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A loglinear IRT model is proposed that relates polytomously scored item responses to a 
multidimensional latent space. The analyst may specify a response function for each response, 
indicating which latent abilities are necessary to arrive at that response. Each item may have a 
different number of response categories, so that free response items are more easily analyzed. 
Conditional maximum likelihood estimates are derived and the models may be tested generally 
or against alternative loglinear IRT models. 
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Educational and psychological tests or item banks are ordinarily used to measure 

individual differences that are inferred from behavior. A test typically consist of a set 

of items varying with respect to certain task properties that may present difficulties the 

subject has to overcome to give the correct response. Most tests are constructed in 
such a way that each item presents a problem that can be solved by some characteristic 

cognitive behavior that the test intends to measure. Item properties that present prob- 
lems irrelevant to the measurement purpose are manipulated in such a way that they 

become very easy for most subjects. In this way items are constructed that measure the 
behavior of interest. 

Item response theory (IRT) models, such as the one-, two- and three-parameter 

logistic model are suited to explain a subject's response on each of the items by a 
subject parameter and one or more item parameters. Typically, model parameters 

characterize both items and subjects on one single latent trait. Likewise, for the case 

of polytomously scored items, IRT models have been proposed that relate responses 
to a single underlying latent trait (Andrich, 1978, 1982; Bock, 1972; Glas & Verhelst, 

1989; Masters, 1982; Muraki, 1990; Rost, 1988; Samejima, 1972; Thissen & 
Steinberg, 1984). 

In practice, the construct to be measured may be more complex than can be 

modeled by such IRT models. In test construction research it may be desirable to go 
further and specify theories that explain what the items are measuring. By specifying a 
model for each theory and comparing the fit of those models to the data, considerable 
knowledge about what the items measure can be gained (Stenner, Smith, & Burdick, 
1983). These theories concentrate on the cognitive process rather than the products 
measured by the test (Sternberg, 1982, p. 1). For example, Frederiksen (1982) in his 
study of reading skills, specified several component behaviors, which in interaction 
with one another, accomplish the more complex performance of reading with compre- 
hension. 
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Variation in task properties of items can have two types of effects. It may have a 

quantitative effect on the problem that the item presents. That is, some items may 

become more difficult to answer correctly than others. At the same time, items may 

order subjects in terms of ability in the same way, because they require the same type 

of problem solving behavior. On the other hand, variation in item task properties may 

lead to problems that are qualitatively different requiring different types of problem 

solving behavior, so that subjects have a different ordering in achievement on different 

items. In this case, individual differences must be described by a multidimensional 

latent space. 

A model that describes problems that differ quantitatively is the linear logistic test 

model (LLTM, Fischer, 1973; Fischer & Forman, 1982; Scheiblechner, 1972). LLTM 

models view an item as consisting of different subtasks, where each subtask presents a 

proble m with a certain difficulty. Usually only a limited number of subtasks are as- 

sumed of which each item requires a certain subset. In the LLTM it is assumed that the 

problems that the subtests present differ quantitatively but not qualitatively. Therefore, 

the models contain a single subject parameter, so that subjects have the same orderings 

in achievement on different items. Spada (1976) successfully applied LLTM models to 

relate performance on a test of the concept of proportions to the ability to perform 

certain cognitive operations. 

Models for theories describing qualitatively different problems are Fischer's (1972, 

1976) linear logistic test model with relaxed assumptions (LLRA) and Embretson's 

(1985) component latent trait models (CLTM). In LLRA, a different latent parameter is 

associated with each item. Each item is then administered at different points in time to 

measure changes in difficulty due to treatment effects. In CLTM, different cognitive 

components are associated with different latent trait parameters. In these models items 

may have a different specification of cognitive components; they may order subjects' 

achievements differently. 

In attitude research, Duncan and Stenbeck (1987) analyzed Likert scales using a 

multitrait Rasch model. Two traits were distinguished: Content and power. The model 

generalizes the unidimensional Rasch rating scale model (Andrich, 1978, 1982; Masters, 

1982). Duncan and Stenbeck's model is based on the analysis of contingency tables by 

loglinear models. 

Loglinear models have been used for the estimation and testing of IRT models 

(Cressie & Holland, 1983; de Leeuw & Verhelst, 1986; Duncan, 1984; Kelderman, 

1984; Tjur, 1982). They have proved useful in the solution of practical psychometric 

problems such as item bias detection and equating. 

In the present paper, a loglinear IRT model is proposed that applies to the situation 

of polytomously scored test items that may be explained by a multidimensional latent 

space. The model generalizes Duncan and Stenbeck's (1987) model for Likert scales 

and Andersen's (1983) latent structure model for contingency table data. The flexibility 

and generality of loglinear IRT modeling enables the researcher to formulate a model 

precisely tailored to the particular items in the test. In the proposed model, each 

response may involve several cognitive operations defined by the user, and different 

cognitive operations may require different abilities. Each item may have a different 

number of response categories, so that free response items are more easily analyzed. 

The usual assumption of local independence of the item responses given the latent traits 

is made. The item parameters are estimated by the conditional maximum likelihood 

method and the goodness-of-fit of the models can be tested either overall or against 

specific deviations from the model. 
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A Multidimensional Polytomous Latent  Trait Model 

Suppose that each of  N subjects respond to k test items where the answers of  

subject i to i t emj  may be any of  rj + 1 responses xij  ( x i j  = O, . . .  , r j ) .  I f  its meaning 

is unambiguous, rj will be denoted as r. The response pattern of  subject i on all k test 

items is denoted by the vector  x i = ( X n ,  xi2,  • • • ,  x ik ) .  The corresponding random 

variables or vectors are denoted by capital letters Xi j  and Xi. 

Let  Oiq be a value of  subject i on a latent trait q = 1 . . . .  , s, and let 0i = (Oil ,  

0i2 . . . . .  Ois) be the subject 's  vector  of  latent trait values. To produce a score xi j  on 

item j ,  subject i must perform certain cognitive operations where each operat ion de- 

pends on a certain proficiency on a latent trait. For  example, to produce a correct  

answer on the item "Wha t  is the square root of fifteen minus s ix?" ,  involves three 

operations. First, the expression V/(15 - 6) must be obtained from the verbal formu- 

lation. Second,  the subject must make the subtraction 15 - 6 = 9. And finally, the 

square root  V ~  = -+3 must be taken. It may be hypothesized that to perform the first 

operation successfully, the subject must have a certain level on a verbal ability trait Oil, 

and to perform the second and the third operation, a latent numerical ability 0i2 is 

needed. Because the correct  response depends more heavily on the second latent trait 

than on the first, it may be expected that 0i2 has a stronger impact on individual 

differences in the response than 0il .  

Let  Bjqx be a nonnegative weight associated with the dependence of  a generic 

response x to i t emj  on the latent trait q (=  1 . . . . .  s). In the next section it is seen that 

Bjq x enters the sufficient statistics of  the subject parameters.  It is, therefore,  called the 

scoring weight. Fur thermore,  let 6jq x be a parameter  describing the difficulty of  re- 

sponse x to i t emj  related to latent trait q, and let ~ j  = ( 6 j l  0 . . . .  , 6 j l r ,  6 j20 ,  " ' "  , 6jsr) 
be the vector  of difficulty parameters for item j .  The multidimensional polytomous 

latent trait model (MPLT) can now be written as 

exp[  ..x.x] 
e(xij xlOi) q = 1 = = , ( 1 )  

c(Oi, ~j) 

with constant  of proportionali ty 

C(Oi, ~) = E exp 
y=0 

lq~ l  (Oiq- ~jqy)Bjqy]. 

Here,  it is assumed that 6jqx = 0 if njq x = 0 to ensure uniqueness of  the parameter .  

By choosing the scoring weights Bjqx appropriately (x = 0, . . .  , rj; j = 1, . . .  , k; 

q = 1 . . . . .  s), different models can be defined for the dependence of item responses 

on latent traits. If  a weight is zero, the subject 's  position on the latent trait does not 

influence the probability of  the particular response. If  a scoring weight is large, the 

response is heavily influenced by the trait. For  technical reasons to be discussed later, 

it is assumed that weights take discrete values (0, I, 2 . . . .  ). For  the traits whose 

weights are not zero, a larger positive difference between the subject parameter  Oiq and 

the difficulty parameter  6jqx yields a larger probability of  the particular response.  Model  

(1) is a Rasch type model.  As we shall see later, it generalizes many Rasch models such 

as the dichotomous Rasch model and the Partial Credit model. An advantage of  its 

exponential  form is the separability of  the person and item parameters.  
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If the items are dichotomously scored, the MPLT model may be compared to 

Fischer's (1973) LLTM, which also has an exponential form 

e x  x 0 i - r l q Q j  q 

= 1  

e ( x i j  = x l O i )  = 

1 + exp Oi - " r l q Q j q  

= 1  

where Oi is a single subject parameter, ~Tq (q = 1, . . .  , s) are component difficulty 

parameters and Qjq ( j  = 1 . . . .  , k; q = 1, . . .  , s) are weights. The difference with 

the MPLT model is that in the LLTM, the weights Qjq are only applied to the com- 

ponent difficulty parameters and not to the subject parameters. Furthermore, in LLTM 

it is assumed that the component subtasks q do not require a different latent subject 

parameter, whereas in the MPLT model, each component involves a parameter for both 

the item (response) and the subject. 

Fischer's LLRA is like the MPLT model (1) in that it may specify a multidimen- 

sional latent space. LLRA relaxes the LLTM model such that different subject param- 

eters are postulated for each of the items, where each item is administered repeatedly. 

Embretson's (1984, 1985) general latent trait model (GLTM) may contain more than one 

latent trait. The model includes a product of LLTM models, one for each latent trait, 

and a guessing parameter. An important difference between the MPLT model and the 

GLTM is that the former is an exponential family model, and that sufficient statistics for 

the parameters exist. 

Model (1) is completely general in that each item may have a different number of 

answer categories, and for each item response, the user may specify a scoring weight. 

This flexibility allows the specification of models that closely follow theoretical ideas 

that explain what the items are measuring. We now consider some submodels of (1). 

Figure 1 gives some examples of scoring weights that might be employed, and which 

will be used as illustrations in the section to follow. In Figure 1, several choices ofBjq  x 

are given for combinations of x and q. Note that these diagrams each specify the 

scoring weights only for one i temj and that many more specifications of scoring weights 

are possible. 

Some Examples of MPLT Models 

To illustrate the type of models that can be formulated within the general frame- 

work of MPLT models, this section discusses five submodels and some variants. Three 

models are well-known: The Rasch model for dichotomously scored items, the partial 

credit models, and Rasch's multidimensional models. These examples show how the 

MPLT is related to some known IRT models and how the parameters of these models 

can be calculated from the parameters of the MPLT model. Two other models are new: 

A model for items with two correct responses and a multidimensional version of the 

partial credit model (see Wilson, 1989, 1990, for other examples of MPLT models). 

The D i c h o t o m o u s  R a s c h  M o d e l  

Figure la describes the scoring weights for an item following the dichotomous 

Rasch model (Rasch, 1980). A wrong response (x = 0) is scored Bjlo = 0 and a correct 

response (x = 1) is scored Bi l l  = 1. Substituting these scoring weights in (1) and 
omitting the latent trait index q, yields the model 
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so that 

exp [ (0  i -- 6 j x ) X  ] 

P ( x i j  = xlOi) exp [OiO -- 6j00 ] + exp [ O i l  - 6 j l  1] '  (2) 

exp [Oi - 6jl] 
e ( x i j  = l lOi)= 

I + exp  [O i - t~jl ]" 

In (2), 6j0 = 0 since B jl o = 0; otherwise, the model would be indeterminate. Also, one 

additional linear constraint, say 611 = 0, must be imposed in the response parameters 

to fix the scale. 

A Model with Two Correct or Incorrect Responses 

Figure lb describes the scoring weights for an item with three possible responses: 

0, 1, and 2. The responses x = 1 and x = 2 both correspond to a correct answer. For  

example, the question: "Wha t  is the value o f x  in x 2 + 2 = 6 ? " ,  may be answered +2 

or - 2 .  In the model of Figure lb it is assumed that both correct responses pertain to the 

same latent trait, but one answer may be more likely than the other since the param- 

eters 6jl and 6j2 may differ. For  items with several distinguishable incorrect responses, 

similar scoring weights may be formulated. 

The Partial Credit Model 

Figure lc also describes an item with three responses, but here each response has 

a different weight. The response x = 2 has the weight 2, x = 1 has weight 1, implying 

that response 2 has a stronger relation to the latent trait than response 1. As before the 

wrong response x = 0 has weight 0 and 6jo = 0. With these scoring weights and 
omitting the latent trait index q, (1) becomes 

exp [(Oi - 6ix)X] 

rj 

Z 
y=0  

P(Xij : x]Oi) = 

1 +  

exp [(0 i - -  6jy)y] 

 Xp[g ,0 1 
~'~ exp (Oi - Ojg) 

y = l  g = l  

where 

(3) 

x x - - l  

~bjx = ~ ~bjg- ~ ~bjg = X S j x - ( X -  1)r j (x-1) ,  
g = l  g = l  

which is the polytomous Rasch model for ordered categories, or the partial credit model 

(Andrich, 1978; Masters, 1982; Wright & Masters, 1982). To distinguish this model from 

a multidimensional Rasch model treated later, the model will be referred to as the 

unidimensional partial credit model (UPCM). 
The partial credit model suggests a useful interpretation of the scoring weights. 
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Each response may be seen as the result of  a series of subsequent steps, each of  which 

has to be passed. To arrive at response x, x steps must be performed. Denote a step by 

9. In step 9 (=  1 . . . .  , x),  there is a cognitive process that requires latent trait Oi. In 

(3), each step enters as a term (Oi - qJjg), where the parameter  Sjg describes the 

difficulty of  step 9 in item j .  The step probability of  giving response x rather  than 

x - I follows a simple dichotomous Rasch model (2) 

P(Xi j  = xlXij  = x or x - 1, Oi) = 
P(Xi j  = xlOi) 

P(Xi j  = xlOi) + P(Xi j  = x - l lOi) 

exp [Oi - $ i x ]  

1 + exp [Oi - ~ j x ] '  

with subject parameter  0 / a n d  response difficulty parameter  ~jx2 ,, 

As an example of  a partial credit model, consider the item ( X / ~  - 6) = ? . The  

partial response "X/9"  is scored x = 1. This is the result of  the first step in the solution 

process.  To arrive at this partially correct  response, the latent trait Oi has to be applied 

once. Fur thermore,  the completely correct  response ``+ 3"  is scored x = 2. To produce 

response "---3",  ability Oi has to be a a_pplied twice, once to do the first step 15 - 6 = 9, 

and once to do the second step V 9  = +3. The steps concept  leads to the scoring 

weights Bjlx = x (x = 0, 1, . . .  ), defined as the number of  steps (involving trait 1) 

needed to arrive at the response starting from category zero. In this example it is 

assumed that there is one arithmetic latent trait. In the next  example,  we will consider 

a model that postulates two latent traits. 

The steps concept  may also be adopted in the general context  of  (1) where Bjqx is 

the number  of  steps or cognitive processes (involving trait q) necessary to arrive at 

response x starting from zero. Note  that, in general, the results of  these steps are not 

necessarily observed as responses.  For  example,  if the partial response " 9 "  is not 

observed,  there are two responses,  incorrect  (x = 0) and correct  "---3" (scored, say, 

x = 1). The correct  response " - 3 " ,  however,  may still be viewed as the result of  two 

steps, "15 - 6 = 9"  and "X/'9 = 3" .  This leads to the scoring weight Bi l l  = 2, as 
depicted in Figure 1 d. 

Rasch  Mult idimensional  Model  

In Figure le  the responses x = 1 and x = 2 each depend on a different latent trait, 

both with scoring weights equal to one. Thus,  with q = I ,  2, and x = 0, 1, 2, we have 

Bjq x = 1 if q = x, and Bjq x = 0, otherwise. Substituting these scoring weights in (1) 

yields 

exp [ 0 ix - 6jxx ] 
P(Xl j  = xlOi) = , (4) 

rj  

1 + ~ exp [Oig - 8jgg] 
g = l  

for  x = 1, 2, and 

e ( x u  = olo~) = 
rl 

I +  ~ e x p [ 0 i g - ~ j g g ]  

g = l  
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for x = 0. This is the multidimensional Rasch model described by Rasch (1961) and 

Andersen (1973), where each category x = I, . . .  , rj depends on a different latent trait. 

Andersen applied the model to multiple choice items on job  satisfaction. In the cogni- 

tive domain, the model may be applied to free response items where different responses  

pertain to different solution strategies. 

For  example,  the question "Wha t  are the roots of  the equation x 2 + x - 2 = 0 ? "  

may be solved by substitution of  a = 1, b = 1, and c = - 2  in the learned formula 

[ - b  +-- V ' (b  z - 4ac)]/2a,  or  it may be solved by rewriting it as (x  - 1)(x - 2) = 0, 

and choosing x so that a factor  becomes zero. I f  a response indicates that the first 

strategy is used (x  = I) ,  it is hypothesized that the response required latent trait Oil ; 

if  the response indicates that the second strategy is used (x = 2); latent trait 0i2 is 

assumed. Andersen (1983) also describes a generalization of  the multidimensional Ra- 

sch model,  depicted in Figure If, where each response depends on its own latent trait 

but  the item weights are not all equal to one. 

A Mult idimensional  Partial  Credit  Mode l  

Figure Ig describes a multidimensional partial credit  model (MPCM) where  each 

step depends on a different latent trait. The correct  response x = 2 has scoring weight 

BjI 2 = 1 on the first trait and scoring weight B j2 ~ = 1 on the second. The  partially 

correct  response x = 1 has scoring weight By11 = 1 on the first latent trait, and the 

incorrect  response x = 0 has weight zero. Substituting these scoring weights in (1) 

yields 

P(Xij  = x l 0 1 )  = q = 1 

I 1" 1 +___~ exp (0 iq - ~Joy) 
y = l  q = l  

However ,  there is an indeterminacy between the difi~culty parameters  8jqx of  different 

responses  x within the same latent trait q and item j .  Because the response difficulty 

parameters  for  response x enter  the model through Zq=lx 8jqx, only, adding a constant  

c t o  ~jqy and subtracting it f rom 8jqy, (1 ~- y '  <- x ,  I <- y ~- x ,  y '  # y ) ,  does not change 

the model.  This indeterminacy can be removed by setting the response difficulty pa- 

rameters  of  the same response x equal to each other;  that is Ojq = ~jqx for  x = 1 . . . .  , 

r j ,  giving 

exp  ~ (Oio - Ojq) 

P ( X o  = xl0D = q ~ 1 .................... (5) 

1 +_..~ e x p  (Oiq - i~tjq) 
y = , t  q - - I  

In the MPCM (5), like in the UPCM (3), each response may be seen as the result 

o f  a series of  subsequent steps. To arrive at response x, x steps q (=  1 . . . . .  x) must 

be performed.  In the MPCM, each step depends on a different latent trait Oiq. From (5) 

it is readily shown that, as in the one-dimensional partial credit model, the step prob- 

ability P(Xi j  = xIXij  = x or x - 1, 0i) of  giving response x rather  that x - 1 follows 
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a simple dichotomous Rasch model (2) with subject parameters Oiq and response dif- 

ficulty parameter d/jq. 

The MPCM might be an alternative model for the item "%/(15 - 6) = ?".  The first 

step "15 - 6 = 9" requires "subtraction" depending on the latent trait 0il and the 

second step "V:9 = ±3"  requires "taking the square root" depending on 0i2. The 

partial response 9 (or vr9) pertains to Oil and the complete response -+3 pertains to both 

0il and 0i2. 

Figure lh is a two-dimensional model for a dichotomous item. This model can be 

obtained from the MPCM in Figure lg by omitting the partial response and relabeling 

the complete response as x = 1. The model is a two-dimensional Rasch model. Just as 

in the MPCM, the latent traits may be related to subsequent steps in the solution 

process. Obviously, a combination of UPCM and MPCM, where there are different 

latent traits but some operations depend on the same latent trait, is also possible. Figure 

li, for example, may model the item %/(20 - 5 - 6), where there are two subtractions 

and one square root. 

We have discussed some examples for scoring weights. There may be many other 

choices for scoring weights than shown here that make sense in a particular application, 

and moreover, different items may have different patterns of scoring weights. For 

example, one item may follow the dichotomous Rasch model, and another item the 

partial credit model, and so on. 

Estimation and Testing 

In this section conditional maximum likelihood estimates of the response param- 

eters are derived. The model is formulated for the joint responses of k items. By 

conditioning on sufficient statistics for the subject parameters, a quasi-loglinear model 

arises that contains item response parameters only. The maximum likelihood equations 

for this model can be solved by standard methods, and can be tested by overall good- 

ness-of-fit tests or compared with alternative loglinear models. 

To simplify subsequent equations, write the weighted sums over latent traits of the 

item response parameters as a single parameter, 

so that (1) becomes 

where 

$ 

dPjx = -- Z 8 jqxBjqx '  
q = l  

P ( X  U = x l O i )  = 

exp [ q ~ = l  Oiqnjqx + ¢~jx] 
C(01, • j )  

, ( 6 )  

c(a/, ,l,j)-- 
r ] 

e x p  OiqBjqy + ~bjy , 

y=0 q = l  

is the proportionality constant. Note that if we allow ¢kjx in (6) to be nonzero when the 

B j l  x , . . .  , B j s  x are all equal to zero, the model becomes slightly more general than (1). 
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This relaxation allows a variable that is unrelated to all latent traits to have different 

probabilities for each of  its response categories. In this case, (6) becomes 

exp [4~jx] 
P(Xij  = x) = (7) 

rj 

~'~ exp [q~Jr] 
y = O  

This relaxation is useful to add one or more background variables (e.g., sex or age) to 

the model. 

Denote the joint observed random response variables by x i = (X i l ,  . . .  , X ik) ,  
which can take values xi = (xil  . . . . .  Xik). Assume that the Xij  are conditionally (or 

locally) independent of  each other given the latent traits 0i = (0il ,  . . .  , Ois): 

k 

e ( x i  = xilO~) : I1  e(xij : xii loi) .  (8) 
j = l  

Let  &j = (~bjo . . . . .  C~jr) be the vector of  response parameters of  item j ,  t i q  = ~'?=1 
Bi~x is subject i 's sum of scoring weights for latent trait q, and T i a  is the corresponding 

random variable. Substitution of (6) in (8) gives the joint distributio of Xi g" en 0i, 

P ( X i  = xilO/) = exp Oiqtiq + ~ 4~j~o I-[ [c(Oi, 4~i)-1]. (9) 
1 j = l  j = l  

Model (9) is an exponential family model and t i = ( t i l ,  . . .  , t i s )  is a sufficient 

statistic for 0i = (Oil . . . . .  Ois). Intuitively, we can see that the Oiq influence the 

probability of Xi = xi only through the sums of weights t i q  ( q  = l ,  • • • , s ) .  Note that 

in the dichotomous Rasch model (Bjlx = x, x = 0, 1), t i l  is equal to the number of  

correct responses. More formally, sufficiency of t i for Oi implies that the conditional 

distribution of  Xi given t i is independent of 0i for all t i (Lehmann,  1983, p. 36). To show 

this, we derive the simultaneous distribution of  the weight sum variables T i = 

( T / t ,  . . .  , T i s )  and divide it into the distribution of  Xi. 

Let  Y~x, ltt denote summation over all possible values of  the item response vector xi 

for which the weight sum vector equals t i. Applying this sum operator to the joint 

distribution (9) of  Xi given 0i, yields the distribution of  T i given 0i: 

P ( T i  = t i lOz)= ~ P(Xi = xilO~)= y( t / ,  * )  exp Oiqtiq H c(Oi, ~j)--l, 
xilt~ 1 j = 1 

( lo)  

where 

with ~ = ($10, - • " , 4~1r,, - - -  , 4'k0, - . -  , 4'kr) is a generalization of  the well-known 

elementary symmetric function. 

The conditional distribution of X i given t i and 0/ is obtained by dividing the 

distribution (9) of Xi given 0i by the distribution (10) of T i given 0i: 
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P ( X i  = xil0i)  
e ( x i  = xi l t / ,  0i) --- 

P ( T i  = til01) 

ex,[  t 
T(ti ,  ~b) 

= P ( X i  = x / I t / ) ,  ( I I )  

which no longer depends on 0 i. On the basis of  (I 1), c o n d i t i o n a l  m a x i m u m  l i k e l i h o o d  

e s t i m a t e s  can be obtained for the item response parameters ¢b. Using (1 I) rather than 

(9), there is no need to estimate the latent trait parameters 0i for  each subject i, nor  do 

we need to assume a particular distribution for the latent traits. It is well-known that 

estimating both  the ¢b and 0i parameters  in (9), produces inconsistent estimates because 

the number  of  subject parameters  0i goes to infinity as the number  of  subjects goes to 

infinity (Neyman & Scott,  1948). So by conditioning out 0 i, this problem is neatly 

avoided. 

Model (11) can be reformulated as a quasi-loglinear model for  the f requency of  a 

generic response pattern x given each weight sum pattern t, where the subject index i 

is dropped. Le t  N t be the number of subjects with weight sum pattern t, and P(X = xlt) 

be identical to (1 I) without the subject index. The conditional expected frequency of  the 

response pattern x given score vector  t is then 

mxt = N t e ( x  = xlt), (12) 

x = (x 1 . . . .  , x k ) ; x  1 = 0 . . . . .  r l ; . . .  ; x  k = O, . . . ,  r k ; t  = ( t l , . . . ,  t s ) ;  t l  = 

Y . f=l  B j l x j ;  . . .  ; t s  = Y f = l  B j s x j .  Taking logarithms, we have the loglinear model,  

k 

log mxt = oft + ~'~ q~jxj. (13) 
j = l  

Here,  cr t = log (Nt/~,(t, 4))  is a proportionality constant and 4~jxj(J = 1, . . .  , k; xj = 

O, . . . ,  r j )  are item response parameters to be estimated. 

Model (13) is a quasi-loglinear model for  an incomplete (Item 1 × Item 2 × • • • × 

I tem k × weight sum 1 × • • • × weight sum s) contingency table with expected counts  

mxt if  tq  = B l q x ~  + • • • + B k q x k  , (q = 1, . . .  , s),  and structurally zero counts  for  

tq  # B l q x l  + • • • + Bkqxk ,  ( q  = 1, • • • , S) .  Because of  this incompleteness,  the model 

is called quasi-loglinear rather than loglinear (Bishop, Fienberg, & Holland, 1975; sec. 
5.4; Haberman,  1979, sec. 7.3). 

Unless further restrictions are placed on the d~ parameters,  they will not be iden- 

tifiable in general (see, for example, our discussion of the MPCM). To formulate iden- 

tifiability conditions for (13), let log be an element-wise operator ,  mt is the vector  of  

expected counts of  all response patterns x with sums of  weights t, d~ = ($10, • • • ,  

~bkr)', 1 = (1 . . . .  , I)' is a vector  of  ones and D t is the design matrix with zero ' s  and 

ones in the appropriate places. Then,  (13) can be rewrit ten as 

log mt = o' t l  + Dtgb, (14) 

The identifiability criteria are then (Imrey, Koch,  & Stokes, 1981): 

rank [1 Dt] = 1 + rank [Dt],  (15) 
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and 

rank [D] = a, (16) 

where D' = [D~, . . . ,  D~m~], and a is the number of columns of D (i.e., the number of 
parameters). Condition (16) ensures that the tk parameters are not linearly dependent 

upon each other, and condition (15) ensures they are not linearly dependent on the 

proportionality constants o" t. 
If D does not satisfy these identifiability conditions, linear restrictions must be 

imposed on the parameters. Parameters that are linearly dependent on other parameters 

may be set to zero, which is equivalent to removing certain columns of D. Sometimes 

other identifying restrictions, such as setting sums of parameters to zero, enhance the 

interpretability of the parameters. An example of this will be given later. In deriving the 
likelihood equations, it is assumed that the identifiability conditions are met. 

Let fxt be the observed number of subjects with (x, t), and l e t f  xj be the marginal 

observed frequency of response xj on itemj. If it is assumed that the subjects respond 

independently of one another and t is considered fixed, the item response patterns have 

a product-multinomial distribution. Then, the observed data have the log likelihood 

t xit 

= t'~ x~lt fxt (j ~=1 ~bjxj+trt) +cOnstant 
k 

= ~_~ 4~jxjf~ ~ + ~ Nttrt  + constant. (17) 
j=l t 

Here, the second equation is obtained by substitution of (13). Let mxX/be the marginal 

expected frequency of response xj and let Nt and m T be the observed and expected 
frequencies of weight sum t. Model (11) is an exponential family model with sufficient 

statistics fx~. Maximum likelihood equations can be obtained by taking the derivatives 

of the log hkehhood (17) for ~b and settmg them to zero (Haberman, 1979): 

mxi ,  x j = O , . . . ,  rj; j =  1 . . . .  , k, 

Nt = mt T, for all t. (18) 

Solving (18) for the parameters ~bjx yields maximum likelihood estimates. The 

solution can be obtained by iterative methods, such as iterative proportional fitting 
(IPF) or Newton-Raphson, that are standard in the analysis of incomplete contingency 

tables by loglinear models. See Bishop, Fienberg, and Holland (1975, chap. 5) or 
Haberman (1979, chap. 10) for a more complete account. Kelderman (1992) describes 

an algorithm especially constructed for the analysis of loglinear IRT models, which is 

implemented in the LOGIMO (Loglinear IRT Modeling) program (Ke!derman & Steen, 
1988). LOGIMO is a Pascal program running on a VAX/VMS ol a 386 or higher 

PC/MS-DOS system. It can be obtained from iec P r o G A M M A ,  Box 841, 9700 AV 

Groningen, The Netherlands (E-mail: gamma@rug.nl). 
Methods for exact overall goodness-of-fit tests for loglinear models are described 

by Baglivo, Olivier and Pagano (1992) but they cannot be used when there are more 
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than a few variables. Therefore we are limited to asymptotic overall goodness-of-fit 
statistics such as Pearson's goodness-of-fit statistic (X 2) and the likelihood-ratio sta- 

tistic (G z). These statistics are asymptotically distributed as chi-square with degrees of 

freedom equal to the difference between the number of cells that are not structurally 

zero and the number of independent model parameters. If, however, the expected 

counts become too small, the approximation of the distribution of the overall likeli- 

hood-ratio statistic and the Pearson statistic by a chi-square distribution becomes poor 

(Koehler, 1977, 1986; Lancaster, 1961). Koehler (I986) shows however that if the 

number of cells and the number of subjects both become large and the expected counts 

are bounded below by some positive constant, the chi-squared approximation of the 

Pearson statistic is satisfactory, especially for tables in which the expected frequencies 

are not too different. If the expected frequencies are widely different however, the 

Pearson goodness-of-fit statistic will be too conservative and the likelihood-ratio sta- 

tistic too liberal (Koehler, 1986, Table 3) and neither should be used to assess the fit of 

the model. See also Read and Cressie (1988) for a discussion of various overall good- 

ness-of-fit statistics for discrete multivariate data. If such overall goodness-of-fit sta- 

tistics cannot be used because of small cell counts, we can use statistics that are 

computed from contingency tables where cell counts are added together. By grouping 

cells together the chi-squared approximation of the statistic will generally improve. 

The cells of the contingency table may be grouped into an item response × weight 

sum (marginal) contingency table. Such statistics are especially sensitive to misspeci- 

fication of the items' B-weights, the most important aspect of the model. For each of 

these grouped contingency tables the corresponding X 2 statistic is again distributed as 
chi-square with degrees of freedom equal to the number of independent cell counts. We 

will reject a B-weight specification if the right tail probability of the test statistic ex- 

ceeds the conventional .05 level. If misspecifications with these statistics are detected, 

residual plots may then be studied to generate ideas on how B-weights may be changed 

to improve model fit. The statistics based on the item response x weight sum table can 

be seen as generalizations of the van den Wollenberg (1982) Q1 statistics for testing the 

dichotomous Rasch model. 
If several alternative models are available, it is useful to first compare the fit of 

these models before looking at their absolute fit. For this purpose statistics based on the 

likelihood ratio are more appropriate. 
The likelihood ratio test statistic can be used if one model, say M, is a special case 

of another model, say M*. Let m* denote the expected counts under the larger model. 
The likelihood-ratio test statistic comparing both models is then 

G2(m, m*) -2 (Lc  * = - L c ) ,  (19) 

which is asymptotically distributed as chi-square with degrees of freedom equal to the 
difference in numbers of linearly independent parameters of both models (Rao, 1973, 

pp. 418--420). Haberman (1977) showed that for large sparse contingency tables the 

chi-squared approximation of the likelihood-ratio statistic is appropriate when the dif- 
ference in the degrees of freedom for the two models is much smaller than the total 
number of observations. This will usually be the case when comparing MPLT models. 

A drawback of this statistic is however that the two models must be nested, which is 

often not the case when comparing MPLT models. 
Akaike's (1977) information criterion is useful when two models are not nested. 

The statistic in that case is 

AIC = G 2 + 2 (#  of parameters) + C, 



162 PSYCHOMETRIKA 

where C is a constant that is the same for all models fitted to the same data. The model 

with the smallest AIC (or AIC-C) is chosen as the best fitting. This procedure can be 

used to compare the fit of different MPLT models, as illustrated in the second example. 

Examples 

In this section MPLT models are applied to two sets of data. The first is a set of 

simulated data generated under a MPLT model, which gives an opportunity to compare 

the estimated parameters with their true values and the observed goodness-of-fit sta- 

tistics with their expected values. The second example is a set of empirical test data that 

allows the testing of different hypotheses about the underlying latent structure. Both 

examples illustrate the analysis of data where different item responses have different 

latent trait specifications. 

A n a l y s i s  o f  S i m u l a t e d  D a t a  

For the simulated data, there are eight items (one item with four possible responses 

and seven dichotomous items). Item 1 follows a three dimensional partial credit model; 

the dichotomous Item 2 also depends on all three latent traits. The remaining Items, 3 

through 8, each follow a dichotomous Rasch model, where each latent trait is related to 

two of these items. Table 1 gives the model equations for this model (A). 

Response patterns x i l ,  • • • ,  xi8 (i = 1, . . .  , 14,000) were each generated in the 

following way. First, three latent trait values were drawn from a multivariate normal 

distribution N(O, X) with 

X = 

1.00 0.05 0.20 

0.05 0.82 0.05 

0.20 0.05 0.68 

These numbers are chosen to have some variation in variances and covariances. Sec- 

ondly, item responses are generated according to the model equations in Table I with 

the true 8 parameters in Table 2. The item response parameters and latent trait vari- 

ances were chosen so there was some variation in their values, but not producing 

extreme response probabilities (that is, between .20 and .80) for most of the subjects. 

The data are analyzed with three models: A, B and C. Model A is the model under 

which the data are generated; Model B is a two-dimensional model that arises if the first 

two latent traits are assumed to be identical, and its model equations can be obtained 

from Table I by setting Oil and 0i2 equal to each other; Finally, Model C assumes that 

there is only one latent trait, and arises if all three latent traits are assumed equal. All 

three models correspond to a loglinear model (13) with different scoring weights. 

Table 3 shows the goodness-of-fit statistics for Model A, B, and C. Model B and C 

do not fit the data at the .05 level; both using the Pearson goodness-of-fit statistic (X 2) 

and the likelihood-ratio statistics (G2). In contrast, in the correct Model A, the X 2 and 

G 2 statistics are close to their expected value of 413 and do not reach significance. 

The loglinear IRT model estimates the d~ parameters rather than the 8 parameters. 

In Table 1, Model A is also formulated in terms of the ~ parameters; the estimated 8 

parameters of Item 1 can be obtained by subtracting consecutive d~ parameters, 

¢~11 = - - ¢ ~ 1 1  

¢~12 = ¢~11 -- ~12  

¢~13 = ~12  --  ~ 1 3 ,  
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TABLE 2 

True and Estimated Parameter Values of Model A 

611 612 613 621 622 623 631 641 652 662 673 B83 

True Value -.I0 .00 .i0 -.i0 .00 .I0 -.50 .50 -.50 .50 -.50 .50 

Estimated 

Value -.08 -.04 .16 .16"* -.50" ,49 -.50" .52 -.50" .52 

* Parameter is fixed in advance 

** Only the sum of Item 2 parameters is estimable. 

(see Table 1). The estimated 8 parameters of the dichotomous Rasch Items 3 through 

8 are the negative of  the corresponding 4, parameters. Finally, the only 4, parameter of 

Item 2, ~b21 is the sum of the 8 parameters of that item. Therefore, the separate 8 

parameters are not estimable, only their sum. 

Table 2 shows the true and estimated parameter values of Model A. It is seen that 

in this model, the parameter estimates of the Rasch Items, 3 through 8, are fairly close 

to their true values. The item parameters of the multidimensional Items 1 and 2 are 

somewhat at variance with their true values, suggesting that it is probably more difficult 

to recover item difficulties in multidimensional items. In summary, we can say that 

goodness-of-fit tests show the correct model and that parameter recovery is best in 
Rasch items. 

Analysis of Raven Type Test Items 

As an empirical example, we reanalyze the responses of 1464 subjects (age 7.5 thru 
14) to four matrix items from the Standard Raven Progressive Matrix test (Raven, 

Raven, & Court, 1991). The data are collected by Linda Vodegel-Matzen of the Divi- 

sion of Developmental Psychology of the University of Amsterdam. 
Figure 2 and 3 show two matrix items. To protect the security of the Raven 

problems, none of the actual items from the test are depicted here. Instead, the items 

are illustrated with isomorphs that use the same rules but different figural elements and 

TABLE 3 

Goodness-of-fit Statistics for Fitted Models 

Model X 2 G 2 DF AIC 

A 407.57 409.19 413 -416.81 

B 968.67 931.33 473 - 14.67 

C 1626.00 1790.45 491 808.45 



HENK KELDERMAN AND CARL P. M. RIJKES 165 

A A A 

A A A 
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Isomorph of Raven matrix Item C4. 

4 

A) 
8 

LA) 
attributes. The numbers in the test of the actual items that were presented to the 

subjects are C4, C9, D7 and D9 respectively, which can be consulted by the readers. 

In Figure 2 and 3 it is seen that each item has eight answer alternatives. The subject 

is asked to choose the picture that s(he) thinks fits the matrix best. These problems can 

be solved by scanning certain rules. Carpenter, Just and Shell (1990) described these 

rules as: (I) quantitative pairwise progression, (II) constant in a row and (III) distribu- 

tion of three values. For example in Figure 2, each row contains one or more triangles. 

The number of triangles is constant in each row. So according to Rule II, the correct 

alternative should have three triangles. This then leaves alternative 3, 5, and 8 as 

possible candidates for the missing picture. The correct alternative can now be iden- 

tified by Rule I, quantitative pairwise progression. 

Quantitative pairwise progression is a quantitative increment or decrement that 

occurs between adjacent entries in an attribute such as size, position or number. In 
Item I this is the number of dots increasing in each row, so that the correct number of 

dots should be three as in Alternative 1, 4, and 8. Combining both rules we have 

Alternative 8 as the correct alternative. 

Studying the interrelations among ability test scores from different data sources, 
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FIGURE 3. 
Isomorph of Raven matrix Item C9. 

Marshalek, Lohman and Snow (1983) concluded that the ability to solve matrix prob- 

lems is central to analytic intelligence. The test is a pure measure of it and does not 

involve disturbing variables like language or declarative knowledge (Hunt, I974). 

Raven himself described the abilities that he intended to measure primarily in 

terms of characteristics of the problem, not specific cognitive processes. This suggests 
that different rules might give rise to a different ability ordering of individuals. In this 

case we might postulate that each rule pertains to a qualitatively different ability trait so 

that the test responses are to be explained by a multidimensional ability space. If, on 

the other hand, the subjects' responses depend on the same cognitive skills regardless 
of the particular rule, it may be enough to postulate only one latent ability trait. 

A relevant piece of research is reported by Carpenter et al. (1990). They studied 

subjects' eye fixations and verbal protocols while solving matrix problems and ob- 

served that 

F i r s t . . .  [the rules] were described one at the time . . . .  Second, the induction of 
each rule consisted of many small steps, reflected in the pair wise comparison of 
elements in the adjoining en t r i e s . . .  (p. 411) 



HENK KELDERMAN AND CARL P. M. RIJKES 

TABLE 4 

Hypothesized weights of Raven Progressive Matrices Items 

Model Item I Pairwise II Constant III Distribution 

Progression in a Row of Three Values 

1 2 3 4 5 6 7 8  1 2 3 4 5 6 7 8  1 2 3 4 5 6 7 8  

167 

a i* 1 1 1 1 1 1 

2 1 Ii II 

3 1 12 ii 

4 21111 

b 1 1 1 1 1 1 1 

2 1 12 11 

3 1 12 11 

4 21111 

c 1 1 1 1 1 1 1 

2 1 12 11 

3 1 12 11 

4 21111 

d 1 1 1 1 1 

2 1 12 11 

3 1 12 i 1 

4 21111 

Response categories recieving a B-weight of 0 in all models are 

collapsed into one category. So, for example for item 1 the response 

categories 2, 6, and 7 are collapsed into one categorie. 

Furthermore they remark that 

One of the most notable properties of the visual scan was the row-wise organiza- 

tion, consisting of repeated scans of the entries in a row. There was a strong 

tendency to begin with a scan of the top row and to proceed downward to hori- 

zontally scan each of the other two rows, with only occasional look backs to a 

previously scanned row. (p. 425) 

This makes the column-wise processing unlikely. Testing for Column-wise processing 

is possible, for example, in Item 1. In this item, constant in a row can be replaced by 

column-wise pairwise progressing and row-wise pairwise progression by "constant in a 

column" (see Figure 2). 

To specify a MPLT model we relate each of the item responses to one or more rules 

and each rule to a latent ability trait. Table 4, Model a, shows hypothesized rule 

specifications for the responses to each of the four items. 

Each number denotes the number of applications of a particular rule. Note that 

Item 1 and 2 involve two rules and Item 3 and 4 only one rule: "Distribution of three 

values". Note from Table 4 that in Item 3 and 4 the correct alternative involves the rule 

twice. Next,  the numbers of Table 4 are used as B-weights in the MPLT model (1). For 

the moment we assume that each rule corresponds to one particular latent ability trait. 

For example for Item 2, Model a, the MPLT model becomes 
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Table 5 

Akaike's Information Criterion Statistics for Raven Data 

Model Traits Loglinear Model Npar AIC DF 

a I,II,III 

a I I+II,III 

a 2 I+III,II 

a 3 I,II+III 

a 4 I+II+III 

O None 

[l]...[4][I,II,III] 

[l]...[4][I+II,III] 

[l]...[4l[I+III,II] 

[1]...[4][I,II+III] 

[l]...[4][I+II+III] 

[I]...[4] 

60 866.59 1020 

42 908.74 1038 

38 872.79 1042 

38 888.64 1042 

27 912.95 1053 

20 1329.97 1060 

b I,II,III 

c I,II,III 

d I,II,III 

[i]... [4] [I,II,III] 68 848.50 1012 

[i]... [4] [I,II,III] 68 856.70 1012 

[i]... [4] [I,II,III] 68 825.26 1012 

p ( x i 2  = 1 [ 0 i )  = C21 exp  [Oi~ - 8211]  

p ( x i 2  = 61Of) = c21 exp  [0il - ~216] 

p ( x i 2  = 7[0i) = c21 exp  [ ( 0 i l  - -  ~217) -{- ( 0 i 2  --  ~227)]  

p ( x i 2  = 8101) = C2 1 exp  [ 0 i 2  --  t$228] 

p(xi2 = 2 or  3 o r  4 or  510i) = c21,  

where c 2 is the proportionality constant,  which is equal to the sum of  each o f  the 

exponentials  plus one.  Note  that for the totally incorrect Responses  2 thru 5, the 

response categories are collapsed into one category in the MPLT model. This category 

then gets a B weight of  zero. This is also done for the completely incorrect alternatives 

in the other items. Note  further that the two item parameters 6217 and 6227 are not 

unique for Response  7; adding a constant c to 6217 and subtracting it from t$227 does  not 

change the model. Therefore only their sum 6217 + 6227 is estimable. 

Model  a can be used as a starting point for the specification o f  some more restric- 

tive models.  To test the dimensionality of  the latent space we set two or three of  the 

latent traits or Oil o r  0i2 o r  0i3 equal to each other. Table 5 gives all models (a I thru a 4) 

where two or more 0 values are set equal to each other. The third column of  Table 5 

gives the loglinear model in concise  notation: Arab numerals denote items and Roman 

numerals the weight sums corresponding to the latent traits. If one or more variables 

are between square brackets, it means that all main and interaction effects of  these 

variables are present in the model. In the loglinear model specification [I, II + III] 

means that latent trait two and three are set equal to one another. In that case there is 

only an interaction between two sumscore variables. Model ~ is the complete inde- 
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Table 6 

Item x Weight-sum Grouped-Goodness-of-Fit Statistics for Raven Data 

Model Item Trait I Trait II Trait III 

X 2 DF X 2 DF X 2 DF 

1 34.03*** 9 17.05"** 4 

2 9.98*** 7 17.16"** 3 

3 4.85 8 

4 5.66 8 

1 24.28*** 9 11.18" 4 

2 2.19 7 2.91 3 

3 4.85 8 

4 5.66 8 

1 21.95"* 9 10.29" 4 

2 2.85 7 .89 3 

3 4.85 8 

4 5.66 8 

1 3.10 9 4.35 4 

2 2.74 7 2.37 3 

3 4.85 8 

4 5.66 8 

* p<.050, ** p<.010, *** p<.001 

pendence model where no traits are specified. Its loglinear model has main effects of  

I tem 1 through 4 but no weight sum effects. 

F rom the AIC values in Table 5 it is seen that the complete independence model 

does not explain the data as well as the other models. Fur thermore,  the three-dimen- 

sional Model a has a bet ter  fit than the one-dimensional Model a 4, and also a bet ter  fit 

than the two-dimensional Models a I thru a 3 . 

To  test whether  Model a fits the data in an absolute sense, the van den Wollenberg 

Q1 type statistics are computed for each of  the grouped item response x weight sum 

contingency tables. Because the weight sum is a sufficient statistic for  the latent trait, 

the Pearson fit statistics are sensitive to a lack of  fit of  the responses of an item with 

respect  to the particular latent trait. If  the fit is bad it indicates that the choice of  

B-weights is incorrect.  

Looking at Table 6, it is seen that I tem 1 and I tem 2 have some lack of  fit with 

respect  to both weight sum I and II. Considering the specification of  the B-weights, it 

seems that the application of  the pairwise-progression rule is misspecified in I tem 2. 

Looking at Figure 3, it is seen that for the partially correct  alternatives 1 and 6 the 

pairwise progression rule can be applied to the position of the dot with respect  to the 
small ellipse whereas in the correct  alternative 7, the pairwise-progression rule can also 

be applied to the small ellipse in relation to the larger ellipse. Therefore  it can be argued 

that the B-weight o f  Response 7 with respect to Rule I should be 2 rather than 1. Making 
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Pearson residuals for responses of Item 1 against Weight Sum I. 

this change gives Model b (see Table 4). In Table 6 it can be seen that the fit of item 2 

in Model b has now become quite satisfactory, but the fit of Item I is still bad. 

Considering the specification of Item 1, we cannot see a priori reasons to change 

the size of any weights. One possibly different specification for Item 1 has been dis- 

cussed before, column-wise processing rather than row-wise. In the columns, the num- 

ber of dots is constant. Using the constant-in-a-column rule, Alternative 1, 4, and 8 

become partially correct alternatives. Likewise the number of triangles can be obtained 

by applying pairwise progression in column-wise way, giving 3, 5 and 8 as possible 

answers. In Model c the B-weights of Item I are changed in such a way that they are 

in accordance with column-wise processing. It is seen in Table 6, however, that Item 1 

still has no good fit to the data. 

Because no further a priori reasons could be found to propose a different model for 

Item I, it was decided to look at the residuals of this item. In Figure 4 and 5, the Pearson 

residuals for the six responses of Item I are plotted against the weight sum I and II 

respectively. Looking at Figure 4, it seems that Response I does not fit the data very 

well. More responses than expected are given for low values of the weight sums and 

less responses are given for high values of the weight sums. This is an indication of a 

scoring weight of Response 1 that is specified too large. A plot against weight sum II 

(see Figure 5) gives a similar picture. From Figure 4 and 5 we can also notice a slight 

overspecification of Response 5. The frequencies of occurrence of the partial Re- 

sponses 1 and 5 (17 and 24) are also considerably lower than those of the partial 

Responses 3 and 4 (151 and 169). 
There are two visual differences of Response I and 5 when compared with Re- 
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Pearson residuals for responses of Item 1 against Weight Sum II. 

sponse 3 and 4. The first concerns the complexity of the responses. This does not show 

itself in Figure 1, but is clear in the original item C4. Response 3 and 4 both have 25% 

more figure elements in the picture than Response 1 and 5 (the correct Response 8 has 

50% more). Forbes (1964) noted that: "A person of greater intellectual ability adopted 

the principle that the most complex figure must be the right one, or adopted some more 

or less arbitrary method of reasoning" (p. 232). This may account for the greater 

attractiveness of Responses 3 and 4. The second difference concerns the location of the 

response in the matrix. Response 3 and 4 are adjacent to the missing entry whereas 

Response 1 and 5 are not. On the influence of this adjacency on the subjects response, 

Hunt (1974) remarked that: "We have no theory to guide us here, but empirical obser- 

vations of error patterns in Set II problems [of the Raven test] Forbes (1964) suggest 

that the elements adjacent to the m33 element [the missing entry] (i.e., m32 or m23) 
should be used. [are more attractive]" (p. 141). 

From these observations, it is hypothesized that the weights of Response 1 and 5 

are zero rather than one. In this way Model b is changed into Model d. It is seen from 

Table 6 that all four items have a good fit in Model d. Also model d has the smallest AIC 

value (see Table 5). The overall Pearson and likelihood-ratio goodness-of-fit statistics 

may not be used because there are too many small expected frequencies (e.g., 0.03) and 

they differ too much in size (e.g., 0.03 and 62.00). As remarked earlier, in these cir- 

cumstances it can be expected from Koehler (1986, Table 3) that, the likelihood-ratio 

statistic (G 2) is probably too liberal and the Pearson goodness-of-fit statistic (X 2) too 

conservative. For model d this is confirmed, G 2 and X 2 are 689 and I 119 respectively 

on 1012 degrees of freedom, so that G 2 indicates a fit too good to be true (p = .99) and 
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TABLE 7 

Phi Parameter Estimates (and Standard Errors) of Model d 

Response I t em 

1 2 3 4 

(.27) + (.12) 1 -1.47 

2 0.001 

3 1.493 

4 1.702 

5 -1.13 

6 0.001 

7 0.001 

8 3.944 

.14 

.14 

.23 

.13 

1.222 0.001 

0.001 1.416 

0.001 0.001 

0.001 1.856 

0.001 4,347 

0.462 (.14) 0.001 

3.,505 (.i0) 0.326 

0.643 (.16) 1.596 

3.457* 

.15) 0.546 

1.136 

.13) 0.856 

.ii) 0.736 

0.001 

(.21) 0.001 

(.14) 0.001 

(.09) 

(.14) 

(.12) 

(.13) 

(.13) 

The correct answer is underlined 

÷ Standard errors are between brackets. 

1 Incorrect categories collapsed, parameter fixed at zero 

2 _Sjlx ' 3 _Sj2x ' 4 _(Sjl x ÷ 8j2x), 5 _(28jlx ÷ ~j2x), 

6-~j3x, 7 _2~j3 x 

X 2 a bad fit (p  = .01). From the Q1 type statistics in Table 6, however ,  we can 

conclude that model d has an acceptable fit to the data and must  be preferred to the 

other  models.  

Table 7 shows the LOGIMO estimates of the dpj x parameters  of Model d. The 4, 

parameters  for the incorrect parameters  are set to zero so that the 4, parameters can 

easily be related to the ~ parameters  in the following way: 

~bjx = --BjL~ if BjL~ = 1, Bj2~ = O, Bj3~ = O, 

q~jx = - ( 2 8 j l x  + 8j2x) if Bjtx = 2, Bj2,: = 1, Bjax = O, 

~bjx = -~j2x if Bjlx = O, By2x = 1, njax = O, 

'bjx = - ( 6 j t x  + 6j2x) if Bjlx = 1, Bj2x = 1, Bj3x = O, 

Ckjx = -S j3x  if Bjlx = O, Bj2x = O, Bj3x = 1, 

~bjx = -2Bj3x if Bjlx = O, Bjz~ = O, Bj3x = 2, 

Comparing the alp-parameters of the items we  can see from Table 7 that Item 3 is 

easier than Item 4. Looking within the items we  can see that for all items the partial 

correct answers are more attractive than the incorrect response categories. 

A convenient  w a y  to interpret the item parameters is to look at a graphical repre- 

sentation of the item characteristic function (ICF). For example, in Figure 6 three 
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FIGURE 6. 
Three dimensional plot of the Item Characteristic Function of Item 2 for: (a) the incorrect response categories 
2, 3, 4 and 5; (b) the partial correct response category 1; (c) the partial correct response category 6; (d) the 
partial correct response category 8; (e) the correct response category (7). 

dimensional plots of the ICFs of the different response categories of Item 2 are given. 
The axes in the horizontal plane correspond with the latent traits 01 (in the front) and 

02 (in the back) that are related to the quantitative pairwise progression and constant-in- 
a-row rule respectively. The vertical axe gives the probability for the given response 

category for different values of 0t and 0 2 . 

Figure 6a corresponds with the incorrect response Categories 2, 3, 4 and 5. Sub- 

jects with low 01 and 0z values have a high probability of choosing one of these 
categories. Figure 6b and Figure 6c correspond to the partial correct Alternatives 1 and 

6 respectively. Subjects with a high 01-value and a low 0z-value are likely to choose 
category 1, and to a lesser extent category 6. On the other hand, subjects with a low 

01-value and a high 0z-value are likely to choose the partial correct Alternative 8 
(Figure 6d). Finally, only those subjects that have a high 01-value and a high 0z-value 

have a high probability of choosing the correct Response 7 (Figure 6e). Notice also from 
Figure 6e the steep climbing of the ICF in the 01 -direction due to the heavier B-weight 
for the 01 -dimension. Similar kind of plots and interpretations can be given for the other 

items. 
The pattern described above might be expected when subjects solve the items 
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according to the rules described. Most of the competent subjects arrive at the correct 

response by applying the rules correctly. The less competent subjects, however, get 

distracted along the way by the partial correct alternatives and the ambiguity of the 

rules. An explanation for not arriving at the correct response could be a lack of ex- 

haustive processing. Maistriaux (in Raven, Raven & Court, 1991) " . . .  identified one 

chief cause of error as an unwillingness to devote mental energy to solve abstract 
problems" (p. 8). 

Discussion 

In this paper the specification, estimation and testing of multidimensional latent 

trait models for polytomous data is described. The models seem pre-eminently suited to 
analyze cognitive data because latent traits can be specified at the level of responses 

rather than variables. It is shown how some models of the Rasch family, such as the 

dichotomous Rasch model, the multidimensional Rasch model, and partial credit model 

can be specified as MPLT models. Moreover some extensions of these models are 

described in this paper. Other examples of models that fit the general MPLT framework 

are proposed by Wilson (1990) and Embretson (1991). These models are rather regular 

in the sense that each item essentially follows the same model. The analysis of data with 

MPLT models is illustrated on two sets of data that require a different model for each 

item. 

This paper focuses mainly on psychometric modeling, but it should be noted that 

in practical applications of MPLT models in psychological and educational research, 

issues of test construction, test design and theoretical analysis are also important. 

MPLT models can best be applied to well-designed tests where definite hypotheses of 

the behavior elicited by the test items are available. Preceding model specification, the 
measurement properties of test items may be studied by collecting protocols of students 
solving the problems while thinking aloud (Newell, 1977). The protocols are then an- 

alyzed looking for cognitive operations and knowledge that people mobilize to solve the 

problems. This description should be related as much as possible to cognitive theory 
and it should reflect individual differences. With this information a MPLT model may 

be specified. Methods based on linear programming with logical constraints may be 

used to determine the best selection of items from the item pool for a certain measure- 

ment goal (van der Linden & Boekkooi-Timminga, 1989; Theunissen, 1985). If the goal 

is goodness-of-fit testing, statistical power may be optimized (van der Linden, August, 

1990, personal communication). If the goal is ability-parameter estimation, test infor- 

mation may be optimized. Further research is needed to find optimum solutions for 

these problems. 
Finally, more work can be done on the improvement of numerical procedures to 

obtain parameter estimates. The LOGIMO program currently uses a procedure to 
compute the expected sufficient statistics in (18) that is a generalization of the summa- 

tion algorithm for the computation of elementary symmetric functions (Fischer, 1974, 
p. 226) in the Rasch model. Although this method is much better than simply summing 
all possible cell counts, it may still expensive for complicated models. 
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