LOLA: Runtime Monitoring of Synchronous
Systems

Ben D’Angelo* Sriram Sankaranarayandn Ceésar &inchez® Will Robinson*
Bernd Finkbeinef Henny B. Sipma Sandeep Mehrotra Zohar Manna*

* Computer Science Department, Stanford University, Stanford, CA 94305
{bdangelo,srirams,cesar,sipma,manna }@theory.stanford.edu

t Department of Computer Science, Saarland University ! Synopsys, Inc.
finkbeiner@cs.uni-sb.de

Abstract—We present a specification language and algo- the specification. Offline monitoring is critical for testing
rithms for the online and offline monitoring of synchronous |arge systems before deployment. An online monitor
systems including circuits and embedded systems. Suchprocesses the system trace while it is being generated.
monitoring is useful not only for testing, but also under opjine monitoring is used to detect violations of the
actual deployment. The specification language is simple specification when the system is in operation so that

and expressive; it can describe both correctness/failure .
assertions along with interesting statistical measures that they can be handled before they translate into observable

are useful for system profiing and coverage analysis. and cascading failures, and to adaptively optimize system
The algorithm for online monitoring of queries in this Performance.
language follows a partial evaluation strategy: it incre- Runtime monitoring has received growing attention in
mentally constructs output streams from input streams, recent years [1], [2], [3]. While static verification intends
while maintaining a store of partially evaluated expressions to show that every (infinite) run of a system satisfies
for forward references. We identify a class of specifica- the gpecification, runtime monitoring is concerned only
tions, charactgrlzed sy_ntz_ictlcally, for which the algorithm’s vy o single (finite) trace. Runtime monitoring can be
memory requirement is independent of the length of the ;0 oy 45" an extension of testing with more powerful
input streams. Being able to bound memory requirements .

specification languages.

is especially important in online monitoring of large input) o .
streams. We extend the concepts used in the online algo- 1he offline monitoring problem is known to be easy

rithm to construct an efficient offline monitoring algorithm ~ for purely past or purely future properties. It is well
for large traces. known that for past properties, the online monitoring

We have implemented our algorithm and applied it to problem can be solved efficiently using constant space
two industrial systems, the PCI bus protocol and a memory and linear time in the trace size. For future properties, on
controller. The results demonstrate that our algorithms are the other hand. the space requirement generally depends
practical and that our specification language is sufficiently on the length of the trace, which suggests that online
expressive to handle specifications of interest to industry. Lo . ' . . .

monitoring may quickly become intractable in practical
I. INTRODUCTION applications with traces exceeding® simulation steps.

Monitoring synchronous programs for safety and live- IN this paper, we present a specification language,
ness properties is an important aspect of ensuring thigended for industrial use. The language can express
proper runtime behavior. An offline monitor ana|yzegropert|es involving both the past and the future. It is a

traces of a system post-simulation to spot violations Bfnctional stream computation language likedTRE [4]
and ESTEREL [5], with features that are relevant to our

This research was supported in part by NSF grants CCR-Qdroblem at hand. It is parsimonious in its number of

21403, CCR-02-20134, CCR-02-09237, CNS-0411363, and CCk: - -
0430102, by ARO grant DAAD19-01-1-0723, by NAVY/ONR Con_gperators (expressions are constructed from three basic

tract NO0014-03-1-0939, by the Siebel Graduate Fellowship, and 8perators), b_Ut the resulting eXpreSsiV_eneSS surpasses
the BMBF grant 01 IS C38 B as part of the Verisoft project. temporal logics and many other existing formalisms

including finite-state automata. first approach to combine the property proving with data
We provide a syntactic characterization efficiently collection appeared in [13]. Following this trend, run-
monitorablespecifications, for which the space requirgime verifiers can be used not only for bug-finding, but
ment of the online monitoring algorithm is independeralso for profiling, coverage, vacuity and numerous other
of the size of the trace, and linear in the specificatianalyses.
size. An analysis of some industrial specifications pro- LOLA models runtime verification as stream com-
vided by Synopsys, Inc. showed that a large majoriputation The definition of LOLA output streams in
of these specifications lie in this efficiently monitorabléerms of other streams resembles synchronous program-
class. For the offline monitoring problem, we demorming languages (notably USTRE [4], ESTEREL [5],
strate an efficient monitoring strategy in the presence ®ifgnal [14]), but there is a significant difference: these
mixed past/future properties. languages are designed primarily for the construction of
We have implemented our algorithm and specificatigynchronous systems. Therefore, output values for a time
language in a system calledoLA. LOLA accepts a instant are computed directly from values at the same and
specification in the form of a set of stream expressior@geviousinstants. This assumption makes perfect sense
and is then run on a set of input streams. Two typ#swe desire that the systems we specify descutable
of specifications are supported: properties that specind therefore beausal However, runtime specifications
correct behavior, and properties that spedifatistical are descriptivein nature. They include future formulas
measureghat allow profiling the system that producesvhose evaluation may have to be delayed until future
the input streams. An execution ofoLA computes values arrive. This requires stronger expressiveness in the
arithmetic and logical expressions over tfigite input language and the corresponding evaluation strategies.
and intermediate streams to produce an output consistingther efforts in run-time verification include [15],
of error reports and the desired statistical informationwhich studies the efficient generation of monitors from
specifications written as extended regular expressions,
A. Related Work and [16], which studies rewriting techniques for the
Much of the initial work on runtime monitoring (cf. efficient evaluation of LTL formulas on finite execution
[6], [7], [8]) was based on temporal logic [9]. In [10],traces, both online and offline. In [8], an efficient method
non-deterministic automata are built from LTL to checkor the online evaluation ofpast LTL properties is
violations of formulas over finite traces and the complegresented. This method exploits that past LTL can be
ity of these problems is studied. LTL based specificatiomgcursively defined using only values in the previous
have already been pursued in tools such as the Tempstate of the computation. Ouwefficiently monitorable
Rover [7] and Java PathExplorer [11]. One limitation ofpecifications generalize this idea, and apply it uniformly
this approach is that the logic must be adapted to hanttleboth verification and data collection.
truncated traces. The approach taken in [12] considersThe system that most closely resemblesLk is
extensions of LTL for the case of truncated paths withagle [17]. Eagle allows the description of monitors
different interpretations (weak and strong) of the nekased on greatest and least fixed points of recursive
operator at the end of the trace. The choice of handlifgfinitions. Many logical formalisms used to describe
success/failure on a finite trace frequently depends prpperties, including past and future LTL formulas, can
the situation being modeled. be translated to Eagle specifications. These are then
Another important difference between runtime verificompiled into a set of rules that implements the monitor.
cation and static verification is that liveness propertidsoLA differs from Eagle in the descriptive nature of the
can never be violated on a finite trace. An appealingnguage, and in thatdLA is not restricted to checking
solution is to extend the specification language to coregical formulas, but can also express numerical queries.
pute quantitative measurelsased on the trace. Temporal II. LOLA OVERVIEW
properties can be specified inoLA, but one of the
main goals is to go beyond property checking to t
collection of numerical statistics. For example, inste
of checking the property “there are only finitely many
retransmissions of each package,” which is vacuoudy Specification Language: Syntax
true over finite traces, we desire to evaluate queries likeA LoLA specification describes the computation of
“what is the average number of retransmissions.” Ooutput streams from a given set of input streams. A

In this section we describe the specification language.
e monitoring algorithms will be presented in Sec-
n 1.

streamo of type T is afinite sequence of values fromExample 1 Let ¢1,t, be stream variables of type
T. We leto(i), i > 0 denote the value of the stream aboolean ands; be a stream variable of type integer. The

time step:. following is an example of a QLA specification with
t1, to andts as independent variables:
Definition 1 (LoLA specification) A LoLA specifica- sy = true
tion is a set of equations over typetteam variables Sg = t3
of the form s3 = t1V(t3<1)
S1 = 61(t1,...,tm,81,...,8n) §4 = ((t3)2+7) mod 15
_ ss = ite(ss,s4,84+ 1)
. Sg = ite(tl,tg < 84,—\83)
Sn = en(t1,- s tm,S1,---,5n), st = ti[+1, false]
where s1,...,s, are called thedependent variables ss = ti[-1 true]
and ty,...,t, are called theindependent variables so. = s9[~1,0]+ (t3 mod 2)
and ey, ..., e, are stream expressionsver s, ..., s, st = t2 V (f1 A sl true])
and ¢1,...,t,. Independent variables refer to inpuBtream variables; denotes a stream whose value is

streams and dependent variables refer to output streantgue at all positions, whiles; denotes a stream whose
A LoLa specification can also declare certain outpyglues are the same at all positions as thosg;.inrhe
boolean variables asiggers Triggers generate notifica-values of the streams corresponding 9. ..,s¢ are
tions at instants when their corresponding values becogtdained by evaluating their defining expressions place-

true. Triggers are specified indLA as wise at each position. The stream corresponding-to
is obtained by taking at each positianthe value of
trigger ¢ the stream corresponding t at positioni + 1, except
]] at the last position, which assumes the default value
wherey is a boolan expression over streams. false. Similarly for the stream fokg, whose values are

equal to the values of the stream far shifted by one
)) _ position, except that the value at the first position is the
« If cis a constant of typd’, thenc is anatomic yeqyit valuetrue. The stream specified by, counts

A stream expression is constructed as follows:

stream expressioof type T _ the number of odd entries in the stream assigned ty
« If s is a stream variable of typ?, thens is an 5ccumulatingts mod 2). Finally, s10 denotes the stream
atomic stream expressicof type T that gives at each position the value of the temporal

o Letf: Ty xTpx---xTj — T be ak-ary Operator. ¢qrmyla ¢, Until ¢, with the stipulation that unresolved

Iffor 1 < i < k, e; is an expression of typ#;, then g\ entyalities be regarded as satisfied at the end of the
f(e1,...,ex) is a stream expression of tyfé trace.

o If b is a boolean stream expression ande, are
stream expressions of typE, then ite(b,e;,e;) B- Specification Language: Semantics
is a stream expression of typE; note thatite The semantics of GLA specifications is defined in
abbreviatesf-then-else terms ofevaluation modelswhich describe the relation
« If eis a stream expression of tyfig c is a constant between input streams and output streams.
of typeT’, andi is an integer, thea[i, c| is a stream

expression of typd'. Informally, e[, c] refers to the Definition 2 (Evaluation Models) Let ¢ be a LoLA
value of the expression offseti positions from the specification over independent variablgs. . ., t,, with

current position. The constanindicates thalefault YPeS 71, ..., T, and dependent variables, ..., s,
value to be provided, in case an offsetidbkes us With types T i1, ..., Tinin. LELT1,.. ., 7y bE Streams

past the end or before the beginning of the streaff,|€NgthN+1, with ; of typeTi. The tuple(os, . . ., on)
of streams of lengthV + 1 with appropriate types is

“In our implementation we partition the dependent variables infe@lled anevaluation modelif for each equation inp

output variables and intermediate variables to distinguish streams that s; = e;(t t s 5n)
are of interest to the user and those that are used only to facilitate ¢ Gt ey tms Sl ey O,
the computation of other streams. However, for the description %1’ ..., 0, satisfies the followingissociated equations
the semantics and the algorithm this distinction is not important, and

hence we will ignore it in this paper. oi(j) = val(e;)(j) for0<j<N

wherewal(e)(j) is defined as follows. For the base cases& not well-defined, but for this specification the reason
val(c)(j) = ¢ is that it has no evaluation models.

val(;)(5) _ To avoid ill-defined specifications we define a syntac-
val(si)(4) = oi(j) - tic restriction on loLA specifications guaranteeing that
any well-formed LOLA expression is also well-defined.

I
3
—~ .
.
S~—

For the inductive cases:

val(f(e1, ... ’e_k)(j) = _ Definition 3 (Dependency Graph)Let ¢ be a LoLA
Flval(e)(5); ... val(er)(7)) - specification. Adependency grapfor ¢ is a weighted
”“l(,lte(b’ 61162))(9) - , , and directed multi-graplty = (V, E), with vertex set
zfval(b)(']) then val(e1)(j) else val(e2)(j) - Vo= {81, 0 8mt1s .. tm). An edgee : (si, sp,w)
val(elk, c])(7) = labeled with a weightw is in E iff the equation for
val(e)(j +k) if0<j+k<N, i(j) in ¢, containso,(j + w) as a subexpression of
c otherwise . the RHS, for somej (or e : (s;, tx, w) for subexpression

Tr(j+w)). Intuitively, the edge records the fact thatat

a particular position depends on the valuesgf offset
Yo by w positions. Note that there can be multiple edges
betweens; and s, with different weights on each edge.
Vertices labeled by, do not have outgoing edges.

The set of all equations associated wihs denoted by

Example 2 Consider the bLA specification

w: s = t1[1,0] + ite(te[—1, truel, t3,t4 + t5).
Example 4 Consider the bLA specification over in-

The associated equations are dependent integer variables, to:

TQ(.j_l)’ 32[_137] §t1[170]7
Tl(j+1)+ite TB(j)a je [LN)» S1 = 52[1,O}+ite 82[—1,0],
74(J) + 75(4) S9
o(j) = To(N — 1), Sop = (81 + tg[—2, 1])
ite | 7). j=N, Its dependency graph, shown in Figure 1, has three edges
7a(N) +75(N) , from s; to s, with weights1, 0, —1, and one zero
71(1) 4 73(0) J=0.

weighted edge froms, back tos;. There is one edge
A LoLa specification isvell-definedif for any set of from s; to ¢, and one froms, to t,.
appropriately typed input streams, all of the same length

it has exactly one evaluation model. A walk of a graph is a sequencey, ..., vg+1 Of

vertices, fork > 1, and edgese;,...,e;, such that
ei : (v, vir1,w;). The walk is closed iffv; = wvgy;.
The total weight of a walk is the sum of weights of its
¢1: s1=(t <10). edges.

For the strean : 0,..., 100, the associated equationgyefinition 4 (Well-Formed Specifications)A L oLA
areo1(j) = (71(j) < 10). The only evaluation model gy ification iswell-formedif there is no closed-walk

of ¢y is the stream, (i) = true iff @ < 10. In fact, i tota) weight zero in its dependency graph.
this LOLA specification is well-defined, since it defines

a unique output for each possible input. However, t
specification

Example 3 Consider the bLA specification

hI‘Jheorem 1 Every well-formed loLA specification is
well-defined.

: = t1 <1
p2i 8 = s\ (0L < 10) All proofs will be available in an extended version of this

is not well-defined, because there are many streagnsdocument. The following alternative characterization of
that satisfyps, for some input stream. Similarly, thewell-formedness is useful for algorithmic purposes and
specification for the offline monitoring algorithm.

Y3 83 = 1S3

1,0,—1
()=o) —"—(2)
< —_—
~—

0

Fig. 1: Dependency graph for the specification of Example 4.

Theorem 2 A LoLA specification is well-formed iff no The use of numeric data also increases the expres-
strongly connected component @i has both a positive siveness of the language; it enables the expression of
and a negative weighted cycle. context-free properties. Commonly encountecedtext-
. free properties include properties such a&véry request
The converse of Theo_rem 1is not true: not every We'llfas a matching graritIn programs, we may use such
defined loLA specification need be well-formed. For, o ties to verify that every lock acquired has been re-

instance, the specification = s A —s is well-defined, |oaqed, or that every memory cell allocated is eventually
but not well-formed. freed exactly once

C. Statistics and Context-free Properties i
Example 5 Consider the property‘the number of a’s

We shall now demonstrate the use of our specificati%st always be no less than the number of bEis
language for computing statistical properties over traf)‘?operty can be expressed iLA as
data. Numerical properties over traces are essential as

(1) components of correctness properties that involve s =s[-1,0] +ite((a A —b),1,0)
counts, maxima or minima over trace data, and (2) +ite((b A —a),—1,0)
estimating performance and coverage metrics in the form trigger(s < 0)

of averages. Integer streams in a dLA specification enable th
LoLA can be used to computecremental statistics eger streams 1n a specitication enable the
expression of context-free properties by being used as

i.e., measures that are defined using an update funct(|:<3(unters to model stacks. For instance. a two alohabet
fa(v,u) whereu represents the measure thus far, an : ' ' P

. . . stack with alphabet symbol and 1 can be modelled
v represents the new incoming data. Given a sequernce

of valueswy,...,v,, with a special default valué, the by"a counter. Each pop is implemented by dividing the

statistic over the data is defined in theverse sensas counter byz_, thereby eliminating t_he_ Iea_st significant bit.
Each push is modelled by a multiplication Byollowed

v = fa(vi, fa(va, ..., fa(vn,d))) by addition, thereby setting the least significant bit. Thus,
with one (unbounded) counter, LA specification can
express context-free properties.

 fa(v1,d))) It can be shown that &LA specifications with only
boolean streams cannot express context-free properties.

or in theforward senses

U= foz(vn»fa(vnfla ce

Examples of such statistical measures inclugent with
Foount (0, 1) = u+1, sum With feum (v,w) = v+u, maz [1l. M ONITORING ALGORITHM
with frez(u, v) = maz(u,v), among many others; the In this section, we first describe the setting for
statisticalaverage can be incrementally defined as a pathe monitoring problem considered in the paper. We
consisting of the sum and the count. then describe our monitoring algorithm using partial
Given an update functiorf, and a data-stream, evaluation of the equational semantics.
the following LOLA queries compute the statistic in the o
forward and reverse senses respectively: A. Monitoring Setup
We distinguish two situations for monitoring -enline
and offline monitoring. With online monitoring, system
behaviors are observed as the system is run under a
For most common incremental statistical measures, tast/real-life setting. In a simulation setting, we can
ther of these DLA queries compute the same resulassume that the monitor is working in tandem with
The choice of a monitoring strategy can dictate the uige simulator, with the monitor processing a few trace
of one over another as will be evident in the subsequegrtsitions while the simulator waits, and then the monitor
section. waiting while the simulation proceeds to produce the

staty = fo (stats[—1,d],v),
stat, = fo(stat,;[1,d],v).

next few positions. On the other hand, offline monitoring Let 7 be the input stream. The value bf for s is 3
assumes that the system has been run to completiand fort is zero. This indicates that for any input stream
and the trace data was dumped to a storage device. Thishe valuer(j) can be removed fronR at position;
leads to the following restriction for online monitoringitself. Similarly anyo(j) € R may be removed fronR
the traces are available a few points at a time startiag (or after) positionj + 3.

from time 0 onwards, and need to be processed online to _ _ o i _
make way for more incoming data. In particular, random Equations inU are simplified using the following

access to the traces is not available. rules: _ _ _ o
1) Partial evaluation rules for function applications

B. Online Monitoring Algorithm such as

In online monitoring we assume that the trace is
available one position at a time, starting from tirbe
The length of the trace is assumed to be unknown andyy Rewrite rules for if-then,
large.

Lett,...,t, beindependent (input) stream variables, ite(true,e1,e2) — €1
and sy,...,s, be dependent (output) stream variables.
Let j > 0 be the current position where the latest trace
data is available from all the input streams.

Evaluation Algorithm: The evaluation algorithm

true N e — e, 0+x—=x

3) Substitution of resolved positions fronk. If
oi(j) = ¢ € R, then every occurrence af;(j)
in U is substituted byc and possibly simplified

L . further.
maintains two stores of equations: We illustrate th ion of the alaorith .
« ResolvedequationsR of the form o;(j) = ¢, or eerlnglsera e the operation of the algorithm on a simple

7:(j) = ¢, for constante.

» Unresolvedequationsly of the formo;(j) = ei for g, 16 7 et 4. 4, be two input boolean stream vari-

all other stream expressiors . I
. .) ables. Consider the specification
Initially both stores are empty. At the arrival of input

stream data for a particular positioh 0 < j < N, p: s = ta V (t1 A s[1,false]),
that 'S, WhenTl(])""’.Tm(j) pecome available, thewhich computes; Until ¢5. The associated equations
following steps are carried out:
. , , for ¢ are:
1) The equationsri(j) = c1,...,7m(j) = cn are
added toR, L mG) vV (@) A o(+1) jHISN
2) The associated equations fof(j),...,0,(j) are 7Y/ = 72(5) otherwise.
added toU,

3) The equations inJ/ are simplified as much aslet the input streamsy and; be given by
possible; if an equation becomes of the form
0i(j) = ¢, itis removed from/ and added tdz. If 71 || false | false | true | true | true | true | true
c is true and the corresponding output variaBle | , || true | false | false | false | false | false | false
is marked as a trigger, then a violation is reported.
4) For each stream(alsos;), there is a non-negative
constantk; such thatr;(j —k;), if present inR can

At position 0, we encounterfalse, true). The equa-
tion for o(0) is

be safely removed. The constdnt> 0 is defined a(0) = 72(0) v (11(0) A (1))
as — true V (false N o(1))
k is non-negative and — true
ki = max {k’ ti[—k,d] is a subexpression} ' .
e and thuso(0) = true is added to the resolved store

Intuitively, for any positionj, j + k; is the latest At position 1, we encounterfaise, false) and thus we
value in the future whose computation requires thgin seto(1) = false, which is also added td&. From
value of 7;(j). j =2until j = 5, we encountettrue, false). At each of
these positions the equatioa$j) = o(j + 1) are added

Example 6 To illustrate the last point, consider theto U. The equation storé&’ now has the equations

specification,
s= s[—3,0] +t. 0(2)=0(3), 0(3) =0(4),..., o(b) =0c(6).

At position 6, we encounte(true, false) with the added The specification encodes the temporal assertion
information that the trace has ended. Wes@) = false U(request — O(grant)). Another way that produces
and add it toR. This lets us resolve the equationstin the same result is

and set all the positions fromto 6 to false. waitarant — | —arant A [TEILESEV
_ _ _ g g waitgrant[—1, false]
Note that the equation associated witf(j) on the trigger ended A waitgrant
LHs is added only after the current position reache

j. even if the termo;(j) appears on th&Hs of some waiting for a grant. The monitor waits for a grant

equation before position is reached. whenever it encounters squest and stops waiting if

The algorithm above works in time and space th%ere is agrant. If the trace ends while the monitor is

is linear in the length of the frace and the size of thsqill waiting, it triggers an error. The latter formulation

specification. Since the memory usage can be as la geefficiently monitorable, while the former is not. For

as the length of the trace in the worst-case, the methi?g
may not work for long simulations and large traces.

The streamwaitgrant records if the monitor is currently

tance, at every time instanaegitgrant(i) is instantly
resolved given its previous value, and those of the input
streams. Thus, the simple partial evaluation algorithm

Example 8 Consider the following bLA specification: X : ¢ X
monitors the latter with very little, constant, buffering.

ended = false[l,true]
s = ite(ended,t,s[1,true)) The following theorem characterizes efficiently moni-

in which the output streany takes the same valuetorable LoLA specifications.

everywhere that the input streamtakes at the end of thaorem 3 If the dependency graph of adLA query

the trace. The partial evaluation algorithm maintains thg,q o positive cycles then it is efficiently monitorable.
unresolveds(0),...,0(N). Such specifications cannot

be monitored efficiently. Furthermore, if the variable The converse of the theorem above does not hold
s appears in other expressions, the evaluation of tifegeneral. However, in the absence of an alternative
corresponding streams need to be delayed untian Syntactic characterization @M specification, we shall
be resolved. henceforth use the ternem specification to denote

_ _ . . queries whose dependency graphs do not contain positive
In the next section we characterize afficiently moni- cycles.
torable set of LoLA specifications based on the proper-" Gjven graphG, that does not have any positive weight
ties of their dependency graphs. The partial evaluatigpcles, we construct a graghi™, obtained by removing
algorithm will be shown to work efficiently for suchall negative weight edges fro®. Furthermore, among

specifications. all the edges inG between two nodes; and s;, we
. , L choose to add only that edge " which has the
C. Efficiently Monitorable Specifications maximum positive weight. The grap* has no self

We present a class of specifications that are efficientBops or multiple edges, and hence is a weighted directed
monitorable. These specifications are guaranteed to lid@yclic graph (DAG). For each node € G, we define
the number of unresolved equations in the memory to &S follows:
pre-determined constant that depends only on the size of (0, if there is no outgoing edge from s;,

the specification andot on the size of the trace. A; = RGN
’ max $ A; + w(e;) 7o J , ow.
is an edge in G

Definition 5 (Efficiently Monitorable Specifications)
A LoLA specification isefficiently monitorablgEm) if

its worst case memory requirement under our onlirBample 10 Consider the following bLA specifica-
monitoring algorithm is constant in the size of the tracggn:

Example 9 Consider the specificationEvery request 5= ?1[1’fa1;ei A Si[_27’0faise] L
must be eventually followed by a grant before the trace 52 — ite(si[2,true], t[2,0], 21, 2])
sg = (s2[4,true] <5)

ends$, which can be expressed as follows:
The dependency grap&y is shown in Figure 2. The

reqgrant = ite(request, evgrant, true) values of theA function are as follows:

evgrant = grant \V evgrant[l,false]
trigger (— reggrant) A(ty) = A(te) =0, A(s1) =1, A(s2) =3, A(s3) =T7.

//i\\
T T
® ® OO

(a) Dependency grap@'. (b) Derived graphG™.
Fig. 2: The dependency gragh for Example 10 and its derived gragh™.

The significance of thé\ function is clear through the a) Memory Controller: A Verilog model for a
following theorem. memory controller was simulated yielding3 input
streams. The correspondigyA assertions were hand-
Jranslated into a bLA specification. The specification
had 21 intermediate streams and 15 output streams, all
of which were declared triggers. Properties enforced
The memory requirement is therefotenstantin N included mutual exclusion of signals, correct transfers of

for an efficient specification. This number of unresolve®ddress and data, and timing specifications (e.g. signal
positions inU is upper-bounded b (A; + -+ A,). stability for 3 or 4 cycles). The specifications were not
For instance, computing thA values for the queries EM: the dependency graph had three positive-sum cycles,
in Example 9, we find that\(waitgrant) = 0. This €ach encoding a temporal until operator. Figure 3 shows
shows that the value afaitgrant resolves immediately, the performance of GLA on these traces.
given its previous value and the inputs. Our experimental b) PCl: We hand translatesiva assertions describ-
results in the subsequent section show that requiriiit§y the PCI 2.2 specifications for the master. A circuit
specifications to be efficiently monitorable is not unimplementing the master was simulated for varying times
reasonable in practice. Furthermore, streams involvéiproduce a set of traces to plot the performance. The
in positive cycles can be discarded or even rewritt&pecification had 15 input streams, 161 output streams
(as shown in Example 9) for the purposes of onlingd 87 trigger streams. Our initial implementation con-
monitoring. tained three positive weight cycles. We were able to
The framework developed generalizes naturally to 48MOve these by rewriting the queries carefully. Running

offline monitoring algorithm. Please refer to the fulimes can also be found in Figure 3. Bugs were delib-
version of this paper available online. erately introduced into the circuit in order to evaluate

the effectiveness of runtime verificationOLA reports
numerous useful trigger violations for the longest trace.

Theorem 4 The partial evaluation algorithm resolve
any trace positiow;(j) before timej + A,.

IV. APPLICATIONS

There are numerous applications of this formalism. In V. CONCLUSIONS

this section, we describe two such applications obtainedwe have presenteddLA, a formalism for runtime
directly from the industry. Synopsys, Inc. provided somgerification based on a functional language over fi-
circuit simulation dumps, along with specifications writnjite streams equipped with a partial evaluation-based
ten in the industry standarBystem Verilog Assertionsstrategy for online evaluation. Our formalism combines
(SvA)[18]. We were able to hand-translate tle/A runtime verification of boolean temporal specifications
queries directly into bLA specifications, a process thaiyith statistical measures to estimate coverage and specify
is potentially mechanizable. complex temporal patterns. By evaluating our system on
Our OCamL -based implementation ofdLA reads a industrial strength specifications, we have demonstrated
trace file and the specification file. It implements thghat LOLA can express relevant properties. Using depen-
online monitoring algorithm described in Section Ill withdency graphs, we have characterized efficiently moni-
some direct optimizations. We have incorporated facilioerable queries that can be monitored online efficiently
ties for displaying dependency graphs of specification terms of space. Based on our case-studies so far, the
The following two case studies were considered: restriction to efficiently monitorable specifications seems

Controller example PCI example
simulation steps| # clock pos. edges time (sec)|| # clock pos. edges time
5000 250 0.18 834 4.62
10000 500 0.35 1667 8.87
20000 1000 0.71 3334 | 19.04
50000 2500 1.78 8334 | 29.47
100000 5000 3.47 16667 | 52.53
200000 10000 6.83 33334 99.17
500000 25000 17.02 83334 | 236.96
1000000 50000 33.70 166667 | 467.98

Fig. 3: Running times for both examples. All timings were measured on an Intel Xeon Processor running Linux
2.4 with 2Gb RAM.

practical. [10] O. Kupferman and M. Y. Vardi, “Model checking of safety

[15]
REFERENCES
[16]

[1] K. Havelund and G. Rosu, EdsRuntime Verification 2001
(RV'01), ser. ENTCS, vol. 55. Elsevier, 2001.

[2] ——, Runtime Verification 2002 (RV'023er. ENTCS, vol. 70, [17]

no. 4. Elsevier, 2002.

O. Sokolsky and M. Viswanathan, Ed®Runtime Verification

2002 (RV'03) ser. ENTCS, vol. 89, no. 2. Elsevier, 2003.

N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “Th@sl

synchronous data-flow programming languagssTRE,"” Proc.

of IEEE vol. 79, no. 9, pp. 1305-1320, 1991.

G. Berry, Proof, language, and interaction: essays in honour

of Robin Milner MIT Press, 2000, ch. The foundations of

Esterel, pp. 425-454.

I. Lee, S. Kannan, M. Kim, O. Sokolsky, and M. Viswanathan,

“Runtime Assurance Based on Formal SpecificationsPrioc.

of the International Conference on Parallel and Distributed

Processing Techniques and Applicatipd999.

D. Drusinsky, “The temporal rover and the ATG rover,”$®IN

Model Cheking and Software Verificatio2000, pp. 323—330.

[8] K. Havelund and G. Rosu, “Synthesizing monitors for safety
properties,” inProc. of TACAS'02 Springer, 2002, pp. 342—
356.

[9] Z. Manna and A. PnueliTemporal Verification of Reactive
Systems: Safety New York: Springer, 1995.

(3]
(4]

In the future, we intend to study automatic techniques ~Properties, Formal Methods in System Desigvol. 19, no. 3,
" . : . pp. 291-314, 2001.
for rewriting non-EM specifications into efficiently MON114] K. Havelund and G. Rosu, “An overview of the runtime
itorable ones where possible, and in further collaboration verification tool java pathexplorerZormal Methods for Systems
with industry study the applicability of these techniques Design vol. 24, no. 2, pp. 189-215, 2004.
for larger case studies. We expect that for such udgl C: Eisner, D. Fisman, J. Havlicek, Y. Lustig, A. Mclsaac,
. and D. V. Campenhout, “Reasoning with temporal logic on
some syntactic sugar needs to be added @A to truncated paths,” irProc. of CAV'03 ser. LNCS, vol. 2725.
facilitate specification of common constructs. Also the Springer, 2003, pp. 27-39.
error reporting needs to be improved by synthesizii! E-Ct'i:r']gksbgtfi‘;?css6\1/3;:”5?;?;?23)/(22336 r?sn’(’jirl[zl]& Sipma, “Col-
explanations for each v_|olat|on. Extensions to hand §4] T. Gautier, P. Le Guernic, and L. Besnard, “SIGNAL: A
synchronous systems with many clocks, asynchronous geclarative language for synchronous programming of real-
systems, and distributed systems are also under consid- time systems,” irProc. Conference on Functional Programming
eration. Languages and Computer Architecture Springer, 1987, pp.
257-277.
K. Sen and G. Rosu, “Generating optimal monitors for extended
regular expressions,” in [3].
G. Rosu and K. Havelund, “Rewriting-based techniques for run-
time verification,” Journal of Automated Software Engineering
(to appear).
H. Barringer, A. Goldberg, K. Havelund, and K. Sen, “Rule-
based runtime verification,” ifProc. of 5th International Con-
ference VMCAI'0O4ser. LNCS, vol. 2937. Springer, 2004, pp.
44-57.
“System verilog assertion homepage,” 2003, [Online] Available:
http://www.eda.org/sv-ac.

(5]

(6]

(7]

