorithm 4 FHE.sumslots function

Require: c = Enc(v)

Ensure: an encryption of (
∑

i vi, . . . ,
∑

i vi).

1: c′ = c

2: for i in range [0, ℓ) do

3: c′ := FHE.add(c′, FHE.rotate(c′, 2i)).
4: end for

5: return c′

Lemma 1 Algorithm 4 is correct, i.e. the output c′ is an
encryption of �v = (

∑
i vi, . . . ,

∑
i vi).

Proof Since k = 2ℓ, we have that the final result c′ is
equivalent to

k−1∑

i=0

FHE.rotate(c, i) .

The claim now follows, since the sum of all rotations of

the vector v is exactly �v.

Optimization techniques

We introduce an optimization to further accelerate our

implementation. In the last step of Algorithm 3, the

FHE.plainmult operations (see [11]) needs to be per-

formed D times. Although these operations themselves

are fast, the accompanied homomorphic scaling is expen-

sive. Therefore, we employ an optimization to reduce the

number of multiplications from D to D/k. Since �[j]

is an encryption of a constant vector, we can combine

the content of k of those into one ciphertext, encrypt-

ing (δ0, . . . , δk−1). Then multiplying this ciphertext by

α would multiply the values in all slots, resulting in

an encryption of (αδ0, . . . ,αδk−1). After the multiplica-

tion, we can “expand” the result back to k ciphertexts,

each encrypting a constant vector of αδi. This expansion

step can be implemented via FHE.sumslots. The precise

algorithms FHE.combine and FHE.expand are introduced

below.

Algorithm 5 FHE.combine

Require: A vector c of ciphertexts, where c[i]=
Enc((δi, . . . , δi)) for 0 ≤ i < k

Ensure: An encryption of (δ0, . . . , δk−1).

1: return FHE.innerproduct(c, e);

Note: e[i] denotes a plaintext that is the batch encod-

ing of the i-th unit vector.

Algorithm 6 FHE.expand

Require: Ciphertext c which is an encryption of

(v0, . . . , vk−1).

Ensure: A vector C of k ciphertexts, where C[i] is an

encryption of (vi, vi, . . . , vi).

1: for i in range [0, ℓ) do

2: tmp = FHE.plainmult(c, e[i]);

3: C[i] = FHE.sumslots(tmp) ;

4: end for

5: return C

Incorporating scaling

Some attention to details is needed since the arithmetic

system uses fixed point representation.

Evaluating σ3

Recall that σ3(x) = 0.5+ 0.197x− 0.004x3, and the repre-

sentation uses fixed point arithmetic with p = 127, l = 1,

f = 1. We will scale 0.5 to ⌊0.5p2⌋ = 8064 with a scal-

ing factor of 2. The second coefficient 0.197 will be scaled

to ⌊0.197p⌋ = 25. For the coefficient 0.004 ≈ 0.0632,

we scale 0.063 to ⌊0.063p⌋ = 8. Then we can compute

σ3(x) over encrypted data in the following way (recall that

x̃ = ⌊xp⌋):
σ3(x) ≈ bscale(8064 + 25x̃ − bscale(bscale(8x̃)2) · x̃).

Multiplying by learning rate

In the last step of each iteration of the training algorithms,

the ciphertext is multiplied by the learning rate α. The

challenge is that the learning rate we use (α = 0.002) is so

small that it can not be represented by the fixed point rep-

resentation we use. To see this, note that we have p = 127

and f = 1, so the smallest positive number that can be rep-

resented is 1/127 ≈ 0.008. To resolve this issue, we start

by writing α = (
√

α)2. Since
√
0.002 ≈ 0.0447, it can be

represented by our fixed point system, as [0.00447p]= 6.

Then we multiply the input by this value twice to obtain

the result. After each multiplication, bscale is used to put

the underlying number to correct scale. That is:

αx ≈ bscale(6 · bscale(6 · x̃)) .

Sign extraction in 1-Bit GD

In order to implement the 1-Bit GD training algorithm,

we need a function FHE.signExtract that homomorphically

extracts the sign in a fixed point number. Fortunately, this

function can be implemented using the bscale function as

a subroutine. Since FHE ciphertexts encrypt scaled inte-

gers rather than point numbers, it suffices to extract the

sign from an signed integer. Moreover, because the sign

of an integer is just the most significant digit in its base-p

expansion, we can extract it directly using bscale(·, r − 1).

Note that the total degree of this algorithm is erpe−r+1,

which is smaller than the usual fixed point scaling, which

Chen et al. BMCMedical Genomics 2018, 11(Suppl 4):81 Page 11 of 55

has degree erpe−f . This advantage motivates the use of

the 1-Bit GD algorithm in our work. The rest of the 1-Bit

GD algorithm over encrypted data is exactly the same as

Algorithm 3, hence we omit the details.

Performance results

Table 1 presents the performance results for the iDASH

dataset, and Table 2 presents the performance numbers

for a subset of the MNIST dataset containing only hand-

written digits ‘3’ and ‘8’. In both tables the performance of

models trained on plaintext data usingMATLAB are com-

pared to models produced by training on encrypted data.

We performed the experiments on an Intel(R) Xeon(R)

CPU E3-1280 v5 @ 3.70GHz and 16GB RAM. Our exper-

iments use only a single thread, although we note that

some of the costliest parts of the computation would be

easily parallelizable. We run the same training algorithms

on both encrypted and unencrypted data, and compare

the results. In order to evaluate the quality of the predic-

tive models obtained, we run a 10-fold cross validation on

both training sets, and compute the average Area Under

the Curve (AUC) values. Since the unencrypted compu-

tation in MATLAB is several orders of magnitude faster

than the encrypted computation (less than 1 second), we

decided not to compare the unencrypted and encrypted

running times side-by-side.

The algorithms, when operated on encrypted data,

were able to obtain almost identical accuracy compared

to training on unencrypted data. Obviously training on

encrypted data is much slower than training on unen-

crypted data, which can be acceptable in some use-cases,

and unacceptable in others; for the datasets that we used,

training can take between half a day to few days, although

substantial improvements in computational performance

can be expected by improving our implementation, and

extending it to use multiple threads.

Discussion

In this work we presented new ways to train Logistic

Regression over encrypted data, which allow an arbi-

trary number of iterations due to FHE bootstrapping, thus

making our models updatable once new data becomes

available without requiring decryption at any point; this

is different from other recently proposed approaches that

Table 1 Running 10-fold cross-validation on the iDASH dataset
with 1579 samples and 18 selected genotypes

Training method # iterations Avg. training
time

Avg.
AUC

Avg. AUC
(unencrypted)

GD + σ3 36 115.33 h 0.690 0.690

1-Bit GD + σ1 36 14.90 h 0.668 0.690

The first average AUC value is obtained from running the training algorithm using
SEAL on encrypted data. The second AUC value is obtained from running the same
algorithm on unencrypted data using MATLAB

Table 2 Running 10-fold cross-validation on compressed MNIST
dataset with 1500 samples and 196 features

Training method # iterations Avg. training
time

Avg.
AUC

Avg. AUC
(unencrypted)

GD + σ3 10 48.76 h 0.974 0.977

1-Bit GD + σ1 10 27.10 h 0.974 0.978

The first average AUC value is obtained from running the training algorithm using
SEAL on encrypted data. The second AUC value is obtained from running the same
algorithm on unencrypted data using MATLAB

limit the number of iterations in the training process. The

time per iteration scales linearly with the data size. Hence,

the total time for training N samples with D features per

sample using T iterative steps over encrypted data is a

linear function in the product N · D · T . Therefore, our
solutions scale gracefully with the size of the data. More-

over, many of the ideas presented here can be used for

training othermachine learningmodels, for example Neu-

ral Networks, by using polynomial approximations to the

activation functions.

Conclusions

There is a growing interest in applying machine learning

algorithm to private data, such as medical data, genomic

data, financial data, and more. For critical applications

homomorphic encryption can guarantee the highest level

of data privacy during computation, but it also comes with

a high cost, especially in terms of computation time.

Funding

The publication of this article is funded by Microsoft Corporation.

Availability of data andmaterials

The iDASH 2017 competition data was only available to registered
competition participants. The MNIST dataset is publicly available (see [18]).

About this Supplement

This article has been published as part of BMC Medical Genomics Volume 11
Supplement 4, 2018: Proceedings of the 6th iDASH Privacy and Security
Workshop 2017. The full contents of the supplement are available online at
https://bmcmedgenomics.biomedcentral.com/articles/supplements/volume-
11-supplement-4.

Authors’ contributions

All authors contributed equally to this work. All authors have read and
approved the manuscript.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details
1Microsoft Research, Redmond, WA USA. 2Seoul National University, Seoul,
Korea. 3École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
4Florida Atlantic University, Boca Raton, USA.

Published: 11 October 2018

https://bmcmedgenomics.biomedcentral.com/articles/supplements/volume-11-supplement-4
https://bmcmedgenomics.biomedcentral.com/articles/supplements/volume-11-supplement-4

Chen et al. BMCMedical Genomics 2018, 11(Suppl 4):81 Page 12 of 55

References

1. Graepel T, Lauter K, Naehrig M. ML confidential: Machine learning on
encrypted data. In: International Conference on Information Security and
Cryptology. Berlin: Springer; 2012. p. 1–21.

2. Mohassel P, Zhang Y. Secureml: A system for scalable privacy-preserving
machine learning. In: Security and Privacy (SP), 2017 IEEE Symposium on.
San Jose: IEEE; 2017. p. 19–38.

3. Rivest RL, Adleman L, Dertouzos ML. On data banks and privacy
homomorphisms. Found Secure Comput. 1978;4(11):169–80.

4. Gentry C. A fully homomorphic encryption scheme. Stanford: Stanford
University; 2009.

5. Lauter K, Naehrig M, Vaikuntanathan V. Can Homomorphic Encryption
Be Practical? In: Proceedings of the 3rd ACMWorkshop on Cloud
Computing Security Workshop. CCSW ’11. New York: ACM; 2011.
p. 113–124. Available from: http://doi.acm.org/10.1145/2046660.2046682.

6. Fan J, Vercauteren F. Somewhat Practical Fully Homomorphic Encryption.
IACR Cryptol ePrint Arch. 2012;2012:144. https://eprint.iacr.org/2012/144.
Accessed 9 Apr 2018.

7. Crawford JLH, Gentry C, Halevi S, Platt D, Shoup V. Doing Real Work with
FHE: The Case of Logistic Regression; 2018. https://eprint.iacr.org/2018/
202. Accessed 9 Apr 2018. Cryptology ePrint Archive, Report 2018/202.

8. Kim M, Song Y, Wang S, Xia Y. Jiang X; 2018. https://eprint.iacr.org/2018/
074. Accessed 9 Apr 2018. Cryptology ePrint Archive, Report 2018/074.

9. Cheon JH, Kim A, Kim M, Song Y. Homomorphic encryption for
arithmetic of approximate numbers. In: International Conference on the
Theory and Application of Cryptology and Information Security. Cham:
Springer; 2017. p. 409–437.

10. Cheon JH, Han K, Kim A, Kim M. Song Y; 2018. https://eprint.iacr.org/
2018/153. Accessed 9 Apr 2018. Cryptology ePrint Archive, Report
2018/153.

11. Chen H, Han K, Huang Z, Jalali A. Laine K; 2017.
12. Halevi S, Shoup V. Bootstrapping for HElib. In: Annual International

Conference on the Theory and Applications of Cryptographic
Techniques. Berlin: Springer; 2015. p. 641–670.

13. Chen H. Han K; 2018. https://eprint.iacr.org/2018/067. Accessed 9 Apr
2018. Cryptology ePrint Archive, Report 2018/067.

14. Ducas L, Micciancio D. FHEW: bootstrapping homomorphic encryption
in less than a second. In: Annual International Conference on the Theory
and Applications of Cryptographic Techniques. Berlin: Springer; 2015.
p. 617–640.

15. Chillotti I, Gama N, Georgieva M, Izabachene M. Faster fully
homomorphic encryption: Bootstrapping in less than 0.1 seconds. In:
International Conference on the Theory and Application of Cryptology
and Information Security. Berlin: Springer; 2016. p. 3–33.

16. Seide F, Fu H, Droppo J, Li G, Yu D. 1-bit stochastic gradient descent
and its application to data-parallel distributed training of speech DNNs.
In: Fifteenth Annual Conference of the International Speech
Communication Association. Singapore; 2014.

17. Arita S. Nakasato S; 2016. https://eprint.iacr.org/2016/402. Accessed 9 Apr
2018. Cryptology ePrint Archive, Report 2016/402.

18. LeCun Y, Cortes C. Burges, CJC; 1998. http://yann.lecun.com/exdb/
mnist/. Accessed 9 Apr 2018.

19. Cheon JH, Jeong J, Lee J, Lee K. Privacy-preserving computations of
predictive medical models with minimax approximation and
non-adjacent form. In: International Conference on Financial
Cryptography and Data Security. Cham: Springer; 2017. p. 53–74.

20. Fraser W. A survey of methods of computing minimax and near-minimax
polynomial approximations for functions of a single independent
variable. J ACM (JACM). 1965;12(3):295–314.

21. Remez EY. Sur le calcul effectif des polynomes d’approximation de
Tschebyscheff. CR Acad Sci Paris. 1934;199:337–40.

http://doi.acm.org/10.1145/2046660.2046682
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2018/202
https://eprint.iacr.org/2018/202
https://eprint.iacr.org/2018/074
https://eprint.iacr.org/2018/074
https://eprint.iacr.org/2018/153
https://eprint.iacr.org/2018/153
https://eprint.iacr.org/2018/067
https://eprint.iacr.org/2016/402
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

	Abstract
	Background
	Methods
	Results
	Conclusions
	Keywords

	Background
	Motivation
	Summary of results
	Related work

	Methods
	Fan-Vercauteren scheme
	Parameters and notation.
	Key generation
	Encryption.
	Decryption.
	Homomorphic computations
	Noise

	Batching
	Logistic regression
	Training algorithms
	Gradient descent
	1-bit gradient descent

	Fixed point arithmetic
	Fixed point arithmetic over plaintext data
	Bootstrapping
	Combining bootstrapping with scaling

	Results
	Dataset description
	iDASH 2017 competition dataset
	MNIST dataset

	Parameter selection
	FHE parameters
	ML parameters
	Approximating the sigmoid function

	Data batching method
	Optimization techniques
	Incorporating scaling
	Evaluating 3
	Multiplying by learning rate
	Sign extraction in 1-Bit GD

	Performance results

	Discussion
	Conclusions
	Funding
	Availability of data and materials
	About this Supplement
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References

