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LOGLINEAR MODEL SELECTION AND HUMAN MOBILITY1
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Methods for selecting loglinear models were among Steve Fienberg’s re-
search interests since the start of his long and fruitful career. After we dwell
upon the string of papers focusing on loglinear models that can be partly
attributed to Steve’s contributions and influential ideas, we develop a new
algorithm for selecting graphical loglinear models that is suitable for analyz-
ing hyper-sparse contingency tables. We show how multi-way contingency
tables can be used to represent patterns of human mobility. We analyze a
dataset of geolocated tweets from South Africa that comprises 46 million lat-
itude/longitude locations of 476,601 Twitter users that is summarized as a
contingency table with 214 variables.

1. Introduction. Steve Fienberg was one of the founders of modern multi-
variate categorical data analysis. In two of the books he wrote early in his career
[Bishop, Fienberg and Holland (1975), Fienberg (1980)] he laid out key notation,
definitions, modeling techniques, and also open research directions for building
approaches for analyzing contingency tables. More than forty years ago, he ar-
gued that interactions of various orders among categorical variables are of great
interest—a fact that is now recognized in the literature from several fields (e.g.,
biology, social sciences, public health, transportation research). Hierarchical log-
linear models that represent log expected cell counts as sums of main effects of
variables cross-classified in a table, and interactions of two, three or more of these
variables are well suited to capture complex multivariate patterns of dependencies.
The selection of the interaction structure in hierarchical loglinear models was a
problem Steve discussed in considerable length in Bishop, Fienberg and Holland
[(1975), Chapter 9], Fienberg [(1980), Chapter 4], and also in several papers he
subsequently published later on in his career.

Fienberg (1970) laid out one of the first strategies for hierarchical loglinear
model determination which is based on partitioning the Pearson or the likelihood-
ratio goodness-of-fit statistics into several additive parts. Steve’s approach starts
with a hierarchy of models, and a significance level. Interactions are sequentially
added or deleted based on a series of tests that correspond with the partitioned
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components of the most complex models. The model search stops when the differ-
ence between consecutive models is significant. Steve properly recognized that a
good model building strategy must walk the fine line between goodness-of-fit and
parsimony, that is, including more interactions to obtain a better fit of the data, and
leaving fewer interactions in the model to create simpler representations of the as-
sociation structure. However, this early method for loglinear model selection can
compare only models that are nested (i.e., a simpler model is obtained from a more
complex one by deleting interactions), and can be successfully used for datasets
that involve no more than 5 variables.

Due in part to Steve’s early contributions and ideas, several approaches to se-
lection of loglinear models have started to emerge [Edwards and Havránek (1985),
Agresti (1990), Whittaker (1990)], but these methods turned out to be quite in-
effective even for contingency tables with 7 variables. One bottleneck is due to
the exponential increase in the number of possible hierarchical loglinear models:
while there are 7580 models with 5 variables, there are about 5.6 × 1022 models
with 8 variables [Dellaportas and Forster (1999)]. Moreover, contingency tables
that involve a large number of variables are sparse and their nonzero counts are
imbalanced. That is, almost all the counts in large tables are zero; most of their
positive counts are small (1, 2 or 3), and there are always a few counts that are
quite large. Sparsity and imbalance give rise to severe difficulties when perform-
ing model selection due to the invalidation of the asymptotic approximations to
the null distribution of the generalized likelihood-ratio test statistic, or the nonex-
istence of the maximum likelihood estimates [Fienberg and Rinaldo (2007, 2012)].

The Bayesian paradigm avoids some of these issues through the specification of
prior distributions for model parameters [Clyde and George (2004)]. Dellaportas
and Forster (1999) represents a key contribution that proposed a Markov chain
Monte Carlo (MCMC) algorithm to identify loglinear models with high poste-
rior probability. Other notable papers develop various stochastic search schemes
for discrete data [Madigan and Raftery (1994), Madigan and York (1995, 1997),
Tarantola (2004), Dellaportas and Tarantola (2005), Dobra and Massam (2010)].
These methods are known to work well for datasets with no more than 8 variables.
Another approach for Bayesian model selection in contingency tables is called
copula Gaussian graphical models [Dobra and Lenkoski (2011)], and it has suc-
cessfully been used to analyze a 16-dimensional table. More recently, ultra-sparse
high-dimensional contingency tables have been analyzed using probabilistic tensor
factorizations induced through a Dirichlet process (DP) mixture model of product
multinomial distributions [Dunson and Xing (2009), Canale and Dunson (2011),
Bhattacharya and Dunson (2012), Kunihama and Dunson (2013)]. These papers
present simulation studies and real-world data examples that involve up to 50 cat-
egorical variables.

Penalized likelihood methods for categorical data have focused on Markov ran-
dom fields for binary variables [Höfling and Tibshirani (2009), Ravikumar, Wain-
wright and Lafferty (2010)]. Wainwright and Jordan (2008) show that higher-
order interactions and variables with three or more categories can be modeled by
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introducing additional binary variables in the model specification. Such claims
have never been tested on known examples; from a theoretical perspective, there
is no proof that the extension of the work of Höfling and Tibshirani (2009) or
Ravikumar, Wainwright and Lafferty (2010) to general multi-way tables preserves
the hierarchical structure of loglinear parameters, or yields consistent parameter
and model estimates. The group lasso estimator for loglinear models [Nardi and
Rinaldo (2012)], despite having desirable theoretical properties, does not provide
guarantees that the hierarchical structure of interaction terms is preserved.

In this paper we introduce a Bayesian framework for loglinear model determi-
nation that is suitable for the analysis of a contingency table with 214 variables.
Our method determines graphical loglinear models that are a special type of hierar-
chical loglinear models [Whittaker (1990), Lauritzen (1996)]. Our key application
comes from human mobility. In this context, multivariate categorical data capture
the movement of individuals across multiple geographical areas irrespective of the
order in which these areas were visited, or of their spatial proximity. The goal of
our analysis will be to identify graphs that have vertices associated with each area
in the corresponding graphical loglinear models. The complete subgraphs of these
graphs define interaction terms of joint presence and absence patterns from two,
three or several areas. A missing edge between two areas means that, conditional
on presence or absence in the rest of the areas, the presence or absence of a random
individual in the first area is independent of the presence or absence of the same
individual in the second area.

The structure of the paper is as follows. In Section 2 we discuss the relevance
of massive unsolicited geolocated data for human mobility research, and in Sec-
tion 3 we explain the role of loglinear models in modeling human movement. In
Section 4 we describe our collection process of a geolocated Twitter dataset from
South Africa; these data are subsequently transformed in the 214 dimensional con-
tingency table we analyze in Section 7. Our modeling framework is presented in
Section 5. In Section 6 we provide information about the efficiency of our proposed
method in a simulation study. In Section 8 we give some concluding comments.

2. Research on human mobility. Human mobility, or movement over short
or long distances for short or long periods of time, is an important yet under-
studied phenomenon in the social and demographic sciences. Migration processes
represent a special case of human mobility that involve movements over longer
periods of time and over longer distances. The impact of migration on human
well-being, macro-social, political, and economic organization is a hot topic in the
current literature [Donato (1993), Durand et al. (1996), Harris and Todaro (1970),
Massey (1990), Massey et al. (1993, 2010), Massey and Espinosa (1997), Stark
and Bloom (1985), Stark and Taylor (1985), Taylor (1987), Todaro (1969), Todaro
and Maruszko (1987), VanWey (2005), Williams (2009)]. Similar advances in un-
derstanding human mobility have been hindered by difficulties in recording and
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measuring how humans move on a minute and detailed scale. A notable excep-
tion is the relatively rich literature focusing on urban mobility and transportation
studies. But much of this literature relies on travel surveys which are expensive
to collect, have small sample sizes and limited spatial and temporal scales, are
updated infrequently, and suffer from recall bias [Calabrese et al. (2013), Stopher
and Greaves (2007), Wolf, Oliveira and Thompson (2003)]. Until recently, studies
of mobility could not benefit from large scale data to widely address how differ-
entials in mobility influence other outcomes. This is quite problematic given that
mobility is likely a fundamental factor in behavior and macro-level social change,
with potential associations with key issues that face human societies today, includ-
ing spread of infectious diseases, responses to armed conflict and natural disasters,
health behaviors and outcomes, economic, social, and political well-being, and
migration.

Massive unsolicited geolocated data from mobile phones have recently become
available for the study of human mobility. Such data are continuously collected
by social media websites, search engines, and wireless-service providers [Becker
et al. (2013)]. Every time a person makes a voice call, sends a text message, goes
online or posts through a social media service from their mobile phone, a record
is generated with information about the time and day, duration and type of com-
munication, as well as positional information. This could be the exact latitude and
longitude of the mobile phone, or an identifier of the cellular tower that handled
the request. The approximate spatiotemporal trajectory of a mobile phone and its
user can be reconstructed by linking the records associated with that phone. This
exciting new type of data holds immense promise for studying human behavior
with precision and accuracy on a vast scale never before possible with surveys or
other data collection techniques [Tatem (2014), Dobra, Williams and Eagle (2015),
Williams et al. (2015)].

User communications and check-ins through social media platforms such as
Twitter generate publicly-available world-wide databases of human activity that
can be readily accessed online free of charge. Recent evidence suggests that Twit-
ter is a reliable source for examining human mobility patterns whose quality is
comparable at the ecological level with mobile phone call records [Jurdak et al.
(2015)]. The dual cultural role of Twitter as both a microblog and a social network
is evidenced by the Library of Congress’ decision to store a permanent, daily up-
dated archive of the site from its first tweet. Social media offers location sharing
services whose growing popularity generate digital traces that can be located in
space and time. Each day, Twitter records 7 million tweets with explicit geolo-
cation (latitude and longitude) information from mobile devices with GPS sen-
sors [Neubauer et al. (2015)] that represent about 1.6% of the total number of
tweets [Leetaru et al. (2013)]. The geographic information from geolocated tweets
(geotweets) reveals the locations of human settlements and transportation networks
[Leetaru et al. (2013)]. As the number of smartphone users continues to rise around
the world, especially in low income countries, the potential of geolocated social
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media data to improve our knowledge of human geography will constantly grow.
These are the data we collect and analyze in this paper—see Sections 4 and 7.

3. Modeling human mobility. The majority of the literature on human mo-
bility is concerned with Lèvy flights models and with Markov process models.
Let us assume that traveling patterns are observed with respect to p distinct areas
or locations {1,2, . . . , p}. Denote by Nij the number of individuals that traveled
from location i to location j in a given time interval, and by Pij the probability
that a random individual will travel to location j given that they are currently at
location i. A class of stochastic process models called Lèvy flights [Brockmann,
Hufnagel and Geisel (2006)] is one of the most popular ways of modeling hu-
man mobility, or to model its limits [Gonzalez, Hidalgo and Barabasi (2008)].
This model represents the probability of traveling a distance d as a power law:
P(d) ∝ d−(1+β), where β < 2 is a diffusion parameter. The Lèvy flight model
says that traveling a shorter distance is more likely than traveling longer dis-
tances, but long-distance travel can still occur even if it is rare. While this as-
sumption is reasonable, the model implies that Pij depends exclusively on dij —
the distance between locations i and j . This represents a serious limitation since it
implies that traveling to destinations that are located at the same distance from
an origin is equally likely. A more recent contribution [Guerzhoy and Hertz-
mann (2014)] builds on multiplicative factor models from social network analysis
[Hoff (2008)] to improve the Lèvy flights model which lacks the ability to quan-
tify the desirability of certain travel locations. They propose a model in which
Pij ∝ exp(f (dij , τ ) + uT

i vj ), where f (dij , τ ) is a function of distance dij , of
general parameter τ , and ui,vj ∈ R

q are location-specific latent factors. In par-
ticular, uT

i vj represents the affinity of locations i and j . Inference for this la-
tent factor model is performed based on its log-likelihood that is proportional to
−

∑
i,j Nij logPij .

Both the Lèvy flights models [Brockmann, Hufnagel and Geisel (2006)] and the
multiplicative latent factor models [Guerzhoy and Hertzmann (2014)] are based on
the crude assumption that human travel can be seen as a Markov process in which
the probability of traveling to a location depends only on the origin of the trip’s
segment, and does not depend on previous locations visited. However, individuals
are likely to travel repeatedly across multiple locations in a given period of time.
Markov process models break mobility trajectories that involve multiple locations
into pairs of consecutive locations, and, by doing so, lose key dependencies that are
induced by multiple locations being visited by the same individuals in the reference
time frame.

Loglinear models also have a long tradition in the human mobility literature,
specifically, to estimate flows of migration by origin, destination, age, sex, and
other categorical sociodemographic variables such as economic activity group
[Raymer, Abel and Smith (2007), Smith, Raymer and Giulietti (2010), Raymer
et al. (2013)]. Migration flows are represented as origin-destination migration flow
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tables. These are square tables in which the rows and columns correspond with
places, regions, aggregation of places or countries of interest. The (i, j) cell con-
tains a count of the number of individuals that left from region i and moved to
region j over the course of a specified time frame. The inclusion of other cate-
gorical variables lead to higher-dimensional migration flow tables. Modeling these
tables involves spatial interaction loglinear models of the form [Raymer, Abel and
Smith (2007)]

log(λijk) = log(αi) + log(βj ) + log(mijk),

where λijk is the expected migration flow from origin i to destination j for a com-
bination of levels k of one, two or more additional categorical variables, and mijk

is auxiliary information on the migration flow. The characteristics of the origin i

and the destination j are represented through the parameters αi and βj . However,
migration flow tables cannot capture the movement of those individuals that live
in more than three regions during the time frame of observation. An example in-
dividual that left from region 1 to move to region 2, then moved again to region
3, would contribute with a count of 1 to the (1,2) and (2,3) cells of the result-
ing migration flow table. But, the link between these two counts will be lost. For
this reason, loglinear models that estimate migration flows suffer from the same
shortcoming as Markov process models.

4. Description of the geolocated Twitter data. In this article we analyze a
large-scale database of geolocated tweets from South Africa. This sub-Saharan
country has been selected due to its high rates of internal and external migra-
tion caused by violent internal conflicts, war, political and economical instabil-
ity, poverty, racial discrimination. Statistics South Africa reports that, in October
2016, 3.5 million travelers passed through South Africa’s ports of entry. They were
made up of 925,796 South African residents and 2.6 million foreign travelers. In
this country, human mobility is known to be one of the major contributors to the
spread of infectious diseases (HIV, tuberculosis, malaria) [Tatem (2014), Dobra
et al. (2017)].

Our geotweets database was put together in a two step process. First, geolocated
tweets posted in South Africa between September 2011 and September 2016 have
been obtained directly from Twitter through GNIP, a reseller of social data owned
by Twitter, as part of a no-cost collaborative research agreement between the Uni-
versity of Washington and Twitter. A geotweet is classified to have been posted
inside a country based on a country code field derived by GNIP from the latitude
and longitude of the tweet. Second, we used the Twitter REST APIs [Twitter, Inc.
(2017)] to obtain geolocated tweets of the 476,601 users whose geotweets have
been captured in the first step. The REST APIs allow access to up to 3200 most
recent geotweets in each user’s timeline irrespective of the time when they have
been posted, or the location they have been posted from. For this purpose, we used
a customized version of the smappR R package [SMaPP (2017)]. The second data
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collection step took place continuously between January and December 2016. Dur-
ing this period, the most recent geotweets of each of the 476,601 users have been
retrieved at least twice per month.

The total number of unique geotweets acquired in both steps is 46,210,370.
The actual tweets have been discarded after we extracted tuples of the form <user

key, time of the posting, latitude, longitude, ...> from the
rich content of each tweet. To assure privacy protection, each Twitter user is identi-
fied by a randomly generated key which replaces their Twitter identifier. Additional
filtering steps were performed to eliminate any nonhuman activity (e.g., Twitter
bots) or any geotweets with coding errors. We emphasize that this database com-
prises only public information which can be viewed online, and replicated using
the APIs provided by Twitter or downloaded directly from a third party provider
of social media data such as GNIP.

For each of the 476,601 users, we estimated their country of residence as fol-
lows. We estimated the amount of time a user spent in a country they visited as the
cumulative periods of time between consecutive geotweets posted in that country.
A user’s country of residence was defined as the country with the largest amount of
time spent among all the countries this user tweeted from. Our method for identi-
fying the users’ country of residence has certain limitations. First, it is possible that
a user could choose to post geotweets only when they are away from their coun-
try of residence. Second, it is also possible that our two step process of collecting
geotweets might have missed relevant time intervals in which a user tweeted from
their country of residence. However, after carefully examining the spatial patterns
of geotweets with respect to the estimated countries of residence, we are confi-
dent that our method of determination worked fine for a large percentage of users.
Based on this procedure, we classified 41,049 (8.62%) of the 476,601 users as vis-
itors of South Africa, and the rest as locals, that is, individuals that most likely see
South Africa as their home country.

We subsequently mapped the geotweets into the 213 municipalities of South
Africa—see Figure 1. This allowed us to determine, for each user, the munici-
palities they were present and absent during the five years data collection time
frame. Here we assume that absence from a municipality is implied by the user
not posting any geotweets within its boundaries. These presence/absence patterns
together with the Local (yes/no) variable define a 214 dimensional binary contin-
gency table. This table is hyper-sparse: only 55,015 cells contain positive counts
(the base 10 logarithm of the percentage of nonzero counts is −132.813). Among
the 5015 nonzero counts, there are 46,175 (83.93%) counts of 1, 3439 (6.25%)
counts of 2, 1411 (2.56%) counts of 3, 747 (1.36%) counts of 4, and 476 (0.87%)
counts of 5. The top five largest counts are 58,929, 42,781, 28,731, 28,197, and
22,313, and represent the number of users that were locals to South Africa and
posted geotweets only from one of following five metropolitan municipalities: Jo-
hannesburg (JHB, Gauteng), Cape Town (CPT, Western Cape), Tshwane (TSH,
Gauteng), eThekwini (ETH, KwaZulu-Natal), and Ekurhuleni (EKU, Gauteng),



822 A. DOBRA AND R. MOHAMMADI

FIG. 1. Administrative divisions of South Africa: nine provinces divided into 52 districts (dashed

lines) that are further divided into 213 municipalities (dotted lines). The locations of the main cities

with more than 1 million inhabitants (Johannesburg, Pretoria, Soweto, Cape Town, Port Elizabeth

and Durban) are also shown.

respectively—see Figure 1. The sixth largest count is 9568, and represents the
number of users that were locals to South Africa, and posted geotweets from two
metropolitan municipalities, Johannesburg (JHB) and Ekurhuleni (EKU). The sev-
enth largest count count is 8464, and represents the number of users that were vis-
itors (non-locals) to South Africa, and posted geotweets only from Johannesburg
(JHB). In the next section we present our framework for determining the multi-
variate patterns of interactions among these 214 binary variables.

5. Bayesian structural learning in graphical loglinear models. An undi-
rected interaction graph G = (V ,E) (V = {1, . . . , p} are vertices, and E ⊂ V × V

are edges) is defined for a hierarchical loglinear model H that involves p categor-
ical variables X = (X1,X2, . . . ,Xp) as follows. A vertex i ∈ V of G corresponds
with variable Xi . An edge e = (i, j) appears in G if and only if the variables Xi

and Xj appear together in an interaction term of H. Model H is graphical if the
subsets of V that are the vertices of the complete subgraphs of G that are maxi-
mal with respect to inclusion, are also maximal interaction terms in H [Lauritzen
(1996)]. In this case, the absence of an edge between vertices i and j in G means
that Xi and Xj are conditional independent given the remaining variables XV \{i,j}.
For this reason, the interaction graph G of a graphical loglinear model is called a
conditional independence graph. This graph also has a predictive interpretation.
Denote by nbdG(i) = {j ∈ V : (i, j) ∈ E} the neighbors of vertex i in G. Then
Xi is conditionally independent of XV \(nbdG(i)∪{i}) given XnbdG(i) which implies
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that, given G, a mean squared optimal prediction of Xi can be made from the
neighboring variables XnbdG(i).

We focus on the structural learning problem [Jones et al. (2005), Drton and
Maathuis (2017)] which aims to estimate the structure of G (i.e., which edges are
present or absent in E) from the available data x = (x(1), . . . , x(n)). In a Bayesian
framework, we explore the posterior distribution of G conditional on the data x,
that is,

(5.1) P(G | x) =
P(G)P(x | G)

∑
G∈Gp

P(G)P(x | G)
,

where P(G) is a prior distribution on the space Gp of undirected graphs with p

vertices, and P(x | G) is the marginal likelihood of the data conditional on G [Jones
et al. (2005)]. Identifying the graphs with the largest posterior probability (5.1) is
a complex problem because 2(p

2), the number of undirected graphs in Gp , becomes
large very fast as p increases. For example, for p = 20, the number of undirected
graphs in Gp exceeds 1070. In this paper we introduce a computationally efficient
search algorithm that takes advantage of parallelizable local computations at the
vertex level that moves fast towards regions with high posterior probabilities (5.1).

5.1. Bayesian structural learning via birth–death processes. To efficiently ex-
plore the graph space Gp , Mohammadi and Wit (2015) developed the birth–death
Markov chain Monte Carlo (BDMCMC) algorithm. This is a trans-dimensional
MCMC algorithm, and represents an alternative to the well known reversible
jump MCMC algorithm [Green (1995)]. The version of BDMCMC presented in
Mohammadi and Wit (2015) was developed specifically for Gaussian graphical
models. In this section we give a general formulation for sampling from any dis-
tributions on a space of graphs Gp .

The BDMCMC algorithm is based on a continuous time birth–death Markov
process [Preston (1975)]. Its underlying sampling scheme traverses Gp by adding
and removing edges corresponding to the birth and death events. Given that the
process is at state G = (V ,E), we define the birth and death events as independent
Poisson processes as follows:

Birth event—each edge e ∈ E where E = {e ∈ V ×V : e /∈ E}, is born indepen-
dently of other edges that do not belong to G as a Poisson process with rate Be(G).
If the birth of edge e occurs, the process jumps to G+e = (V ,E ∪ {e}) which is a
graph with one edge more than G.

Death event—each edge e ∈ E dies independently of other edges that belong to
G as a Poisson process with rate De(G). If the death of edge e occurs, the process
jumps to G−e = (V ,E \ {e}) which is a graph with one edge less than G.

This birth–death Markov process is a jump process with intensity α(G) =∑
e∈E Be(G) +

∑
e∈E De(G). Its waiting time to the next jump follows an ex-

ponential distribution with expectation 1/α(G). The birth and death probabilities
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are

P(birth of edge e) ∝ Be(G) for e ∈ E,(5.2)

P(death of edge e) ∝ De(G) for e ∈ E.(5.3)

The following theorem provides sufficient conditions on the birth and death rates
to guarantee that the corresponding process on Gp has stationary distribution (5.1).

THEOREM 5.1. The birth–death process defined by the birth and death prob-

abilities (5.2) and (5.3) has the stationary distribution P(G | x) given in (5.1), if

the following detailed balance condition is satisfied:

(5.4) Be(G)P(G | x) = De

(
G+e)

P
(
G+e | x

)
,

where e ∈ E, G = (V ,E), and G+e = (V ,E ∪ {e}).

PROOF. See Section 1 in the Supplementary Material [Dobra and Mohammadi
(2018)]. �

Based on Theorem 5.1, we define the birth and death rates of the BDMCMC
algorithm as a function of the ratio of the corresponding posterior probabilities to
optimize the convergence speed:

Be(G) = min
{

P(G+e | x)

P(G | x)
,1

}
for each e ∈ E,

De(G) = min
{

P(G−e | x)

P(G | x)
,1

}
for each e ∈ E.

We show the birth and death rates as follows:

(5.5) Re(G) = min
{

P(G∗ | x)

P(G | x)
,1

}
for each e ∈ {E ∪ E},

where for the birth of edge e we take G∗ = (V ,E ∪ {e}), and for the death of edge
e we take G∗ = (V ,E \ {e}).

Algorithm 1 provides the pseudo-code for the BDMCMC algorithm which sam-
ples from the posterior distribution (5.1) on Gp by using the above birth–death
mechanism. In Section 5.3 we explain how to efficiently compute the ratio of pos-
terior probabilities in the birth and death rates (5.5) for multivariate discrete data
by using the marginal pseudo-likelihood approach [Pensar et al. (2017)].

5.2. Posterior estimation via sampling in continuous time. Figure 2 illus-
trates how the output of Algorithm 1 can be used to estimate posterior quanti-
ties of interest. The output consists of a set of sampled graphs, a set of waiting
times {W1,W2, . . .}, and a set of jumping times {t1, t2, . . .}. Based on the Rao–
Blackwellized estimator [Cappé, Robert and Rydén (2003)], the estimated poste-
rior probability of each sampled graph is proportional to the expectation of length
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Algorithm 1 . BDMCMC algorithm for undirected graphical models
Input: A graph G = (V ,E) with p nodes and data x

for N iterations do

for all the possible edges in parallel do

Calculate the birth and death rates in (5.5)
end for

Calculate the waiting time for G by W(G) = 1∑
e∈E Be(G)+

∑
e∈E De(G)

Update G based on birth/death probabilities in (5.2) and (5.3)
end for

Output: Samples from the posterior distribution (5.1).

of the holding time in that graph which is estimated as the sum of the waiting times
in that graph. The posterior inclusion probability of an edge e ∈ V ×V is estimated
by

(5.6) P̂(edge e | x) =

∑N
t=1 I(e ∈ G(t))W(G(t))

∑N
t=1 W(G(t))

,

where N denotes the number of iterations, I(e ∈ G(t)) denotes an indicator func-
tion: I(e ∈ G(t)) = 1 if e ∈ G(t), and 0 otherwise.

5.3. Birth and death rates with the marginal pseudo-likelihood. We assume
that the observed random variables X = (X1,X2, . . . ,Xp) are categorical, with
each variable Xi taking values in a discrete set Xi = {1,2, . . . , ri}. The determina-
tion of the birth and death rates (5.5) involves the marginal likelihood conditional

FIG. 2. The left and right panels show the true and estimated posterior distribution (5.1) on the

space the graphs. The middle panel shows an example output from an application of Algorithm 1
where {W1,W2, . . .} denote waiting times, and {t1, t2, . . .} denote jumping times.
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on a graph G ∈ Gp:

(5.7) P(x | G) =

∫

�G

P(x | θG,G)P(θG | G)dθG,

where θG ∈ �G are the parameters of a multivariate model associated with G,
P(θG | G) is prior for θG, and P(x | θG,G) is the full likelihood function. How-
ever, the exact calculation of the marginal likelihood P(x | G) is possible only
for decomposable graphs G which represent a small fraction of the graphs in Gp

[Massam, Liu and Dobra (2009)]. Numerical approximations for the marginal like-
lihood for arbitrary undirected graphs have been developed [Dobra and Massam
(2010)], but their application is computationally expensive for datasets that involve
p ≥ 20 variables. This high computational effort renders them inapplicable for the
Twitter mobility data described in Section 4 with p = 214 observed variables.

A computationally cheaper alternative comes from approximating the full like-
lihood P(x | θG,G) with the pseudo-likelihood [Besag (1975, 1977)] which is the
product of the full conditionals of the random variables X given their neighbors
in G:

(5.8) Ppl
(
x | θ

pl
G ,G

)
=

n∏

d=1

p∏

i=1

P
(
Xi = x

(d)
i | XnbdG(i) = x

(d)
nbdG(i), θ

pl
i,G

)
.

We denote XA = ×j∈AXj for A ⊆ {1, . . . , p}, θi,·l = {θi,kl : k ∈ Xi}, and θ
pl
i,G =

{θi,·l : l ∈ XnbdG(i)}. In (5.8), θ
pl
G = ×

p
i=1θ

pl
i,G ∈ �

pl
G are the set of parameters of the

full conditionals

P(Xi = k | XnbdG(i) = l) = θi,kl for i = 1, . . . , p,

where k ∈ Xi , l ∈XnbdG(i). Thus, the pseudo-likelihood (5.8) can be written as

(5.9) Ppl
(
x | θ

pl
G ,G

)
=

p∏

i=1

∏

k∈Xi

∏

l∈XnbdG(i)

θ
ni,kl

i,kl ,

where ni,kl represents the number of samples x(d), d = 1,2, . . . , n, such that x
(d)
i =

k and x
(d)
nbdG(i) = l.

For computational convenience, we assume that the set of parameters θ
pl
i,G and

θ
pl
i′,G associated with the full conditionals of Xi and Xi′ , i 
= i′ are independent.

This assumption is certainly not consistent with the assumption that the full con-
ditionals are derived from the same full joint distribution of X. Nevertheless, the
approximation of the full likelihood with the pseudo-likelihood (5.7) is based on
the same premise [Besag (1975, 1977)]. We also assume that, within the same full
conditional associated with the variable Xi , the parameters θi,·l and θi,·l′ associ-
ated with the different levels l and l′ of the variables XnbdG(i) are independent
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[Pensar et al. (2017)]. We impose a prior for θ
pl
G that factorizes according to these

two assumptions:

(5.10) P
(
θ

pl
G

)
=

p∏

i=1

P(θi,G) =

p∏

i=1

∏

l∈XnbdG(i)

P(θi,·l).

Furthermore, we choose a Dirichlet prior on the conditional probabilities of Xi at
level l ∈ XnbdG(i) of XnbdG(i):

(5.11) θi,·l ∼ Dir(αi,1l, . . . , αi,ri l).

From (5.9), (5.10), and (5.11), it follows that the marginal pseudo-likelihood is
[Pensar et al. (2017)]

(5.12) Ppl(x | G) =

p∏

i=1

P(xi | xnbdG(i)),

with

(5.13) P(xi | xnbdG(i)) =
∏

l∈XnbdG(i)

Ŵ(αi,·l)

Ŵ(αi,·l + ni,·l)

∏

k∈Xi

Ŵ(αi,kl + ni,kl)

Ŵ(αi,kl)
,

where αi,·l =
∑

k∈Xi
αi,kl and ni,·l =

∑
k∈Xi

ni,kl .
A prior on the space of graphs Gp that encourages sparsity by penalizing for the

inclusion of additional edges in the graph G = (V ,E) is [Jones et al. (2005)]

(5.14) P(G) ∝

(
β

1 − β

)|E|

=

( p∏

i=1

(
β

1 − β

)|nbdG(i)|
)1/2

,

where β ∈ (0,1) is set to a small value, for example, β = 1/
(p

2

)
. While other priors

on Gp are available [Dobra, Lenkoski and Rodriguez (2011)], the prior (5.14) can
be decomposed as the product of independent priors for the p full conditionals
given G such that the probability of inclusion of a vertex in each of these condi-
tionals is equal with β as shown in (5.14).

The marginal posterior distribution on Gp based on the marginal pseudo-
likelihood (5.12) and the prior on Gp (5.14) is

(5.15) Ppl(G | x) ∝ Ppl(x | G)P(G) =

p∏

i=1

P(xi | xnbdG(i))

(
β

1 − β

) |nbdG(i)|

2
.

The birth and death rates in (5.5) based on the marginal pseudo-likelihood for
an edge e = (i, j) ∈ V × V are calculated from

R̂e(G) = min
{

P(xi | xnbdG∗ (i))

P(xi | xnbdG(i))

P(xj | xnbdG∗ (j))

P(xj | xnbdG(j))

(
β

1 − β

)δ

,1
}
,

where for the birth of edge e we take G∗ = (V ,E ∪ {e}), δ = 1, and for the death
of edge e we take G∗ = (V ,E \ {e}), δ = −1.
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5.4. Dirichlet prior specification. Consider the observed categorical variable
Xi and the variables {Xj : j ∈ nbdG(i)} that are its neighbors in G. The marginal
table associated with X{i}∪nbdG(i) has counts {ni,kl : k ∈ Xi, l ∈ XnbdG(i)}. The
counts in the slice of this marginal table defined by the combination of levels
l ∈ XnbdG(i) are {ni,kl : k ∈ Xi}; the sum of these counts is ni,·l . The parameters
{αi,kl : k ∈ Xi} of the Dirichlet prior (5.11) can be interpreted as the values of a
fictive vector of counts of the same dimension as the vector of observed marginal
counts {ni,kl : k ∈Xi}. By setting

(5.16) αi,kl =
1

2
for all i = 1, . . . , p;k ∈ Xi; l ∈ XnbdG(i),

we choose the Jeffrey’s prior for the Multinomial distribution associated with the
marginal counts {ni,kl : k ∈ Xi} [Pensar et al. (2017)]. We note that the sum of
the fictive vector of counts {αi,kl : k ∈ Xi} is αi,·l =

ri
2 . Alternatively, we can con-

struct a prior specification by starting with a fictive p-dimensional table with cells
indexed by X{1,2,...,p} that has a grand total equal with α > 0 and equal cell values

(5.17) α(r1r2 · . . . · rp)−1.

The corresponding fictive vector of counts from (5.16) is:

(5.18) αi,kl = α

[ ∏

j∈{i}∪nbdG(i)

rj

]−1
for all i = 1, . . . , p;k ∈ Xi; l ∈ XnbdG(i).

In this case, the sum of the fictive vector of counts {αi,kl : k ∈Xi} is

αi,·l = α

[ ∏

j∈nbdG(i)

rj

]−1
.

Fictive tables as in (5.17) define Diaconis–Ylvisaker conjugate prior distributions
for parameters of hierarchical loglinear models [Massam, Liu and Dobra (2009)].
The effect of the choice of the values of α in (5.17) on the loglinear models se-
lected based on Bayes factors determined by Diaconis–Ylvisaker conjugate priors
has been studied empirically in Massam, Liu and Dobra (2009), and theoretically
from a geometrical perspective in Letac and Massam (2012). These papers found
that, for larger values of α, more interaction terms appear in the hierarchical log-
linear models with the largest posterior probabilities. When α becomes smaller
with values close to 0, the hierarchical loglinear models selected contain fewer
interaction terms that involve a smaller number of variables. Since the Diaconis–
Ylvisaker conjugate priors are more general versions of the Dirichlet priors in
(5.11), it follows that α in (5.17) and (5.18) acts as a regularization parameter:
smaller values of α that are close to 0 will lead to sparser graphs G with high pos-
terior probabilities, while larger values of α will lead to denser graphs G. Choosing
α = 1 in (5.18) means augmenting the counts in the observed contingency table
with another contingency table that has equal counts, and a grand total of 1.
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From (5.11) it can be seen that, if αi,kl are small (but strictly positive) compared
to ni,kl , then the sensitivity of the choice of values of the Dirichlet priors should
be minimal. In the simulation studies and the analysis of the geolocated Twitter
data from Section 7 we use the Jeffrey’s prior (5.16). This choice is reasonable
because the sample sizes involved in each example yield counts that are much
larger than the corresponding Dirichlet parameters. However, for applications in
which the sample size is considerably smaller, the sensitivity of the graphs selected
with respect to different choices of Dirichlet parameters {αi,kl : k ∈ Xi} needs to
be investigated.

5.5. Speeding up the BDMCMC algorithm. The key bottleneck of the BDM-
CMC algorithm is the computation at every iteration of the birth and death rates
(5.5) for all the p(p − 1)/2 possible edges. Fortunately, the rates associated with
one edge can be calculated independently of the rates associated with the other
edges, and can be performed in parallel which represents a first key computational
improvement. We implemented parallel computations of the birth and death rates
in the current version of the R package BDgraph [Mohammadi, Wit and Dobra
(2018)] using OpenMP [OpenMP Architecture Review Board (2008)]. Most code
in this package is written in C++ and interfaced in R.

A second key computational improvement is possible when the marginal like-
lihood is replaced with the marginal pseudo-likelihood as detailed in Section 5.3.
Since at each step of the BDMCMC algorithm one edge e = (i, j) is selected
for addition or removal, only the marginal likelihood (5.13) of the full condi-
tionals of the two vertices i and j will change. Thus, we need to recalculate the
(p − 1) + (p − 1) − 1 = 2p − 3 rates that correspond with these two vertices. The
remaining rates will stay the same. As such, at each iteration we update 2p − 3
rates instead of p(p − 1)/2 rates. This represents a huge computational saving
especially for graphs with many vertices. For example, for the Twitter mobility
data we analyze in Section 7, we look at graphs with p = 214 vertices. Instead of
computing 22,791 rates at each step of the BDMCMC algorithm, we only need to
determine 422 rates which means that a single edge update can be done approxi-
mately 54 times faster.

A third key computational improvement comes from allowing multiple edge
updates at each iteration. The vast majority of the MCMC and stochastic search
algorithms that have been developed in the Bayesian graphical models literature
are based on adding or removing one edge at each iteration [Jones et al. (2005),
Lenkoski and Dobra (2011), Scott and Carvalho (2008), Wang and Li (2012),
Mohammadi et al. (2017), Mohammadi and Wit (2015), Mohammadi, Massam
and Letac (2017), Cheng and Lenkoski (2012)]. These single edge updates are
in part responsible for making these structural learning algorithms quite slow for
datasets that comprise a larger number of variables p. Multiple birth–death sam-
pling approaches have been used to address image processing problems that aim to
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detect a configuration of objects from a digital image, and have been found to out-
perform the convergence speed of competing reversible jump MCMC algorithms
[Descombes, Minlos and Zhizhina (2009), Gamal-Eldin, Descombes and Zerubia
(2010), Gamal-Eldin et al. (2011)].

By following this idea, it is possible to transform Algorithm 1 into a multiple
birth–death MCMC algorithm based on a multiple birth–death process. At each
iteration, after computing and ranking the birth and deaths rates (5.5), we select
not one but a fixed number N0 ≥ 2 of edges to be added or removed from the
graph. By doing so, N0 edges are updated at no computational cost compared to
a single edge update. Through multiple edge updates which we have also imple-
mented in the R package BDgraph [Mohammadi, Wit and Dobra (2018)], the
BDMCMC algorithm can quickly move to regions with high posterior probabil-
ity in the graph space Gp . The ability to move towards high posterior probability
graphs in a smaller number of iterations is especially important in applications
in which the ratio between the number of samples available and the number of
variables is small. Choosing N0 can be done with respect to the amount of time
required to complete one iteration of the algorithm. For example, setting N0 = 100
means that 100 edges can be updated in approximately the same time Algorithm 1
would require to update a single edge. This means that one can employ N0 = 100
times fewer iterations to move towards graphs with comparable complexity. How-
ever, performing multiple edge updates at each iteration of the BDMCMC algo-
rithm does not have any theoretical guarantees related to sampling from the correct
target posterior distribution (5.1). For this reason, multiple edge updates should be
performed only for a reduced number of iterations to identify several graphs that
have higher posterior probabilities compared to the empty graph, the full graph
or a random graph sampled from Gp . These graphs can be subsequently used as
starting points for Algorithm 1 with single edge updates. For the simulation study
we present next, and for the analysis of the geolocated Twitter data from Section 7
we did not need to employ multiple edge updates to identify better starting points
for Algorithm 1: our sampler with single edge updates was sufficiently fast to not
require us starting it from higher posterior probability graphs.

6. Simulation study. We investigate the performance of the BDMCMC al-
gorithm in recovering the graph structure from categorical data by comparing it
to the hill-climbing (HC) algorithm proposed by Pensar et al. (2017). While the
BDMCMC algorithm samples from the marginal posterior distribution (5.15), the
HC algorithm solves the optimization problem max{Ppl(G | x) : G ∈ Gp} using a
method that involves two phases.

We consider three types of graphs (see Figure 3):

1. Random: A graph in which edges were randomly generated from the prior
(5.14) with β = 0.4.
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FIG. 3. Example graphs with p = 10 vertices used in the simulation study from Section 6.

2. Cluster: A graph with two clusters (connected components) each with p = 5
vertices. The edges in both clusters were randomly generated from the prior (5.14)
with β = 0.6.

3. Scale-free: A graph sampled from a power-law degree distribution with the
Barabási–Albert algorithm [Albert and Barabási (2002)].

We also consider graphs with p = 20 vertices that have two connected components
with 10 vertices and the same edge structure of type “Random”, “Cluster”, or
“Scale-free”. We simulated binary contingency tables with p ∈ {10,20} variables
that comprise n ∈ {200,500,1000} samples from random graphs of these three
types. We repeated the simulation experiment that involves the generation of 18
contingency tables 50 times. We performed all computations with the R package
BDgraph [Mohammadi, Wit and Dobra (2017, 2018)]. For each contingency table
we generated, we ran the BDMCMC and the HC algorithms using the prior (5.14)
with β = 0.5 starting from the empty graph. The BDMCMC algorithm was run for
100,000 iterations. The first 60,000 iterations were discarded as burn-in.

We note that, for p = 10, the expected number of edges for random graphs of
type “Random” and “Cluster” is 0.4 ·

(10
2

)
= 18 and 2 · 0.6 ·

(5
2

)
= 12. Under our

assumed prior (5.14) with β = 0.5 on G10, the expected number of edges of a
random graph is 0.5 ·

(10
2

)
= 22.5. For p = 20, the expected number of edges of

random graphs of type “Random” and “Cluster” is 36 and 24 since these graphs are
generated by putting together two random graphs with p = 10 vertices. Under the
prior (5.14) with β = 0.5 on G20, the expected number of edges of a random graph
is 0.5 ·

(20
2

)
= 95. As such, our choice of priors on G10 and G20 put the BDMCMC

and the HC structural learning algorithms at a disadvantage since the true graphs
are on average sparser than the graphs under the prior.

We estimated the structure of the true graph based on model averaging [Madigan
et al. (1996)] of the graphs sampled by the BDMCMC algorithm. We calculate the
posterior inclusion probabilities of edges (5.6), and determine the median graph
whose edges have posterior inclusion probabilities greater than 0.5. The structure
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of the true graph was estimated with the HC algorithm based on the “and” and the
“or” criteria in the first phase of the algorithm [Pensar et al. (2017)].

We evaluate the performance of the two algorithms in recovering the structure
of the true graphs using the F1-score measure [Baldi et al. (2000)],

(6.1) F1-score =
2TP

2TP + FP + FN
,

and the Structure Hamming distance (SHD) [Tsamardinos, Brown and Aliferis
(2006)],

(6.2) SHD = FP + FN,

where TP, TN, FP, and FN are the number of true positives, true negatives, false
positives, and false negatives, respectively. The values of the F1-score range be-
tween 0 and 1, and the values of the SHD are positive. A better performance in
recovering the true graph is associated with larger values of the F1-score, and with
smaller values of the SHD.

The results are summarized in Table 1 in the Supplementary Material [Dobra
and Mohammadi (2018)]. For most simulation experiments, the BDMCMC algo-
rithm has an advantage over the HC algorithm especially for the F1-score. ROC
curves showing the performance of the BDMCMC algorithm are presented in Fig-
ure 1 in the Supplementary Material [Dobra and Mohammadi (2018)].

7. Analysis of the geolocated Twitter data. We come back to the p = 214
dimensional binary contingency table constructed from geotweets that was de-
scribed in Section 4. We use the BDMCMC algorithm to sample graphs from the
marginal posterior distribution (5.15) on G214. We employ the prior (5.14) with
β = 1/

(214
2

)
= 4.388 × 10−5. Under this prior, the expected number of edges is 1,

thus sparser graphs receive larger prior probabilities compared to denser graphs.
We performed all computations on a cluster with 7 compute nodes, each with 48
Intel Xeon 2.6 GHz cores with a Linux operating system.

First, we want to gain some understanding of the ability of the BDMCMC al-
gorithm to move towards graphs with large posterior probabilities in G214. We
sample 20 graphs {Gi}

20
i=1 having increasing number of edges: Gi has a number

of edges randomly sampled from (200(i − 1),200i). The resulting set of graphs
ranges from most sparse (G1) to most dense (G20). Starting from each graph Gi ,
i = 1, . . . ,20, we ran the BDMCMC algorithm for 10,000 iterations. Figures 2 and
3 in the Supplementary Material [Dobra and Mohammadi (2018)] show the sum
of the estimated posterior edge inclusion probabilities and the number of edges
included in the sampled graphs against iteration number. After 7000 iterations in
each of the 20 runs, the BDMCMC algorithm seems to have reached the same
neighborhood of graphs. Thus, although the number of graphs in G214 is extremely
large (≈ 106861), the BDMCMC algorithm seems to be very efficient in identifying
graphs with high posterior probability.
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Next, we ran the BDMCMC algorithm for 400,000 iterations using parallel cal-
culations of the birth and death rates from a starting graph sampled from the prior
(5.14) on G214. The first 200,000 iterations were discarded as burn-in. Figures 4
and 5 in the Supplementary Material [Dobra and Mohammadi (2018)] show the
BDMCMC algorithm seems to have reached convergence in less than 10,000 iter-
ations.

We estimate the posterior inclusion probabilities (5.6) of the
(214

2

)
= 22,791

edges. Figure 4 is a heatmap of the matrix of the estimated posterior edge inclu-
sion probabilities. Most of the estimated posterior edge inclusion probabilities are
zero: 21,138 (92.78%). A number of 12, 5, and 7 edges have estimated posterior
inclusion probabilities in (0,0.5), [0.5,0.9) and [0.9,0.1), respectively. The re-
maining 1522 (6.65%) have estimated posterior inclusion probabilities equal to 1.
We use the median graph which includes the 1534 edges with estimated posterior
inclusion probabilities greater than 0.5 as our estimate of the conditional indepen-
dence graph. Henceforth we refer to this graph as the South Africa (SA) Twitter
graph.

FIG. 4. Heatmap of the 214 × 214 matrix of posterior inclusion probabilities of edges for the

Twitter data. Darker shades of grey mark edges with posterior inclusion probability closer to 1. The

bottom five rows and the leftmost five columns correspond with the five hub municipalities JHB, EKU,
TSH, ETH, and CPT.
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FIG. 5. Rendering of the SA Twitter graph. The five hub municipalities (JHB, EKU, TSH, ETH, and

CPT) are shown in the center of the graph. The size of the fonts is proportional with the degree of

each vertex.

A rendering of the SA Twitter graph is presented in Figure 5. The 213 mu-
nicipalities of South Africa are denoted by their identifiers—see Table 5 in the
Supplementary Material [Dobra and Mohammadi (2018)]. This table provides the
identifier, complete name, province to which it belongs, area, population size, and
density for each municipality. The 214th vertex of this graph is associated with
the Local (yes/no) variable. We explore the SA Twitter graph using four centrality
measures [Imai (2017)] that capture the extent to which a vertex is connected to
other vertices, and occupies a central position in the structure of the network: (i) de-

gree counts the number of edges that originate from a given vertex; (ii) closeness

measures how close is a vertex from each one of the other vertices; (iii) between-

ness finds vertices that connect other vertices (i.e., belong to the shortest paths con-
necting pairs of vertices); and (iv) page rank defines more central vertices based
on a voting process which allocates votes to a vertex based on other connected
vertices, and it is determined through an iterative algorithm. Barplots of the largest
10 values of each of the four centrality measures are presented in Figures 6, 7, 8,
and 9 in the Supplementary Material [Dobra and Mohammadi (2018)].

For each of the four centrality measures, their top five largest values corre-
spond with the following municipalities: Johannesburg (JHB, Gauteng), Ekurhu-
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leni (EKU, Gauteng), Tshwane (TSH, Gauteng), eThekwini (ETH, KwaZulu-
Natal), and Cape Town (CPT, Western Cape). The next five largest values also cor-
respond with the same five municipalities for all four measures: Mangaung (MAN,
Free State), Nelson Mandela Bay (NMA, Eastern Cape), Polokwane (LIM354,
Limpopo), Buffalo City (BUF, Eastern Cape), and Sol Plaatjie (NC091, North-
ern Cape). We remark that the values of centrality measures for JHB, EKU, TSH,
ETH, and CPT are significantly larger than the values for MAN, NMA, LIM354,
BUF, and NC091. For example, the degrees for the first group are 213, 210, 213,
212, and 213, while the degrees for the second group are 25, 24, 21, 20, and 19.

As such, JHB, EKU, TSH, ETH, and CPT are the five key hubs of the SA
Twitter graph. Their geographical location is mapped in Figure 6, while Table 1
gives summary information about them. From Figure 4 we see that only few of
the posterior edge inclusion probabilities are strictly positive among edges that
do not involve the five hubs. Three hubs (JHB, TSH, EKU) are located in the
Johannesburg/Soweto/Pretoria area which represents the region of South Africa in
which more than 11 million people reside (2015 South African National Census)
either permanently, or temporarily to find employment in factories or gold mines.
The other two hubs are located around the cities of Cape Town and Durban which,
together with Johannesburg, Soweto, and Pretoria, are among the largest South
African cities. A great number of local and international travelers visit these five
hubs for shorter or longer periods of times. Based on the predictive interpretation

FIG. 6. Map of South Africa showing the five hub municipalities (JHB, EKU, TSH, ETH, and CPT)
of the SA Twitter graph.
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TABLE 1
Summary geographic and demographic information about the five hub municipalities in the SA

Twitter graph. Population data extracted from the 2016 Community Survey, Statistics South Africa.
Retrieved from https:// interactive2.statssa.gov.za/webapi

Id. Municipality name Province Area (km2) Population Density

TSH City of Tshwane Gauteng 6298 3,275,152 520
ETH eThekwini KwaZulu-Natal 2556 3,702,231 1448.50
CPT City of Cape Town Western Cape 2446 4,005,016 1637.60
JHB City of Johannesburg Gauteng 1645 4,949,347 3008.80
EKU Ekurhuleni Gauteng 1975 3,379,104 1710.60

of the SA Twitter graph, the presence or absence of a Twitter user from one of the
five hubs is predictive of the presence or absence of this user from almost all the
other municipalities. Furthermore, the presence or absence of an user from almost
all the municipalities that are not hubs is predictive of their presence or absence
from each of the hubs.

Figure 7 shows the relationships between the number of people living in each
municipality, the number of Twitter users that posted geolocated messages in each
municipality, and the degree of the vertices associated with each municipality in
the SA Twitter graph. The five hub municipalities stand out in their own cluster
clearly separated from the rest: they represent the municipalities with the largest
population, the largest number of geolocated Twitter users, and the largest degree.

The vertex associated with the variable Local is not central in the structure of
the SA Twitter graph. Its degree is 12, and the other centrality measures are also
significantly smaller compared to those of the five hubs. The 12 municipalities that
are connected with an edge with the Local vertex are mapped in Figure 8. In addi-

FIG. 7. Pairwise relationships between population size, number of Twitter users, and degree in the

SA Twitter graph of each municipality. The five hub municipalities (JHB, EKU, TSH, ETH, and CPT)
are marked with diamonds.

https://interactive2.statssa.gov.za/webapi
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FIG. 8. Map of South Africa showing the 12 municipalities that are linked by an edge with the

vertex associated with the Local variable in the SA Twitter graph.

tion to four of the hubs (JHB, EKU, TSH, CPT), the presence or absence patterns
of a Twitter user from the following municipalities are predictive of whether this
user is local to South Africa: Kopanong (FS162, Free State), Ray Nkonyeni and
Big Five Hlabisa (KZN216 and KZN276, KwaZulu-Natal), Maruleng (LIM335,
Limpopo), Bushbuckridge (MP325, Mpumalanga), Moses Kotane (NW375, North
West), Emfuleni (GT421, Gauteng), and Stellenbosch (WC024, Western Cape).
It is quite interesting to examine the spatial distribution of these 12 municipali-
ties: CPT and WC024 are adjacent municipalities around Cape Town; TSH, JHB,
and EKU define a spatially contiguous region in the Johannesburg/Soweto/Pretoria
area; while LIM335 and MP325 are adjacent municipalities at the border between
South Africa and Mozambique. In the KwaZulu-Natal province, the municipali-
ties KZN216 and KZN276 that are located to the south and to the north of the
city of Durban are among the neighbors of Local, but the ETH municipality in
which Durban is located is not (quite surprisingly) among the neighbors of Local.
The FS162 municipality is located south of Bloemfontein—a major city in South
Africa known for its mining industry. The NW375 municipality is located north
west of the Johannesburg/Pretoria area, and it comprises Sun City and a major
national park—both key touristic destinations.

We determine the effect of the presence and absence patterns of Twitter users
from these 12 municipalities on the odds of being local to South Africa by fitting
a logistic regression model for the Local variable with 12 explanatory variables
associated with these municipalities. The estimated adjusted odds ratios are given
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in Tables 2 and 3 in the Supplementary Material [Dobra and Mohammadi (2018)].
A number of 10 municipalities have adjusted odds ratios significantly smaller than
1 at significance level α = 0.05. Given the same presence and absence pattern in
the remaining 11 municipalities, a Twitter user that posted geotweets from one of
these municipalities has smaller odds of being local to South Africa compared to
another Twitter user that did not post geotweets from that municipality. However,
the TSH and GT421 municipalities located to the north and to the south of the Jo-
hannesburg/Soweto/Pretoria area have estimated adjusted odds ratios significantly
greater than 1 at significance level α = 0.05. Given the same presence and absence
pattern in the remaining 11 municipalities, the odds of being local to South Africa
of a Twitter user that was present in GT421 (TSH) are 5.414 (2.347) times larger
than the odds of being local to South Africa of another Twitter user that was ab-
sent from GT421 (TSH). It is known that a considerable number of Mozambicans
come to work in the mines in the Johannesburg/Pretoria area for extended periods
of time [Baltazar et al. (2015)]. Their residences might be located in the GT421
and TSH municipalities where they could exceed the number of South African
Twitter users.

It is also interesting to examine the interaction structure of the graphical log-
linear model induced by the SA Twitter graph. The interaction terms present in
this model are complete subgraphs or cliques of the SA Twitter graph. The gen-
erators of this model [Edwards and Havránek (1985)] are the maximal interaction
terms, that is, terms that are not a subset of other interaction terms that are also
present in the model. The generators of a graphical loglinear model are the max-
imal cliques of the graph that defines that model. The SA Twitter graph has 251
maximal cliques—see Table 4 in the Supplementary Material [Dobra and Moham-
madi (2018)]. There are 11 generators of size 6, 94 generators of size 7, 126 gen-
erators of size 8, and 20 generators of size 20. All five hub municipalities appear
in the 20 largest generators—see Table 2. Three of them, namely JHB, CPT, and
TSH appear in all the 251 generators. ETH and EKU appear in 244 and 242 gen-
erators, respectively. The municipalities NMA, MAN, NC091, and BUF appear in
14, 14, 10, and 9 generators, respectively. The rest of the municipalities appear in
8 generators or less.

8. Conclusions. This paper makes several contributions. First, it generalizes
the birth–death Markov chain Monte Carlo (BDMCMC) algorithm introduced by
Mohammadi and Wit (2015) in the context of Gaussian graphical models to general
undirected graphical models. Second, based on marginal pseudo-likelihood for cat-
egorical data of Pensar et al. (2017), we show how to efficiently calculate the birth
and death rates for the BDMCMC algorithm for arbitrary undirected graphs. Third,
we use our methodology to analyze a 214-dimensional contingency table that cap-
tures the mobility patterns of Twitter users in South Africa. This is a dataset we
collected at the University of Washington which has never been analyzed before.
We learned that five municipalities are hubs for the mobility patterns of Twitter
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TABLE 2
The largest cliques of the SA Twitter graph. The hub municipalities (JHB, EKU, TSH,

ETH, and CPT) appear in bold

Id. Size Clique

1 9 CPT EKU ETH JHB TSH FS181 FS184 FS201 MAN
2 9 CPT EKU ETH JHB TSH FS194 KZN235 KZN237 KZN238
3 9 CPT EKU ETH JHB TSH BUF EC121 EC122 EC157
4 9 CPT EKU ETH JHB TSH BUF EC124 EC129 EC139
5 9 CPT EKU ETH JHB TSH BUF EC104 EC105 EC126
6 9 CPT EKU ETH JHB TSH FS161 FS182 MAN NC091
7 9 CPT EKU ETH JHB TSH KZN282 KZN284 KZN291 KZN292
8 9 CPT EKU ETH JHB TSH LIM331 LIM332 LIM333 LIM354
9 9 CPT EKU ETH JHB TSH LIM354 LIM355 LIM473 LIM476

10 9 CPT EKU ETH JHB TSH LIM354 LIM366 LIM367 LIM368
11 9 CPT EKU ETH JHB TSH NC071 NC072 NC073 WC053
12 9 CPT EKU ETH JHB TSH BUF EC104 EC105 NMA
13 9 CPT EKU ETH JHB TSH EC104 EC105 EC106 NMA
14 9 CPT EKU ETH JHB TSH BUF LIM354 MAN NMA
15 9 CPT EKU ETH JHB TSH BUF MAN MP326 NMA
16 9 CPT EKU ETH JHB TSH NW373 NW374 NW383 NW385
17 9 CPT EKU ETH JHB TSH NW381 NW382 NW383 NW392
18 9 CPT EKU ETH JHB TSH WC012 WC013 WC014 WC015
19 9 CPT EKU ETH JHB TSH WC014 WC015 WC023 WC024
20 9 CPT EKU ETH JHB TSH WC043 WC044 WC045 WC048

users in South Africa, and that the presence or absence of Twitter users from 12
municipalities are predictive of users being locals or visitors of South Africa.

The hill-climbing (HC) algorithm [Pensar et al. (2017)] determines graphs with
high posterior probability using a greedy hill-climbing optimization algorithm. For
this reason, the HC algorithm will inevitably end up in a local maximum. Which
local maximum the HC algorithm will find depends on the choice of starting graph.
The results of the simulation study from Section 6 were obtained by starting the
HC algorithm from empty graphs. Since the true graphs were sparse, the HC al-
gorithm recorded a good performance that was comparable with the performance
of the BDMCMC algorithm. However, if we would have started the HC algorithm
from random graphs that contained a larger number of edges, the HC algorithm
might have been at a disadvantage. As we illustrated in Section 7, starting the
BDMCMC algorithm from sparser or denser graphs led to the identification of the
same neighborhood of graphs with high posterior probabilities. The BDMCMC
algorithm has a key advantage over the HC algorithm in terms of its ability to visit
graphs with lower posterior probability in order to escape local optima, and move
towards other graphs with larger posterior probabilities.

Our applied results give an understanding of the movements of 476,601 individ-
uals that used geolocated tweets in South Africa between 2011 and 2016. It is true
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that the movements of this specific group of people might not be representative of
major flows of movement of South Africans, or of the visitors of this country. And,
due to the selected locations Twitter users choose to post their tweets from, it is
possible that even the travel trajectories of these individuals could be only partially
captured. However, to the best of our knowledge, there is no other study on human
mobility that involves a larger number of individuals in South Africa, and com-
prises a larger number of recorded locations (>46 millions). While our findings
must be interpreted with care from a sociodemographic perspective, the methodol-
ogy we introduce in this article can be successfully applied to modeling patterns of
repeated across regions movement that span entire countries, and comprise a large
number of individuals.

Our modeling approach is based on multi-way contingency tables that cross-
classify presence and absence patterns from regions of interest, together with other
relevant categorical factors. Our framework goes beyond methods that focus ex-
clusively on modeling flows of migration between origin and destination areas.
However, our methodology has several limitations. A significant loss of informa-
tion occurred when the latitude and longitude coordinates of the geotweets were
mapped into municipalities. Furthermore, we took into consideration only the pres-
ence or absence of an individual in each municipality: a single tweet in a munici-
pality marked an individual as present in that area. The actual frequency of tweets
of an individual in a municipality has not been accounted for, as well as the tempo-
ral sequence in which the geotweets have been posted. This means that the order
in which an individual visited municipalities was not modeled in our analysis. The
spatial distribution of municipalities has also been overlooked. It is plausible that
an individual will most often visit municipalities that are spatially close to each
other as opposed to more distant municipalities. We are currently working on ex-
tending our modeling framework to address some of these limitations.

In a companion short paper [Mohammadi and Dobra (2017)], we provide code
and explanations on the use of the R package BDgraph [Mohammadi, Wit and
Dobra (2018)] to analyze contingency tables. In particular, we analyze a well
known six-way contingency table called the Czech autoworkers data [Edwards
and Havránek (1985)], and compare the interaction graph identified with the BDM-
CMC algorithm with the graphs determined using the R package gRim [Højsgaard,
Edwards and Lauritzen (2012)], the MCMC algorithm of Massam, Liu and Dobra
(2009), and the loglinear model determination method of Edwards and Havránek
(1985). We also give example code for analyzing the geolocated Twitter data con-
tingency table from Sections 4 and 7.

We empirically demonstrated that our version of the BDMCMC algorithm can
efficiently determine conditional independence graphs with 214 categorical vari-
ables. To the best of our knowledge, this is the highest-dimensional contingency
table analyzed so far with loglinear models. These developments would not have
been possible without Steve Fienberg’s visionary life long work which led to the
birth of a research community that spans several disciplines (social sciences, health
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and medical sciences, computer science, and statistics) and will continue to gener-
ate fundamental scientific knowledge for many generations to come.
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SUPPLEMENTARY MATERIAL

Additional proofs, maps, figures and tables (DOI: 10.1214/18-AOAS1164
SUPP; .pdf). In this online supplementary material, we provide the proof for The-
orem 5.1, together with additional maps, figures, and tables referenced in this arti-
cle.
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