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LOGNORMAL MIXED MODELS FOR REPORTED

CLAIMS RESERVES

Katrien Antonio,* Jan Beirlant,† Tom Hoedemakers,‡ and Robert Verlaak§

ABSTRACT

Traditional claims-reserving techniques are based on so-called run-off triangles containing aggre-

gate claim figures. Such a triangle provides a summary of an underlying data set with individual

claim figures. This contribution explores the interpretation of the available individual data in the

framework of longitudinal data analysis. Making use of the theory of linear mixed models, a flexible

model for loss reserving is built. Whereas traditional claims-reserving techniques don’t lead directly

to predictions for individual claims, the mixed model enables such predictions on a sound statis-

tical basis with, for example, confidence regions. Both a likelihood-based as well as a Bayesian

approach are considered. In the frequentist approach, expressions for the mean squared error of

prediction of an individual claim reserve, origin year reserves, and the total reserve are derived.

Using MCMC techniques, the Bayesian approach allows simulation from the complete predictive

distribution of the reserves and the calculation of various risk measures. The paper ends with an

illustration of the suggested techniques on a data set from practice, consisting of Belgian auto-

motive third-party liability claims. The results for the mixed-model analysis are compared with

those obtained from traditional claims-reserving techniques for run-off triangles. For the data

under consideration, the lognormal mixed model fits the observed individual data well. It leads

to individual predictions comparable to those obtained by applying chain-ladder development

factors to individual data. Concerning the predictive power on the aggregate level, the mixed

model leads to reasonable predictions and performs comparable to and often better than the

stochastic chain ladder for aggregate data.

1. INTRODUCTION

Claims originating in a particular year often cannot be finalized in the same year. Many causes for
delay in the payment process are possible; for example, long-lasting juridical procedures are the rule
with liability insurance. Alongside the reported but not settled (RBNS) claims, a company also needs
to manage claims that are already incurred but are not yet reported (IBNR) to the insurer. For both
types of claims, provisions will be held to meet the future obligations of the insurer toward its policy
holders. In this contribution we concentrate on the prediction of remaining payments for reported
claims.

A broad literature is available concerning deterministic and stochastic models used for loss reserving.
We refer to England and Verrall (2002) for an overview. The methods discussed by these authors are
framed within the context of a run-off triangle like the one in Table 1. The random variable Yij (for i,
j � 1, . . . , t) denotes the claim figure for year of origin (arrival or incurral year) i and development
year j, made up by aggregating the individual claims corresponding with this (i, j) combination. For
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Table 1

Random Variables in a Run-off Triangle

Arrival
Year

Development Year

1 2 . . . j . . . t � 1 t

1 Y11 Y12 . . . Y1j . . . Y1,t�1 Y1t

2 Y21 Y22 . . . Y2j . . . Y2,t�1

� . . . . . . . . . . . . . . .
i Yi1 . . . . . . Yij

� . . . . . . . . .
t Yt1

(i, j) cells with i � j � t � 1, Yij has already been observed; otherwise it is a future observation. As well
as incremental, cumulative, or incurred payments, these random variables can denote quantities such
as loss ratios. The purpose of loss-reserving techniques for aggregate data is to complete this run-off
triangle to a square by predicting future payments.

The present literature on loss reserving mainly describes techniques based on summary triangles like
Table 1. However, some authors recently suggested leaving the track of aggregate claim figures. To
illustrate this statement we quote England and Verrall (2002, p. 507): ‘‘The problem is more with the
data than the methods, since, clearly, it is the estimation of aggregate case reserves which is at fault.
. . . In this respect, models based on individual claims, rather than data aggregated into triangles, are
likely to be of benefit.’’ In some recent publications Taylor and Campbell (2002) and Taylor, McGuire,
and Greenfield (2003, pp. 21–22) put forward this same idea as the future of loss-reserving techniques:
‘‘The triangle is a summary, whose origins are very much driven by the computational restrictions of
a bygone era. . . . Indeed, one can imagine future generations of students, educated on the basis of
such models, finding the compression of data into a triangle quite artificial.’’ Inspired by these quo-
tations, the intention of this contribution is to present a statistical framework to model data sets
containing individual records. Based on the work of Norberg (1993), Haastrup and Arjas (1996) sug-
gested modeling the data from individual claims in a nonparametric Bayesian way with the occurrence
and development of claims modeled as marked point processes. Our contribution interprets the data
from individual claims as longitudinal data and uses the concept of general linear mixed models as a
tool to model them, both in a likelihood-based and in a Bayesian way.

Focusing on the complete individual record data underlying a run-off triangle, the analyst is assumed
to have a data set at hand with the following characteristics (see also Taylor, McGuire, and Greenfield
2003):

1. A unique reference to denote each claim in the data set
2. A record for each payment made for a particular claim and (if available) each change in the com-

pany’s estimate of the incurred loss
3. The arrival and reporting year for each claim, the development, and the calendar year to which a

payment belongs
4. (If available) information concerning specific features of the policyholder (e.g., age and gender).

To represent such an extensive individual data set, let the random variable Y(i, k, j) denote the claim
figure for the kth claim from arrival year i in its jth development year. The number of claims in arrival
year i is denoted by ni, and t(i, k) denotes the development year of the last observation for the kth
claim from arrival year i. As in Table 1, the figures represented by the random variables can be, for
instance, incremental, cumulative, or incurred payments or loss ratios.

For every claim in a unit record data set, repeated measurements (e.g., on incremental, cumulative,
or incurred payments) are taken over a certain period of time, namely, the development of the claim.
In this way it appears natural to interpret the available data in the context of longitudinal data analysis,
which is the analysis of repeated measurements on a group of subjects over time. This stands in contrast
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to cross-sectional data where a response is measured only once per subject. One class of models for
longitudinal data are linear mixed models. Mixed models for longitudinal data became very popular
after the appearance of the paper by Laird and Ware (1982). In this paper we explain how individual
record data sets can be modeled in the context of mixed models and how these models lead to forecasts
for future payments for the reported but not completely settled claims. It it important to point out
that the logarithm of the individual data is modeled and not the data on the original scale. In this way
our models are to be compared with the well-known lognormal regression models for loss reserving (as
summarized in Section 3). Applications of mixed models in the context of credibility theory have been
described before by Frees, Young, and Luo (1999, 2001). This text presents another actuarial domain,
namely, loss reserving, where the models can be useful.

The problem of individual reserving often is encountered in the reinsurance business. The authors’
experience has been that most of the time practitioners apply classical chain-ladder development fac-
tors (based on an aggregate analysis) to forecast future payments of individual claims. This contribution
presents an alternative approach that is based on a sound statistical analysis of the data and leads, for
example, to confidence regions. Section 4 illustrates the presented technique on a case study data set
and compares our results with those obtained using classical claims-reserving techniques, on both the
aggregate and individual levels.

The paper has been organized as follows. Section 2 motivates the use of the general linear mixed
model and contains the necessary statistical background. Section 3 resumes some well-known lognor-
mal regression models that are widely used in claims reserving. Then we describe how loss reserving
based on individual record data sets can be performed within the framework of linear mixed models,
in both a likelihood and a Bayesian way. The paper ends with the illustration of the presented techniques
on the case study data set.

2. GENERAL LINEAR MIXED MODELS

This section motivates the use of general linear mixed models to analyze an individual record data set
as described in Section 1. Alongside this, an introduction to the concepts of mixed models is given.
For more statistical details we refer to Verbeke and Molenberghs (1997, 2000) or Demidenko (2004).

2.1 Motivation

The interpretation of observations on individual claims as longitudinal data was already motivated in
Section 1. Obviously models for the longitudinal data from an individual record data set have to fulfill
certain requirements. First, it should be clear that the number of observed payments per claim is not
necessarily the same for every claim in the unit record data set. Different claims are also observed at
different stages in their development. In the context of longitudinal data one speaks about ‘‘unbalanced
data.’’ Therefore, statistical models are needed that allow the number of measurements (here: payments
or loss ratios) and times of observations to vary among subjects (here: claims). Second, methods are
needed that enable modeling the dependencies among the observations on a certain subject/claim.
Imagine, for instance, that individual cumulative payments are modeled; then observations on the same
claim cannot be assumed to be independent. General linear mixed models are one class of models for
longitudinal data that fulfill these requirements. Moreover, when using mixed models, the deviation of
a particular payment profile from the global average can be modeled explicitly by the inclusion of claim-
specific random effects in the model specification.

2.2 Statistical Background

Linear mixed models extend classical linear models by incorporating random effects in the structure
for the mean. Assume that the data set at hand consists of N subjects (here—again—claims). Let ni

denote the number of observations for the ith subject. Yi is the ni � 1 vector of observations for the
ith claim (1 � i � N). The general linear mixed model is specified as
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Y � X � � Z b � � , i � 1, . . . , N. (2.1)i i i i i

� (p � 1) gives the p fixed-effects parameters. These are fixed, but unknown, regression parameters,
common to all subjects. bi (q � 1) is the vector with the random effects for the ith subject in the data
set. The use of random effects reflects the belief that there is heterogeneity among subjects for a subset
of the regression coefficients in �. Xi (ni � p) and Zi (ni � q) are the design matrices for the p fixed
and q random effects, and �i (ni � 1) contains the residual components for subject i. Independence
between subjects is assumed. Here bi and �i also are assumed to be independent, and we follow the
traditional assumption that they are normally distributed with mean vector 0 and covariance matrices,
say, D (q � q) and �i (ni � ni), respectively. Different structures for these covariance matrices are
possible; an overview of some frequently used ones can be found in Verbeke and Molenberghs (1997,
2000). It is easy to see that Yi then has a marginal normal distribution with mean Xi� and covariance
matrix Vi � Var(Yi), given by

V � Z DZ� � � . (2.2)i i i i

In this interpretation it becomes clear that the fixed effects enter only the mean E[Yi], whereas the
inclusion of subject-specific effects specifies the structure of the covariance between observations on
the same unit or claim. Under the traditional normality assumptions,

Y �b � N(X � � Z b , � ),i i i i i i

b � N(0, D), (2.3)i

it becomes clear that the residual terms model variability within a subject.
Denote the unknown parameters in the covariance matrix Vi with �. Conditional on �, a closed-form

expression for the maximum likelihood estimator of � exists, namely,

�1N N

�1 �1�̂ � X�V X X�V Y . (2.4)� �� �i i i i i i
i�1 i�1

Conditional on �, this is the Best Linear Unbiased Estimator (BLUE) for �, where ‘‘best’’ is in the
sense of minimum mean squared error. To predict the random effects, the mean of the posterior
distribution of the random effects given the data, bi�Yi, is used. Conditional on �, we have

�1ˆ ˆb � DZ�V (Y � X �), (2.5)i i i i i

which can be proven to be the Best Linear Unbiased Predictor (BLUP) of bi (where ‘‘best’’ is again in
the sense of minimum mean squared error). Estimation of � is mostly performed by maximum likeli-
hood (ML) or restricted maximum likelihood (REML). The expression maximized by the ML (L1), re-
spectively REML (L2), estimates is given by

N N
1 1

�1L (�; y , . . . , y ) � c � log�V � � r�V r , (2.6)� �1 1 N 1 i i i i2 2i�1 i�1

N N N
1 1 1

�1 �1L (�; y , . . . , y ) � c � log�V � � r�V r � log�X�V X �, (2.7)� � �2 1 N 2 i i i i i i i2 2 2i�1 i�1 i�1

where ri � yi � Xi Xi)
�1 yi) and c1, c2 are appropriate constants. Equations (2.6)N �1 N �1(� X�V (� X�Vi�1 i i i�1 i i

and (2.7) are maximized using iterative numerical techniques such as Fisher scoring or Newton-
Raphson (for full details, see Demidenko 2004). In equations (2.4) and (2.5) the unknown � is then
replaced with or leading to the empirical BLUE for � and the empirical BLUP for bi. For�̂ �̂ ,ML REML

inference regarding the fixed and random effects and the variance components, appropriate likelihood
ratio and Wald tests are explained in Verbeke and Molenberghs (2000).

The predictor for the conditional expectation :� E[Yi�bi] � Xi� � Zibi is obtained from equationsY*i
(2.4) and (2.5), namely,
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ˆ ˆ ˆY* � X � � Z bi i i i

�1ˆ ˆ� X � � Z DZ�V (Y � X �)i i i i i i

�1 �1ˆ� (I � Z DZ�V )X � � Z DZ�V Yn i i i i i i i ii

�1 �1ˆ� � V X � � (I � � V )Y .i i i n i i ii

Note that this expression can be interpreted as a credibility predictor, because it is a weighted average
of (related to the whole database) and Yi (related to subject i). The credibility weights are �1ˆX � � Vi i i

and � which implies that gets much weight if the residual variability is ‘‘large’’ in com-�1 ˆI � V , X �n i i ii

parison with the total variability. is the BLUP of If the residual terms are modeled independentlyŶ* Y*.i i

(thus �i diagonal for every i), � � is also the BLUP for � �ˆ ˆ ˆY* x� � z� b Y x� �i,n �1 i,n �1 i,n �1 i i,n �1 i,n �1i i i i i

�z� b � .i,n �1 i i,n �1i i

Verbeke and Molenberghs (1997) describe in a detailed way how different types of mixed models can
be fitted with the statistical software package SAS.1 For this paper we also used PROC MIXED from SAS
to do the likelihood analysis in Section 4. For the Bayesian approach to mixed models, the previously
mentioned distributional assumptions are used, together with a prior specification for the unknown
parameters. A Gibbs sampling scheme then is set up to sample from the relevant posterior and pre-
dictive distributions. More details are given in Section 3.2. WINBUGS2 is used for a specific analysis in
Section 4. The availability of standard statistical software packages to analyze longitudinal data and fit
mixed models together with the diagnostic and graphical tools they provide are important advantages
that favor the use of mixed models in a practical loss-reserving context.

3. REPORTED CLAIMS RESERVING USING LOGNORMAL MIXED MODELS

The mixed models for individual loss reserving combine the ideas of general linear mixed models (see
Section 2) with those of lognormal regression models for claims reserving (see below for a brief over-
view). The use of random effects allows us to fit a claim-specific payment profile, by adding claim-
specific behavior to the global payment pattern described by the fixed-effects structure. When analyzing
a concrete data set in Section 4, possible choices for the fixed and random effects are discussed.

As mentioned earlier, only mixed models for the logarithmic transformed individual data are consid-
ered. We briefly review the lognormal regression models that are widely used for loss reserving based
on run-off triangles. Working on the logarithmic scale, claim figures must be strictly positive. Kunkler
(2004) recently presented a possible approach to the (Bayesian) modeling of zero payments in a log-
normal regression model for aggregate data. In further work, the mixed models presented here can be
extended to other distributional frameworks and can be adapted to model zero or negative incremental
payments or censored data by using two-part models based on generalized linear mixed models
(GLMM).

Applied to a run-off triangle like Table 1, the general lognormal regression model is given by

2log(Y) � X� � �, � � N(0, � I), (3.1)

where Y � (Y11, . . . , Y1t, . . . , Yt1)� denotes the observed part of the run-off triangle. This implies that
Y follows a lognormal distribution, namely, Y � LN(X�, �2I). The lognormal model with chain-ladder
type structure for the mean (Kremer 1982)

log(Y ) � � � � �� , (3.2)ij i j ij

1 SAS is a commercial software package (for details see www.sas.com).
2 WINBUGS is an open domain software package and is part of the Bayesian inference Using Gibbs Sampling project (for details see www.mrc-

bsu.cam.ac.uk/bugs).
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is a first example of a widely known lognormal regression model for loss reserving. Hereby �i are
parameters for the arrival years and �j for the development years. For a general model with parameters
in the three directions (arrival, development, and calendar year), we refer to De Vylder and Goovaerts
(1979). Some special cases are the Probabilistic Trend Family (PTF) of models (Barnett and Zehnwirth
1998), where

j�1 i�j�2

log(Y ) � � � � � � � � , (3.3)� �ij i l t ij
l�1 t�1

with the �t parameters for calendar year effects, and the Hoerl curve as in Zehnwirth (1985), with

log(Y ) � � � � log (j) � � j � � . (3.4)ij i ij

To set up the reserves in a run-off triangle, one has to forecast the lower triangle in Table 1, namely,
Yij values with i � j � t � 1.

Recall the notation introduced in Section 1 to describe an individual claims data set. Y(i, k, j) denotes
what has been paid in or up to development year j for the kth claim from arrival (or incurral) year i.
Let nik denote the number of observations available for the kth claim from arrival year i. Y(i, k) �

{Y(i, k, 1), . . . , Y(i, k, nik)}� is the nik � 1 vector that contains the historical data for this claim. Our
model for individual loss reserving is a lognormal mixed model, specified as

W(i, k) :� log (Y(i, k)) � X(i, k)� � Z(i, k)b(i, k) � �(i, k),

b(i, k) � N(0, D),

�(i, k) � N(0, �(i, k)). (3.5)

Here (i, k) refers to the kth claim from arrival (or incurral) year i, � (p � 1) contains the fixed effects,
and X(i, k) (nik � p) is the corresponding design matrix. Also, b(i, k) (q � 1) refers to the random
effects, and Z(i, k) (nik � q) to their design matrix.

The goal of the proposed statistical model is the prediction of outstanding payments for reported
claims, on the basis of a data set with individual claim figures. Denote with Y(i, k, u) a future pay-
ment for the kth claim from arrival year i. Here, u, from unobserved, points at a development year
j � t(i, k). On the logarithmic scale, the random variables that need to be predicted are given by

W(i, k, u) :� log (Y(i, k, u)) � x(i, k, u)�� � z(i, k, u)�b(i, k) � �(i, k, u). (3.6)

In equation (3.6), x(i, k, u) and z(i, k, u) are the p � 1 and q � 1 covariate vectors for the fixed and
random effects, respectively. Dealing with incremental payments, the individual reserve for the claim
under consideration is �u Y(i, k, u). For cumulative payments the individual reserve becomes Y(i, k, T)
� y(i, k, t(i, k)), with T the time horizon in the direction of development years, y(i, k, t(i, k)) the last
observed cumulative payment for this claim, and t(i, k) as in Section 1. Obviously these expressions
can be generalized to arrival-year reserves or the total reserve for the portfolio.

In the sequel of this section both a likelihood-based and a Bayesian analysis of the suggested models
for individual loss reserving are discussed. In the likelihood framework, expressions for estimates of
the reserves on different levels (individual, year of origin, and total), together with an estimate of their
prediction error, are derived. A Bayesian analysis of the mixed claims-reserving model allows simulation
from the full predictive distribution of the different reserves and the empirical calculation of different
risk measures. An illustration of the techniques is given in Section 4.

3.1 Likelihood-Based Approach: Estimates of the Reserves and Prediction Errors

To predict W(i, k, u) in equation (3.6) (and afterwards Y(i, k, u)), the likelihood approach starts from
the BLUP for W*(i, k, u) :� E[W(i, k, u)�b(i, k)]. From Section 2 we know that this is given by

ˆ ˆ ˆW*(i, k, u) � x(i, k, u)�� � z(i, k, u)�b(i, k), (3.7)
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with and (i, k) similar to equations (2.4) and (2.5), but adjusted for the specific setup of theˆ ˆ� b

extensive data set on individual claims. (i, k, u) is an unbiased predictor for both W*(i, k, u) andŴ*
W(i, k, u), in the sense that the expectations of these random variables are equal.

Following Frees, Young, and Luo (1999) the Mean Squared Error of Prediction (MSEP) is given by

2ˆ ˆE[W*(i, k, u) � W*(i, k, u)] � Var[W*(i, k, u) � W*(i, k, u)]

�1
� (x(i, k, u)� � z(i, k, u)�DZ(i, k)�V(i, k) X(i, k))

�1

�1 �1
� X�V X � (x(i, k, u)� � z(i, k, u)�DZ(i, k)�V(i, k) X(i, k))��� �h h h

h

�1
� z(i, k, u)�DZ(i, k)�V(i, k) Z(i, k)Dz(i, k, u) � z(i, k, u)�Dz(i, k, u), (3.8)

where the index h runs over all claims in the data set. In the case of independent residual terms (and
thus �(i, k) diagonal), an analogous expression for the Mean Squared Error of Prediction E[ (i, k, u)Ŵ*
� W(i, k, u)]2

� Var[ (i, k, u) � W(i, k, u)] is obtained by replacing the last term z(i, k, u)�DZ(i, k,Ŵ*
u) in equation (3.8) with z(i, k, u)�Dz(i, k, u) � Var(�(i, k, u)). Both expressions for the MSEP are
conditional on the unknown variance components in D and �(i, k). In practice, these are estimated,
say, with REML and are plugged into the appropriate covariance matrices.

So far, only predictions on the logarithmic scale are considered. Predictions for individual profiles
on the original scale of the payments are obtained by taking the characteristics of the lognormal
distribution into account. The following expressions are used:

ˆ ˆY (i, k, u) � exp{W*(i, k, u)},GeoM

1
ˆ ˆ ˆY (i, k, u) � exp W*(i, k, u) � Var(W(i, k, u) � W*(i, k, u)) ,� �Mean 2

2̂ ˆ ˆVar(Y(i, k, u)) � Y (i, k, u)[exp{Var(W(i, k, u) � W*(i, k, u))} � 1], (3.9)Mean

where GeoM stands for geometric mean.
When dealing with incremental payments, the mean of an individual reserve �u Y(i, k, u) is estimated

by

1
ˆ ˆexp W*(i, k, u) � Var(W*(i, k, u) � W(i, k, u)) . (3.10)� � �

2u

To get an idea of the variability of such an individual reserve an estimator is needed for Var[�u Y(i, k,
u)]. According to the characteristics of the lognormal distribution, the following expression is used:

2ˆ ˆY (i, k, u) [exp {Var(W(i, k, u) � W*(i, k, u))} � 1]� Mean
u

ˆ ˆ� Y (i, k, u)Y (i, k, u�)� � Mean Mean
u u��u

ˆ ˆ� [exp {Cov[W(i, k, u) � W*(i, k, u), W(i, k, u�) � W*(i, k, u�)]} � 1], (3.11)

where Cov[W(i, k, u) � (i, k, u), W(i, k, u�) � (i, k, u�)] is computed in Appendix A. Expressionsˆ ˆW* W*
(3.10) and (3.11) can be generalized in a straightforward way to expressions for the mean and variance
of an arrival (or incurral) year reserve and the total reserve. The formulas in this subsection generalize
the expressions from England and Verrall (2002, Section 7.7) to the framework of lognormal mixed
models.

3.2 Bayesian Approach: Toward a Full Predictive Distribution

Note that formulas (3.9), (3.10), and (3.11) within the likelihood context require some programming
using a statistical software package (or spreadsheet) and possibly are subject to discussion. For
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instance, they don’t take the uncertainty into account that is introduced by replacing the variance
components with their estimates obtained via ML or REML. Moreover, the likelihood approach provides
only an estimate of the second moment of the distribution of the reserves and not its full predictive
distribution. In light of these remarks, a Bayesian analysis of the proposed lognormal mixed models
for claims reserving is useful. Bayesian statistics already turned out to be helpful in loss reserving with
run-off triangles, as discussed—among other papers—in de Alba (2002), Ntzoufras and Dellaportas
(2002), and England and Verrall (2002). We refer to the statistical and actuarial literature for an
introduction to Bayesian statistics and their applications in actuarial statistics.

The Bayesian approach treats all unknown parameters in the lognormal mixed model as random
variables. Our distributional assumptions (see Section 2) and prior specifications are summarized
below:

W(i, k)�b(i, k) � N(X(i, k)� � Z(i, k)b(i, k), �(i, k)),

b(i, k) � N(0, D),

� � N(0, F),

D � Inv-Wishart (B), (3.12)�

where F is a diagonal matrix with large positive entries and B is a matrix with the same dimensions as
D. In the example in Section 4, we used � � 3 and �(i, k) � diag with prior � Inv-Gamma(a,2 2(� ) �� �

b) and a � b � 0.01.
To sample from the relevant posterior and predictive distributions, the Gibbs sampling scheme is

used. The involved full conditionals are given by

[��.] � N(� , � )� �

where

�1

�1 �1� � X(i, k)��(i, k) X(i, k) � F�� ��
i,k

�1
� X(i, k)��(i, k) (W(i, k) � Z(i, k)b(i, k))�

i,k

and

�1

�1 �1� � X(i, k)��(i, k) X(i, k) � F , (3.13)�� ��
i,k

next to

[b(i, k)�.] � N(� , � ),b(i,k) b(i,k)

where

�1 �1 �1 �1� � (Z(i, k)��(i, k) Z(i, k) � D ) Z(i, k)��(i, k) (W(i, k) � X(i, k)�)b(i,k)

and

�1 �1 �1� � (Z(i, k)�� Z(i, k) � D ) , (3.14)b(i,k) b(i,k)

and with N the total number of claims in the data set,

[D�.] � Inv-Wishart B � b(i, k)b(i, k)� , (3.15)�� ���N
i,k

1 1
2[� �.] � Inv-Gamma a � n , b � r(i, k)�r(i, k) , (3.16)� �� �� ik2 2i,k i,k
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Table 2

Summary of Considered Data as Classical Run-off Triangle with Cumulative Payments

Arrival
Year

Development Year

1 2 3 4 5 6 7 8 9

1 19,769 1,036,536 2,926,089 3,208,614 3,710,362 3,978,786 4,429,728 4,975,137 5,348,813
2 2,531 107,813 377,475 514,688 1,106,704 1,776,792 2,201,502 2,509,058 2,579,698
3 23,019 88,497 432,258 716,667 1,250,396 1,623,619 2,708,759 3,357,284 3,738,158
4 495 199,119 821,879 1,275,476 1,753,482 2,156,416 2,824,184 3,362,437 3,594,122
5 1,116 176,504 400,207 1,037,350 2,150,087 4,548,049 4,966,763 5,334,399 6,328,420
6 3,801 134,170 929,088 1,223,499 1,699,767 2,426,058 2,907,379 3,257,116 3,540,434
7 22,408 331,294 960,434 1,379,776 1,941,757 2,150,194 4,044,069 4,760,987 5,250,504
8 14,246 487,661 944,422 1,645,343 1,990,303 2,861,664 3,041,089 3,648,400 4,116,567

Note: Lower triangle in bold: these data have to be predicted.

where r(i, k) � W(i, k) � X(i, k)� � Z(i, k)b(i, k). To perform the simulations, check convergence of
the chains, and compute posterior summaries, we used the WINBUGS software. Further details are
discussed in Section 4.

4. CASE STUDY

To illustrate the use of mixed models in claims reserving, a data set from a Belgian reinsurance con-
sultant is analyzed. This data set concerns Belgian automotive motor third-party liability claims. The
companies involved provided those claims that were expected to be in excess of 124,000 euros, along
traditional reserving techniques presently used in those companies. We first present the characteristics
of the data at hand. A mixed model related to the lognormal regression model in equation (3.4) is
fitted to the logarithm of the cumulative data. Predictions from a likelihood analysis are obtained with
PROC MIXED in SAS. A Bayesian analysis of the model leads to the full predictive distribution of the
reserves and is implemented using WINBUGS. Section 4.3 concludes the case study with a discussion
of the results.

4.1 Presentation of the Data

The arrival (or incurral) years of the available claims vary between 1986 and 2001. Their development
is followed up to 2002, unless the claim is settled earlier. For every individual payment the correspond-
ing arrival, development, and calendar year is known.

Instead of working with the complete data set, we consider a subset of 338 claims, consisting of the
claims from the first eight arrival years in the original data set. In Table 2 this subset is summarized
as a classical run-off triangle with cumulative payments. In the direction of arrival years, 1 corresponds
with 1986 and 8 with 1993. Because of the choice of our subset, the lower triangle (in bold) is known
and can be compared with predictions obtained via classical techniques as well as with the predictions
from a lognormal mixed model for loss reserving. The latter are obtained on the scale of individual
claims but can be aggregated afterwards. For the classical technique, a model within the lognormal
framework is chosen, since this enables pertinent comparisons with the fits and predictions from the
lognormal mixed model. In the sequel, the results from model (3.2), with chain-ladder type structure
for the mean, are considered as a benchmark for the results on the level of aggregate data. Model (3.2)
was fitted to an aggregate triangle consisting of incremental payments.

Figure 1 illustrates the extensive data set, underlying Table 2, by plotting a random selection of
individual incremental (left panel) and cumulative (right panel) payment profiles until min(DY of set-
tlement, 9 � AY � 1) (where AY stands for the ‘‘arrival year’’ and DY for the ‘‘development year’’ of
the claim). To avoid problems with zero or negative payments in a lognormal mixed model for individual
data, our analysis models cumulative payments for individual claims. Figure 2 shows boxplots of the
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Figure 1

Incremental (Left) and Cumulative (Right) Payment Profiles over Development Period: Randomly

Selected Claims from Data Set Summarized in Table 2 (Upper Triangle)
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Boxplots of Logarithm of Cumulative Payments per Development Year, Individual Data

Underlying Upper Triangle in Table 2
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Table 3

Bayesian Predictions Based on Lognormal Model with Chain-Ladder Structure for Mean

(Data Displayed in Thousands)

Cell Mean
Std
Dev.

MC
Error Median

Percentage
Bayes. Std

Err.
Percentage

RMSEP Cell Mean
Std
Dev.

MC
Error Median

Percentage
Bayes. Std

Err.
Percentage

RMSEP

(2,9) 2,891 1,097 3.0 2,674 37.95% 44.20% (6,9) 5,281 4,062 13.0 4,253 76.92% 124.82%
(3,8) 3,476 1,487 4.0 3,116 42.79 44.44 (7,4) 2,251 2,141 6.0 1,694 95.12 167.54
(3,9) 4,054 2,169 6.0 3,535 53.49 58.62 (7,5) 4,825 5,253 15.0 3,487 108.86 308.61
(4,7) 2,871 1,530 4.0 2,558 53.30 54.21 (7,6) 6,509 6,450 20.0 4,856 99.09 362.02
(4,8) 3,402 1,872 5.0 2,983 55.02 55.68 (7,7) 8,833 8,430 28.0 6,662 95.43 239.74
(4,9) 3,807 3,889 11.0 3,296 102.14 108.36 (7,8) 10,562 9,930 34.0 8,034 94.02 241.55
(5,6) 2,741 960 3.0 2,491 35.01 44.98 (7,9) 11,858 11,213 40.0 9,034 94.56 247.88
(5,7) 3,555 2,009 6.0 3,097 56.50 49.43 (8,3) 3,238 5,430 15.0 1,938 167.71 624.14
(5,8) 4,157 2,455 7.0 3,584 59.07 51.05 (8,4) 5,066 6,893 19.0 3,322 136.07 467.73
(5,9) 4,605 2,833 8.0 3,940 61.51 52.39 (8,5) 8,697 10,655 30.0 5,885 122.52 632.56
(6,5) 2,312 1,722 5.0 1,847 74.47 107.51 (8,6) 11,105 12,903 39.0 7,705 116.20 535.06
(6,6) 3,027 2,273 7.0 2,440 75.07 96.90 (8,7) 14,397 16,354 51.0 10,122 113.59 654.71
(6,7) 4,012 3,121 9.0 3,225 77.79 113.86 (8,8) 16,840 18,646 61.0 11,959 110.73 626.06
(6,8) 4,737 3,591 11 3,823 75.81 119.26 (8,9) 18,675 20,874 68 13,268 111.77 618.21

Notes: Cell (i, j) refers to AY i and DY j in the triangle. 140,000 simulations are used, after a burn-in of 20,000 simulations. ‘‘Percentage Bays.
Std Err.’’ is the ratio of ‘‘Std Dev.’’ and ‘‘Mean.’’ ‘‘Percentage RMSEP’’ is the ratio of ‘‘RMSEP’’ and the real observed value for the cell (as given
in Table 2). An estimate of the RMSEP is obtained from WinBUGS by taking the root of the mean of the distribution of the squared difference
between the predictive value for the cell and its real observed value, as given in Table 2.

logarithmic transformed cumulative data over the available development years, for the data underlying
the upper triangle in Table 2.

4.2 Numerical Results

4.2.1 Lognormal Chain-Ladder Model

The results of a Bayesian analysis of the lognormal regression model with chain-ladder–type structure
for the mean, as in equation (3.2), are given in Table 3. These results are based on aggregate, incre-
mental data and were obtained with WINBUGS. Within this Bayesian framework, prior specifications
for the regression parameters and the variance component are similar to those discussed in Section
3.2. In this way, the values shown in the column ‘‘Mean’’ in Table 3 are close to the predictions from
a likelihood-based analysis (not displayed here), which can be obtained with any software package for
linear regression. The results for the aggregate triangle are summarized here to enable comparisons
with the predictions from mixed models on the level of arrival year or total reserves.

Compared to the models presented in this paper, the classical techniques do not lead directly to
predictions for an individual payment profile. However, practitioners often use the development factors
from the deterministic chain ladder to predict individual cumulative profiles. In Figure 4 the results
of this ad hoc technique are compared with the mixed-model predictions for individual claims. In this
figure, plots 4.3 and 4.7, respectively, compare the chain-ladder individual predictions with the actually
observed cumulative payments, on the logarithmic and the original scales, respectively. Plots 4.4 and
4.5 are on the original scale and compare the chain-ladder predictions with the mixed-model predic-
tions as obtained with the second (Mean) and the first (Median) formulas in equations (3.9). Further
discussion of Figure 4 is postponed to Section 4.3.

4.2.2 Lognormal Mixed Models

Inspired by the lognormal regression models for classical run-off triangles, a whole scala of lognormal
mixed models is available for claims reserving. Table 4 contains the specification of the fixed and
random effects used in our analysis. ‘‘Calyear’’ is a continuous variable in the direction of calendar
years and equals AY � DY � 2, where AY stands for ‘‘arrival year’’ and DY for ‘‘development year.’’ The
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Table 4

Mixed-Model Specification

Fixed Effects Random Effects

�1, . . . , �8 Intercept
Calyear DY

DY, log (DY) log (DY)

Table 5

Estimated Probabilities of Settlement per Development Year (DY) j

DY p(j) DY p(j) DY p(j)

1 0 4 0.2496 7 0.4637
2 0.1068 5 0.3227 8 0.5521
3 0.1809 6 0.3940 9 0.5613

fixed effects’ structure is inspired by equation (3.4) and the choice of the random effects by Figure 2
and a similar plot with the individual profiles of the log-transformed cumulative data. Using this spec-
ification, the design matrix X(i, k) for the fixed effects is built up as follows: one row per observation
for the kth claim from arrival year i, 0/1’s in the columns related to the arrival year effects (where 1
indicates that the claim is from that specific arrival year), and the observed values of calendar year,
development year, and the logarithm of development year in the remaining columns. The design matrix
Z(i, k) is constructed in an analogous way: one row per observation for claim (i, k), a column consisting
of 1’s for the intercept, and the observed values of development year and the logarithm of development
year in the remaining columns. In this way, claim-specific intercepts and slopes for development year
and the logarithm of the development year are modeled.

The covariance matrix D of the random effects is not forced to satisfy any structural assumptions.
The residual terms are modeled independently; thus �(i, k) is diagonal. Since we are dealing with
cumulative data, an AR(1) structure for �(i, k) could be suggested, where AR stands for AutoRegressive.
However, the diagonal structure came out as the preferred choice of a comparison between the em-
pirical variance function (obtained by taking the average of the squared ordinary least squares residuals
per development year) and the fitted variance function, a technique suggested by Verbeke and Molen-
berghs (2002). Moreover, we obtained better predictions with the diagonal residual matrix.

The suggested mixed model is implemented both in a likelihood-based and in a Bayesian way. Recall
that the data consist of individual cumulative payment profiles from the start of the development until
the settlement of the claim. At first, the year of settlement of the claim was taken as a priori infor-
mation in our predictions. Of course, in practice this is less realistic, and, second, the modeling of the
settlement of a claim is included in the WINBUGS analysis. This is done by introducing a 0/1 indicator
variable for every outstanding payment

Z(i, k, u) � Bern(1 � p(u)),

0 when last payment done in development year u,
Z(i, k, u) � (4.1)�1 otherwise.

Appropriate multiplication of these indicator variables with the simulations from the posterior predic-
tive distribution of the cumulative payments allows us to model the settlement of a claim. Here p(j)
(j � 1, . . . , 9) is the probability that a claim settles in development year j and is estimated by its
empirical analogue, based on the complete data set. The estimated probabilities are given in Table 5.

Table 6 contains the parameter estimates and their standard errors as obtained with PROC MIXED in
SAS. The predicted values for the remaining cumulative payments of the reported claims were com-
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Table 6

Parameter Estimates as Obtained with PROC MIXED Analysis of Extensive Data Set Underlying

Upper Triangle in Table 2

Effect Parameter Estimate (s.e.)

Arrival year effects: �2 5.1335 (0.3727)
�3 10.3467 (0.5585)
�4 16.0661 (0.8410)
�5 21.3755 (1.1523)
�6 26.9522 (1.4714)
�7 32.9084 (1.7774)
�8 38.5002 (2.1154)

Calyear � �5.5011 (0.3362)
Time �1 5.1159 (0.3609)
Log(Time) �2 3.7983 (0.3396)

Covariance of random effects:
Var(b1) d1 6.8411 (1.0015)
Var(b2) d2 0.3695 (0.1422)
Var(b3) d3 10.8311 (2.6733)
Cov(b1,b2) d12 � d21 0.2317 (0.2947)
Cov(b1,b3) d13 � d31 �3.5705 (1.3812)
Cov(b2,b3) d23 � d32 �1.8514 (0.5902)

Residual variance:
Var(ε) 2�

ε
0.7315 (0.0492)

�2 REML log-likelihood 4260.7
AIC 4274.7

Table 7

Fitted Values for Upper and Predictions for Lower Triangle as Obtained with Lognormal

Mixed-Model Analysis of the Extensive Data Set

Arrival
Year

Development Year

1 2 3 4 5 6 7 8 9

1 22,036 708,112 2,000,287 3,134,621 3,696,074 4,107,102 4,498,656 4,696,801 4,808,596
2 2,646 70,176 277,864 598,698 1,162,101 1,627,626 1,919,125 2,138,102 3,084,274
3 23,583 87,415 307,259 697,528 1,283,885 1,773,943 2,082,374 3,034,468 3,116,201
4 789 156,440 572,914 1,214,474 2,040,289 2,522,600 3,557,169 4,091,425 4,309,365
5 1,233 125,352 416,852 1,026,010 1,773,031 3,346,765 3,886,908 4,207,342 4,474,187
6 4,179 117,858 757,523 1,408,195 2,817,320 3,536,078 4,075,013 4,317,244 4,500,767
7 27,618 240,841 841,118 2,725,891 4,962,650 6,849,153 8,241,505 9,007,422 9,331,285
8 14,873 396,933 1,927,582 3,091,773 4,087,168 4,815,477 7,677,933 7,656,123 7,705,730

Note: Year of settlement taken as a priori information.

puted using the second formula in equations (3.9). The fitted values for the upper triangle are obtained

as exp (i, k, j) � Var( (i, k, j) � W*(i, k, j))), where j refers to an observed payment. They are1ˆ ˆ–(W* W*2

displayed in Table 7 to illustrate the fit of the mixed model on an aggregate basis. By adding up the
fitted values for the upper triangle and the predicted values for the lower triangle appropriately, the
results in Table 7 (settlement a priori) were obtained. Figure 3 illustrates the fitted profiles and pre-
dicted remaining payments for six randomly selected claims from the data set. The profiles are plotted
on the logarithmic scale, together with plus/minus one standard error.

Using a Bayesian analysis, simulated values are obtained for the full predictive distribution of an
individual claim, a complete arrival year, or the total reserve. Hierarchical centering and mean center-
ing of the covariates are used, together with the prior specifications from Section 3.2. Table 8 (settle-
ment a priori) and Table 9 (settlement modeled) display the results for the lower triangle in Table 2.
The results in these tables are based on 140,000 simulations (to which a thinning factor of 5 is applied),
after a burn-in of another 20,000 simulations. The predictive distribution of the cells in the lower
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Figure 3

Fitted and Predicted Payment Profiles on Log Scale, Together with � 1 Standard Error
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Notes: Circles are used for observed payments. Solid lines give fitted and predicted profiles. Dotted lines give fits/predictions �1 standard
error as computed with PROC MIXED.

Table 8

Bayesian Predictions Obtained from Lognormal Mixed Model for Extensive Data Set Underlying

Table 2 (Data Displayed in Thousands)

Cell Mean
Std
Dev.

MC
Error Median

Percentage
Bayes. Std

Err.
Percentage

RMSEP Cell Mean
Std
Dev.

MC
Error Median

Percentage
Bayes. Std

Err.
Percentage

RMSEP

(2,9) 3,721 1,878 12.0 3,277 50.46 85.18 (6,9) 5,526 5,814 40.0 4,327 105.21 174
(3,8) 3,435 1,881 12.0 2,991 54.77 56.09 (7,4) 2,725 1,288 7.0 2,443 47.26 134.97
(3,9) 3,671 2,182 14.0 3,141 59.42 58.39 (7,5) 4,930 2,923 20.0 4,234 59.29 215.30
(4,7) 3,646 1,252 8.0 3,384 34.33 53.01 (7,6) 7,096 5,012 33.0 5,827 70.64 327.46
(4,8) 4,174 1,906 13.0 3,772 45.65 61.60 (7,7) 9,415 18,147 107.0 7,247 192.74 467.97
(4,9) 4,803 3,237 20.0 4,110 67.39 96.13 (7,8) 11,870 15,455 95.0 8,416 130.20 357.32
(5,6) 3,457 1,404 8.0 3,188 40.61 39.10 (7,9) 14,575 29,918 189.0 9,277 205.27 596.85
(5,7) 4,244 1,944 13.0 3,838 45.81 41.76 (8,3) 1,999 2,048 11.0 1,447 102.41 243.93
(5,8) 4,990 2,821 17 4,329 56.54 53.28 (8,4) 3,563 4,661 27 2,425 130.81 306.34
(5,9) 5,889 5,529 37.0 4,652 93.89 87.64 (8,5) 4,621 6,662 42.0 3,128 144.17 359.88
(6,5) 2,923 1,276 8.0 2,641 43.66 104.01 (8,6) 5,404 8,405 50 3,556 155.52 306.84
(6,6) 3,665 1,742 11.0 3,275 47.51 88.11 (8,7) 8,008 18,260 115 4,484 228.01 622.26
(6,7) 4,255 2,349 15 3,714 55.22 93.15 (8,8) 8,546 24,488 166 4,631 286.53 684.49
(6,8) 4,798 3,391 24.0 4,027 70.66 114.35 (8,9) 9,350 28,477 179 4,937 304.56 703.34

Notes: Cell (i, j) refers to AY i and DY j in the triangle. 140,000 simulations are used with a thinning factor of 5, after a burn-in of 20,000
simulations. Year of settlement taken as a priori information. ‘‘Percentage Bays. Std Err.’’ is the ratio of ‘‘Std Dev.’’ and ‘‘Mean.’’ ‘‘Percentage
RMSEP’’ is the ratio of ‘‘RMSEP’’ and the real observed value for the cell (as given in Table 2). An estimate of the RMSEP is obtained from
WINBUGS by taking the root of the mean of the distribution of the squared difference between the predictive value for the cell and its real
observed value, as given in Table 2.
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Table 9

Bayesian Predictions as Obtained with Lognormal Mixed Model for Extensive Data Set Underlying

Table 2 (Data Displayed in Thousands)

Cell Mean
Std
Dev.

MC
Error Median

Percentage
Bayes. Std

Err.
Percentage

RMSEP Cell Mean
Std
Dev.

MC
Error Median

Percentage
Bayes. Std

Err.
Percentage

RMSEP

(2,9) 3,708 1,865 12.0 3,270 50.31 84.51 (6,9) 5,602 7,831 55.0 4,033 139.78 228.71
(3,8) 3,425 1,819 12.0 2,984 53.11 54.22 (7,4) 2,737 1,351 9.0 2,443 49.36 138.76
(3,9) 3,581 2,178 16.0 3,040 60.83 58.43 (7,5) 4,381 2,630 17 3,772 60.04 184.73
(4,7) 3,647 1,233 8.0 3,403 33.80 52.48 (7,6) 6,284 4,929 31.0 5,118 78.44 299.20
(4,8) 4,005 1,660 11 3,644 41.44 52.93 (7,7) 8,217 7,728 52.0 6,294 94.06 217.18
(4,9) 4,539 3,004 20 3,902 66.19 87.62 (7,8) 10,482 14,717 102 7,338 140.40 331.66
(5,6) 3,447 1,278 8.0 3,187 37.07 37.09 (7,9) 13,409 31,011 196.0 8,022 231.26 610.73
(5,7) 4,023 1,717 12.0 3,647 42.67 39.44 (8,3) 2,009 2,206 13.0 1,464 109.80 259.30
(5,8) 4,785 2,805 17.0 4,133 58.62 53.58 (8,4) 4,394 9,237 55.0 2,680 210.21 585.73
(5,9) 5,739 5,181 35.0 4,505 90.28 82.40 (8,5) 7,178 16,764 113.0 3,935 233.53 881.67
(6,5) 2,848 1,161 7.0 2,598 40.77 96.10 (8,6) 9,216 22,450 136.0 4,805 243.59 815.32
(6,6) 3,467 1,759 11.0 3,075 50.75 84.25 (8,7) 10,356 26,556 182 5,219 256.44 905.77
(6,7) 4,018 2,485 16.0 3,433 61.84 93.63 (8,8) 11,277 32,632 197.0 5,480 289.36 918.54
(6,8) 4,681 4,928 31.0 3,731 105.29 157.48 (8,9) 12,782 133,211 804 5,701 1042.18 3242.80

Notes: Cell (i, j) refers to AY i and DY j in the triangle. 140,000 simulations with a thinning factor of 5, after a burn-in of 20,000 simulations.
Settlement modeled explicitly. ‘‘Percentage Bays. Std Err.’’ is the ratio of ‘‘Std Dev.’’ and ‘‘Mean.’’ ‘‘Percentage RMSEP’’ is the ratio of ‘‘RMSEP’’
and the real observed value for the cell (as given in Table 2). An estimate of the RMSEP is obtained from WINBUGS by taking the root of the
mean of the distribution of the squared difference between the predictive value for the cell and its real observed value, as given in Table 2.

triangle is summarized by its mean, median, standard deviation, and MC error. Recall that the MC
error is the Monte Carlo standard error estimate of the predictive mean reserve (for a discussion, see
Scollnik 2004). Other statistics, such as percentiles, can be obtained easily from WINBUGS.

4.3 Discussion

Plot 4.2 in Figure 4 illustrates that the lognormal mixed model fits the observed data—underlying the
upper triangle in Table 2—well. Plots 4.1 and 4.3 are on the logarithmic scale and show the individual
predictions (for the lower triangle) obtained with the mixed model and the ad hoc chain ladder, re-
spectively, against the really observed data. These plots illustrate that both techniques lead to com-
parable results on the logarithmic scale. We want to add two remarks to the results obtained with the
chain-ladder technique. It is important to note that the chain ladder lacks statistical basis, in contrast
to the mixed-model approach that offers, for example, an estimate of the variability of the predictions.
Furthermore, the success of the deterministic chain ladder in part can be explained by the fact that it
directly uses the last observed cumulative payment in every profile.

Next, we can ask what the predictive power of the mixed model is on the level of aggregate reserves.
Tables 7, 8, and 9 illustrate that the use of individual data leads to reasonable predictions for the
different cells in the lower triangle. Moreover, when the columns ‘‘Percentage Bayes. Std Err.’’ and
‘‘Percentage RMSEP’’ in Table 3 are compared with the corresponding columns in Tables 8 and 9, one
can conclude that the mixed model performs comparably with and often even better than the stochastic
chain ladder. However, for cells in the final development years from recent arrival years (like (7,8),
(7,9), and (8,9)), a very large standard deviation of the predictive distribution is observed.

Note again that the predictions based on the mean of the lognormal distribution often severely
overestimate the really observed payments, whereas use of the median leads to more reasonable pre-
dictions. This is clearly illustrated by plots 4.6 and 4.8 of Figure 4. The predictions obtained with the
first formula in equations (3.9) also compare favorably with respect to the chain-ladder predictions, in
contrast to those obtained with the second formula in equations (3.9); see plots 4.4–4.8. The back-
transformation of the predictions on the log-scale to the original scale—where the difference between
the mean and the median lies in the inclusion of a variance term (see eqs. (3.9))—is a general problem
in reserving models within the lognormal framework; see, for example, England and Verrall (2002).
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Figure 4

Comparison between Fitted and Predicted Payments and Real Observations
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Notes: Plots 4.1, 4.2, and 4.3 are on the log scale. Plots 4.4, 4.5, 4.6, 4.7, and 4.8 are on the original scale of the payments. A line with 0
intercept and slope 1 is added in each plot.
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Figure 4

(continued)

Plot 4.7

Predictions (Chain-Ladder)

P
a
id

_
C

0 200000 400000 600000

0
5

*1
0

^
5

1
0

^
6

1
.5

*1
0

^
6

Plot 4.8
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5. CONCLUSIONS

This paper introduces the use of mixed models in claims reserving. Both a likelihood-based as well as
a Bayesian implementation of the lognormal mixed models are discussed. Within the likelihood ap-
proach, expressions for the mean and variance of an individual, arrival year, and the total reserve are
explained. In this way the expressions in England and Verrall (2002) are generalized to the framework
of lognormal mixed models. The Gibbs sampling scheme for the Bayesian analysis is set up. This new
approach to claims reserving on an individual data basis is illustrated with a case study from practice.
Further work in this direction should focus on the use of generalized linear and generalized additive
mixed models for loss reserving and the appropriate modeling of zeros. A stochastic discounting process
also can be included.

APPENDIX

COVARIANCE EXPRESSION IN EXPRESSION (3.11)
In this Appendix we describe how an expression for the covariance in expression (3.11) can be derived.
In the sequel it is assumed that the residual terms are modeled independently (with �(i, k) �

diag but the formulas can be generalized in a straightforward way:2(� )),�

ˆ ˆCov[W(i, k, u) � W*(i, k, u), W(i, k, u�) � W*(i, k, u�)]

ˆ� Cov[W(i, k, u), W(i, k, u�)] � Cov[W(i, k, u), W*(i, k, u�)]

ˆ ˆ ˆ� Cov[W*(i, k, u), W(i, k, u�)] � Cov[W*(i, k, u), W*(i, k, u�)]. (A.1)

The first term in this expression is given, with �u,u� � 0 if u � u� and 1 if u � u�, by

2Cov[W(i, k, u), W(i, k, u�)] � z(i, k, u)�Dz(i, k, u�) � � � . (A.2)u,u� �

Some matrix calculations lead to
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�1

�1 �1ˆCov[W(i, k, u), W*(i, k, u�)] � z(i, k, u)�DZ(i, k)�V(i, k) X(i, k) X�V X�� �h h h
h

�1
� {x(i, k, u�)� � z(i, k, u�)�DZ(i, k)�V(i, k) X(i, k)}�

�1
� z(i, k, u)�DZ(i, k)�V(i, k) Z(i, k)Dz(i, k, u�), (A.3)

and

ˆCov[W*(i, k, u), W(i, k, u�)]

�1

�1 �1
� {x(i, k, u)� � z(i, k, u)�DZ(i, k)�V(i, k) X(i, k)} X�V X�� �h h h

h

�1
� X(i, k)�V(i, k) Z(i, k)Dz(i, k, u�)

�1
� z(i, k, u)�DZ(i, k)�V(i, k) Z(i, k)Dz(i, k, u�), (A.4)

Furthermore

ˆ ˆCov[W*(i, k, u), W*(i, k, u�)]

ˆ ˆ ˆ ˆ� Cov[x(i, k, u)��, x(i, k, u�)��] � Cov[z(i, k, u)�b(i, k), z(i, k, u�)�b(i, k)],

because Cov (i, k)] � 0. Now useˆ ˆ[�, b

ˆVar[b(i, k)]

�1

�1 �1 �1
� DZ(i, k)�V(i, k) V(i, k) � X(i, k) X�V X X(i, k)� V(i, k) Z(i, k)D,�� � � �h h h

h

and

�1

�1ˆVar(�) � X�V X ,�� �h h h
h

from which we conclude

ˆ ˆCov[W*(i, k, u), W*(i, k, u�)]

�1

�1 �1
� x(i, k, u)� X�V X x(i, k, u�) � z(i, k, u)�DZ(i, k)�V(i, k)�� �h h h

h

�1

�1 �1
� V(i, k) � X(i, k) X V X X(i, k)� V(i, k) Z(i, k)Dz(i, k, u�). (A.5)�� � � �h h h

h

Combining equations (A.2), (A.3), (A.4), and (A.5) into equation (A.1) then leads to an expression for
the covariance term in expression (3.11).
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