
Session M3E

1-4244-0257-3/06/$20.00 © 2006 IEEE October 28 – 31, 2006, San Diego, CA
36th ASEE/IEEE Frontiers in Education Conference

M3E-11

LogoRhythms: Introductory Audio Programming for
Computer Musicians in a Functional Language

Paradigm

Aaron Hechmer1, Adam Tindale 2, George Tzanetakis 3

1 Aaron Hechmer, Computer Science Department, University of Victoria, BC ahechmer@uvic.ca
2 Adam Tindale, Computer Science , ECE and Music Departments, University of Victoria, BC
3 George Tzanetakis, Computer Science and Music Departments, University of Victoria, BC gtzan@cs.uvic.ca

Abstract - Teaching computer music presents opportunities
and challenges at both secondary and university levels by
bringing together students with widely varying exposures
to and interests for mathematics and computer
programming. Visual languages like MAX/MSP are
popular with many musicians, but the idiom doesn't
necessarily transfer well to a text language such as Java or
C++, languages that might be used in a wider variety of
programming problems. Our design challenge with
LogoRhythms was to create a forgiving text based API
that allows the neophyte programmer to explore
programming and low-level digital audio manipulations.
Since any musical composition is essentially a novel
program, the opportunity for custom software is endless
and the programming task given as a creative endeavor.
LogoRhythms encourages functional style programming.
Examples are provided showing lists and higher order
functions used to create simple harmonies and melodies
with a discussion of how to balance abstracting elegance
with “abstracting elusiveness.”

Index Terms - Logo, Audio, Programming Languages, Music,
Computer Music, Computer Literacy.

INTRODUCTION

The University of Victoria, BC has recently begun to offer a
joint undergraduate degree program between the Computer
Science and Music Departments. The program brings together
a diverse group of students whose technical approach, comfort
and expertise with hardware, software and mathematics varies
widely. The students remain unified in an interest in creating,
performing and analyzing music. Similarly, their musical
backgrounds draw from many sources: improvisational, play-
by-ear, dj’s and classically trained performers are all
represented. Almost all the students come, in some way, to
think of sound mathematically, if not formulaically then
graphically with qualitative descriptions of concepts like
phase, filtering or spectrum. Beyond simply becoming
virtuoso performers or competent composers, these computer
musicians usually take on the role of luthier, building their
own instruments from a wide array of hardware and software

components. One way to categorize the software most
frequently used by computer musicians is into three bins:
graphical applications such as sound editors that often build
their interfaces around an oscilloscope window giving
waveform or spectrum, visual programming languages where
functions are represented as graphical objects with pipes
connecting them and, finally, traditional high-level typed-text
languages.

Examples of sound manipulation applications with well
developed graphical interfaces run the gamut. Examples
include: Snd, an open source, freely available sound editor
from Stanford's CCRMA based on the emacs interface,
including extendibility via Scheme (a Lisp dialog); the widely
used Audacity; and perhaps topping the spectrum,
DigiDesign’s ProTools, a feature rich sound editor used in
professional studios for mixing and final editing. When using
these software tools, one almost always starts with some
sound data, either recorded or generated elsewhere. The
interfaces usually allow, and memory management designed,
to work with many minutes of audio sampled at 44.1kHz or
higher. Perhaps their greatest application is in mixing and
arranging songs, though they’re certainly useable to create
short, novel audio snippets that, for instance, could be used as
a wavetable in a synthesizer actuated by a MIDI (Musical
Instrument Digital Interface) enabled device such as a piano
like keyboard. Functions such as filters and frequency
transforms, usually FFT (Fast Fourier Transform), are often
available. While filter parameters are configurable, they are
not languages in which one would write a new filter from
scratch nor do they tend to lend themselves to scripting or
batch processing. While excellent for their task of audio
manipulation and a good aid for teaching the physical
principals of sound, they are not flexible programming tools.

Session M3E

1-4244-0257-3/06/$20.00 © 2006 IEEE October 28 – 31, 2006, San Diego, CA
36th ASEE/IEEE Frontiers in Education Conference

M3E-12

FIGURE 1
FOURPART HARMONY FUNCTION PROGRAMMED IN MAX/MSP

Musicians looking for programming tools in which to
“code” sound synthesis are often drawn to a visual
programming language, most likely either MAX/MSP or Pure
Data (PD), an open source language idiomatically similar to
MAX/MSP and maintained by one of MAX's creators, Miller
Puckette [1][2]. The programming environment, when first
started, looks very much like the blank screen of a text editor,
a clean slate waiting to be filled. However, the program
instructions are laid out on the screen in an even less linear
way than most structured text based languages would be in a
text editor window (Figure 1). Procedures, say for generating
a sinusoid or the operation of addition, are drawn onto the
screen inside of a box. The procedure names themselves can
be chosen from a list of available primitives, somewhat
freeing the programmer from needing to memorize the
language's lexicon as well as facilitating exploration of
available functions and their effects (“hmmm... I tried a sin,
now what does this cos thing do?”) Other boxes may contain
numeric constants, have special functions such as toggle
switches or a “bang” that sends a signal to trigger an event or
display graphical information such as waveforms (in an
example of output) or envelopes (in an example of input).
Such boxed procedures are often functions in the sense of
taking one or more arguments and returning some output.
Graphically, these input parameters and output return values
come and go to other boxes, such as a box representing a
digital-to-audio converter (ie. for play through the soundcard),
the boxes connected with an adjoining line. For instance,
addition takes two input lines and provides a single output
line. The graphical metaphor of programming as plumbing
system, a schematic of faucets, pipes and sinks, has long
proven itself via MAX/MSP and PD. Programs created this
way are used in music heard on the radio, movie theaters,

clubs, concert halls and public art installations and have been
extended to applications such as controlling theater lighting;
MAX programs have been written that take data read off
external sensors such as anemometers used in a public art
display in Seattle Public Library’s Ballard Branch, processing
the numbers as part of algorithmically driven musical
composition. From the point of view of enabling musicians
who may know no other programming language, PD and
MAX/MSP are successful. Students without formal computer
science training or knowledge in other programming
languages regularly create nontrivial programs (known as
patches in MAX/MSP and PD argot) that perform synthesis,
time-frequency transformations, event handling and filtering.
However this idiom is not the technology of choice for more
general programming tasks: device drivers, web servers, 3D
simulations of submarine telemetry are not written in this
idiom. MAX/MSP cannot be written in MAX/MSP. Indeed
MAX/MSP and PD offer hooks for extension via C/C++ for
bolder explorations and customizations.

It is into this context that we introduce LogoRhythms, a
music synthesis, computer audition API built on top of the
functional flavored, typed-text paradigm of the UC Berkeley
Logo interpreter. The UCB Logo interpreter, and therefore
LogoRhythms, may be run either in command-line mode, via
scripts or a combination of both where script code is read into
the environment and available for use via the command-line.
Either way, sound synthesis, for instance by combining and
manipulating arrays of waveforms, or computer audition, such
as descriptive statistics of a wave's spectrum, involves typing
structured code at a prompt or into a text editor and
subsequently running programs. LogoRhythms’s design is not
meant simply to dumb down and simplify successful
languages like Java or C++; although, arguably Logo is
designed with a number of laxer syntactical conventions (ex.
case-insensitivity) and more relaxed typing rules. Logo
substitutes the morass of scoping rules typical of an object-
oriented language-- appreciated by the more experienced
programmer but sometimes mystifying to the neophyte-- for
simpler procedure level rules. Similarly, Logo avoids explicit
use of pointers and/or references, often sources of confusion
for even experienced programmers. While Logo does
accomplish an easing in rules along each of these lines,
LogoRhythms should not be regarded as mere dumb-down.
As a child of Lisp, Logo, and hence LogoRhythms,
emphasizes programming in a functional style, a style weakly
stressed at best in languages like Java, C or C++, although not
useless there. Preparing students for functional programming
fits well with other research projects in the University of
Victoria’s joint CSc-Music program where some efforts
examine the potential of contemporary functional languages
such as SML in audio applications.

Just as the selection of Logo on which to the build
LogoRhythms API reflects a desire to move neophyte
programmers towards use of lower level “high-level''
languages, the content of the API pays less focus to standards
such as MIDI or the manipulation of prerecorded samples and
more on manipulating lists and arrays of audio data

Session M3E

1-4244-0257-3/06/$20.00 © 2006 IEEE October 28 – 31, 2006, San Diego, CA
36th ASEE/IEEE Frontiers in Education Conference

M3E-13

represented as floats (though the LogoRhythms's programmer
does not need to explicitly differentiate between floats and
other number types). The emphasis on manipulation of arrays
of numeric data differentiates LogoRhythms from APIs such
as the javax.sound package, a colletion of functionalites that
includes a prepackaged synthesizer and procedures for
handling MIDI. In an acoustical analogy, javax.sound is like
being handed a guitar while LogoRhythms is like being
handed some wood and nylon polymer. Out effort is to
facilitate first try manipulations of these raw materials where
the student might be building a guitar, a lute, a ukelele or
some other yet thought of instrument as well as the song
played on the instrument.

ARCHAEOLOGY OF A COMPUTER LANGUAGE: WHY LOGO?

When considering where to build the LogoRhythms API,
several languages were examined as a possible basis: Java,
SML and Smalltalk for instance. Implementations of
Smalltalk, particularly Squeak, already have rich high level
audio support such as synthesizers or MIDI, a long history of
use in educational computing and an easily extensible virtual
machine environment. However, Logo was finally chosen for
several reasons. First, the availability of a stable open source
Logo interpreter in the form of the UCB Logo version 5.5.
Second, the reasons already given as a language that
encourages functional programming. Finally, Logo occupies
an interesting historical niche in educational computing,
sometimes even polemic. An archaeology of the language, ie.
reexamining the design decisions behind its syntax and
environment by actually using the language, has acted as a
fulcrum for an interesting question in human-computer
interaction. The language was originally designed at MIT's AI
Lab as a tool to teach programming to perfectly typical
primary school students, an intention which it successfully
fulfilled [3]. Since Logo's inception in the late sixties, HCI
(Human-Computer Interaction) has seen a considerable
transformation with the notion of widespread computer
literacy being supplanted by efforts in the possibly dumbing
down concept of “user-friendly'' and highly constrained
graphical user interfaces. Although not further addressed in
this paper, the archaeology alluded to here asks the question
why typed-text, structured programming that was once taught
to fifth graders (including these authors) is now considered
almost solely the domain of first year university students in
computer science and engineering?
 Logo has long been used as a teaching language,
though its applications are not limited to pedagogy. Logo
based lessons have at times included musical and audio
examples [4]. Early Logo teachers Michael Tempel and Mark
Guzdial both have written of their efforts to teach
programming through music using Logo, Guzdial providing
anecdotes of his experiences with second, third and fourth
graders who, he claims, were often more likely to debug audio
errors than graphical errors as well as more likely to use
subroutines to organize their programs [5][6]. Their
examples, however, build up from a simple tone procedure as
the sole sound producing primitive. Peter Desain and Henkjan

Honing provided a very eloquent scoring language in Logo
called LOCO [7]. Their language’s aim was to “enable a
composer to express ideas in a direct way.” Their language
therefore is rich in the argot of traditional musical theory,
composition and structure. They justify their choice for Logo
saying, “This language [Logo] ... had the enormous advantage
of being easy to learn.” They note of their experiences with
LOCO, “We have used LOCO in a number of workshops. It
has proven to be a rich, motivational context for different
kinds of participants. After a short explanation they were able
to start expressing their own ideas, depending on previous
knowledge and experience in the field of traditional or
computer music.” Their language was also used in their
university level courses on computer music. LogoRhythms
has the advantage over older versions of Logo at coming at a
time when sound on the personal computer has greatly
improved-- owing to better sound cards, algorithms and
processing speed. Therefore, it can accomplish far more
complex timbres and rhythms than Tempel or Guzdial had
hardware to produce. Furthermore, much more than LOCO,
LogoRhythms’s emphasis is on a lexicon taken from signal
processing, not music theory. The student may create the
latter connections themselves within their programs. Early
versions of UCB Logo had essentially no audio support.
Version 5.5 contains nothing more than a simple tone
procedure that LogoRhythms replaces with its own, more
configurable, TONE. We hope LogoRhythms provides a
simple entrance into programming computer music and
programming in general while focusing on low level audio
manipulations.

A BRIEF TOUR OF THE LOGORHYTHM’S API

Logo's accessibility for the new user, even very young ones, is
enabled in a variety of ways: garbage collection, dynamic
binding, case insensitivity, and, very importantly, allowing
more than one way to do something. LogoRhythms's design
attempts to maintain this spirit. Its procedures often overlap in
their functionality with simpler and more complex versions
coexisting. Thus an easy foothold is provided for the first
time user-- but with room to grow.

Sound producing procedures are divided between two
groups: those that operate on wavetables and send their output
to the soundcard and those that allow the programmer to
manipulate arrays of sound data, playable via a PLAYWAVE
procedure. (Please note that italics indicate a Logo or
LogoRhythms procedure name. Logo itself is case insensitive
so harmony and HARMONY and HaRMony all point to the
same procedure. The parameters have been omitted here but
are described in the LogoRhythms’s documentation.)

Wavetable procedures include TONE, SOUND and
HARMONY, each a slightly more feature rich version of the
former. Each procedure is ultimately playing sinusoids, the
programmer setting some combination of frequency, duration
and envelope. For instance:

sound 440 [[.9 50] [0 450]]

Session M3E

1-4244-0257-3/06/$20.00 © 2006 IEEE October 28 – 31, 2006, San Diego, CA
36th ASEE/IEEE Frontiers in Education Conference

M3E-14

With this procedure call, a sinusoid of 440 Hz is played for
500 ms by linearly ramping to .9 times full volume in 50 ms
and then decaying to silence in 450 ms.

The other suite of procedures are true functions, generally
returning arrays. The programmer starts by creating a single
period of some waveform: SINEWAVE, TRIANGLEWAVE or
SQUAREWAVE and then manipulates these building blocks
with functions such as COPYWAVE, WAVEENVELOPE,
COMBINEWAVES and CUTWAVE among others, each
returning an array.

The two sets of procedures are fused with calls to
TONEWT, SOUNDWT and HARMONYWT which operate
similar to their simpler, non-WT forms but allow the user to
specify their own array to be used as the wavetable.

Thus far the procedures discussed control frequency
related features of sound: timbre, pitch and harmony. What
about the “rhythm” component of LogoRhythms? Rhythm,
the pattern of pulses or notes within the composition, is
controlled by the structure of procedure calls, for instance
embedding them in a REPEAT loop or by the order of function
calls. The duration of a sound is specified by its amplitude
envelope. In other words, the program structure provides the
rhythm’s structure. LogoRhythms is without a scheduler and
while all time parameters are specified in milliseconds, actual
performance will vary from machine to machine. However,
LogoRhythms does include several procedures useful in
creating rhythmic patterns. Perhaps most important is REST, a
procedure that essentially produces a note of zero amplitude
for a specified number of milliseconds. To aid in using
arguments with different time signatures, SETTIME can be
used to normalize the arguments to a standard time.

make "new_envelope settime [[.9 50] [0 950]] 500

Here the envelope would have been played for 1000
milliseconds (50 + 950). SETTIME normalizes the total length
of new_envelop to 500 milliseconds.

Turtle graphics has long been a core feature of the Logo
language. Indeed one might view Logo as a drawing language
where program instructions command a cursor known as the
turtle to sketch. Logo creators like Seymour Papert saw
geometry and drawing as an excellent first application area to
start programmers, an area rich in mathematical opportunity
but where debugging could be aided by the students’ already
well developed sense of space and how their own bodies fit
into that space.[3] An error in a rendered drawing might even
be paced out across the floor, the code becoming instructions
for an interpretive dance. While LogoRhythms shares the
view of programming as a creative act, perhaps it’s harder to
make the same parallel arguments in an audio analogy.
LogoRhythms does use turtle graphics by way of a Logo
library procedure, DRAWWAVE, that allows one to view audio
signals, spectrums or really any array of numeric data thus
providing basic oscilloscope functionality. Since UCB Logo
is designed to run on a variety of platforms including OSX,
Windows and Linux/Unix, the compromises between graphic

environments keeps the output basic. As for interpretive
dance? The analogy may hold less well than the simple
architectural ones of square houses with isosceles triangle
roofs given by Papert, but it’s not unreasonable to make a
connection between the smooth changes of a sinusoid and an
ocean swell inspired hula, the discontinuities of a triangle
wave and the see-saw of a tango or a noisy, spiky square wave
and the jumping, energetic hip-hop of highly percussive dance
music.

Most of these procedures are implemented as primitives
in C directly as part of the UCB Logo interpreter. Others are
implemented in the Logo language itself and provided as Logo
library procedures. For instance, FFT is implemented in C
within the interpreter; SPECTRUM is implemented in Logo as
a library procedure. All of the code is available as open
source and therefore, inspectable by the student, useable as a
model for the student’s own programming. Indeed, the
availability of the open source interpreter from the UCB
maintainers eased this project considerably. Logo, both
historically and through modern commercial implementations
such as LCSI’s Micro Worlds, usually is associated with
constructivist education. Providing modifiable examples via
open source code balances this formula, allowing
deconstruction, dissection and contextualization as part of the
modeling process of constructing new knowledge and skills.

The full LogoRhythms source code and API
documentation can be found at
www.sanitysewer.com/LogoRhythms (as of spring 2006).

PROGRAMMING IN A FUNCTIONAL PARADIGM

Functional programming refers to a structured program where
the primary structural unit is the function. The function in a
functional programming idiom resembles that used in
mathematics: they always take an argument and they always
return a value, for example, the identity function f(x) = x.
Global variables are rare or completely absent in true
functional languages; procedures do not modify variables
outside their local scope nor return void. The lack of globals
is a major appeal of functional programming, helping
eliminate untoward side-effects as potential bugs. Loop
statements are often absent or downplayed in favor of
recursion. While not requisite, many functional languages use
lists, a data structure that lends itself to recursion. While
functional programming can be accomplished to some degree
in the most widely used languages such as C or Java, famous
functional languages include Lisp and SML. Nyquist is a
flavor of Lisp specifically created for audio applications that
demonstrates one style of functional programming in musical
composition [9]. Logo is not a strict functional language,
although an offspring of Lisp. However, Logo encourages
functional programming and relies heavily on lists.
LogoRhythms similarly stresses functional programming.

While removing globals does remove one possible
source of errors, the data must still be available to a procedure,
fed to the function via its arguments. In the absence of
structures like structs or classes, these arguments are likely to

Session M3E

1-4244-0257-3/06/$20.00 © 2006 IEEE October 28 – 31, 2006, San Diego, CA
36th ASEE/IEEE Frontiers in Education Conference

M3E-15

be lists, lists of lists, lists of lists of mixed primitive types, etc.
The tidiness of the functional paradigm can quickly start to
suffocate under long gangly arguments. The remainder of this
paper provides further introduction to LogoRhythms by more
closely examining how higher-order functions, lists and
encapsulation can tame otherwise unwieldy arguments. It is
also here by introducing students to concepts such as lists,
encapsulation and recursion, that LogoRhythms begins to
make the connection for the student between simply
composing sounds and music and the larger world of computer
science and programming.

PRETTYING UP THE ARGUMENTS

Let's start with an example of what might be considered an
ugly argument using LogoRhythms's harmony procedure.

harmony [[440 [[.9 50] [0 450]]]
 [880 [[.3 50] [0 375]]]
 [220 [[.1 50] [0 450]]]
 [660 [[.05 50] [0 450]]]]

This procedure will play a note for half a second
comprised of sinusoids tuned to four separate frequencies.
The fundamental frequency could be considered 440 Hz. The
envelope that follows “440” instructs HARMONY to linearly
ramp up to .9 times full volume in 50 ms and then linearly
decay to zero volume in 450 ms. This procedure can be made
cleaner, ie. reduce the need to directly handle the morass of
nested lists, and more useful by employing higher-order
functions, lists and encapsulation.

Encapsulation, in a broad sense, refers to the
containing, even hiding, of information through scoping rules.
Take for example the list that makes up the argument to
HARMONY. This list can simply be encapsulated inside of
another function. The list data is local to the second function
and returned by it. Of course, it's not hard to extend the
functionality of this second function such as adding
parameters that modify the list to be returned. Here's a
function called fourpart that will produce a list parameter for
the HARMONY primitive. This is the same procedure shown
in the MAX/MSP abstraction of figure 1.

to fourpart :freq
 local [a]
 make "a []
 make "a fput list freq [[.9 50] [0 450]] a
 make "a fput list freq*2 [[.9 50] [0 350]] a
 make "a fput list freq*0.5 [[.9 50] [0 450]] a
 make "a fput list freq*3/2 [[.9 50] [0 400]] a
 output a
end

Now the HARMONY function can be called using
the information encapsulated in fourpart, for example:

harmony fourpart 440

Ostensibly, this is a much clearer semantics. If the student
programmer-musician also implement fourpart, even better.
This first example demonstrates function composition of the
form f(g(x)) where f(x)=HARMONY g(x), g(x)=FOURPART x
and x=440. This same example is shown in figure 1 as
programmed in MAX/MSP.

Templates are UCB Logo's device to allow the use of
anonymous functions or, more specifically, lists of instructions
[4][8]. The real flexibility of templates begins to be realized
when examining UCB Logo's APPLY function. APPLY itself
takes a function as its first argument. The symbol “?'” is
called an explicit-slot and marks the parameters of the
template function. The code:

APPLY [? * ?] [4]

will produce the product 16. Returning to the harmony
example, consider the following procedure:

to sing :a.func :a.list
 ifelse (empty? :a.list) [] ~
 [apply :a.func (list (first :a.list))
 sing :a.func (butfirst a.list)]
end

This recursive procedure is very similar to map functions
found in many functional languages. Its first parameter is a
template. The second parameter is a list of arguments to the
anonymous function (ie. the template). It will recursively
traverse over the list “a.list” applying each value in the list to
the anonymous function “a.func.” It differs from other map
functions in that nothing, such as a new list, is returned since
it's intended to be used with an IO affecting anonymous
function. Our last code example uses to sing with the previous
harmony fourpart demonstration to create a simple
composition.

make "notes [440 494 554 587 659 739 830 880]
sing [harmony fourpart ?] notes

Do re mi fa so la ti do.

Using templates in this manner is similar to the use of
lambda expressions in Lisp and the semantical distilling
demonstrated here with LogoRhythms can be analogously
accomplished using lambda expressions in a Lisp based
language such as Nyquist [9].

CONCLUDING COMMENTS

The world of computer music is not short on excellent
software for audio synthesis and analysis, including
programming languages. The niche that LogoRhythms seeks
to fill is that of a typed-text, structured programming language
that allows the student musician-programmer to explore low
level audio synthesis in a powerful, but forgiving language, a

Session M3E

1-4244-0257-3/06/$20.00 © 2006 IEEE October 28 – 31, 2006, San Diego, CA
36th ASEE/IEEE Frontiers in Education Conference

M3E-16

language that is to be viewed as a stepping stone into flexible
and widely used high level languages such as Java or C++ or
even audio specific languages such as Chuck [10]. Today,
many general programming problems that comprise many
classroom programming exercises appear solved, but the
computer still exists as a useful modeling tool, and modeling
requires programming of some sort. Musical composition is a
creative endeavor and as such in this context, an essentially
endless possibility of unique programs. LogoRhythms is an
API designed to help bridge the neophyte programmer into the
wider world of computer programming, both in audio and
other applications.
 While building this API, we had two audiences in
mind. The first is the group of musicians looking to crossover
and improve their engineering skills while participating in the
university level computer-music interdisciplinary curriculum.
The second is the audience who historically motivated the
creation of the Logo programming language: primary and
secondary school students. This latter group brings up
interesting human-computer interaction and pedagogical
questions of why computer literacy skills that were making
inroads in primary school education a quarter century ago are
now seen as material for first year university level students
majoring in computer science? Our first stab hypothesis
doubts that computers proved too hard for younger students.
With the LogoRhythms API stable, we now hope to move it
into the field, trying it as the tool it was designed to be as well
as gathering user feedback in addressing more theoretical
questions of computer literacy. Inquiries from educators
wishing to collaborate or just try LogoRhythms are
encouraged.

REFERENCES

[1] Puckette, M, “Max at Seventeen”, Computer Music Journal, Vol 26, No
4, Winter 2002, pp 31-43.

[2] Zicarelli, D, “How I Learned to Love a Program that Does Nothing”,
Computer Music Journal, Vol 26, No 4, Winter 2002, pp 41-51.

[3] Papert, S, Mindstorms: Children, Computers and Powerful Ideas, 1980.

[4] Harvey, B, Computer Science Logo Style, Volume 3: Advanced Topics,
1987.

[5] Tempel, M, “Logo Music Tools”, Logo Foundation Online Papers:
http://el.media.mit.edu/logo foundation/pubs/papers, accessed March,
2006.

[6] Guzdial, M, “Teaching Programming with Music: An Approch to
Teaching Young Students About Logo”, Logo Foundation Online
Papers: http://el.media.mit.edu/logo foundation/pubs/papers, accessed
March, 2006.

[7] Desain, P and Honing, H, "LOCO: A Composition Microworld in
Logo", Computer Music Journal, Vol 12, No 3, Fall 1988, pp 30-42.

[8] University of California, Berkeley Logo Usermanual, 1993.

[9] Dannenberg, R B, “Machine Tongues XIX: Nyquist, a Language for
Composition and Sound Synthesis”, Computer Music Journal, Vol 21,
No 3, Fall 1997, pp 50-60.

[10] Wang, G and Cook, P R, “ChucK: A Concurrent, On-the-fly, Audio
Programming Language”, Proc 2003 ICMC, 2003, pp 1-8.

