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ABSTRACT In this paper, we address the problem of weakly supervised object localization using region

weighting. For a weakly labelled image/video, the inside regions have different relevance to its semantic

label. We first over-segment an image/video to get super-pixel/voxel regions, and assign each region with

a latent weight to represent its support to the semantic label, then regress the weights to right values by

optimizing the classification according to the weak labels. We adopt logistic regression as our base model

due to its good performance in multiple-instance setting. The latent region weights are incorporated into the

objective function as an interpretation of region combination at feature-level. The weights and the model

parameters are optimized in an alternate manner. With the updates of the weights, the model is trained on the

semantic regions independently of the background, therefore the learned model is capable of distinguishing

object and non-object regions, and generating irregular-shape object localization. The method overcomes

the limitations of applying multiple-instance learning to visual object localization. Experimental results on

three datasets validates the effectiveness of the proposed method.

INDEX TERMS Region weighting, logistic regression, automatic annotation, irregular-shape object local-

ization.

I. INTRODUCTION

Object localization is one of the fundamental challenges in

computer vision. Bounding-box is the most common way to

locate objects. It is much simpler than pixel-wise mask. How-

ever, it would include much background when the objects

are non-boxy, which might mislead the training of object

detectors. Pixel labelling can tackle this problem, but is too

complicated. An alternative is segment annotation. One can

first over-segment images/videos using unsupervised meth-

ods to get regions roughly homogeneous in color and tex-

ture, then distinguish which regions belong to objects. Based

on the boundary detection of the over-segmentation algo-

rithms, pixel-wise localization can be realized through easier

segment classification. This intuition is first implemented

in supervised way [1], [2], and further extended for weak

supervision [3], [4].

In a weakly supervised scenario, labels only indicate

whether there are objects of interest inside the images/vidoes,

The associate editor coordinating the review of this article and approving
it for publication was K.C. Santosh.

yet do not provide any information for their locations. When

considering an image/video as a bag, and its inside segments

as instances, this segment annotation can be naturally posed

as a multiple-instance learning (MIL) problem [5]–[10].

However, MIL has two limitations when applied to this task:

1) Many MIL methods trigger the bag label with the single

maximum-score instance, leading to incomplete annotation;

2) MIL methods disregard the spatial relations of the seg-

ments, leading to inaccurate annotation.

We aim to overcome these limitations for segment annota-

tion in weakly labelled visual data. Considering a weak label

indicating what concept (object or action) is contained in an

image/video, it is only part of the image/video that accounts

for the semantic label, and the others are background clutters.

That means the regions in the image should have different

relevance to that label. We consider the relevance intensity

as latent weights, and learn them by optimizing the classifi-

cation in terms of the weak labels. Fig. 1 illustrates how we

address the limitations: 1) We consider that a combination

of the over-segmented regions rather than a single one trig-

gers the semantic label. 2) Spatial constraint is incorporated
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into the segment classification to improve the localization

performance.

Since logistic regression (LR) has been proved as a com-

petitive model in MIL [11], [12], we adopt it as our base

model for implementing region weighting. Our contributions

in this paper include the following aspects: 1) We derive

a region weighting formulation that has an interpretation

of region combination at feature-level, while the traditional

MILRs can be considered as the region combination at score-

level. 2) The region weights and the LR model parameter are

incorporated into a single objective function, and optimized

in an alternate manner. 3) The region weighting generates

irregular-shape object localization. By taking advantage of

deep local features, it performs comparably to state-of-the-

art methods.

The rest of this paper is organized as follows. We first

review the works related to our methodology in Section II.

Then give some preliminaries to our method in Section III.

The logistic regression region weighting is detailed in

Section IV. In Section V, we provide experimental results and

analysis, and finally conclude this paper with Section VI.

II. LITERATURE REVIEW

A. REGION WEIGHTING IN VISUAL LEARNING

Traditional image classification methods do not explicitly

handle background clutter, but rely on global image represen-

tations. Since image classification and localization are inter-

dependent in visual learning, region weighting is employed

to boost the joint performance. Single region selection can be

considered as an extreme version of region weighting. One

popular strategy is to treat the semantic region as a latent

sub-window among the image, and apply a region classifier

to localize it. Nguyen et al. [6] pick out the sub-window

with the maximal classification score as the semantic object

representing the image. While Siva et al. [7] choose the sub-

window that is most different from the negative images as

the semantic region. This idea can also be integrated into

the deep CNN framework by leveraging the deep feature

representations [13] in shallow methods, or by redesigning

the last hidden layer to derive an end-to-end method [9].

However, computing CNN features is time consuming so the

total number of proposal sub-windows is usually limited to

ten or at most several hundred [14]; and CNN features [15]

can only be computed on square regions of a certain size,

requiring the semantic region to be roughly rectangular. This

makes the single sub-window assumption do not usually hold

in practice.

Instead of relying on a single sub-window to trigger an

image label, Yakhnenko et al. [16] score an image using

a weighted sum of all grid segments. They associate each

grid with a latent weight that indicates whether it belongs

to the object of interest or the background, then optimize

the weights in linear SVM. Zhao et al. [17] extend the idea

to non-linear kernel SVM based on multiple kernel learn-

ing. Expectation loss SVM [18] is proposed to weight each

segment with a function of its positiveness, and is able

to learn segment classifiers with image labels. Recently,

Wei and Hoai [19] propose another way to overcome the

limitation of single sub-window selection. They assume that

the semantic region in an image is a weighted combination of

multiple overlapping sub-windows. Compared to [17], spatial

constraints on the weights are considered in our method to

ensure better results. Compared to [19], we impose weights

on a set of irregular-shape regions rather than sub-windows,

which has the potential to provide more precise irregular-

shape object localization.

Other related works include [20], [21]. Instead of local-

izing each object class independently from other classes,

Shi et al. [20] propose Bayesian joint topic modelling for

exploiting multiple object co-existence. It learns a single

background shared across classes and deals with large scale

data more efficiently than prior approaches. Kolesnikov and

Lampert [21] introduce a scheme for weakly supervised

semantic segmentation based on three guiding principles:

seeding, expansion and constrain-to-boundary.

B. DEEP LOCAL FEATURES

Image descriptors using the last fully-connected layer in a

convolutional neural network (CNN) have emerged as state-

of-the-art features for visual recognition [15]. Afterwards,

research attention shifted from the features extracted from the

fully-connected layer to the features from the convolutional

layers of a CNN, either for stronger global image descrip-

tion [22], [23] or for spatial information in object localiza-

tion [24], [25]. These features have a natural interpretation

as descriptors of local image regions, and can be extracted

with any size and shape from an image. Cimpoi et al. [22]

exploit Fisher vector constructed on deep local features to

produce global image descriptors for classification. Babenko

and Lempitsky [23] aggregate local deep features to pro-

duce compact global descriptors for image retrieval. Other

researchers [24], [25] concatenate multiple-layer outputs at

a pixel to construct hypercolumn for object localization.

Zhang et al. [26] use the five convolutional layers in front

of each pooling layer to extract useful information from the

low-level contrast to high-level semantics for each pixel, and

max-pool the hypercolumns to obtain the descriptors for each

super-pixel. Wei et al. [27] select the deep descriptors with

higher summed activation responses in an image, and con-

catenate aggregated feature maps with weights to construct

useful deep descriptors. These findings provide a chance for

us to take advantage of deep features in the region weighting.

C. LOGISTIC REGRESSION IN MULTIPLE-INSTANCE

SETTING

Logistic regression is a discriminative probabilistic classifier

that has achieved a great success in many fields, and has also

been extended to multiple-instance setting. By assuming that

all instances contribute equally or independently to a bag

label, Xu and Frank [28] predict the bag label by simply

averaging or maximizing individual instance probabilities.
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FIGURE 1. Illustration of logistic regression for region weighting. Given a weak label for an image, the regions in the image have different
relevance to the semantic label. We impose a latent weight variable on each region, and assume the weighted combination of the regions
triggers the semantic label. Spatial constraint is also considered to ensure the region smoothness.

Ray and Craven [11] generalize the Diverse Density [29]

framework to design a multiple-instance logistic regression

(MILR) algorithm. They first encode the multiple-instance

assumption through the softmax combining function. This

general setting allows any model that can learn class con-

ditional probabilities in a supervised setting to be used in

a multiple instance setting as well. Then adopt the logis-

tic regression model to estimate conditional probabilities

for each instance. The algorithm is competitive for text

classification and CBIR tasks with other MIL algorithms.

Settles et al. [12] extend the MILR to develop a multiple-

instance active learning method. The works [5], [30] model

the posterior probability for each instance using logistic sig-

moid function, and combine them using noisy-OR for repre-

senting the bag probability. Furthermore, Raykar et al. [30]

introduce a prior on the model parameter and develop a

Bayesian MILR algorithm. Chen et al. [31] incorporate

the LASSO approach into the proposed MILR and provide

an efficient computer algorithm for variable selection and

estimation.

III. PRELIMINARIES

A. LOGISTIC REGRESSION

We first review the supervised logistic regression for

binary classification. Given a collection of training data

{x1, x2, · · · , xN }, xi ∈ R
D×1 with labels ti ∈ {0, 1}. For an

instance xi, we express its posterior probability of belonging

to the positive class as a logistic sigmoid acting on a linear

function of its feature vector:

yi = σ (w⊤xi) =
1

1 + exp(−w⊤xi)
. (1)

The posterior probability of belonging to the negative class

is just 1 − yi. For the training data set with N instances,

the likelihood function can be written as:

p(t|w) =

N
∏

i=1

yi =

N
∏

i=1

y
ti
i (1 − yi)

1−ti , (2)

where t = (t1, t2, · · · , tN )
⊤.

For computational convenience, an error function can be

defined by taking the negative logarithm of the likelihood,

which gives the cross entropy error function in the form:

E(w) = − log p(t|w)

= −

N
∑

i=1

(

ti log(yi) + (1 − ti) log(1 − yi)
)

. (3)

Taking the gradient with respect to w, we obtain:

∇E(w) = −

N
∑

i=1

(ti − yi)xi. (4)

where we have used
∂yi

∂w
= yi(1 − yi)xi. (5)

Then the model parameter w can be estimated by iterative

gradient descent w(new) = w(old) − ρ∇E(w(old)), where ρ is

the learning rate that can be determined by line search, and

the label of a new instance x is decided by the larger posterior

probability.

B. QUADRATIC PROGRAMMING SOLUTION

Onemore efficient strategy tominimize the cross entropy loss

is Newton-Raphson scheme [32]. Inspired by [32], we rewrite

the Newton-Raphson update to derive a quadratic program-

ming solution, which will play a key role in our region

weighting optimization where there are constraints on the

parameter.

The Newton-Raphson scheme uses a local quadratic

approximation to the log likelihood function. It takes the form

w(new) = w(old) − H−1(w(old))∇E(w(old)), (6)

where H is the Hessian matrix that comprises the second

derivative of the error function E(w) (3) with respect to w.

∇E(w(old)) = −

N
∑

i=1

(ti − yi)xi, (7)

H (w(old)) = ∇∇E(w(old))

=

N
∑

i=1

xiyi(1 − yi)x
⊤
i

= X3X⊤, (8)
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where

X = (x1, x2, · · · , xN ), (9)

and

3 = diag
(

y1(1 − y1), y2(1 − y2), · · · , yN (1 − yN )
)

. (10)

Rewrite ∇E(w(old)) of (7) to have

∇E(w(old)) = −

N
∑

i=1

(ti − yi)xi

= −

N
∑

i=1

xiyi(1 − yi)
( (ti − yi)

yi(1 − yi)
+ x⊤

i w
(old) − x⊤

i w
(old)

)

= −X3(z − X⊤w(old)) (11)

where z is a N -dimensional column vector with elements

zi =
(ti − yi)

yi(1 − yi)
+ x⊤

i w
(old). (12)

Substituting (11) and (8) into (6), we have

w(new) = (X3X⊤)−1X3z. (13)

Observing the form of (13), it is easy to know w(new) is the

solution to the following weighted least squares problem:

min
w

‖(3
1
2X⊤)w − 3

1
2 z‖22 (14)

We can further rewrite it to a standard quadratic programming

problem

min
w

1

2
w⊤(X3X⊤)w + (−X3z)⊤w. (15)

This reformulation makes the optimization feasible when the

parameter is constrained, which we will see for our region

weighting in Section IV-D.

IV. LOGISTIC REGRESSION FOR REGION WEIGHTING

We now formulate the region weighting intuition in the logis-

tic regression framework, and propose our logistic regression

region weighting (LRRW) method. Without loss of gener-

ality, we consider a collection of images {I1, I2, · · · , IN }

with binary weak labels ti ∈ {0, 1} indicating whether

they contain an object of interest. Using unsupervised over-

segmentationmethods, each image Ii is converted into a set of

regions {Ri1,Ri2, · · · ,Rini}, where ni represents the number

of regions in the image, and xij ∈ R
D×1 is the feature vector

describing each region.

A. REGION WEIGHTING FORMULATION AND

INTERPRETATION

Since different regions possess different intensity of rele-

vance to the semantic label of the image, we impose a set

of weight variables si = (si1, si2 · · · , sini )
⊤ on each region in

Ii to reflect the intensity, where |si| = 1, sij ≥ 0, ∀j. Suppose

Xi ∈ R
D×ni is a matrix arranging the feature vectors as

Xi = (xi1, xi2, · · · , xini ). We formulate the region weighting

for image Ii as Xisi, which is actually a weighted sum of the

region feature vectors. Note that the mathematical result of

FIGURE 2. Illustration of region combination at feature-level. With
normalized histogram feature representation, the feature vector for a
larger image region is a weighted sum of feature vectors for its
sub-regions, which is the basis of our region weighting formulation.

the region combination 8isi is still a D-dimensional column

vector. si can be considered as hidden variables, and different

assignment of si means selecting different combination of the

regions to represent the semantic label of the image.

The region weighting has a theoretical interpretation of

region combination at feature-level (in contrast to the score-

level combination in traditional MILR). With the bag-of-

words histogram feature representation, the feature vector of

a larger region is the sum of the feature vectors for each sub-

region therein. Suppose we already have a visual vocabulary

{c1, c2, . . . , cD}, which are cluster centers obtained by apply-

ing clustering to densely sampled training feature-points.

Then for a region R
(0) containing M local feature-points,

a histogram h(0) = (h
(0)
1 , h

(0)
2 , . . . , h

(0)
D )⊤ can be obtained

as the feature representation, where {h
(0)
1 , h

(0)
2 , . . . , h

(0)
D } are

the numbers of the M feature-points mapped to each visual

word respectively, and obviously
∑D

i=1 h
(0)
i = M . If we

divide the region into K sub-regions {R(1),R(2), . . . ,R(K )}

as shown in Fig. 2, then all of the feature-points will scatter

into each region. By counting the number of feature-points

similarly in each sub-region, we also have the histograms

for each sub-region, h(k) = (h
(k)
1 , h

(k)
2 , . . . , h

(k)
D )⊤. Obvi-

ously h(0) =
∑K

k=1 h
(k), since the total numbers of the

feature-points mapped to each visual word never change,

h
(0)
j =

∑K
k=1 h

(k)
j , ∀j.

If we normalize a histogram representation h to get p by

pi =
hi

∑D
j=1 hj

, then for the original region p(0), p
(0)
i =

h
(0)
i

∑D
j=1 h

(0)
j

,

and for each sub-region p(k), p
(k)
i =

h
(k)
i

∑D
j=1 h

(k)
j

. The relation

between the normalized histograms of the original region

R
(0) and its sub-regions {R(1),R(2), . . . ,R(K )} is

p
(0)
i =

h
(0)
i

∑D
j=1 h

(0)
j

=

∑K
k=1 h

(k)
i

∑D
j=1 h

(0)
j

=

K
∑

k=1

∑D
j=1 h

(k)
j

∑D
j=1 h

(0)
j

p
(k)
i . (16)
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If we denote mk =
∑D

j=1 h
(k)
j representing the feature-points

falling into the k-th sub-region, and sk =
mk
M
, then (16) can

be rewritten as p
(0)
i =

∑K
k=1 skp

(k)
i . Consequently the relation

between features of the original regionR0 and its sub-regions

{R(1),R(2), . . . ,R(K )} can be expressed as:

p(0) = Ps, (17)

where P = (p(1), p(2), · · · , p(K )), and s = (s1, s2, · · · , sK )
⊤.

Therefore, with the normalized histogram feature representa-

tion, the feature for a region is the weighted sum of its features

for each sub-region, which coincides the assumption of our

region weighting.

Difference from MILR: The MILR methods mentioned in

the literature review use combining function to explicitly

encode the MI assumption for a bag. If the model finds an

instance likely to be positive, the output of the combining

function should find its corresponding bag likely to be posi-

tive as well. Concretely, theseMILRmethods first model con-

ditional probabilities for each instance using logistic sigmoid

of a linear function of the feature vector, then combine the

instance probabilities in a bag to represent the bag probability

by strategies such as softmax and noisy-OR. When applied to

segment-based object localization, these methods can be con-

sidered as region combination at score-level: They combine

the conditional probability scores of the regions in an image

using certain function to represent the image probability.

Nevertheless, as is shown above, our region weighting is a

region combination at feature-level. One of the benefits to do

so is that we can easily integrate spatial constraint for region

weights, which is important for object localization.

B. REGION WEIGHTING IN LOGISTIC REGRESSION

We integrate this region weighting formulation into the logis-

tic regression framework. Suppose {s1, s2, · · · , sN } are hid-

den variables that can select the semantic region out of the

background. We model the posterior probability of the object

belonging to the semantic category as a logistic sigmoid

function acting on a linear function of the region weighting:

yi = σ (w⊤Xisi) =
1

1 + exp(−w⊤Xisi)
. (18)

In conventional LR, the bias for the linear combination is

usually expressed implicitly for computational convenience.

One can extend the feature vector by add one element x0 = 1,

then w0 will play the role of a bias. In (18), this trick still

works because we restrict |si| = 1.

For an image/video set {I1, I2, · · · , IN } with weak labels

ti ∈ {0, 1}, the likelihood function in the form of region

weighting can be written as

p(t|w, s1, s2, · · · , sN ) =

N
∏

i=1

yi =

N
∏

i=1

y
ti
i (1 − yi)

1−ti . (19)

We then define an error function by taking the negative

logarithm of the likelihood, which gives the cross entropy

error function in the form:

E(w, s1, · · · , sN )

= − log p(t|w, s1, s2, · · · , sN )

= −

N
∑

i=1

(

ti log(yi) + (1 − ti) log(1 − yi)
)

. (20)

Note that (20) is different from (3) because yi here is a

function of w as well as si.

The objective function can be expressed as:

min
w,s1,··· ,sN

E(w, s1, · · · , sN )

s.t. |si| = 1, si ≥ 0, i = 1, · · · ,N . (21)

There are two types of unknown variables in (21), the weight-

ing parameter and the model parameter. Moreover, the two

types of unknown variables are coupled with each other and

not jointly convex w.r.t. the objective function, thus it is

difficult to get an analytical solution or optimize the two types

of unknown variables simultaneously. We adopt the block

coordinate descent approach to dealing with the coupled

optimization problem. First we fix the weighting parameter

si, i = 1, 2, · · · ,N , and update the model parameter w; Then

fix the model parameter, and update the weighting parameter.

Repeat the above two steps iteratively until the relative change

of the objective function between two successive iterations is

less than a predefined threshold.

C. UPDATE MODEL PARAMETER

When the weighting parameter si is fixed, the optimization

of (21) becomes

min
w

E(w). (22)

Taking the gradient with respect to w, we obtain:

∇E(w) = −

N
∑

i=1

(ti − yi)Xisi, (23)

where we have used

∂yi

∂w
= yi(1 − yi)Xisi. (24)

This provides an iterative gradient descent direction, and

we can use line search to determine the distance to move

along this direction.

w(new) = w(old) − ρ∇E(w(old)). (25)

D. UPDATE WEIGHTING PARAMETER

When the model parameter w is fixed, the objective function

becomes:

min
s1,··· ,sN

E(s1, · · · , sN )

s.t. |si| = 1, si ≥ 0, i = 1, · · · ,N . (26)
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and this optimization can be equivalently decomposed into

the following sub-optimization problems with

i = 1, 2, · · · ,N :

min
si

Ei(si) (27)

s.t. |si| = 1, si ≥ 0.

where

Ei(si) = −ti log(yi) − (1 − ti) log(1 − yi) (28)

is a single term corresponding to the i-th image in the sum-

mation of (20).

The optimization of (27) would be similar to the original

logistic regression since the symmetry of w and si in yi (18),

if there were not the constraints. However, the constraints

makes the optimization not straightforward. Following the

derivation in Section III-B, we apply the Newton-Raphson

method to the update of the weight parameter si, and trans-

form it to a standard quadratic programming.

Let us ignore the constraints in (27) for now. The Newton-

Raphson update that uses quadratic approximation for mini-

mizing a cross entropy error function of (28) should be

s
(new)
i = s

(old)
i − H−1(s

(old)
i )∇(s

(old)
i ). (29)

It is easy to compute the gradient with respect to si

∇Ei(s
(old)
i ) = −(ti − yi)X

⊤
i w, (30)

where we have used

∂yi

∂s
(old)
i

= yi(1 − yi)X
⊤
i w, (31)

and the Hessian matrix

H (s
(old)
i ) = ∇∇Ei(s

(old)
i ) = X⊤

i wyi(1 − yi)(X
⊤
i w)⊤. (32)

We now show how the Newton-Raphson update can be

replaced by solving a quadratic programming, for the purpose

of including the constraints into the optimization. Substitut-

ing (30) and (32) into (29), we have

s
(new)
i = s

(old)
i − H−1(s

(old)
i )∇(s

(old)
i )

=

(

(8iαi)
⊤(8iαi)

)−1
(8iαi)

⊤(λi), (33)

where we have denoted

8i = w⊤Xi, (34)

αi = (yi(1 − yi))
1
2 , (35)

λi = αi(8is
(old)
i +

1

yi
). (36)

Therefore, s
(new)
i is just the solution of the following least

squares:

min
si

‖8iαisi − λi‖
2
2 (37)

We only do region weighting for the images/videos that

indeed contain objects of interest. In other words, we update

si only when ti = 1, and keep si constant for ti = 0.

Based on this conclusion and reconsidering the constraints,

we can transform the optimization of (27) into an iterative

quadratic programming:

min
si

1

2
s⊤i (α

2
i 8

⊤
i 8i)si + (−αiλi8

⊤
i )

⊤si

s.t. |si| = 1, si ≥ 0, (38)

and it can be solved with a typical optimization package.

E. SPATIAL CONSTRAINT

The above strategy determines the region weights to select the

best region combination that best corresponds to the semantic

label, from the feature viewpoint. In a visual learning task, the

region weights should be reconsidered from the viewpoint of

spatial relation. The semantic region in an image usually cor-

responds to an object, and an object must be a set of connected

regions. Therefore adjacent regions should be encouraged to

have similar weight values because they are more likely to

belong to an identical semantic category. To this end, we add

a regularization term into the si optimization (38) to achieve

spatial constraint.

We adopt the Laplacian prior term [26], [33], [34],

gi(si) = s⊤i Lisi, (39)

where Li denotes the Laplacian matrix for the i-th

image/video, and is computed as follows. We first compute

the adjacency matrix Ai for the image/video by

(Ai)jk =

{

exp (−
‖xij−xik‖

2
2

2σ
), ifRijRik adjacent;

0, otherwise.
(40)

σ is set to the mean squared Euclidean distance between

instances in our experiments. Then the diagonal degree

matrix is computed by summing up the columns of Ai

(Ei)jj =

ni
∑

k=1

(Ai)kj. (41)

Then the Laplacian matrix is computed as

Li = Ei − Ai. (42)

The regularization term is included into the objective func-

tion of (38) to obtain:

min
si

1

2
s⊤i (α

2
i 8

⊤
i 8i + γLi)si + (−αiλi8

⊤
i )

⊤si

s.t. |si| = 1, si ≥ 0, (43)

where γ is the hyper-parameter to control the relevant impor-

tance of the spatial constraint. We will show in the experi-

ments that this regularization term plays an important role in

the region weighting.
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Algorithm 1 LRRW

Input: A set of images/videos {I1, I2, · · · , IN } with

binary labels ti ∈ {0, 1}; The hyper-parameters γ ;

Output: Region weights {s1, s2, · · · , sN }, and model

parameter w.

1 Over-segment each image/video into regions;

2 Initialize model parameter w by training conventional

LR using ambiguous instances;

3 for i=1:N do

4 Initialize si = 1
ni
1;

5 end

6 while not converged do

7 Update w using (25);

8 for i=1:N do

9 if ti==1 then

10 Solve the quadratic programming (43) to

obtain si;

11 end

12 end

13 end

14 Return {s1, s2, · · · , sN } and w.

F. ALGORITHM

Both w and {s1, s2, · · · , sN } need to be initialized to start the

iterative optimization. For w initialization, we train a conven-

tional LR using all the instances in the negative images/videos

and all the instances in the positive images/videos as nega-

tive and positive training data respectively. For the weight-

ing parameter, we initialize each region with equal values,

i.e., si = 1
ni
1. For positive images/videos that really contain

objects of interest, we update the region weights in every

iteration. For negative ones, we keep si = 1
ni
1 throughout the

process. The hyper-parameter γ is set to 1. The pseudo code

is described in Algorithm 1. The block-coordinate descent

algorithm is guaranteed to converge because each procedure

does not increase the objective value.

With the iterative updates, the weights will concentrate to

the semantic regions, and the LR model parameter w will

be learned from the semantic regions independently of the

background. As a result it is able to distinguish object regions

and non-object regions. Consequently we use it to locate the

objects in the positive images/videos by classifying regions

using the following function:

sgn(σ (w⊤x) − 0.5). (44)

The computational time is mainly spent on the two loops in

the alternate optimization, which therefore can approximate

the overall time complexity of the algorithm. In the inner

loop, we need to update weighting parameter for each positive

image/video. For the i-th image/video, the time complexity of

quadratic programming is O(n3i ) if Interior Point method is

used, hence the overall time for each inner loop is O(n+n
3),

where n+ is the number of positive images, n is the average

number of segments in positive images. In each outer loop,

we still need to do gradient descent besides the inner loop.

The time complexity of the gradient descent isO(ND). Let us

assume the average numbers of the inner loop and the outer

loop are nin and nout respectively, then the overall time com-

plexity can be approximated as O
(

nout
(

(ninn+n
3) + ND

)

)

.

V. EXPERIMENTS

Baselines.We compare our LRRWwith methods that realize

region detection: MILBoost [5], CRANE [3], SVM-RS [17],

OBoW [4], and weakly supervised object localization meth-

ods LCL [35], CC [36], WSDNN [37] and MFMIL [10].

We consider MILBoost [5] as the representative of applying

MILR to weakly supervised object detection. It uses logis-

tic sigmoid to model conditional probability for instances,

and combine them using noisy-OR for the bag probability.

CRANE [3] extends negativemining to annotate the segments

in weakly labelled videos, and is considered as a baseline for

videos. SVM-RS [17] proposes a latent SVM to realize region

selection in image classification, and OBoW [4] incorporates

a learning distribution into markov random field to realize

weakly supervised segment annotation. These two are con-

sidered as state-of-the-art region selection/detectionmethods.

Since our region weighting leading to weakly supervised

object localization (WSOL), we also compare with recently

proposed WSOL methods [10], [35]–[37].

Datasets. We evaluate the performances on Pitts-

burgh Car(PittCar), PASCAL VOC 2007 and YouTube-

Object(YTO) datasets. PittCar dataset is a relatively simple

dataset for car detection, which we used to visualize and

analysis the process of our LRRW. PittCar contains 400

images of street scenes. There are 200 images containing

cars, and the others do not. The appearance of the cars in the

images varies in shape, size, grayscale intensity and location.

In addition, the cars occupy only a small portion of the images

and may be partially occluded by other objects.

PASCAL VOC 2007 is a more convincing dataset, which

consists of 9963 images. There are 20 object categories, with

some images containing multiple objects. This dataset has

been previously split into training and testing sets, which

contained 5011 and 4952 images respectively. For irregular-

shape object localization, it is better to use pixel-wise ground

truth to calculate mean overlap for performance evalua-

tion [1]. In [1], the authors manually annotate the ‘cat’ and

‘dog’ classes to generate pixel-wise ground truth. In order to

evaluate our method on all of the classes, we use the sub-

set with pixel-wise ground truth for evaluating segmentation

tasks.

In order to evaluate the region weighting performance

for videos, we also consider the (YTO) dataset used in [3].

YTO contains ten classes of videos collected from YouTube.

Tang et al. [3] generated a groundtruthed set by manually

annotating the segments for 151 selected shots. The segment-

level ground truth is well suitable for the evaluation of

irregular-shape object localization.

Set up and implementations We first need unsuper-

vised over-segmentation methods to get exclusive regions
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FIGURE 3. Visualization of LRRW results. Row 1 shows the original images. Row 2 visualizes the over-segmentation. Rows 3 and 4 plot the region
weights and the predicted semantic regions without spatial constraints. Rows 5 and 6 plot the region weights and the predicted semantic regions with
spatial constraints.

for images [38] and videos [39]. For each image/frame,

we densely extract SIFT features [40] and apply clustering

to a set of randomly selected training descriptors to obtain

1000 visual words for each dataset. Note that we ignore

the temporal information in videos and process them sim-

ilarly to images just as in [3]. Then for each segment, a

1000-dimensional histogram vector can be generated based

on the vocabulary to describe the feature. Although the for-

mulation of region combination at feature-level is derived

under L1 normalized histogram representation, in practice,

we use L2 normalization that has been widely proven much

stronger in visual learning.

Results analysis. We visualize some results on PittCar

in Fig. 3. The first row shows the original images, and the sec-

ond row plots the over-segmentations, where different colors

represent different segments. We plot the learned weighting

parameters and the predicted labels for each region from

LRRW without regularization in rows 3 and 4, and that with

regularization in rows 5 and 6. The warmer color represents

the larger weight values. The regions with predicted positive

labels are stained with red.

It can be seen from the figure that the regularization term

of spatial constraints plays an important role in the LRRW.

Without the term, the weights tend to concentrate to sparse

parts of the cars such as wheels, and the semantic localization

tends to be incomplete. By contrast, if regularization is added,

the region weights will get a trade-off between the attributive

discrimination and the spatial smoothness, and the car local-

ization is much better.

We use (44) to obtain irregular-shape object localiza-

tion, and compare the performance with MILBoost [5],

CRANE [3], SVM-RS [17], OBoW [4] on PittCar, PASCAL

VOC 2007 and YTO datasets. The quantitative comparison is

shown in Table 1. Following [41]–[43], we use average preci-

sion (AP), which is actually the ratio of truly detected objects

to all the objects, to evaluate the performance. The LRRW

outperforms MILBoost, the representative of applying MILR

to object localization, because the MILRs learn the region

classification parameter through relating the image/video

probability to the regions’ using noisy-OR/softmax, but do

not really consider an object as a combination of regions.

CRANE scores the ambiguous regions by their difference to
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TABLE 1. Quantitative comparison with other region-based methods. For PittCar and YTO datasets, the performance is evaluated in terms of the mean
average precision. For PASCAL dataset, the performance is evaluated in terms of the mean overlap.

TABLE 2. Quantitative comparison for weakly supervised object localization.The performance is evaluated in terms of the mean average precision.

the definite negative ones, yet ignores the intra-class simi-

larity and structural information of object regions, leading to

severe misclassifications. LRRW is also better than SVM-RS

and OBoW, resulting from the spatial constraints.

Deep features. The basis of our method is BoW histogram

feature representation, however, it has been outperformed

by DCNN especially in the field of object localization [15].

Therefore we also take advantage of deep features in LRRW

to improve the performance, and compare it on PASCAL

VOC 2007 with recently proposed weakly supervised object

localization methods LCL [35], CC [36], WSDNN [37] and

MFMIL [10].

Inspired by the recently developed pixel-wise DCNN rep-

resentation [24], [25], we explore the deep feature from the

VGG-NET [14] pre-trained on the ImageNet. The evaluation

is executed on PASCAL VOC 2007 trainval set. All of the

data are used for fine-tuning the pre-trained VGGmodel with

bag-level labels.

For each image, we first resize it to 224 × 224 and feed

it into the VGG model. We extract the feature maps of the

convolutional layers in front of each pooling layer. Since the

convolution and pooling operations in CNN reduce the spatial

resolution, we up-sample each feature map to the scale of the

original image. Each up-sampled featuremap is considered as
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FIGURE 4. Visualization of some localization results using deep local features on PASCAL VOC 2007. The detected semantic regions are stained with red
color.

a feature representation for pixels from low level to high level.

We do L2 normalization for each feature map and concate-

nate them with coefficients to construct a 1472-dimensional

hyper-column for each pixel. Based on the findings in [27],

we empirically set the concatenation coefficients for each

layer to 1, 0.8, 0.5, 0.3 and 0.1, respectively. Then clustering

is applied to the training points to obtain 1000 words, and

therefore each segment can be represented by a 1000-bin

histogram. L2 normalization for histogram is used before

feeding to the classifier.

We directly compare the irregular-shape object localization

results with the bounding-box groundtruth. A localization is

considered correct if its overlap with the ground truth is larger

than 0.5. Then the percentage of the correctly detected objects

is counted.

The quantitative comparison is listed in Table 2, and

LRRW achieves comparable performance with state-of-the-

art methods on average. Some visual localization results are

shown in Fig. 4. The detected regions are stained with red

color. The irregular-shape object localization is dependent on

the over-segmentation quality. When the over-segmentation

retains the boundaries, the localization tends to be satisfac-

tory. Please note that our LRRW works in a binary classifi-

cation setting. It performs object localization for each class

separately as a one-versus-the-rest problem. When there are

multiple categories in an image, they would be detected by

different models. We visualize the single category localiza-

tion in Fig. 4, where the person and the car cannot be detected

simultaneously. One issue with LRRW is that it does not

distinguish object individuals when there are multiple objects

of identical category in one image, as shown in the last three

images in Fig. 4.

VI. CONCLUSION

In this paper, we focus on the visual regionweighting problem

when only weak labels are available. Since different visual

regions possess different relevance to the semantic label,

we propose to use weights to measure it. We also derive an

interpretation of region combination at feature-level when

BoW histogram feature representation used. LR is adopted

as the base model and the region weights are incorporated

into the cross entropy loss function. The region weights and

the model parameter are optimized using block-coordinate

descent algorithm. With the weights update, the LR model is

trained with the semantic regions independently of the back-

ground, and therefore is able to distinguish object and non-

object regions. The LRRW generates irregular-shape object

localization, and overcomes the limitations of applying MIL

to the task, resulting from its region combination assump-

tion and spatial constraints. When taking advantage of deep

local features, LRRW performs comparably to state-of-the-

art methods. In future work we will explore region weighting

in end-to-end deep neural networks.
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