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Loneliness, Social Isolation, and Cardiovascular Health
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Abstract

Significance: Social and demographic changes have led to an increased prevalence of loneliness and social
isolation in modern society.
Recent Advances: Population-based studies have demonstrated that both objective social isolation and the per-
ception of social isolation (loneliness) are correlated with a higher risk of mortality and that both are clearly risk
factors for cardiovascular disease (CVD). Lonely individuals have increased peripheral vascular resistance and
elevated blood pressure. Socially isolated animals develop more atherosclerosis than those housed in groups.
Critical Issues: Molecular mechanisms responsible for the increased cardiovascular risk are poorly understood.
In recent reports, loneliness and social stress were associated with activation of the hypothalamic–pituitary–
adrenocortical axis and the sympathetic nervous system. Repeated and chronic social stress leads to glucocorticoid
resistance, enhanced myelopoiesis, upregulated proinflammatory gene expression, and oxidative stress. How-
ever, the causal role of these mechanisms in the development of loneliness-associated CVD remains unclear.
Future Directions: Elucidation of the molecular mechanisms of how CVD is induced by loneliness and social
isolation requires additional studies. Understanding of the pathomechanisms is essential for the development of
therapeutic strategies to prevent the detrimental effects of social stress on health. Antioxid. Redox Signal. 28,
837–851.
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Introduction

Loneliness, defined as the discrepancy between a
person’s desired and actual social relationships, is an

emotional response to social isolation, while social isolation
is an objective measure of the lack of social connections or
interactions. Consequently, loneliness is thought to be more
related to relationship quality than quantity (57, 78).

In addition to physical presence, humans need relationships
that provide mutual value and trust, and promote communi-
cation and collaboration toward common goals (15, 57, 78).
Although it is commonly thought that social isolation leads to
loneliness, loneliness can be experienced within a marriage,
family, friendship, or larger social group. In contrast, one can
feel socially contented while being alone (11, 12, 57, 78).

The perception of social isolation is not restricted to humans;
behaviors related to social isolation have been also documented
in animals (12, 14). Perceived social isolation (PSI) has dam-
aging effects on the physical health of humans and animals
manifested by activation of the hypothalamic–pituitary–
adrenal (HPA) axis and increased depressive behavior (14).
Experiments with animals housed individually are important
for investigating the molecular mechanisms and the causal
effects of social deprivation in disease development (11, 119).

Social isolation and loneliness are common sources of
chronic stress in adults (82, 124). Moreover, a growing
number of individuals are at risk for loneliness in modern
society because of social and demographic changes (78).
People are living longer and the number of people aged 60
years and older has tripled since 1950. Older age is associated
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with reduced social interactions, longer periods of time living
alone, and higher prevalence of loneliness (49, 104). How-
ever, loneliness is more than simply the result of age-related
losses but can be experienced at all stages of life (7, 74).

The prevalence of loneliness has increased commensurate
with deferred marriage, increased two-income households,
and increased residence in single-family homes (78). In ad-
dition, the Internet has completely changed the way people
live and interact (15). Despite increased digital connectivity,
more people are experiencing social isolation (15). Rather
than enhancing well-being, recent studies suggest that social
media may undermine it (68). The prevalence in modern
society (Fig. 1) is high enough to justify intervention (92).

Loneliness as a Mortality Risk Factor

Chronic social isolation has been shown to increase the
risks of morbidity and mortality similar to known factors,
including high blood pressure, smoking, and obesity (60). A
meta-analysis involving 148 studies and 308,849 individuals
followed for an average of 7.5 years showed that this effect of
social isolation was independent of other risk factors (Fig. 2).
The quantity and quality of relationships have been inversely
correlated with health risks (58, 59). Strong social relation-
ships can increase the likelihood of survival by as much as
50% relative to individuals whose relationships are weaker
(59). An increase in mortality has been correlated with both
loneliness and social isolation (58, 125). The overall odds
of mortality due to loneliness and social isolation are 1.50,
which was comparable to light smoking and greater than the
risks due to obesity and hypertension (59). A recent meta-
analysis indicated that social isolation, loneliness, and living
alone increased the possibility of death by *29%, 26%, and
32%, respectively (58).

Loneliness as a Cardiovascular Risk Factor

An early study published in 1992 showed that coronary
heart disease (CHD) patients who were not married and did
not have a confidant had a significantly higher 5-year inci-
dence of mortality (50%) than that (18%) observed in patients
with a spouse or partner (146). Two reviews about social
relationships and CHD associated the degree of loneliness
with the incidence and prognosis of CHD, although the evi-
dence was relatively weak (3, 124)

A recent systematic review followed by a meta-analysis of
16 prospective longitudinal studies showed that loneliness
and social isolation were correlated with increased risks of
CHD (29%) and stroke (32%) (138). The association was
comparable to anxiety and job stress, which are recognized
risk factors for CHD (138). This finding reinforces existing
evidence demonstrating that poor social connections robustly
predict morbidity and mortality, and that loneliness and so-
cial isolation are additional risk factors of cardiovascular
disease (CVD) (57).

Hypertension

Results from longitudinal (54) and cross-sectional (13)
studies have shown the association between increased blood
pressure and loneliness in older and middle-aged individuals;
this association strengthens with increasing age of individuals
(52). Moreover, individuals who were lonelier by one standard
deviation had systolic blood pressure (SBP) that was 3.7 mmHg
greater at study initiation and was predicted to increase by
2.3 mmHg over the next 4 years (52). Thus, these findings
would predict that over 4 years, the most lonely individuals
would exhibit an increase in SBP that was 14.4 mmHg
(3.6 mmHg/year) higher than the least lonely individuals (54).

FIG. 1. Prevalence of loneliness. The reported preva-
lence of loneliness in Europe (148) and China (149), re-
spectively. The overall prevalence of loneliness among
adults older than 65 in the United States (135) is shown for
comparison. There are significant differences in the preva-
lence among European countries with a higher prevalence in
group EU1 (Bulgaria, Hungary, Latvia, Poland, Romania,
Russia, Slovakia, and Ukraine) than group EU2 (Austria,
Cyprus, Estonia, France, Portugal, Slovenia, and Spain), and
group EU3 (Belgium, Denmark, Finland, Germany, Ireland,
the Netherlands, Norway, Sweden, Switzerland, and the
United Kingdom) (148). To see this illustration in color, the
reader is referred to the web version of this article at www
.liebertpub.com/ars

FIG. 2. Impact of social support on mortality. The odds
of mortality due to social isolation and loneliness are similar
to light smoking (15 cigarettes/day) and alcohol consump-
tion (6 drinks/day), and exceed the risks conferred by
physical inactivity and obesity. Note: Effect size of zero
indicates no effect. Complex measures of social integration
are single measures that assess multiple components of social
integration such as marital status, network size, and partici-
pation (59). Reproduced and modified from Holt-Lunstad
et al. (59), which is an open-access article distributed under
the terms of the Creative Commons Attribution License. To
see this illustration in color, the reader is referred to the web
version of this article at www.liebertpub.com/ars
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Increase in total peripheral resistance (TPR) is the main
cause of elevated SBP in individuals up to 40 years of age, when
arterial stiffness assumes a growing role (43). TPR levels are
chronically increased in young adults who are lonely relative to
nonlonely individuals of the same age (13, 50). The more rapid
increase in TPR leads to premature arterial stiffening and
increase of SBP (43). Consequently, lonely individuals may
develop earlier or more severe structural abnormalities in re-
sistance arteries that promote deposition of collagen and de-
crease elastic fiber content (54).

Atherosclerosis

There is a large body of evidence from animal studies
showing that social isolation and social stress accelerate
atherogenesis. Male cynomolgus monkeys exposed to social
stress (e.g., via periodic reorganizing of groups with different
conspecifics) and fed a diet low in fat and cholesterol de-
veloped more severe atherosclerosis of the coronary artery
compared with control monkeys under nonstress conditions
(maintained in stable groups) (63). The lack of significant
effects of social stress on blood pressure, serum lipid, and
glucose levels, or ponderosity indicated that atherogenesis

in these stressed monkeys was independent of serum lipid
levels (63). In female cynomolgus monkeys that consumed a
moderately atherogenic diet, social deprivation by individual
housing significantly increased coronary artery atheroscle-
rosis without a change in plasma lipid concentrations (115).
Similarly, Watanabe heritable hyperlipidemic rabbits (79,
96) and apolipoprotein E-knockout mice (6) housed in social
isolation showed greater atherosclerotic lesion areas than
those in an affiliative social environment.

Molecular mechanisms underlying the enhanced athero-
sclerosis in socially isolated animals may involve sympa-
thetic nervous system (SNS) overactivation and physical
inactivity, as well as enhanced vascular inflammation and
oxidative stress (79, 86, 87).

Pathways Affected by Loneliness—The Molecular Link

In a review article published in this Forum, Meyer and
Wirtz addressed the molecular mechanisms linking cytokine
function and HPA axis components to mitochondrial redox
signaling under psychosocial stress (83). In the present arti-
cle, we discuss how loneliness and social isolation affect
health by activating behavioral and psychological mecha-
nisms as well as pathophysiological pathways (Fig. 3).

FIG. 3. Proposed mechanisms of loneliness-associated cardiovascular disease (CVD). Loneliness and social isolation
lead to activation of the hypothalamic–pituitary–adrenal (HPA) axis and the sympathetic nervous system (SNS), and to
behavioral alteration, including physical inactivity, smoking, and sleep disruption. SNS activation enhances monocytopoiesis
in the bone marrow resulting in expansion of immature proinflammatory monocytes. In addition, SNS also stimulates
monocyte egress from the spleen. Chronic social stress leads to glucocorticoid (GC) resistance, upregulation of proin-
flammatory gene expression, as well as enhanced cytokine production by immune cells. Cytokines, in turn, can potentiate GC
resistance. The resulting enhanced inflammation and oxidative stress may be involved in atherosclerosis development and
blood pressure elevation. Both proinflammatory monocytes and cytokines can traffic to the brain and amplify loneliness by
inducing ‘‘sickness behaviors.’’ Epinephrine (Epi) and norepinephrine (NE) induce vasoconstriction, an effect that is enhanced
by GC. Moreover, GC reduces endothelial nitric oxide synthase (eNOS) gene expression and serine 1177 phosphorylation in
endothelial cells resulting in decreased nitric oxide (NO) production and impaired vasodilation. However, the causal role of
these mechanisms in the development of loneliness-associated CVDs has not been demonstrated so far, although their
involvement is likely. ACTH denotes adrenocorticotropic hormone. The images of brain, bone, spleen, and monocytes used in
this figure are from Servier Medical Art licensed under the Creative Commons Attribution 3.0 Unported License (111). To see
this illustration in color, the reader is referred to the web version of this article at www.liebertpub.com/ars
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Behavioral and psychological changes

Social species create organizations (ranging from dyads
and families to societies) beyond the individual, which have
benefits such as mutual protection and assistance (12).
Therefore, social isolation represents a dangerous situation,
through which a socially isolated individual may react with
implicit vigilance for social threats, fragmented sleep to
evade predation, and increased cardiovascular activity to deal
with potential assaults (12). Although these responses may be
protective for short-term survival, when isolation becomes
chronic, they have long-term detrimental effects on mental
and physical health (12).

Social isolation and loneliness are associated with health
risk behaviors such as reduced physical activity, reduced
sleep quality, and smoking (7, 53, 57, 113, 138). Loneliness
also has been associated with depression, anxiety, dysphoria,
and social withdrawal (12). Similar observations have been
made in animal studies. Male adult rodents subjected to social
isolation exhibit a significant decrease in physical activity
and sleep quality (11, 13). Mice subjected to social isolation
exhibited disrupted sleep and reduced slow-wave sleep (65).

The HPA axis

The major neuroendocrine systems involved in the stress
response are the HPA axis and sympathetic adrenomedullary
axis (11). Activation of the HPA axis is a consistent finding in
lonely individuals (51), whereas the association between
loneliness and increased circulating levels of catecholamines
is less consistent (11).

The HPA axis plays an important role in regulating the
response to stress (12). The HPA axis is the main producer of
glucocorticoids, including cortisol (humans) and corticoste-
rone (rodents). Glucocorticoid release follows the circadian
rhythm, where highest levels occur in the morning and lowest
levels occur in the evening. Loneliness in humans is associ-
ated with larger morning cortisol rises (1), higher circulating
cortisol levels (23, 33), and decreased glucocorticoid receptor
(GR) sensitivity (21, 25), indicating higher levels of HPA
activation in lonely individuals (12).

Similar HPA axis activation has been observed in animal
models of PSI. Chronic separation of pair-bonded prairie
voles was associated with increased levels of corticosterone
(10, 81, 126), whereas chronic separation from a low-
preference partner (e.g., same-sex sibling) resulted in no in-
crease in levels of corticosterone (10).

Glucocorticoids govern physiological functions, including
immunity, metabolism, cardiovascular activity, reproductive
processes, neurodegeneration, and apoptosis (11). Gluco-
corticoids mediate these physiological functions via rapid-
acting, nongenomic effects and slow-acting genomic effects.
For example, stimulation of GRs in leukocytes by cortisol
results in suppression of proinflammatory gene networks.
However, chronic social stress induces glucocorticoid resis-
tance (Fig. 4) in which the GR becomes less efficient in
transducing glucocorticoid signals (27). Glucocorticoid re-
sistance, in turn, leads to excessive inflammation as well as
hyperactivity of corticotropin-releasing hormone and SNS
pathways (94), which may contribute to development of
diseases, including atherosclerosis, diabetes, neurodegen-
eration and tumor metastasis (11). Interestingly, CHD pa-
tients show a blunted cortisol stress response (less cortisol

release in response to acute stress) (140), and depressed in-
dividuals with CHD have increased inflammatory marker
expression and decreased GR expression and GR sensitivity
compared with nondepressed CHD patients (89).

A variety of molecular mechanisms have been implicated in
glucocorticoid resistance (Fig. 4), including GR degradation,
disruption of GR translocation, and/or GR-DNA binding, as
well as changes in GR phosphorylation status (94, 105, 117).
Importantly, inflammatory cytokines potentiate glucocorticoid
resistance (94). As glucocorticoid resistance exacerbates in-
flammation and production of proinflammatory cytokines,
there may exist a positive feedback mechanism in the devel-
opment of glucocorticoid resistance. In addition, glucocorti-
coid resistance can be attenuated by b-adrenoceptor blockade
in socially isolated mice, which indicates a contribution of the
SNS to glucocorticoid resistance (48, 101).

In endothelial cells, glucocorticoids reduce nitric oxide
(NO) production via endothelial NO synthase (eNOS). NO
derived from eNOS is a crucial antihypertensive and anti-
atherosclerotic factor (42, 70). Both the expression level (142)
and serine 1177 phosphorylation (136) of eNOS are decreased
by glucocorticoid treatment. Reduced endothelial NO pro-
duction represents a crucial mechanism in the development of
glucocorticoid therapy-induced hypertension (107, 141, 142).
Moreover, glucocorticoids also potentiate the vasoconstricting
effect of catecholamines (150). However, the contribution of
these mechanisms to blood pressure elevation and athero-
sclerosis in lonely and socially isolated individuals remains to
be determined. It is not clear whether the loneliness-associated
glucocorticoid resistance also occurs in endothelial cells or
is restricted to immune cells. Nevertheless, acetylcholine-
induced, endothelium-dependent vasodilation is impaired in
the aorta of socially isolated prairie voles (97), which suggests
reduced endothelial NO production from eNOS.

The SNS

The SNS projects from the central nervous system through
the splanchnic nerve directly to the adrenal medulla. This
direct innervation enables a rapid response to acute stress via
secretion of epinephrine (and smaller amounts of norepi-
nephrine and dopamine) into the circulation (11). In addition,
the SNS innervates the entire body, including the lymphoid
system (48), and SNS nerve fibers release norepinephrine
directly into the thymus, spleen, and lymph nodes (11).

Evidence for the association between loneliness and ele-
vated catecholamine levels (44) has not been as consistently
shown as the effect of loneliness on the HPA axis (11, 52). In
humans and macaques, chronic PSI has been associated with
elevated urinary levels of norepinephrine metabolites but not
epinephrine (23).

Interestingly, social stress appears to be much more
strongly related to local catecholamine levels in SNS-
innervated tissues (e.g., thymus, spleen, lymph nodes, and
tumors) than systemic catecholamine levels. For instance,
poor social support and high prevalence of depression in
ovarian cancer patients were associated with significantly
higher norepinephrine levels in tumor tissues compared with
patients with strong social networks and lower prevalence of
depression. In contrast, no effect of social support on plasma
norepinephrine was found in the same patient population (75,
76). Moreover, the high tumor norepinephrine levels were
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paralleled by stronger norepinephrine effects mediated by b-
receptors, for example, transcription pathways that mediate
inflammation, metastatic capacity, and cell proliferation (19,
28, 75, 76).

The social regulation of tissue norepinephrine levels is not
only a result of functional but also structural changes. Studies
in nonhuman primates have found a substantial amount of
socially regulated plasticity in the innervation of lymph
nodes (120, 122). Animals housed under unstable conditions
showed catecholaminergic innervation of lymph nodes that
was more than twice as dense as animals socialized under
stable social conditions. These animals had an impaired an-
tiviral immune response, normally mediated by type I inter-
feron, which resulted in increased simian immunodeficiency
virus (SIV) load (122). Given lymphoid organs’ fundamental
immunoregulatory role, social stress-induced innervation of
lymph nodes may have a range of effects on immunity and
inflammation (120, 121).

The SNS is also involved in upregulated production of im-
mature and proinflammatory monocytes by the bone marrow
in response to social stress, an effect that is mediated by
b-adrenergic receptors (101). Social stress leads to a proin-
flammatory state characterized by increased monocytopoiesis
and selective expansion of an immature monocyte subset
(Ly6chi and CD16- in mice and humans, respectively) (55, 101).

These immature monocytes are proinflammatory, while the
more mature Ly6clo monocytes are immunoregulatory (127).

Peripheral blood mononuclear cells (PBMCs) from young
adults subjected to chronic socioeconomic stress showed total
monocyte transcriptome expansion and immature proin-
flammatory CD16- monocyte transcriptome expansion (101).
Moreover, this proinflammatory gene expression profile was
mediated by upregulation of myelopoiesis induced by the SNS
(101). The bone marrow microenvironment, where hemato-
poiesis and differentiation of monocytes take place, is inner-
vated by the SNS (35), which implies that mobilization of
hematopoietic stem cells is regulated by the SNS (4, 64).

Repeated social defeat (RSD) in mice is used as a model
for social disruption stress (SDR). Like SDR, RSD results in
activation of the HPA axis and the SNS. RSD in mice results
in increased bone marrow monocytopoiesis and Ly6chi

monocyte accumulation in blood, spleen, bone marrow, and
brain (80, 101). Pretreatment of mice with propranolol (b-
adrenergic receptor blocker) before RSD prevented periph-
eral Ly6chi monocyte expansion and proinflammatory gene
upregulation in monocytes from peripheral blood (101).

Interestingly, SNS activation in the spleen results in the
release of primed monocytes (80). Splenomegaly and glu-
cocorticoid resistance in CD11b+ and CD11c+ myeloid
populations of the spleen were observed in mice subjected to

FIG. 4. Mechanisms of glucocorticoid resistance. Reduction in glucocorticoid sensitivity can be ascribed to alteration of
factors that regulate glucocorticoid bioavailability and activity such as [1] increased corticosteroid-binding globulin (G); [2]
increased expression of the multidrug resistance transporter (MDR pump); [3] increased expression of cortisol-inactivating
enzyme 11b-HSD-2; [4] reduced glucocorticoid binding to the glucocorticoid receptor (GRa); [5] inflammasome-mediated
degradation of GRa; [6] reduced GR nuclear translocation due to phosphorylation by p38 and JNK classes of mitogen-
activated protein kinase (MAPK); [7] increased GR interaction with inflammatory-related transcription factors, such as NF-
jB or AP-1; and [8] increased expression of the inhibitory glucocorticoid receptor GRb. HSP, heat shock protein. X
indicates inhibition of gene expression. Partly adapted from Refs. 94, 105, 117, 139. To see this illustration in color, the
reader is referred to the web version of this article at www.liebertpub.com/ars
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RSD (48). Pretreatment of mice with propranolol before RSD
led to decreased RSD-induced plasma IL-6 and splenomeg-
aly, and attenuated anxiety-like behavior (48).

The re-establishment of anxiety-like behavior in RSD
mice in response to subthreshold stress was correlated with
Ly6chi monocyte release from the spleen and accumulation in
the brain. Moreover, trafficking of monocytes to the brain and
anxiety-like behavior induced by subthreshold stress were
prevented by splenectomy before RSD in these mice. Thus,
trafficking of monocytes to the brain was associated with the
recurrence of anxiety-like behavior in these RSD mice (80,
128, 147).

The vagal system

An important function of the vagal system is to prevent the
detrimental effects of SNS overactivation (18, 67). Heart rate
variability (HRV) is measured by the variation in the beat-to-
beat interval (112, 133), which is partly modulated by the au-
tonomic nervous system at the sinoatrial node of the heart (45,
69). High-frequency heart rate variability (HF-HRV) denotes
heart rate variations associated with respiration. Respiratory
sinus arrhythmia occurs when the heart rate accelerates and
decelerates on inspiration and expiration, respectively (112).
HF-HRV is determined by vagally mediated parasympathetic
activity (112). The cardiovascular center inhibits vagal outflow
during inhalation and restores vagal outflow during exhalation
(112). Although the heart is dually innervated, the influence of
the SNS on the heart occurs too slowly to affect beat-to-beat
changes quickly (133). Therefore, HF-HRV directly measures
parasympathetic control of the heart (45, 91).

Recent studies have suggested that positive social inter-
actions have an effect on HF-HRV (45). Marriage was as-
sociated with greater HF-HRV (102), and happy marriages
were associated with even greater HF-HRV (123). One study
of 2066 male civil servants in the United Kingdom (the
Whitehall cohort) found a correlation between smaller HF-
HRV and low social integration (56). Similarly, the effect of
social integration on autonomic nervous system function was
demonstrated in a recent study of students who had moved to
a foreign country. The lack of social integration within the
initial 5 months in the host country was correlated with a
higher heart rate and lower HF-HRV (45). The results sug-
gested that changes in autonomic nervous system function,
measured by HF-HRV, may be an important link between
social integration and health (45).

Studies in animal models of social isolation have sug-
gested that HRV may be regulated by the social environment.
Socially isolated prairie voles had lower HF-HRV compared
with socially paired voles at baseline and during exposure to
stress (46, 47). Exogenous oxytocin administration increased
the HF-HRV of socially isolated voles to a level similar to
socially paired voles (47).

Similarly, oxytocin administration to healthy young adults
significantly increased both sympathetic (indexed by pre-
ejection period) and parasympathetic (indexed by HF-HRV)
autonomic cardiac control (91). Importantly, the level of
loneliness negatively predicted alterations in autonomic con-
trol of cardiac function induced by oxytocin treatment, which
was independent of anxiety, depression, and serum markers.
Lonelier individuals had lower response to oxytocin-induced
effects on HF-HRV (91). Because simultaneous activation of

the parasympathetic nervous system mitigates the potentially
deleterious effects of heightened sympathetic output (91, 133),
loneliness may cause a potentially healthy response (auto-
nomic coactivation) to become harmful (selective activation of
the SNS).

Hence, one mechanism by which social isolation may
negatively impact health outcomes is via altered autonomic
nervous system function (45). Indeed, a lower HF-HRV has
been correlated with adverse health outcomes (45), including
reduced cognitive function, depression, CVD, and all-cause
mortality (73, 132, 134, 137).

The immune system

Social isolation and socioeconomic stress have been as-
sociated with the conserved transcriptional response to ad-
versity (CTRA) in leukocytes, characterized by upregulation
of proinflammatory gene expression and downregulation of
antibody- and antiviral immunity-related genes (25, 26, 101).
Human myeloid-derived antigen-presenting cells such den-
dritic cells, monocytes, and B cells have been identified by
transcript origin analyses as the major cellular contributors of
the transcriptional response of the immune system to lone-
liness (24).

In lonely individuals, SNS activation (101), rather than
circulating levels of cortisol, causes the shift between pro-
and anti-inflammatory signaling (25, 101). Loneliness also
has been correlated with elevated levels of norepinephrine
metabolites (but not epinephrine) in urine (23). SNS activa-
tion enhanced myelopoiesis (55, 101) and concurrently reg-
ulated CTRA-related gene expression (23).

Reciprocal regulation of the leukocyte transcriptome may
result in two distinct functional consequences: enhanced in-
flammation and an impaired antiviral response.

Monocytes are the main source of the proinflammatory
function of the CTRA (101), which results from immature
CD14++/CD16- monocyte subset expansion (23) and upregu-
lated proinflammatory gene expression (24). While the num-
ber of total circulating leukocytes (24) was not significantly
changed in lonely individuals, the percentage of circulating
monocytes was increased and CTRA-associated gene expres-
sion was upregulated (23). Upregulation of CTRA-related
gene expression in human resulted likely from selective ex-
pansion of the immature CD14++/CD16- classical monocyte
subset rather than the total CD14++ monocyte population (23).
Similarly, macaques with high PSI also showed upregulated
circulating monocyte frequencies and percentages. Within the
monocyte population, classical CD14++/CD16- monocytes
were expanded, and nonclassical CD14++/CD16+ monocytes
were unchanged (23). Analogous to high-PSI humans, high-
PSI macaques showed upregulated CTRA-related gene ex-
pression in the classical CD14++/CD16- monocytes from the
PBMC population (23). Moreover, circulating lymphocytes
from high-PSI humans (24, 25) and macaques (23) showed
glucocorticoid resistance, including downregulated GR ex-
pression and upregulated NF-jB expression (23).

Based on these data, Cole et al. proposed a mechanistic
model in which loneliness results in an SNS-mediated expan-
sion of myeloid-lineage cells characterized as immature,
proinflammatory, and glucocorticoid resistant (23). Upregula-
tion of proinflammatory gene expression in lonely people
may be explained by glucocorticoid resistance even with
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concurrently elevated cortisol levels, as the anti-inflammatory
effects of endogenous glucocorticoids are diminished be-
cause of impaired GR signaling (23). The resulting long-term
inflammation may represent a key mechanism in the de-
velopment of loneliness-associated chronic diseases such as
atherosclerosis, cancer, and neurodegeneration (23).

The other part of the leukocyte CTRA, namely, reduced
type I interferon activity and reduced antibody-related gene
expression, likely comes from dendritic cells, which produce
interferon, and B lymphocytes, respectively (23, 24). This
may lead to impaired immunity as the functional conse-
quence. At baseline, high-PSI macaques showed down-
regulated PBMC mRNA levels of interferon genes compared
to controls. After infection with SIV, interferon gene ex-
pression was significantly upregulated in controls but not in
high-PSI animals. High-PSI macaques also showed weaker
suppression of SIV gene expression in PBMCs, increased
viral load in plasma and cerebrospinal fluid, and decreased
titers of anti-SIV IgG antibodies (23).

Importantly, CTRA gene expression may reciprocally affect
loneliness. In lonely individuals, the immature proinflammatory
monocytes can traffic into the brain, leading to anxiety and
altered social behavior. Moreover, release of proinflammatory
cytokines in the brain may promote ‘‘sickness behaviors,’’
which include affective, perceptual, and motivational processes
that could augment loneliness and decrease the desire for social
interaction, creating a vicious cycle (22, 23). As mentioned
above, this positive feedback loop involves trafficking of
monocytes to the brain (80, 143, 147).

Oxidative stress

Disturbed redox homeostasis in oxidative distress may
represent a key molecular link from chronic psychosocial
stress to CHD (116). Social isolation induces oxidative stress
in the brain and in peripheral tissues. In the brain, oxidative
stress was shown to be a crucial mechanism triggering HPA
activation. In the periphery, oxidative stress may be the result
of social isolation-induced changes in the HPA, SNS, and the
immune system as detailed above. Indeed, a large-scale study
involving 2858 subjects showed that markers of the HPA
axis, SNS, and inflammation were associated with oxidative
damage in a dose-response manner (9).

Social isolation rearing of rats (individual housing starting
at the age of 21 days) led to an increase in oxidative stress in
the hypothalamus and the prefrontal cortex (20, 109). Im-
portantly, the elevation in oxidative stress markers in the

hypothalamus after 2 weeks was an early pathological event
that preceded the increase of corticotropin-releasing factor
levels in the hypothalamus and adrenocorticotropic hor-
mone levels in the plasma at 4 weeks, and increased corti-
costerone levels in plasma and saliva after 7 weeks (20).
Thus, the early increase of oxidative stress likely triggered
the stress response and HPA-axis activation (20).

NADPH oxidase (NOX) enzymes comprise a family of
membrane proteins that generate reactive oxygen species (ROS)
(108). Among the NOX enzymes found in the brain (NOX1,
NOX2, NOX3, and NOX4), NOX2 has a critical role in social
isolation (20, 108). Social isolation in rats led to upregulation of
NOX2 and its components (p22phox, p67phox, p47phox, and
p40phox) in the brain (109). Treatment of rats with the anti-
oxidant/NOX inhibitor apocynin (starting after 4 weeks of so-
cial isolation) stopped the progression of HPA-axis activation
induced by social isolation (20). Rats that had a loss-of-function
mutation in the NOX2 subunit p47phox were completely pro-
tected from changes in the neuroendocrine profile and behavior
induced by social isolation (20). These results suggested that
NOX2-derived oxidative stress in the hypothalamus was a
causal factor in social isolation-induced HPA activation and in
the development of anxiety-like symptoms.

The relationship between oxidative stress and the HPA
axis in social isolation seems to be bidirectional. As men-
tioned above, NOX2-mediated oxidative stress in the hip-
pocampus lies upstream of social isolation-induced changes
in the HPA axis. On the contrary, glucocorticoids derived
from the HPA axis also have an impact on NOX expression
and activity (108). In hippocampal neurons, glucocorticoids
have been shown to upregulate the expression (151) and
activity (66) of NOX. There is also evidence that social iso-
lation may induce oxidative stress in the prefrontal cortex and
hippocampus by inhibiting antioxidant enzymes (39, 108).
However, these results are inconsistent (Table 1).

Social isolation-induced oxidative stress also has been ob-
served in the vasculature. For example, individually caged
Watanabe heritable hyperlipidemic rabbits have a higher NOX
activity in the aortic arch (86). As NOXs are the main pro-
ducers of ROS in the vasculature (42, 71, 72), the increased
vascular activity of NOX may promote atherosclerosis de-
velopment by inducing oxidative stress. Mechanistically, so-
cial isolation-induced HPA activation, GR resistance, SNS
activation, and inflammation, as described above, may all
contribute to vascular oxidative stress. Although a short in-
cubation for 24 h with glucocorticoids was reported to reduce
p22phox expression in human smooth muscle cells, chronic

Table 1. Reported Changes in Antioxidant Enzymes in the Hippocampus of Socially Isolated Rats

Animals
Age at

isolation
Duration of

isolation (weeks) Antioxidant systems Reference

Male rats 3 weeks 8 SODY; catalaseY; GPxY (114)
Male rats 2–3 months 3 SOD14; SOD24 (38, 40)
Male rats 2.5 months 3 GSHY; MDA4; SOD4 (152)
Male rats 3 months 3 SOD[; catalase[ (95)
Male rats 3 months 3 SOD4; catalase4; GPx expression4;

GPx activityY; GLR expression[; GLR activity4
(32)

Male rats 3 months 3 GCLM[; GSTA34; GLR4 (31)

GCLM, glutamate cysteine ligase modifier subunit; GLR, glutathione reductase; GPx, glutathione peroxidase; GSTA3, glutathione S-
transferase A3; MDA, malondialdehyde; SOD, superoxide dismutase; Y, reduction; [, increase; 4, no significant changes.
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dexamethasone treatment has been shown to upregulate NOX1
expression in rat smooth muscle cells (77, 118).

Exogenous administration of the sympathetic neurotrans-
mitter norepinephrine in rats was shown to increase systemic
ROS production by stimulating circulating leukocytes (110).
Conversely, ROS stimulated central and peripheral SNS ac-
tivity (16). Treatment of freshly isolated human PBMC with
norepinephrine increased the gene expression of NOX com-
ponents and intracellular superoxide production, effects that
are preferentially mediated by a2-receptors (30). Moreover,
norepinephrine treatment also enhances adhesion of CD14+

monocytes to endothelial cells (30). These results are con-
sistent with the observation in humans that loneliness results
in an SNS-mediated increase of proinflammatory immature
monocytes (23). Indeed, proinflammatory monocytes may
have a crucial role in CVD pathogenesis by infiltrating into
the vascular wall, causing local inflammation and oxidative
stress, as shown in the mouse model of angiotensin II-
induced hypertension (144).

Thus, it is possible that environmental stressor-stimulated
pathways, triggered by social isolation, traffic noise, or air
pollution (84, 85, 145), may converge into a common
mechanism, that is, inducing vascular dysfunction and CVD
by causing vascular oxidative stress and inflammation.

Interventional and Therapeutic Strategies

Because of the detrimental effects of loneliness on physi-
cal and mental health and the growing prevalence, there is an
urgent need for the development of interventional and ther-
apeutic strategies. Currently, there is no pharmacological
treatment for loneliness (14). There are, however, approaches
that can mitigate loneliness or alleviate the damaging effects
of loneliness on health.

Interventions to reduce loneliness

When Engel proposed the biopsychosocial model of dis-
ease 40 years ago, the dominant model of disease at that time
was biomedical, leaving no room within its framework for the
social, psychological, and behavioral dimensions of illness
(36). Nowadays, the contribution of such factors to disease is
well accepted in the scientific community. Moreover, corre-
sponding intervention strategies have been developed in the
past decades. As early as in 1983, Ornish et al. showed that
a short-term intervention consisting of stress management
training and dietary changes could improve cardiovascular
status in CHD patients (93).

In particular, interventions aimed to mitigate loneliness
include strategies to improve social skills, enhance social
support, increase opportunities for social contact, and address
maladaptive social cognition (15). A recent meta-analysis
demonstrated that the use of cognitive behavioral therapy to
address maladaptive social cognition was most effective for
reducing loneliness (78). Other approaches such as medita-
tion, qigong, tai chi, yoga, and promoting purpose and
meaning in life may reduce the detrimental effects of lone-
liness on health (22, 26, 29, 41).

Interventions to reduce the health effects of loneliness

Besides interventions to reduce loneliness, it also is im-
portant to develop therapeutic strategies to prevent the

detrimental effects of loneliness on health, because current
loneliness reduction interventions are not always successful
and are not equally effective for every individual. The fol-
lowing potential strategies are proposed based on the path-
ogenic mechanisms summarized above.

Allopregnanolone. Given the important role of the HPA
axis activation in chronic loneliness, modulation of the HPA
axis may represent a rational strategy to treat loneliness-
associated disorders. Animal studies have demonstrated that
3a, 5a-tetrahydroprogesterone (allopregnanolone [ALLO])
decreased stress-induced activation of the HPA axis and fa-
cilitated recovery from stressful events (14).

ALLO is a progesterone-derived, endogenous neuroactive
steroid in the brain (14, 15). It is a potent modulator of the c-
aminobutyric acid (GABAA) receptor complex and has
powerful antianxiety, anesthetic, and anticonvulsant proper-
ties (14). Whereas acute stress increases ALLO levels, re-
peated stress results in decreased serum levels of ALLO,
which suggests that the chronic stress-induced hyperactiva-
tion of the HPA axis is partly attributable to a downregulation
of ALLO synthesis (14). Indeed, ALLO specifically regulates
the functions of the HPA axis (8).

Recent reports in animal models demonstrated that
ALLO has an important role in social isolation. Individual
housing of adult male mice reduced ALLO levels, which
was attributable to downregulation of the rate-limiting en-
zyme 5a-reductase type I in ALLO biosynthesis. Down-
regulation occurred specifically in selected neurons of the
basolateral amygdala, hippocampus, and medial prefrontal
cortex (2, 34, 98). Importantly, administration of exogenous
ALLO can normalize social isolation-induced HPA dys-
function (8, 103) and behavioral effects (37, 88, 98, 99).
Similar results have been obtained with ganaxolone, a
synthetic analog of ALLO (100).

Interestingly, the social isolation-induced behavioral ef-
fects can also be normalized with some selective serotonin
reuptake inhibitors at doses far below those required to block
serotonin reuptake (37, 88, 90, 98, 99). These results indicate
that such drugs may lead to improvement in behaviors not by
inhibiting serotonin reuptake, but rather by elevating corti-
colimbic levels of ALLO.

Based on the animal studies, Cacioppo et al. hypothesized
that ALLO has an important role in loneliness in humans (14,
15). The potential of ALLO, ALLO precursors, and ALLO
analogs as novel treatments for loneliness needs to be tested
in clinical studies (14).

b-Blockers. Direct SNS innervation of the spleen and
primary and secondary lymphoid organs links behavioral
processes to regulation of the immune system (120). Epi-
nephrine and norepinephrine stimulate receptors belonging
to two major subclasses: the a- and the b-adrenergic re-
ceptors (48). Most immune cells have a1 and b2 receptors,
which typically exert opposite effects (Table 2). Under
homeostatic conditions, the signals mediated by b2 recep-
tors usually predominate (5). Activation of b-adrenergic
receptors by catecholamines increases the production of
proinflammatory cytokines in several cell types (48). b2

receptor activation in mouse macrophages has been shown
to upregulate IL-1b and IL-6 expression, which promotes a
proinflammatory immune response (131).
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The SNS upregulates production of immature, proinflam-
matory monocytes in the bone marrow, which is mediated via
b-adrenergic receptors (48, 101). Moreover, b-adrenergic
receptor-mediated mechanism is involved in social stress-
induced glucocorticoid resistance (48, 101) and monocyte
trafficking from the spleen (48, 80, 147).

When fed a cholesterol-containing diet and housed in pe-
riodically reorganized social groupings (i.e., social disrup-
tion), highly aggressive and competitive (dominant) male
cynomolgus monkeys developed exacerbated coronary artery
atherosclerosis (62). Pharmacological treatment with the b-
blocker propranolol prevented the exacerbation of athero-
sclerosis caused by the unstable social environment (62).
Importantly, the antiatherogenic effects of propranolol on
dominant male monkeys were independent of resting heart
rate, blood pressure, and serum lipid concentrations (62).

Given the complex effects of b2 receptors in different
immune cells and in other cell types, the therapeutic potential
of b blockers for loneliness-associated diseases cannot be
predicted at this stage, which warrants additional studies,
especially in animal models of social isolation.

Oxytocin. Oxytocin is a neuropeptide produced in the
hypothalamus, which promotes a strong desire for social af-
filiation (15). Besides the traditionally known role in uterine
contraction, oxytocin is suggested to be a stress-responsive
hormone that exerts a regulatory influence on the HPA axis
(96). Moreover, the oxytocin receptor is expressed on major
vascular cells, including endothelial cells, vascular smooth
muscle cells and also macrophages (61, 129). In vitro ex-
periments showed that oxytocin reduced NADPH-oxidase
activity and inflammatory cytokine secretion by macro-
phages and endothelial cells (129). Chronic oxytocin ad-
ministration attenuated atherosclerosis in Watanabe heritable
hyperlipidemic rabbits (129, 130) and in socially isolated
apolipoprotein E-knockout mice (87).

In humans, oxytocin administration promoted prosocial
behaviors such as affiliation and trust, and influenced auto-

nomic cardiac control (15, 91). However, findings have been
inconsistent and negative effects have been reported (15).
Thus, additional research is required to examine the thera-
peutic potential of oxytocin in the treatment of chronic
loneliness (15).

NOX inhibitors. As discussed above, oxidative stress is
involved in different steps of social isolation-induced pa-
thology. Oxidative stress triggers HPA activation (20), po-
tentiates SNS activity (16), and promotes vascular damage.
The role of antioxidant enzymes in this scenario is uncertain
(Table 1). In contrast, NOX seems to play a key role.
Therefore, NOX inhibitors may be of therapeutic interest.

Moreover, NOX inhibition may be a potential strategy to
improve resilience. In this context, resilience explains how
and why some individuals live in a state of chronic loneliness
and yet do not develop mental illness (108). A loss-of-
function polymorphism in the p47phox subunit of NOX
completely prevented behavioral and neuroendocrine chan-
ges typically associated with social isolation in rats (20).
Thus, NOX may be a crucial candidate target molecule for
developing approaches to improve positive adaptation, and to
maintain or regain mental health despite experiencing
chronic loneliness or social isolation.

Summary and Future Directions

Robust evidence supports the concept that loneliness and
social isolation increase morbidity and mortality, and should
be included as a risk factor for CVD. Chronic social stress is
associated with activation of the SNS and the HPA axis re-
sulting in selective expansion of proinflammatory mono-
cytes, enhanced expression of cytokines, and glucocorticoid
resistance. These mechanisms likely contribute to the in-
creased risk of lonely individuals developing CVD. Their
involvement, however, has not been proven so far and needs
to be verified in future studies.

Table 2. Expression and Function of Adrenergic Receptors in Immune Cells

Cell type b2 a1 Reference

Neutrophils Yneutrophil interaction with endothelial cells;
Yphagocytosis; Ylysosomal enzyme release;
Yrespiratory burst

[neutrophils release into the
circulation

(5, 106)

Monocytes/
macrophages

Both pro- and anti-inflammatory effects reported Proinflammatory effects (monocytes
acquire a1 receptor after homing)

(5, 106)

NK cells NK cell in blood ([acutely, Ychronically); both
increased and decreased NK activities have been
reported

[NK cytotoxicity (5, 106)

DC YAg protein cross-presentation; YIL-12; shift from
Th1 to Th2-type immune response

Stimulation of DC migration (5, 106)

Th0 cells [IFN-c and Th1-cell differentiation (in the
presence of TNF-a and IL-12); [Th2-cell
differentiation (in the presence of IL-4 and IL-
10)

— (5)

Th1 cells YIFN-c (negative feedback) — (5)
Th2 cells — (epigenetic loss of b2 receptors) — (5, 17)
B cells Dependent on activation state of B cell ([IgG1/IgE

production during Ag processing; [IgG2 after
Ag processing; YAb production by plasma cells)

— (5)

DC, dendritic cells; NK, natural killer.
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Abbreviations Used

ALLO¼ allopregnanolone
CHD¼ coronary heart disease

CTRA¼ conserved transcriptional response to adversity
CVD¼ cardiovascular disease

eNOS¼ endothelial nitric oxide synthase
GABA¼ c-aminobutyric acid

GR¼ glucocorticoid receptor
HF-HRV¼ high-frequency heart rate variability

HPA¼ hypothalamic–pituitary–adrenal
HRV¼ heart rate variability

NO ¼ nitric oxide
NOX ¼ NADPH oxidase

PBMC ¼ peripheral blood mononuclear cell
PSI ¼ perceived social isolation

ROS ¼ reactive oxygen species
RSD ¼ repeated social defeat
SBP ¼ systolic blood pressure
SDR ¼ social disruption stress
SIV ¼ simian immunodeficiency virus
SNS ¼ sympathetic nervous system
TPR ¼ total peripheral resistance
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