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Crowdsourcing Platforms

" Amazon Mechanical Turk (AMT)
o >500K users
o Widely used 1n psychology and social studies

o Trusted curator

o Uset’s unique id, ip-address, amazonmeChamcal turk
city and country are
revealed to the surveyor
" Google Consumer Surveys
o Trusted curator nu Google consumer surveys

o One question at a time



User de-anonymization is easy!

We launched a series of survey tasks in AMT

Survey 1: astrology services

o Star sign, date/month of birth, beliefs in astrology, ...

Survey 2: online match making services

o Gender, age, marital status, usage of match-making, ...

Survey 3: mobile phone coverage

o Zip code, phone signal strength and quality, ...

100 respondents for each survey, 3 hours, $30

72 users took all 3 surveys: got their DoB, gender, Zip
o Can de-anonymize these users with high probability (~76%)



Private Information 1s Easy to Extract

Survey 4: smoking habits

o Smoking intensity, coughing frequency, income,...
18 of the 72 de-anonymized participants took this survey

Got highly personal information for these individuals

o Respiratory health, income, ...
Easy to obtain personal information on these platforms!

Survey 5: user perception of privacy in such platforms
(would you do this if you know you can be de-anonymized?)

o 73 out of 100 users said they would not have participated



Available Solutions

" Anonymize the user

o Can still deduce from device-id, IP address

" Trust the surveyor (curator)
o E.g. trust Google surveys not to sell your datal

o Or trust lawyers to otfer you legal protection

" Obfuscate your answer (hide in the crowd!)
o Add noise to individual responses

O Surveyor cannot get accurate individual information but can get accurate
“on average” information about the population



System Architecture

" Three entities:
O Surveyors
o Users
o Broker

" Three knobs:

o Privacy

o Utility

o Cost
" Design Choices:

o Obtuscation technique
User privacy levels
Privacy loss quantification
User privacy depletion
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User selection Algorithm

= Minimize estimation Error:

o Choose a subset of users carefully to minimize the error in the estimation

" User and Group Error History:

o “value” of auser/group depends on how accurately the uset’s responses
reflect those of the population at large

o Mean and variance of the user/group error can be estimated

" Balance cost. accuracy and privacy fairness:
, y y

o Monetary constraint

o Privacy constraint



Optimizing across multiple surveys

“Fairness parameter” O € [0,1] — combines monetary and
privacy cost of user 7 into an overall cost F,
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Evaluation: Netftlix Dataset

m  Netflix dataset

" (.5 million users

= 17,000 movie titles

* History information
" 1436 movies released in 2004

" [Users rated >50 movies

" Measures
" User error
=  Group error

" Accumulated privacy loss



Results: Trade-offs b/w cost, accuracy & privacy

s RMIS error (actual)
== w=eRMS error (estimated)
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“best predictors” gives near-perfect
estimation — surveying only 37% of the
population

& = 0 1s identical to best predictors
As @ increases, the error increases

Loss in accuracy is compensated for in

privacy fairness

O =1 1s biased towards the users who

have low privacy loss

As @ decreases, selection gives less

regard to prior privacy depletion




Results: Long-term performance
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" when & 1slow, the error in initially low
but increases with successive movies

" high & results in fairer depletion in
privacy and prolongs the lifetime of a

user




Lokt: Prototype Implementation
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* Evaluate the system with
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Conclusions and Future Directions

private information 1s easy to extract
oiving the means of control to the users

End-goal: make user data obfuscated so that the users can hide in
the crowd while giving meaningful aggregations to the surveyors

Future directions:
" user-perception study of LOKI app

" extension to more question types, e.g;, yes/no, multiple choice



