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Abstract— We present a specification language and algo-
rithms for the online and offline monitoring of synchronous
systems including circuits and embedded systems. Such
monitoring is useful not only for testing, but also under
actual deployment. The specification language is simple
and expressive; it can describe both correctness/failure
assertions along with interesting statistical measures that
are useful for system profiling and coverage analysis.
The algorithm for online monitoring of queries in this
language follows a partial evaluation strategy: it incre-
mentally constructs output streams from input streams,
while maintaining a store of partially evaluated expressions
for forward references. We identify a class of specifica-
tions, characterized syntactically, for which the algorithm’s
memory requirement is independent of the length of the
input streams. Being able to bound memory requirements
is especially important in online monitoring of large input
streams. We extend the concepts used in the online algo-
rithm to construct an efficient offline monitoring algorithm
for large traces.

We have implemented our algorithm and applied it to
two industrial systems, the PCI bus protocol and a memory
controller. The results demonstrate that our algorithms are
practical and that our specification language is sufficiently
expressive to handle specifications of interest to industry.

I. I NTRODUCTION

Monitoring synchronous programs for safety and live-
ness properties is an important aspect of ensuring their
proper runtime behavior. An offline monitor analyzes
traces of a system post-simulation to spot violations of
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the specification. Offline monitoring is critical for testing
large systems before deployment. An online monitor
processes the system trace while it is being generated.
Online monitoring is used to detect violations of the
specification when the system is in operation so that
they can be handled before they translate into observable
and cascading failures, and to adaptively optimize system
performance.

Runtime monitoring has received growing attention in
recent years [1], [2], [3]. While static verification intends
to show that every (infinite) run of a system satisfies
the specification, runtime monitoring is concerned only
with a single (finite) trace. Runtime monitoring can be
viewed as an extension of testing with more powerful
specification languages.

The offline monitoring problem is known to be easy
for purely past or purely future properties. It is well
known that for past properties, the online monitoring
problem can be solved efficiently using constant space
and linear time in the trace size. For future properties, on
the other hand, the space requirement generally depends
on the length of the trace, which suggests that online
monitoring may quickly become intractable in practical
applications with traces exceeding106 simulation steps.

In this paper, we present a specification language,
intended for industrial use. The language can express
properties involving both the past and the future. It is a
functional stream computation language like LUSTRE [4]
and ESTEREL [5], with features that are relevant to our
problem at hand. It is parsimonious in its number of
operators (expressions are constructed from three basic
operators), but the resulting expressiveness surpasses
temporal logics and many other existing formalisms



including finite-state automata.
We provide a syntactic characterization ofefficiently

monitorablespecifications, for which the space require-
ment of the online monitoring algorithm is independent
of the size of the trace, and linear in the specification
size. An analysis of some industrial specifications pro-
vided by Synopsys, Inc. showed that a large majority
of these specifications lie in this efficiently monitorable
class. For the offline monitoring problem, we demon-
strate an efficient monitoring strategy in the presence of
mixed past/future properties.

We have implemented our algorithm and specification
language in a system called LOLA. LOLA accepts a
specification in the form of a set of stream expressions,
and is then run on a set of input streams. Two types
of specifications are supported: properties that specify
correct behavior, and properties that specifystatistical
measuresthat allow profiling the system that produces
the input streams. An execution of LOLA computes
arithmetic and logical expressions over thefinite input
and intermediate streams to produce an output consisting
of error reports and the desired statistical information.

A. Related Work

Much of the initial work on runtime monitoring (cf.
[6], [7], [8]) was based on temporal logic [9]. In [10],
non-deterministic automata are built from LTL to check
violations of formulas over finite traces and the complex-
ity of these problems is studied. LTL based specifications
have already been pursued in tools such as the Temporal
Rover [7] and Java PathExplorer [11]. One limitation of
this approach is that the logic must be adapted to handle
truncated traces. The approach taken in [12] considers
extensions of LTL for the case of truncated paths with
different interpretations (weak and strong) of the next
operator at the end of the trace. The choice of handling
success/failure on a finite trace frequently depends on
the situation being modeled.

Another important difference between runtime verifi-
cation and static verification is that liveness properties
can never be violated on a finite trace. An appealing
solution is to extend the specification language to com-
putequantitative measuresbased on the trace. Temporal
properties can be specified in LOLA, but one of the
main goals is to go beyond property checking to the
collection of numerical statistics. For example, instead
of checking the property “there are only finitely many
retransmissions of each package,” which is vacuously
true over finite traces, we desire to evaluate queries like
“what is the average number of retransmissions.” Our

first approach to combine the property proving with data
collection appeared in [13]. Following this trend, run-
time verifiers can be used not only for bug-finding, but
also for profiling, coverage, vacuity and numerous other
analyses.

LOLA models runtime verification as astream com-
putation. The definition of LOLA output streams in
terms of other streams resembles synchronous program-
ming languages (notably LUSTRE [4], ESTEREL [5],
Signal [14]), but there is a significant difference: these
languages are designed primarily for the construction of
synchronous systems. Therefore, output values for a time
instant are computed directly from values at the same and
previousinstants. This assumption makes perfect sense
if we desire that the systems we specify beexecutable,
and therefore becausal. However, runtime specifications
are descriptivein nature. They include future formulas
whose evaluation may have to be delayed until future
values arrive. This requires stronger expressiveness in the
language and the corresponding evaluation strategies.

Other efforts in run-time verification include [15],
which studies the efficient generation of monitors from
specifications written as extended regular expressions,
and [16], which studies rewriting techniques for the
efficient evaluation of LTL formulas on finite execution
traces, both online and offline. In [8], an efficient method
for the online evaluation ofpast LTL properties is
presented. This method exploits that past LTL can be
recursively defined using only values in the previous
state of the computation. Ourefficiently monitorable
specifications generalize this idea, and apply it uniformly
to both verification and data collection.

The system that most closely resembles LOLA is
Eagle [17]. Eagle allows the description of monitors
based on greatest and least fixed points of recursive
definitions. Many logical formalisms used to describe
properties, including past and future LTL formulas, can
be translated to Eagle specifications. These are then
compiled into a set of rules that implements the monitor.
LOLA differs from Eagle in the descriptive nature of the
language, and in that LOLA is not restricted to checking
logical formulas, but can also express numerical queries.

II. L OLA OVERVIEW

In this section we describe the specification language.
The monitoring algorithms will be presented in Sec-
tion III.

A. Specification Language: Syntax

A L OLA specification describes the computation of
output streams from a given set of input streams. A



streamσ of type T is a finite sequence of values from
T . We let σ(i), i ≥ 0 denote the value of the stream at
time stepi.

Definition 1 (L OLA specification) A L OLA specifica-
tion is a set of equations over typedstream variables,
of the form

s1 = e1(t1, . . . , tm, s1, . . . , sn)
...

...
sn = en(t1, . . . , tm, s1, . . . , sn),

where s1, . . . , sn are called thedependent variables
and t1, . . . , tm are called theindependent variables,
and e1, . . . , en are stream expressionsover s1, . . . , sn

and t1, . . . , tm. Independent variables refer to input
streams and dependent variables refer to output streams∗.
A L OLA specification can also declare certain output
boolean variables astriggers. Triggers generate notifica-
tions at instants when their corresponding values become
true. Triggers are specified in LOLA as

trigger ϕ

whereϕ is a boolan expression over streams.

A stream expression is constructed as follows:

• If c is a constant of typeT , then c is an atomic
stream expressionof type T ;

• If s is a stream variable of typeT , then s is an
atomic stream expressionof type T ;

• Let f : T1 ×T2×· · ·×Tk 7→ T be ak-ary operator.
If for 1 ≤ i ≤ k, ei is an expression of typeTi, then
f(e1, . . . , ek) is a stream expression of typeT ;

• If b is a boolean stream expression ande1, e2 are
stream expressions of typeT , then ite(b, e1, e2)
is a stream expression of typeT ; note thatite
abbreviatesif-then-else.

• If e is a stream expression of typeT , c is a constant
of typeT , andi is an integer, thene[i, c] is a stream
expression of typeT . Informally, e[i, c] refers to the
value of the expressione offset i positions from the
current position. The constantc indicates thedefault
value to be provided, in case an offset ofi takes us
past the end or before the beginning of the stream.

∗In our implementation we partition the dependent variables into
output variables and intermediate variables to distinguish streams that
are of interest to the user and those that are used only to facilitate
the computation of other streams. However, for the description of
the semantics and the algorithm this distinction is not important, and
hence we will ignore it in this paper.

Example 1 Let t1, t2 be stream variables of type
boolean andt3 be a stream variable of type integer. The
following is an example of a LOLA specification with
t1, t2 and t3 as independent variables:

s1 = true
s2 = t3
s3 = t1 ∨ (t3 ≤ 1)
s4 = ((t3)2 + 7) mod 15
s5 = ite(s3, s4, s4 + 1)
s6 = ite(t1, t3 ≤ s4,¬s3)
s7 = t1[+1, false]
s8 = t1[−1, true]
s9 = s9[−1, 0] + (t3 mod 2)
s10 = t2 ∨ (t1 ∧ s10[1, true])

Stream variables1 denotes a stream whose value is
true at all positions, whiles2 denotes a stream whose
values are the same at all positions as those int3. The
values of the streams corresponding tos3, . . . , s6 are
obtained by evaluating their defining expressions place-
wise at each position. The stream corresponding tos7

is obtained by taking at each positioni the value of
the stream corresponding tot1 at positioni + 1, except
at the last position, which assumes the default value
false. Similarly for the stream fors8, whose values are
equal to the values of the stream fort1 shifted by one
position, except that the value at the first position is the
default valuetrue. The stream specified bys9 counts
the number of odd entries in the stream assigned tot3 by
accumulating(t3 mod 2). Finally, s10 denotes the stream
that gives at each position the value of the temporal
formula t1Until t2 with the stipulation that unresolved
eventualities be regarded as satisfied at the end of the
trace.

B. Specification Language: Semantics

The semantics of LOLA specifications is defined in
terms ofevaluation models, which describe the relation
between input streams and output streams.

Definition 2 (Evaluation Models) Let ϕ be a LOLA

specification over independent variablest1, . . . , tm with
types T1, . . . , Tm, and dependent variabless1, . . . , sn

with typesTm+1, . . . , Tm+n. Let τ1, . . . , τm be streams
of lengthN+1, with τi of typeTi. The tuple〈σ1, . . . , σn〉
of streams of lengthN + 1 with appropriate types is
called anevaluation model, if for each equation inϕ

si = ei(t1, . . . , tm, s1, . . . , sn),

〈σ1, . . . , σn〉 satisfies the followingassociated equations:

σi(j) = val(ei)(j) for 0 ≤ j ≤ N



whereval(e)(j) is defined as follows. For the base cases:

val(c)(j) = c .
val(ti)(j) = τi(j) .
val(si)(j) = σi(j) .

For the inductive cases:

val(f(e1, . . . , ek)(j) =
f(val(e1)(j), . . . , val(ek)(j)) .

val(ite(b, e1, e2))(j) =
if val(b)(j) then val(e1)(j) else val(e2)(j) .

val(e[k, c])(j) ={
val(e)(j + k) if 0 ≤ j + k ≤ N,

c otherwise .

The set of all equations associated withϕ is denoted by
ϕσ.

Example 2 Consider the LOLA specification

ϕ : s = t1[1, 0] + ite(t2[−1, true], t3, t4 + t5).

The associated equationsϕσ are

σ(j) =



τ1(j + 1) + ite

 τ2(j − 1),
τ3(j),
τ4(j) + τ5(j)

 j ∈ [1, N),

ite

 τ2(N − 1),
τ3(N),
τ4(N) + τ5(N)

 j = N,

τ1(1) + τ3(0) j = 0.

A L OLA specification iswell-definedif for any set of
appropriately typed input streams, all of the same length,
it has exactly one evaluation model.

Example 3 Consider the LOLA specification

ϕ1 : s1 = (t1 ≤ 10).

For the streamτ1 : 0, . . . , 100, the associated equations
are σ1(j) = (τ1(j) ≤ 10). The only evaluation model
of ϕ1 is the streamσ1(i) = true iff i ≤ 10. In fact,
this LOLA specification is well-defined, since it defines
a unique output for each possible input. However, the
specification

ϕ2 : s2 = s2 ∧ (t1 ≤ 10)

is not well-defined, because there are many streamsσ2

that satisfyϕ2,σ for some input stream. Similarly, the
specification

ϕ3 : s3 = ¬s3

is not well-defined, but for this specification the reason
is that it has no evaluation models.

To avoid ill-defined specifications we define a syntac-
tic restriction on LOLA specifications guaranteeing that
any well-formed LOLA expression is also well-defined.

Definition 3 (Dependency Graph) Let ϕ be a LOLA

specification. Adependency graphfor ϕ is a weighted
and directed multi-graphG = 〈V,E〉, with vertex set
V = {s1, . . . , sn, t1, . . . , tm}. An edgee : 〈si, sk, w〉
labeled with a weightw is in E iff the equation for
σi(j) in ϕσ containsσk(j + w) as a subexpression of
the RHS, for somej (or e : 〈si, tk, w〉 for subexpression
τk(j+w)). Intuitively, the edge records the fact thatsi at
a particular position depends on the value ofsk, offset
by w positions. Note that there can be multiple edges
betweensi andsk with different weights on each edge.
Vertices labeled byti do not have outgoing edges.

Example 4 Consider the LOLA specification over in-
dependent integer variablest1, t2:

s1 = s2[1, 0] + ite

 s2[−1, 7] ≤ t1[1, 0],
s2[−1, 0],
s2

 .

s2 = (s1 + t2[−2, 1]).

Its dependency graph, shown in Figure 1, has three edges
from s1 to s2, with weights 1, 0, −1, and one zero
weighted edge froms2 back to s1. There is one edge
from s1 to t1, and one froms2 to t2.

A walk of a graph is a sequencev1, . . . , vk+1 of
vertices, for k ≥ 1, and edgese1, . . . , ek, such that
ei : 〈vi, vi+1, wi〉. The walk is closed iffv1 = vk+1.
The total weight of a walk is the sum of weights of its
edges.

Definition 4 (Well-Formed Specifications) A L OLA

specification iswell-formed if there is no closed-walk
with total weight zero in its dependency graph.

Theorem 1 Every well-formed LOLA specification is
well-defined.

All proofs will be available in an extended version of this
document. The following alternative characterization of
well-formedness is useful for algorithmic purposes and
for the offline monitoring algorithm.
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Fig. 1: Dependency graph for the specification of Example 4.

Theorem 2 A L OLA specification is well-formed iff no
strongly connected component inG has both a positive
and a negative weighted cycle.

The converse of Theorem 1 is not true: not every well-
defined LOLA specification need be well-formed. For
instance, the specifications = s ∧ ¬s is well-defined,
but not well-formed.

C. Statistics and Context-free Properties

We shall now demonstrate the use of our specification
language for computing statistical properties over trace
data. Numerical properties over traces are essential as
(1) components of correctness properties that involve
counts, maxima or minima over trace data, and (2)
estimating performance and coverage metrics in the form
of averages.

LOLA can be used to computeincremental statistics,
i.e., measures that are defined using an update function
fα(v, u) where u represents the measure thus far, and
v represents the new incoming data. Given a sequence
of valuesv1, . . . , vn, with a special default valued, the
statistic over the data is defined in thereverse senseas

v = fα(v1, fα(v2, . . . , fα(vn, d)))

or in the forward senseas

v = fα(vn, fα(vn−1, . . . , fα(v1, d)))

Examples of such statistical measures includecount with
fcount(v, u) = u+1, sum with fsum(v, u) = v+u, max
with fmax (u, v) = max (u, v), among many others; the
statisticalaverage can be incrementally defined as a pair
consisting of the sum and the count.

Given an update functionfα and a data-streamv,
the following LOLA queries compute the statistic in the
forward and reverse senses respectively:

statf = fα (statf [−1, d], v) ,
statr = fα (statr[1, d], v) .

For most common incremental statistical measures, ei-
ther of these LOLA queries compute the same result.
The choice of a monitoring strategy can dictate the use
of one over another as will be evident in the subsequent
section.

The use of numeric data also increases the expres-
siveness of the language; it enables the expression of
context-free properties. Commonly encounteredcontext-
free properties include properties such as “every request
has a matching grant.” In programs, we may use such
properties to verify that every lock acquired has been re-
leased, or that every memory cell allocated is eventually
freed exactly once.

Example 5 Consider the property:“the number of a’s
must always be no less than the number of b’s.”This
property can be expressed in LOLA as

s = s[−1, 0] + ite((a ∧ ¬b), 1, 0)
+ ite((b ∧ ¬a),−1, 0)

trigger(s ≤ 0)

Integer streams in a LOLA specification enable the
expression of context-free properties by being used as
counters to model stacks. For instance, a two alphabet
stack with alphabet symbols0 and 1 can be modelled
by a counter. Each pop is implemented by dividing the
counter by2, thereby eliminating the least significant bit.
Each push is modelled by a multiplication by2 followed
by addition, thereby setting the least significant bit. Thus,
with one (unbounded) counter, a LOLA specification can
express context-free properties.

It can be shown that LOLA specifications with only
boolean streams cannot express context-free properties.

III. M ONITORING ALGORITHM

In this section, we first describe the setting for
the monitoring problem considered in the paper. We
then describe our monitoring algorithm using partial
evaluation of the equational semantics.

A. Monitoring Setup

We distinguish two situations for monitoring —online
and offline monitoring. With online monitoring, system
behaviors are observed as the system is run under a
test/real-life setting. In a simulation setting, we can
assume that the monitor is working in tandem with
the simulator, with the monitor processing a few trace
positions while the simulator waits, and then the monitor
waiting while the simulation proceeds to produce the



next few positions. On the other hand, offline monitoring
assumes that the system has been run to completion,
and the trace data was dumped to a storage device. This
leads to the following restriction for online monitoring:
the traces are available a few points at a time starting
from time0 onwards, and need to be processed online to
make way for more incoming data. In particular, random
access to the traces is not available.

B. Online Monitoring Algorithm

In online monitoring we assume that the trace is
available one position at a time, starting from time0.
The length of the trace is assumed to be unknown and
large.

Let t1, . . . , tm be independent (input) stream variables,
and s1, . . . , sn be dependent (output) stream variables.
Let j ≥ 0 be the current position where the latest trace
data is available from all the input streams.

Evaluation Algorithm: The evaluation algorithm
maintains two stores of equations:

• ResolvedequationsR of the form σi(j) = c, or
τi(j) = c, for constantc.

• UnresolvedequationsU of the formσi(j) = ei for
all other stream expressionsei.

Initially both stores are empty. At the arrival of input
stream data for a particular positionj, 0 ≤ j ≤ N ,
that is, whenτ1(j), . . . , τm(j) become available, the
following steps are carried out:

1) The equationsτ1(j) = c1, . . . , τm(j) = cm are
added toR,

2) The associated equations forσ1(j), . . . , σn(j) are
added toU ,

3) The equations inU are simplified as much as
possible; if an equation becomes of the form
σi(j) = c, it is removed fromU and added toR. If
c is true and the corresponding output variablesi

is marked as a trigger, then a violation is reported.
4) For each streamti( alsosi), there is a non-negative

constantki such thatτi(j−ki), if present inR can
be safely removed. The constantki ≥ 0 is defined
as

ki = max
{

k

∣∣∣∣ k is non-negative and
ti[−k, d] is a subexpression.

}
.

Intuitively, for any positionj, j + ki is the latest
value in the future whose computation requires the
value ofτi(j).

Example 6 To illustrate the last point, consider the
specification,

s = s[−3, 0] + t.

Let τ be the input stream. The value ofki for s is 3
and fort is zero. This indicates that for any input stream
τ , the valueτ(j) can be removed fromR at positionj
itself. Similarly anyσ(j) ∈ R may be removed fromR
at (or after) positionj + 3.

Equations inU are simplified using the following
rules:

1) Partial evaluation rules for function applications
such as,

true ∧ e → e, 0 + x → x · · ·

2) Rewrite rules for if-then,

ite(true, e1, e2) → e1 · · ·

3) Substitution of resolved positions fromR. If
σi(j) = c ∈ R, then every occurrence ofσi(j)
in U is substituted byc and possibly simplified
further.

We illustrate the operation of the algorithm on a simple
example.

Example 7 Let t1, t2 be two input boolean stream vari-
ables. Consider the specification

ϕ : s = t2 ∨ (t1 ∧ s[1, false]),

which computest1 Until t2. The associated equations
for ϕ are:

σ(j) =

{
τ2(j) ∨ (τ1(j) ∧ σ(j + 1)) j + 1 ≤ N

τ2(j) otherwise.

Let the input streams,τ1 andτ2 be given by

τ1 false false true true true true true
τ2 true false false false false false false

At position 0, we encounter〈false, true〉. The equa-
tion for σ(0) is

σ(0) = τ2(0) ∨ (τ1(0) ∧ σ(1))
→ true ∨ (false ∧ σ(1))
→ true

and thusσ(0) = true is added to the resolved storeR.
At position 1, we encounter〈false, false〉 and thus we
can setσ(1) = false, which is also added toR. From
j = 2 until j = 5, we encounter〈true, false〉. At each of
these positions the equationsσ(j) = σ(j + 1) are added
to U . The equation storeU now has the equations

σ(2) = σ(3), σ(3) = σ(4), . . . , σ(5) = σ(6).



At position6, we encounter〈true, false〉 with the added
information that the trace has ended. We setσ(6) = false
and add it toR. This lets us resolve the equations inU
and set all the positions from2 to 6 to false.

Note that the equation associated withσi(j) on the
LHS is added only after the current position reaches
j, even if the termσi(j) appears on theRHS of some
equation before positionj is reached.

The algorithm above works in time and space that
is linear in the length of the trace and the size of the
specification. Since the memory usage can be as large
as the length of the trace in the worst-case, the method
may not work for long simulations and large traces.

Example 8 Consider the following LOLA specification:

ended = false[1, true]
s = ite(ended , t, s[1, true])

in which the output streamσ takes the same value
everywhere that the input streamτ takes at the end of
the trace. The partial evaluation algorithm maintains the
unresolvedσ(0), . . . , σ(N). Such specifications cannot
be monitored efficiently. Furthermore, if the variable
s appears in other expressions, the evaluation of the
corresponding streams need to be delayed untilσ can
be resolved.

In the next section we characterize anefficiently moni-
torable set of LOLA specifications based on the proper-
ties of their dependency graphs. The partial evaluation
algorithm will be shown to work efficiently for such
specifications.

C. Efficiently Monitorable Specifications

We present a class of specifications that are efficiently
monitorable. These specifications are guaranteed to limit
the number of unresolved equations in the memory to a
pre-determined constant that depends only on the size of
the specification andnot on the size of the trace.

Definition 5 (Efficiently Monitorable Specifications)
A L OLA specification isefficiently monitorable(EM) if
its worst case memory requirement under our online
monitoring algorithm is constant in the size of the trace.

Example 9 Consider the specification “Every request
must be eventually followed by a grant before the trace
ends”, which can be expressed as follows:

reqgrant = ite(request , evgrant , true)
evgrant = grant ∨ evgrant [1, false]
trigger (¬ reqgrant)

The specification encodes the temporal assertion
�(request → ♦(grant)). Another way that produces
the same result is

waitgrant =
(
¬grant ∧

(
request ∨
waitgrant [−1, false]

) )
trigger ended ∧ waitgrant

The streamwaitgrant records if the monitor is currently
waiting for a grant. The monitor waits for a grant
whenever it encounters arequest and stops waiting if
there is agrant . If the trace ends while the monitor is
still waiting, it triggers an error. The latter formulation
is efficiently monitorable, while the former is not. For
instance, at every time instance,waitgrant(i) is instantly
resolved given its previous value, and those of the input
streams. Thus, the simple partial evaluation algorithm
monitors the latter with very little, constant, buffering.

The following theorem characterizes efficiently moni-
torable LOLA specifications.

Theorem 3 If the dependency graph of a LOLA query
has no positive cycles then it is efficiently monitorable.

The converse of the theorem above does not hold
in general. However, in the absence of an alternative
syntactic characterization ofEM specification, we shall
henceforth use the termEM specification to denote
queries whose dependency graphs do not contain positive
cycles.

Given graphG, that does not have any positive weight
cycles, we construct a graphG+, obtained by removing
all negative weight edges fromG. Furthermore, among
all the edges inG between two nodessi and sj , we
choose to add only that edge toG+ which has the
maximum positive weight. The graphG+ has no self
loops or multiple edges, and hence is a weighted directed
acyclic graph (DAG). For each nodesi ∈ G+, we define
∆i as follows:

∆i =


0, if there is no outgoing edge from si,

max

{
∆j + w(ej)

∣∣∣∣∣ ej : si
w(ej)−−−→ sj

is an edge in G+

}
, ow .

Example 10 Consider the following LOLA specifica-
tion:

s1 = t1[1, false] ∧ s3[−7, false]
s2 = ite(s1[2, true], t2[2, 0], t2[−1, 2])
s3 = (s2[4, true] ≤ 5)

The dependency graphG is shown in Figure 2. The
values of the∆ function are as follows:

∆(t1) = ∆(t2) = 0, ∆(s1) = 1, ∆(s2) = 3, ∆(s3) = 7.
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Fig. 2: The dependency graphG for Example 10 and its derived graphG+.

The significance of the∆ function is clear through the
following theorem.

Theorem 4 The partial evaluation algorithm resolves
any trace positionσi(j) before timej + ∆i.

The memory requirement is thereforeconstantin N
for an efficient specification. This number of unresolved
positions inU is upper-bounded byO(∆1 + · · ·+ ∆n).
For instance, computing the∆ values for the queries
in Example 9, we find that∆(waitgrant) = 0. This
shows that the value ofwaitgrant resolves immediately,
given its previous value and the inputs. Our experimental
results in the subsequent section show that requiring
specifications to be efficiently monitorable is not un-
reasonable in practice. Furthermore, streams involved
in positive cycles can be discarded or even rewritten
(as shown in Example 9) for the purposes of online
monitoring.

The framework developed generalizes naturally to an
offline monitoring algorithm. Please refer to the full
version of this paper available online.

IV. A PPLICATIONS

There are numerous applications of this formalism. In
this section, we describe two such applications obtained
directly from the industry. Synopsys, Inc. provided some
circuit simulation dumps, along with specifications writ-
ten in the industry standardSystem Verilog Assertions
(SVA)[18]. We were able to hand-translate theSVA

queries directly into LOLA specifications, a process that
is potentially mechanizable.

Our OCAML -based implementation of LOLA reads a
trace file and the specification file. It implements the
online monitoring algorithm described in Section III with
some direct optimizations. We have incorporated facili-
ties for displaying dependency graphs of specifications.

The following two case studies were considered:

a) Memory Controller: A Verilog model for a
memory controller was simulated yielding13 input
streams. The correspondingSVA assertions were hand-
translated into a LOLA specification. The specification
had 21 intermediate streams and 15 output streams, all
of which were declared triggers. Properties enforced
included mutual exclusion of signals, correct transfers of
address and data, and timing specifications (e.g. signal
stability for 3 or 4 cycles). The specifications were not
EM: the dependency graph had three positive-sum cycles,
each encoding a temporal until operator. Figure 3 shows
the performance of LOLA on these traces.

b) PCI: We hand translatedSVA assertions describ-
ing the PCI 2.2 specifications for the master. A circuit
implementing the master was simulated for varying times
to produce a set of traces to plot the performance. The
specification had 15 input streams, 161 output streams
and 87 trigger streams. Our initial implementation con-
tained three positive weight cycles. We were able to
remove these by rewriting the queries carefully. Running
times can also be found in Figure 3. Bugs were delib-
erately introduced into the circuit in order to evaluate
the effectiveness of runtime verification. LOLA reports
numerous useful trigger violations for the longest trace.

V. CONCLUSIONS

We have presented LOLA, a formalism for runtime
verification based on a functional language over fi-
nite streams equipped with a partial evaluation-based
strategy for online evaluation. Our formalism combines
runtime verification of boolean temporal specifications
with statistical measures to estimate coverage and specify
complex temporal patterns. By evaluating our system on
industrial strength specifications, we have demonstrated
that LOLA can express relevant properties. Using depen-
dency graphs, we have characterized efficiently moni-
torable queries that can be monitored online efficiently
in terms of space. Based on our case-studies so far, the
restriction to efficiently monitorable specifications seems



Controller example PCI example
# simulation steps # clock pos. edges time (sec) # clock pos. edges time

5000 250 0.18 834 4.62
10000 500 0.35 1667 8.87
20000 1000 0.71 3334 19.04
50000 2500 1.78 8334 29.47

100000 5000 3.47 16667 52.53
200000 10000 6.83 33334 99.17
500000 25000 17.02 83334 236.96

1000000 50000 33.70 166667 467.98

Fig. 3: Running times for both examples. All timings were measured on an Intel Xeon Processor running Linux
2.4 with 2Gb RAM.

practical.
In the future, we intend to study automatic techniques

for rewriting non-EM specifications into efficiently mon-
itorable ones where possible, and in further collaboration
with industry study the applicability of these techniques
for larger case studies. We expect that for such use
some syntactic sugar needs to be added to LOLA to
facilitate specification of common constructs. Also the
error reporting needs to be improved by synthesizing
explanations for each violation. Extensions to handle
synchronous systems with many clocks, asynchronous
systems, and distributed systems are also under consid-
eration.
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[1] K. Havelund and G. Roşu, Eds.,Runtime Verification 2001
(RV’01), ser. ENTCS, vol. 55. Elsevier, 2001.

[2] ——, Runtime Verification 2002 (RV’02), ser. ENTCS, vol. 70,
no. 4. Elsevier, 2002.

[3] O. Sokolsky and M. Viswanathan, Eds.,Runtime Verification
2002 (RV’03), ser. ENTCS, vol. 89, no. 2. Elsevier, 2003.

[4] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The
synchronous data-flow programming languageLUSTRE,” Proc.
of IEEE, vol. 79, no. 9, pp. 1305–1320, 1991.

[5] G. Berry, Proof, language, and interaction: essays in honour
of Robin Milner. MIT Press, 2000, ch. The foundations of
Esterel, pp. 425–454.

[6] I. Lee, S. Kannan, M. Kim, O. Sokolsky, and M. Viswanathan,
“Runtime Assurance Based on Formal Specifications,” inProc.
of the International Conference on Parallel and Distributed
Processing Techniques and Applications, 1999.

[7] D. Drusinsky, “The temporal rover and the ATG rover,” inSPIN
Model Cheking and Software Verification, 2000, pp. 323–330.
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