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Abstract This chapter reviews how stochastic dual dynamic programming (SDDP)
has been applied to hydropower scheduling in the Nordic countries. The SDDP
method, developed in Brazil, makes it possible to optimize multi-reservoir hydro
systems with a detailed representation. Two applications are described: (1) A model
intended for the system of a single power company, with the power price as an
exogenous stochastic variable. In this case the standard SDDP algorithm has been
extended; it is combined with ordinary stochastic dynamic programming. (2) A
global model for a large system (possibly many countries) where the power price
is an internal (endogenous) variable. The main focus is on (1). The modelling of
the stochastic variables is discussed. Setting up proper stochastic models for inflow
and price is quite a challenge, especially in the case of (2) above. This is an area
where further work would be useful. Long computing time may in some cases be
a consideration. In particular, the local model has been used by utilities with good
results.
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1 Introduction

Finding optimal operational strategies for a large hydrothermal power system with
a large fraction of hydropower is a very demanding problem, both theoretically
and computationally, since it is stochastic and usually large-scale. One major
development in this area is the method of stochastic dual dynamic programming
(SDDP) (Pereira 1989; Pereira and Pinto 1991). In this text we shall describe
adaptions of this method in a Nordic context.

Norway has about 99% hydropower. In the Nordic countries, Denmark (with
no hydropower), Sweden, Finland and Norway have a liberalized common power
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market, in which hydropower constitutes about 50% of average generation. Because
of the high fraction of hydro, market prices may depend very much on the hydro-
logical situation, and taking inflow stochasticity into account is therefore essential.
If we consider only a small entity that cannot influence the prices (a price taker), it
also becomes necessary to model price stochasticity.

As is well known, it is common to separate the scheduling task in at least
three steps: The long-term scheduling, with an horizon of 3–5 years or longer; the
medium-term or seasonal scheduling looking 1–2 years ahead; and the short-term
scheduling with a horizon of a few days to 1 week. The long- and medium-term
scheduling problems are stochastic. The long-term scheduling sets end conditions
for the medium-term scheduling, for example in terms of marginal water values, and
the medium-term scheduling results are input to the short-term scheduling.

The long-term scheduling problem is frequently approached using some variant
of the water value method (Stage and Larsson 1961; Lindqvist 1962), which is based
on dynamic programming (see also the dual concept in Scott and Read (1996)). An
overview of other models based on stochastic programming is given in Wallace and
Fleten (2003). A variety of methods for hydrothermal scheduling (other than SDDP)
are also reviewed in Labadie (2004).

In practice, the water value method can only be applied to systems with a
very small number of reservoirs. It is therefore often applied to aggregated one-
reservoir models of more complicated hydro systems and for simulation purposes
supplemented by heuristics. Using SDDP techniques, however, allows stochas-
tic optimization for multi-reservoir systems, which means that more realistic and
detailed models can be dealt with.

As examples of application of SDDP and/or related techniques, we mention
Tilmant and Kelman (2007), where inflow modelling is also discussed, and Iliadis
et al. (2006) and Aouam and Yu (2008). In Philpott and Guan (2008), the conver-
gence of the SDDP-algorithm is discussed, and a theoretical convergence proof is
given. In addition to Pereira (1989) and Pereira and Pinto (1991), descriptions of the
algorithm can be found in Tilmant and Kelman (2007) and de Oliveira et al. (2002).

In this chapter, we shall deal with two different scheduling models based on
SDDP. One is a ‘local’ model, for a system confined in a geographical area that
can be covered by a single power balance equation (without internal transmission
bottlenecks), and typically owned by a single power company. It is usually assumed
that the system is not large enough to influence market price, so that we have a ‘price
taker’ case. This means that the market price must be dealt with as an exogenous
stochastic variable. This model is mainly aimed at medium-term scheduling, but is
also used for long-term scheduling.

The other model to be discussed here arises when the SDDP approach is applied
to a ‘global’ system model much similar to the EMPS model (Botnen et al. 1992).

In Sect. 2, we describe elements of a mathematical model of a hydrothermal
power system. In Sect. 3, a SDDP-based solution algorithm for the local model is
dealt with. To handle the exogenously given price, a combination of SDDP and
ordinary stochastic dynamic programming (SDP), originally described in Gjelsvik
and Wallace (1996), is used. The method is also described in Gjelsvik et al. (1997),
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and in more detail in Gjelsvik et al. (1999), and a similar combination of SDDP
and SDP was also used in Iliadis et al. (2006). This local scheduling algorithm is
the main topic of this chapter. In Sect. 4, we discuss extensions to the basic model,
such as an approximate way of handling head variations, and incorporation of risk
control.

The global model is briefly outlined in Sect. 6. For this model inflow modelling
becomes harder than that in the local case. Although the SDDP approach can deal
with many reservoirs, it is not so easy to handle a many-dimensional multivariate
inflow process. This is discussed in Sect. 7.

Section 8 deals with some computational issues, and Sect. 9 discusses and sums
up some experiences with these models.

2 Basic Power System Model

2.1 Introduction

Most of the material in this section is general for hydropower system modelling;
however, price modelling mainly applies to the local model.

The SDDP solution algorithm can be seen as a dynamic programming approach
where future costs are represented by hyperplanes (often referred to as cuts), and it
relies on linear programming. A fundamental requirement is that the problem must
be linear or at least convex. In the model presentation that follows here, we therefore
strive to obtain linear or piecewise linear relationships. Fortunately, most relations
are close to linear.

It is necessary to use a finite time horizon at time T . For medium-term schedul-
ing, T is usually up to 2–3 years ahead; for long-term scheduling one would use
3–5 years or more. The study period is divided in discrete time steps indexed t , with
t 2 Œ1; : : : ; T �, usually of length 1 week.

2.2 Power Station Model

Let Q be the release of water through a hydropower plant during a time interval,
and let P be the corresponding electrical energy generated. It is assumed that

P D f .Q/ h
h0

: (1)

We take the function f .Q/ as piecewise linear, specific for each power station. For
the SDDP algorithm, f .Q/ must be a concave function. h is the water head and h0

a nominal reference head.
It is not possible to handle variable head directly in the SDDP algorithm (at

least for a cascaded power system). Therefore, the head correction factor h=h0 in
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(1) must be applied with estimated values of h. In many Norwegian power stations
this is a fair approximation, since the head often is quite large compared to the
head variations. In principle, optimizing with variable head might lead to a non-
convex problem, not suitable for SDDP. A study for a single power station is given
in Bortolossi et al. (2002). For an example of a non-linear model for variable head,
see Mariano et al. (2008).

In Gjelsvik and Haugstad (2005) a heuristic to deal with head variations was
described, as used in connection with a hydropower system with cascaded reser-
voirs. In Sect. 4.1 we shall review this approach.

Generation in thermal power stations is modelled in a simplified manner, as a set
of buying options, each with a fixed marginal cost.

2.3 Reservoir and Inflow

Let qt be the vector of inflows in time step t and Vt the vector of reservoir volumes
at the end of t . Further, let Qt and st be vectors of reservoir releases and spills,
respectively. With V0 given, the water reservoir balances can be written as

Vt D Vt�1 �H1Qt �H2st C qt ; (2)

with the condition that
V t � Vt � V t (3)

for t D 1; : : : ; T . Here H1 and H2 are suitable incidence matrices that describe
where releases and spills go, and V t and V t are (possibly time-dependent) limits.

Inflow sequences often show strong sequential correlation, so that qt depends
heavily on qt�1. In stochastic dynamic programming, the stochastic term for the
time interval t must depend only on the state at the beginning of the time interval
t and not on earlier history. As is well known, this can be arranged by state space
enlargement, whereby ‘previous’ inflows are included in the system state vector.

Historical inflow time series differ in length, but often up to 70 years or more are
available. Variations in load etc. are treated as coupled to the inflow; one may speak
of ‘weather years’. If there are S observed weather years, we construct S parallel
inflow scenarios by picking T weeks starting in the first year, then T weeks starting
in the second year, and so on. Let qi

t be the inflow of the i th scenario in week T .
Usually the inflow has strong seasonal variations. One reason for this is the accu-

mulation of snow during winter, with the following spring melt. We try to eliminate
the seasonal variations by normalizing computing normalized weekly inflows fzi

t g as

zi
t D

qi
t � qt

�t

for i D 1; : : : ; S; t D 1; : : : ; T; (4)

where qt is the mean inflow in week t averaged over observed years and �t is the
corresponding sample standard deviation.
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A first-order auto-regressive model (AR1) is then used to represent the series
fzi

t g. Usually there are several series, so that zt is a vector, whose components have
been individually normalized as shown. The model is then

zt D �zt�1 C "t for t D 1; : : : ; T: (5)

Here � is the transition matrix and the vector "t is the model error, or ‘noise’.
The elements of � and cov."t / are estimated by a regression approach, minimizing
the sum

P
t .zt � �zt�1/

T .zt � �zt�1/. It is now assumed that the model error "t is
independent of zt�1.

The linear AR1 inflow model (5) is not always very good, but it is a compromise
between accuracy and computational feasibility. In practice, it has been found that
it is best to split the data into different seasons and to fit a separate model for each
season.

From the fitting of (5) we have a (usually multivariate) sample distribution of
the error term "t . For use in the optimization model, we must approximate this
distribution by a discrete probability distribution with K discrete values "1

t ; : : : ; "
K
t

and corresponding probabilities  k , whereK is not too large.

Pr."t D "k
t / D  k for k D 1; : : : ; K and t D 1; : : : ; T: (6)

One way of doing this is to carry out a model reduction by applying principal
component analysis (PCA) (Johnson and Wichern 1998) to the sample f"tg for
t D 1; : : : ; T . The principal components are transformed variables constructed so
that they are independent, taken over the sample. Only the principal components that
contribute most to the total variance are kept (typically 3). After the PCA has been
carried out, the distribution of each principal component kept is approximated by a
small number of discrete points. Finally the discrete points obtained are transformed
back to the axes of the original normalized data and combined.

An example of the use of principal components analysis for inflow modelling,
followed by discretization, is da Costa et al. (2006). In Jardim et al. (2001) clustering
techniques are used for constructing representative discrete noise terms.

In addition to the above-mentioned method, we have also implemented an
approach whereby we obtain the f"k

t g by sampling from the collection of sample
errors f"tg directly.

Inflow modelling will be further dealt with in Sect. 7.

2.4 Power Balance and Objective Function

We deal here with the power balance for a ‘local’ system. It can be generalized
by setting up several such balances and introducing transmission variables. Let ut

denote a vector of decision variables for time step t , containing releases Qt , spills
st , thermal generation wt and transactions outside the spot market. Let ct be the cost
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vector associated with ut . We also write xt D ŒV T
t ; z

T
t �

T
for (the continuous part

of) the system model state vector at the end of time step t . Further we define, for
t D 1; : : : ; T ,

yC
t – Sale to the spot market
y�

t – Purchase from the spot market
yt – Vector yT

t D ŒyC
t ; y

�
t �

pt – Spot price (weekly average)
ıt – Transmission charge
dt – Firm power demand

The power balance is then

At ut � yC
t C y�

t D dt for t D 1; : : : ; T: (7)

The cost Lt for one realization in one time step becomes

Lt .ut ; yt ; pt / D cT
t ut C .pt C ıt /y

�
t � .pt � ıt /y

C
t : (8)

In the power balance (7), the hydro and thermal generations, as well as power
transactions outside the spot market, are contained in At ut ; the matrix At contains
the power plant conversion factors corresponding to the piecewise linear models
in (1).

If a better time resolution in the market description is desired, the hours in a
week are grouped into several ‘load periods’. Hours with similar prices are lumped
together in the same load period, for instance one for night and one for day. Instead
of one power balance in (7), there is one for each load period, but the load periods
do not follow each other sequentially.

In practice, the transmission cost ıt is mostly neglected, but we have so far
retained it in the model, to make the model more general. We also want to be able to
deal with a limited market, and so we introduce limits y

t
and yt to the yt vectors;

see (19) below. Market limitations may stem from transmission limits, for instance.
The model may also be run without a spot market, but with a local load or a local
market. In some cases, price elasticity in the spot market may be included by split-
ting the market into steps with decreasing price for increase in sales. In most cases,
though, the market is considered infinite, and so the limits are set at some sufficiently
large value and will not be binding.

The firm power demand dt represents obligations in the local area. However, the
firm power demand is zero in the case where all generation is considered sold in
the spot market, which is the most common modelling case in the Nordic market.
If present, dt may be considered to vary with the inflow according to the ‘weather
year’. This causes a difficulty with the SDDP algorithm that we are to use, so that
partially we have to use averages; see a remark in Sect. 3.2.

If there is a firm power demand, its influence on the hydro schedules depends on
the situation. If market limitations on yt do not become binding, the hydro schedules
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will be unaffected by a change in dt . Otherwise, an increase in dt will in general
lead to higher average storage levels in the reservoirs.

The value of the water remaining in the reservoirs at the horizon must be
subtracted from the cost. Let this value be given by a functionˆ.xT /.

Estimating ˆ.xT / is one of the challenges in the scheduling task. We use results
from an aggregated long-term model of the system for this purpose, supplemented
by heuristics for distribution between the reservoirs (Johannesen and Flatabø 1989).
To a large extent, however,ˆ is a function of total storage in the system. Ideally, the
horizon T should be set as far away as possible to minimize the influence of errors
in ˆ.xT /, but here computing time must also be taken into account.

2.5 Price Modelling

We deal here with the local model, where the spot price is regarded as an exogenous
stochastic variable. Price variations can be quite strong, as shown in Fig. 1. Price
forecasts can be obtained in several ways. In the Nordic market, forecasts are often
obtained by simulations with the so-called EMPS model (Botnen et al. 1992), which
is a long-term model covering many areas and several years with the spot price as
an internal variable. When using the EMPS model, each price scenario corresponds
to a historical weather year.

Time series from such forecasts show that the spot price has a strong sequential
correlation. As with the inflow, it is then necessary to include a price state in the
system state description, since we intend to use dynamic programming. However,
since our objective function (8) contains the product term ptyt , we cannot expect
the future cost functions (see (3.2)) to be convex functions of reservoir and price
variables; hence they cannot be represented by cuts, as is necessary when applying
SDDP.
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Fig. 1 Weekly average of Nord Pool spot price 2003–2007 (source Nord Pool)
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Therefore, while reservoir and inflow states are treated as continuous variables,
we combine SDDP with ordinary stochastic dynamic programming with discrete
states with regard to pt , see Sect. 3.1. Thus, pt is represented by a set of M points
�1

t ; : : : ; �
M
t .

To establish the probability distribution for price and inflow, we simplify by con-
sidering the stochastic processes for inflow and price as independent of each other
and using the marginal probability distributions for each.

Broadly speaking, it is reasonable that more water leads to lower prices and the
other way round. However, it would be a challenge to include this in the model.

One should also consider that we are dealing with a local part of the total system.
To take a Norwegian example: the price will depend on the hydrological state of
Norway, Sweden and Finland as a whole, but the system under consideration in
the model may be covering only a couple of rivers, where the inflow may not fully
follow the trend in the total system.

To describe the transitions between the established discrete price values from 1
week to the next, we use the following Markov model:

Pr.pt D �j
t jpt�1 D �i

t�1/ D �ij .t/ for all i; j 2 Œ1;M �: (9)

Thus, �ij .t/ is the probability that pt D �j
t , given that pt�1 was �i

t�1.
The numerical values of the transition probabilities are established from a set of

price scenarios the following way (Mo et al. 2001b):
First, the price values within each week are grouped inM groups, and �i

t is taken
as the mean value of the Ni .t/ price values in the i th group in week t . This way,
all �i

t are established for all t in the data period. It is recorded which scenarios go
into each group in each week, and an estimate Q�ij of �ij is then taken as the fraction
of the scenarios from the i th group at time t � 1 that belong to group j at time t .
The probabilities obtained this way do not involve the actual values pt and may not
give correct sample conditional means for the price at time t , however. Given that
pt�1 D �i

t�1, Efpt jpt�1 D �i
t�1g should be equal to the average price in week t

of the scenarios belonging to the i th group at time t � 1. For this reason, improved
values f�ij g are computed by minimizing a weighted sum of the squared deviations
f�ij � Q�ij g and the squared deviations in the conditionally expected price. One seeks
�ij so as to find

min

8
<

:

MX

iD1

�X

j D1

�ij .t/�
j
t �Efpt jpt�1 D �i

t�1g
�2

C !
MX

iD1

MX

j D1

.�ij .t/� Q�ij .t//
2

9
=

;;

(10)
subject to the constraints

MX

j D1

�ij .t/ D 1 for all i (11)
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MX

iD1

�ij .t/Ni .t � 1/ D Nj .t/ for all j (12)

0 � �ij � 1 for all i and j : (13)

Here ! is an appropriate weight factor; the second sum of squares in (10) is
considered necessary to obtain a unique solution.

2.6 Overall Local Model

From the elements described, the local model can be summarized as follows. Find
an operating strategy that gives ut from xt , such that

minE

(
TX

tD1

Lt .ut ; yt ; pt /�ˆ.xT /

)
; (14)

subject to the constraints

xt D Ftxt�1 CGt ut C "t (15)

At ut C Btyt D dt (16)

xt � xt � xt (17)

ut � ut � ut (18)

y
t
� yt � yt (19)

forD 1; : : : ; T and x0 and p0 given, and with probability distributions given by (9)
and (6). Lt is given by (8).

The expectation E is to be taken over both inflow and price. Equation (15) is
the transition equation for the states except the price state, and contains (2) and (5).
Equation (16) contains the power balances (7), and it may also be generalized to
include other constraints that are not coupled in time.At , Bt and Ft ,Gt are matrices
of suitable dimensions. Reservoir limits, equipment ratings etc. are contained in
(17)–(19).

3 Solution Method for the Local Model

3.1 Overview

As already mentioned, the solution method that we have chosen is a combination of
stochastic dual dynamic programming and ordinary stochastic dynamic program-
ming (SDP) (Dreyfus 1965). The ordinary SDP part is introduced to take care of the
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Fig. 2 View of the dynamic
programming part of the
combined approach, in the
time-price plane cuts
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price process, which is modelled as described in Sect. 2.5. The reservoir and inflow
states are treated as continuous variables and dealt with using hyperplanes, as in the
ordinary SDDP algorithm.

A hybrid SDP/SDDP approach was also used in Iliadis et al. (2006).
The approach is visualized in Fig. 2, where the price dimension is shown schemat-

ically. In ordinary table-based SDP, there would be a number at each discrete state
point, giving the expected future cost going from this state. Here, at each discrete
price point there is now instead a set of cuts representing the expected future cost
function as a function of the continuous state variables.

As mentioned in Sect. 2.5, the correlation between inflow and price 1 week ahead
is neglected.

3.2 Solution by a Dynamic Programming Approach

The solution algorithm for the model established has been described in great detail
in Gjelsvik et al. (1999). We outline it here.

As indicated in Fig. 2 we consider a time interval t , with the initial state given
by xt�1 and pt�1. There are K realizations of the inflow noise "t D "k

t , and for
each of these M possible price values pt D �i

t , i D 1; : : : ;M . We assume here that
we learn "t and pt immediately before the decisions for this time step are to be
carried out. One justification for this is that with an interval of 1 week, it is possible
to adjust to changing conditions, and a further reason is that usually at a time close
to the actual operation more accurate forecasts are available than those assumed
in our stochastic models. Let ˛t .xt j�j

t / be the expected future cost function at the
end of time period t , at the system state Œxt ; �

j
t �. (The expected future cost function

is the expected cost in going from the given state at the end of time interval t to
an allowed final state using an optimal strategy). Applying the Bellman optimality
principle (Dreyfus 1965), we obtain from (14) and (9) and (6) the recursive equation
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˛t�1.xt�1jpt�1 D �i
t�1/ D

MX

j D1

KX

kD1

�ij k min
h
Lt .ut ; yt ; �

j
t /C ˛t .xt jpt D �j

t /
i

(20)
for all t 2 Œ1; T � and all i 2 Œ1;M �. The constraints (15)–(19) must be satisfied for
each transition. For each possible outcome ("k

t ,�j
t ) separate decisions .ukj

t ; y
kj
t / are

made, and the final state obtained is xkj
t .

In Pereira (1989), Pereira and Pinto (1991) and Gjelsvik et al. (1999), it is shown
that, with a linear model, the expected future cost functions are piecewise linear
functions of x and can be represented by hyperplanes in the x state space, which
also means that these functions are convex.

We define ˛kj
t�1.xt�1/ D minŒLt .ut ; yt ; �

j
t /C˛t .xt j�j

t /� in (20). With the hyper-
plane representation, (20) then decomposes into single-transition sub-problems of
the following form:

With xt�1, pt�1 D �i
t�1, pt D �j

t and "t D "k
t given, find

˛
kj
t�1.xt�1/ D min

h
Lt .ut ; yt ; �

j
t /C ˛

i
; (21)

with the constraints (15)–(19) and

˛ C .�j1
t /

T
xt � 	j1

t
:::

˛ C .�jR
t /

T
xt � 	jR

t

9
>>=

>>;
: (22)

In (22) �j1
t ; : : : ; �

jR
t and 	j1

t ; : : : ; 	
jR
t define R hyperplanes (cuts) that represent

the expected future cost function at the price point pt D �j
t . For an exact represen-

tation, an extremely large number of cuts would usually be required. Therefore, an
approximate representation is used, where one starts from zero or few hyperplanes
and adds them iteratively to get an improved strategy, as in the ordinary SDDP
algorithm.

It is assumed that the single-transition sub-problem described in (21)–(22) has
a feasible solution; this is ensured by artificial variables. We note that the price of
the previous week, pt�1, does not enter the sub-problem. Therefore, in (20) it is
not necessary to solve the sub-problem for all M 2 combinations of i and j on the
backward run. One solves for theM different pt D �j

t ; then the initial state pt D �i
t

enters through averaging with the transition probabilities �ij .
One main iteration of the algorithm consists of a forward simulation and a

backward recursion:

1. Forward simulation. The system is simulated from the initial state, with the given
scenarios for price and inflow, using the strategy (hyperplanes) obtained so far.
For each week t in inflow scenario s, the operation is found by solving (21) with
xt�1 and pt�1 from the final state of the previous week, and "t and pt from
the observed values for this scenario. For values pt that differ from the defined
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points �t , linear interpolation in the hyperplanes of the neighbouring points is
used. The cost for each scenario is computed, and the average of these costs
gives an upper bound for the operating cost. The reservoir trajectories fxs

t g for
all t and s are stored.

2. Backward recursion. At the horizon t D T the expected future cost function
is given by �ˆ.xT /. Consider a general time step, as indicated in Fig. 2, with
the expected cost functions given at time t . For each discrete pt D �

j
t ; j D

1; : : : ;M along the price axis, one solves the single transition sub-problems (21)
with xt�1 D xs

t�1 for the trajectories for all s D 1; : : : ; S and all K inflow
transitions in time step t . From this, an improved expected future cost function
is constructed at each price point �i

t�1 at the end of week t � 1 by adding new
hyperplanes computed from the dual variables of (21) and (22) and the transition
probabilities f�ij g, as described in Gjelsvik et al. (1999). Proceeding step by step
backwards from t DT to t D 1, one obtains an updated strategy, and a lower
bound for the cost. If converged, then stop, otherwise go to 1.

Convergence means that the simulated expected operating cost from step 1 comes
‘close’ to the lower bound from step 2. In practice, there is usually a gap, so that
convergence is mainly judged by monitoring the maximal change in a reservoir tra-
jectory from one main iteration to the next, prescribing a minimum and a maximum
iteration number.

In the procedure outlined, we make a modification for the inflow, in that on the
forward run we use the ‘observed’ inflow-price scenarios. This heuristic is intended
to take care of any coupling between inflow and price when averaged over longer
periods. It may, however, lead to gaps between upper and lower cost estimates,
because the fitted inflow and price models used on the backward run (5) and (9)
may not be fully consistent with the observed scenarios. Some numerical values are
given in Sect. 9.

In the case with firm power dt , t D 1; : : : ; T; that is modelled as inflow-dependent,
we use averages of the firm power demand dt in the backward run of the algorithm
to avoid state dependencies. This may also contribute to a cost gap.

Apart from the ‘outer’ dynamic programming treatment of the spot price state,
the approach is similar to that of the ordinary SDDP algorithm, and the same
computational approach can be used for this part. To solve the single-transition
sub-problem, a relaxation approach is used for the future cost hyperplanes and the
reservoir balances, as in Røtting and Gjelsvik (1992). The LP problems actually
solved are quite small, see Sect. 8. There is a limit to the number of hyperplanes
allowed for each of the M price values; after reaching that, hyperplanes that are
infrequently binding are overwritten. This is a crucial part of the algorithm.

Usually an initial set of reservoir trajectories is available at the start of the solu-
tion process, so that one can start with the backward recursion step of the algorithm.
The inflow loop is put innermost in the calculations, since this only changes the
right-hand side of the single-transition problem of minimizing (21) with constraints.
Each problem with a new inflow is started from the solution of the previous one
using the dual algorithm of linear programming. When the price pt changes, both
the cost row and the set of cuts changes; in this case, an all slack basis is used
for start.
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4 Extensions to the Local Model

In this section, we describe a few extensions to the medium-term local scheduling
model as described in Sects. 2 and 3.

4.1 Head Variations in Medium-term Scheduling

As mentioned in Sect. 2.2, the SDDP algorithm cannot deal directly with variable
head, as the problem then may become non-convex. In this section, we outline how
variable head can be taken approximately into account in the local model, using
a semi-heuristic approach. The method is described more closely in Gjelsvik and
Haugstad (2005). It is based on an expansion around a nominal reservoir operat-
ing schedule. Release is considered fixed, and sensitivities of economic gain with
respect to small changes in reservoir levels are calculated and added to the cost
function.

Consider a hydropower system with n reservoirs. For i D 1; : : : ; n we look at the
i th reservoir, with a storage of V i

t at the end of week t and a water surface elevation
of hi

t , referred to sea level, say. We assume that there is a power plant with output
P i

t immediately downstream of reservoir i . If there is a reservoir below this plant,
let j be its number, and let k be the number of any upstream plant. In general, we
assume that the outlet of a plant in a downstream reservoir is submerged; otherwise,
the contribution to head sensitivity is zero.

As before we assume that generated power depends linearly on water head and
is obtained from (1)

P i
t D f i .Qi

t /
hi

t � hj
t

hi
0

; (23)

where hi
0 is the nominal head for plant i .

We now consider the situation where the volume V i
t is changed by a small

amount�V i
t , without changing the release qi

t (the change can be thought of as being
brought about by a different operation at earlier stages). The influence of �V i

t on
generation in the downstream and upstream plants can be shown to be

@P i
t

@V i
t

D @P i
t

@hi
t

@hi
t

@V i
t

D 1

Ai
t

P i
t

hi
t � hj

t

and
@P k

t

@V i
t

D � 1

Ai
t

P k
t

hk
t � hi

t

; (24)

where Ai
t D .@hi

t=@V
i

t /
�1

is the current surface area of reservoir i .
We take the prevailing market price of power, 
t , as the marginal value of the

generation change.
We now assume that we have available nominal reservoir operation schedule with

nominal values of fP i
t g, f
tg, fV i

t g, fhi
tg and fAi

tg for all t and i . Using the above
formulas, we may then approximately account for the cost change due to variable
head by use of extra cost terms containing�V :
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TX

tD1

nX

iD1

Qci
t�V

i
t ; (25)

where the Qc- coefficients are to be determined. Using (24) we find

Qci
t D


t

Ai
t

"
� P i

t

hi
t � hj

t

C P k
t

hk
t � hi

t

#
for all i and t : (26)

A Qc-coefficient may be positive or negative. As expected an increase in reservoir
storage decreases cost associated with the downstream plant (i ), but increases cost
in the upstream plant (k). As seen from (24), this also depends on the nominal
generations P i

t and P k
t .

Use of the sensitivities derived above has been implemented in the model
described in Sect. 3. In this model, the cost functions must be convex, and all state
dependency must be contained in the hyperplanes. It is therefore not possible in
general to have different model coefficients for various system states. Therefore, the
mean values of the sensitivity coefficients above are used, where the mean is taken
over the various inflow scenarios.

As indicated earlier, calculations are carried out in two steps. First, the schedul-
ing program is run without head coefficients. From the releases and reservoir and
price trajectories obtained from this run, a full set of head sensitivities f Qci

t g is cal-
culated for each inflow scenario. For each week, the sensitivities are averaged over
the different inflow scenarios. The mean values of the sensitivities are then used to
perturb the cost function according to (25) in a second run. The second run is then
generally considered as giving the final schedule. Repeated recalculation of the head
sensitivities based on rerunning the program with the last calculated sensitivities is
possible, but the sensitivities could in principle oscillate from one calculation to the
next. Tests indicate, however, that results may converge after a few repetitions of the
recalculation procedure. Furthermore, recalculation does not seem necessary for a
good result.

The above perturbation is a kind of heuristic. However, simulations with this
correction have given reservoir trajectories that look more realistic than without,
and the simulated economic result generally improves.

4.2 Risk Control

The local model has also been extended to allow for dynamic hedging using forward
delivery contracts and a mechanism for risk control (Fleten 2000; Mo et al. 2001a).

The basic idea is to consider the accumulated profit. The study period is divided
into suitable sub-periods, say quarters, with a profit target for each sub-period. There
is a penalty for not meeting the profit target. This penalty function is specified by the
user, and it can be shown that this is another form of a utility function that defines
the user’s risk aversion. Mathematically, the accumulated profit is introduced as a
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state in the state vector x in (15). The profit state is additive and linear, and so goes
with the reservoir equations in the basic model, with a zero inflow.

Forward contracts can be bought or sold for every suitable period within the
study period. The net amounts of forward contracts for each future week are also
defined as state variables, and buying and selling of such contracts are included in
the control vector ut . This increases the computational burden, but the advantage is
that the trading in forward contracts is handled dynamically. A closer description
can be found in Mo et al. (2001a).

The study (Iliadis et al. 2006) gives some examples of risk management using an
SDP/SDDP approach.

4.3 Use of the Results from the Local Model

Results from the local model are used in two ways. First, marginal values or release
volumes for the first 1 or 2 weeks are used as input to the short-term scheduling and
the daily spot market bidding process. Hyperplanes can be transferred directly to a
mathematical model for short-term scheduling if desired (Fosso and Belsnes 2004).

Second, the output from the local model is used for various estimates, such as
the hydro generation over the study period, for predicting reservoir levels, in risk
analysis and for maintenance scheduling.

5 A Numerical Example

We give here a brief example of application of the local model. The example is taken
from Gjelsvik and Haugstad (2005) and is used to illustrate the effect of the correc-
tion heuristics for variable head. The system is shown in Fig. 3. The mean annual
generation is about 3,270 GWh. There are four plants with significant variations in
head (5, 7, 8 and 10). Average market price is 15.4 EUR/MWh in this case. Run
with and without head coefficients, the model shows an average increase in income
when head coefficients included are of 0.13 EUR/MWh, compared to the schedule
without head coefficients. Generation increases by about 1% on average, despite an
increase in spilled water.

Inclusion of head coefficients change the strategy for operation of reservoirs
considerably. For reservoirs 6 and 7 this is shown in Fig. 4. There is no plant immedi-
ately below reservoir 6, and when taking head into consideration, the model transfers
more water to reservoir 7 to increase the head.
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Fig. 3 Case system. Cones are reservoirs and boxes are power stations. Numbers in reservoir
symbols show each reservoir’s share of the total reservoir volume. Boxes indicate plants. Reservoirs
5, 7, 8 and 10 have a maximum head variation of 45, 70, 17 and 26 m, respectively. Nominal head
for all these plants is in the range of 300–500 m

6 A Global Scheduling Model

The SDDP algorithm has also been implemented in an optimization model for
a ‘global’ system, for instance corresponding to the Nord Pool market area and
northern Europe. This model is similar to the EMPS system model Botnen et al.
(1992), in that the system in each area is lumped together and represented as a sin-
gle reservoir and a single power station during the optimization phase. An advantage
compared to the standard EMPS model is that interconnections between areas are
better described in the optimization phase. The model differs from the local model of
Sect. 3, in that there are several busbars (one for each area) and that the market price
is an internal variable. An external price mechanism has been implemented, though;
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Fig. 4 Mean levels in reservoirs 6 and 7 with and without head correction

this may be useful for describing uncertainties in costs of alternative resources, such
as oil or coal.

This model typically has on the order of 20 areas and 40 inflow series. Each area
has a power balance similar to (7), with transmission modelled as a transport. The
high dimensionality of the inflow process is a difficulty with this model. Since this
model is intended to cover a much larger area than the model of Sect. 2, the inflows
have more differing characteristics and are not so easily described by a few principal
components. This will be further discussed in Sect. 7.

A few extensions have been implemented in the global model, such as internal
markets for green certificates (Mo et al. 2005) and CO2-quotas (Belsnes et al. 2003).

Results from the global model would typically be used for price forecasts and
simulation studies from a given initial state. Convergence seems to be slower for
this model, and the computing times can be several days on a single processor.
Reasons for slower convergence may be that the reservoirs are quite large and less
constrained than in the local model, and oscillations in power transfers from one iter-
ation to the next. Also, it is harder to get a good inflow model, as will be discussed
in the next section.

7 More on Stochastic Inflow Modelling

Setting up stochastic models for processes involved in stochastic hydropower schedul-
ing usually requires some compromises between accuracy and tractability. In this
section, we look at some difficult points of inflow modelling.

In modelling inflow for hydro scheduling, there are several requirements that
one should try to meet: The model should give a set of discrete inflow values for
each stage, with corresponding probabilities. The model should be as simple as
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possible to reduce computational burden, but it should also be sufficiently accurate
and unbiased. For SDDP applications, the inflow model must preserve convexity.

In Sect. 2.3 we introduced a first order (vector) auto-regressive model (5) for the
(normalized) inflow. This is supposed to take care of the sequential correlation. In a
geographically dispersed system, it can be difficult to fit a single multivariate model,
since different areas may have different inflow characteristics. Fitting an AR1 time
series requires that the inflow process is a weakly stationary process, that is, with
statistical properties that are independent of time. Even after removal of seasonally
varying mean values this is often not the case. The problem can to some extent be
avoided by splitting the data into several seasons and fitting the model to each season
separately, ensuring proper handling where the seasons join.

If enough data are available, as is frequently the case, it would probably be best
to carry out an individual regression analysis for each week.

A difficulty that is sometimes observed is that the residuals for a given week may
depend on the initial state. This may happen because a time series is not ‘stationary
enough’, but also when using linear regression directly on a single week. This means
that the computations in (21) become biased, since the same distribution of "t is used
for all initial states. A rather special case is shown in Fig. 5.

The data here come from a 16-area model of Denmark, Sweden, Finland and
Norway, intended for use with the global model of Sect. 6. They are for week 24,
at the end of the snow melting period. Sample residuals "24 are plotted against
normalized inflow values z23 at the beginning of the week. Although the distribution
for Area 4 is fairly independent of z23, the plot for Area 10 has a conical shape. In
this case, it is not correct to use the same distribution of "t irrespective of z23; here
the model will give too large inflows for higher values of the previous week. One
reason for the difficulty is probably that the chosen week 24 is around the average
snow melting peak, and so it is reasonable that for the highest inflows there will be a
reduction afterwards. It is not clear how this can be dealt with using a linear model.

In the case of several inflow series to the system, one may want to carry out
a ‘model reduction’ to get a noise vector of lower dimensionality. In Sect. 2.3, it
was outlined how this can be done by principal components. The success of this
procedure varies. In practice, one can retain at most three or four principal compo-
nents when the total number of noise vectors is to be kept at a reasonable level. (For
example, Four principal components represented by 3 points each gives 81 different
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Fig. 5 Residual dependence on initial state. Left: Area 4. Right: Area 10
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inflow cases.) A typical choice can be three principal components, represented by 5,
3 and 2 points, respectively, giving 30 combinations. It turns out that SDDP runs are
not always very sensitive to the choice. For a geographically concentrated (‘local’)
system, three principal components may work quite well, as in most cases there is a
lot of cross-correlation between the inflows.

For a global model as outlined in Sect. 6, model reduction is more difficult. The
inflow series shows less spatial correlation here. For the 16-area case mentioned
earlier, it was found that seven principal components were required to cover 90%
of the variance. Three principal components cover 75% of the variance. A problem
may sometimes arise here, in the case of small areas where most of the variation in
the inflow is contained in one or two principal components that are neglected. The
inflow variation in such an area may almost disappear. A noise vector with too low
variance may give strategies that are too optimistic.

As an alternative in this situation, we have experimented with a direct Monte
Carlo approach: We construct the inflow noise vectors by sampling from the sample
residuals "t available after the fitting of the VAR1-model. Here we avoid systemati-
cally cutting off some of the noise space by dropping principal components. On the
other hand, it is not clear what a suitable sample size is. One must also check the
sampled vectors, so that outliers in the sample of residuals "t are not included.

A further difficulty with a linear inflow model such as (5) is that it may generate
negative inflows, particularly in weeks where the average inflow is low com-
pared to the standard deviation. We cannot change this to a non-negative value
for the scenario in case, since we need consistence to avoid non-convexity. In the
SDDP algorithm, this is handled by penalty variables. However, this gives a (fur-
ther) inconsistency between the forward and backward runs and may slow down
convergence.

Negative inflows could be avoided by working with the logarithm of the inflow
(log q instead of q). However, it can be shown that this transformation leads to
non-convexity.

In connection with the algorithm description in Sect. 3.2, we mentioned that in
the forward SDDP run, we use ‘observed’ inflow scenarios, which may not be fully
consistent with the inflow model used on the backward recursion. This may lead to
slower convergence. In a special case, similar to the model of Belsnes et al. (2003),
an effect was directly visible in the results. It was with a special version of the
global model of Sect. 6, where an internal quota market for CO2 was modelled as a
reservoir. The marginal price of the quota came out with a time variation that was
not in line with standard economic theory, due to the inflow inconsistencies. Later
simulations of this case showed that if 1,000 consistent inflow scenarios generated
from the inflow model (5) were used, the incorrect price behaviour would disappear.

We have not carried out much other direct comparison to study the effect of
‘observed’ inflows vs. inflows generated by sampling in the stochastic inflow model.
In scheduling with the local model, however, we believe that it is most realistic to
use observed series of inflow and price, since that helps keep the correct coupling
between inflow and price.
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Summing up, it is not always easy to find a good inflow representation. Especially
in the case of a global model with many inflows that are weakly correlated, the
dimensionality of the noise space seems to be a problem. For the local model, the
coupling between inflow and price should be further investigated.

8 Computational Issues

The SDDP computations are computer-intensive, and more so with the addition of
the price state (Sects. 2 and 3). Depending on the model and the level of detail, the
computer time on a Pentium IV computer or similar is in the range half an hour to
more than a day. This is the case when weekly time steps are used everywhere. The
computations are usually stopped after a given number of main iterations, typically
50–100. The number S of inflow scenarios is typically 50–70, and the number of
discrete inflow values at each time step in the backward computations usually is at
most 30. The number of hyperplanes stored for each future cost function usually is
around 1,000. Solution of the linear programming sub-problems is carried out by
general LP software, either a commercial solver or open software.

In a case with 28 reservoirs and 13 power stations, with four load periods, the
model for a single transition (a single case of (15) through (19)) has around 460
variables and 33 to some 60 constraints (varying with the number of cuts entered
into the active model.) (In this case, relaxation is not used for the reservoir balances
but only for the cuts, since most reservoirs are rather small.) The number of simplex
iterations may vary from very few (including zero and one), when starting from an
advanced basis, up to a few hundreds when an initial basis is not available. One
may think that the most usual commercial packages may not be optimal for these
problems, since they are primarily intended and tuned for much larger problems.
On the other hand, if one wants a finer time resolution within the week, possibly
with separate power and reservoir balances for each sub-interval, then the number
of rows and columns grows approximately linearly with the number of sub-intervals,
and the model for a single transition becomes larger.

Computer time varies much with the size of the system, the length of the study
period (T ), the number of ‘load periods’, the number of inflow scenarios and price
model levels (M ), and the number of discrete inflow values at each stage (K). For
the model size mentioned above, with 75 inflow scenarios, 7 price points andKD 10
discrete inflow values, the computing time is around 10 h on a single-core Pentium-
class processor, using 50 iterations, and solving about 108 million small single-
transition LP problems of the kind (21) with the associated constraints. The study
period was two and a half year. Smaller and simpler systems can be solved in less
than an hour.

Parallel processing has been implemented to reduce computing time. Multicore
computers allow this to be easily applied by utilities. The reduction in computation
time is almost proportional to the number of cores, but this has not been tested on
large-scale parallel computers.
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Another way of ‘parallel processing’ is also used by utilities. The idea is to split a
large system with several watercourses into one (sub-)system for each watercourse
and optimize each watercourse on a separate computer. This is a perfect decoupling
for a price taker with no transmission limits to the market.

9 Discussion

The scheduling algorithm for a local system described in Sect. 3 has been imple-
mented for medium and long-term hydro scheduling. The main advantage of such
an algorithm (as with the ordinary SDDP algorithm) is that one can provide stochas-
tic optimization with a detailed model of the hydropower system, so that one obtains
reliable incremental water values for each reservoir. The algorithm has been used by
power companies for some years and applied to systems with sizes ranging from 4
to over 50 reservoirs.

The global model of Sect. 6 has also been implemented, but is less used.
An obstacle to the use of both implementations is the computer time require-

ments. Some utilities have started using a parallel version of the local model.
The modelling of the stochastic processes inflow and price seems to be a major

area where improvements are wanted. First there is the dimensionality problem.
Especially with the global model of Sect. 6, there may be many almost independent
inflows to deal with. This requires a relatively high number K of discrete inflow
cases to be dealt with in the backward recursion; giving long computing times.
An alternative to principal component analysis is sampling from the residuals of
the inflow model. A linear regression for the inflow next week may sometimes be
problematic, as shown in the example in Sect. 7.

For the fitting of the price model, usually only 50–75 scenarios of ‘observed’
series are available. This gives rough estimates of the transition probabilities. Some
utilities have parametric price models that produce more than one price scenario for
each inflow year. The price model can then be generated directly from the paramet-
ric model or estimated from a much larger number of price scenarios. As seen in
Sect. 2.5, joint modelling of inflow and price remains a challenge.

In computations, we observe gaps between the upper and lower cost bounds. The
upper bound, obtained in the forward pass, depends on the inflow scenarios, and is
subject to sample variations, so that the ‘gap’ may even become negative. However,
there is usually a positive gap. As mentioned in Sect. 3.2, the inflows used on the
forward run are not fully consistent with the inflow model used on the backward run,
since we use observed inflows and prices for the forward run. This, combined with
the simplifications in price/inflow modelling, probably gives the main contribution
to the gap. The size of the gap varies. For small models with a single inflow series,
we have sample values in the range 1–2% of the cost, while in larger and more
complicated systems with several inflow series, the gap can be in the range 10–15%.

A special problem is that of constructing the final value function ˆ.xT /. If no
good estimate for this function is available, the strategy obtained may not be optimal
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for the last year or so of the study period, and simulation results from this period may
be misleading. In our implementation the final value function is based on aggregated
water values from a standard SDP model that is distributed to individual reservoirs
using heuristics. One should ensure that the study period is long enough.

10 Conclusion

This chapter reviews work on the application of SDDP-based algorithms for hydro
scheduling, with some extensions, in the Nordic countries.

It seems that there is room for improvements, particularly in the stochastic
models for inflow and price. This is especially the case when there are many inde-
pendent inflows and in applications to risk management, green certificates or quota
modelling. However, the present models work, and in particular the local model
gives good results. Parallel processing helps shorten computing time.

Acknowledgements The authors thank International Centre for Hydropower, Trondheim, for
permission to use material from Gjelsvik and Haugstad (2005).

References

Aouam T, Yu Z (2008) Multistage Stochastic hydrothermal scheduling. In: 2008 IEEE international
conference on electro/information technology, Ames, IA, 18–20 May 2008. IEEE, NY, pp.
66–71

Belsnes MM, Haugstad A, Mo B, Markussen P (2003) Quota modeling in hydrothermal systems.
In: 2003 IEEE Bologna PowerTech Proceedings, IEEE, NY

Bortolossi HJ, Pereira MV, Tomei C (2002) Optimal hydrothermal scheduling with variable
production coefficient. Math Meth Oper Res 55(1):11–36

Botnen OJ, Johannesen A, Haugstad A, Kroken S, Frøystein O (1992) Modelling of hydropower
scheduling in a national/international context. In: Broch E, Lysne DK (eds) Hydropower ’92.
A.A. Balkema, Rotterdam

da Costa JP, de Oliveira GC, Legey LFL (2006) Reduced scenario tree generation for mid-term
hydrothermal operation planning. In: 2006 international conference on probabilistic methods
applied to power systems, vols. 1, 2, Stockholm, Sweden, 11–15 Jun 2006. IEEE, NY, pp. 34–40

de Oliveira GC, Granville S, Pereira M (2002) Optimization in electrical power systems. In: Parda-
los PM, Resende MGC (eds) Handbook of applied optimization. Oxford University Press,
London, pp. 770–807

Dreyfus SE (1965) Dynamic programming and the calculus of variations. Academic Press,
New York

Fleten SE (2000) Portfolio management emphasizing electricity market applications: a stochastic
programming approach/Stein-Erik Fleten. PhD thesis, Norwegian University of Science and
Technology, Faculty of Social Sciences and Technology Management

Fosso OB, Belsnes MM (2004) Short-term hydro scheduling in a liberalized power system. In:
2004 international conference on power systems technology, Powercon 2004, Singapore, IEEE

Gjelsvik A, Haugstad A (2005) Considering head variations in a linear model for optimal hydro
scheduling. In: Proceedings, Hydropower ’05: The backbone of sustainable energy supply,
International centre for hydropower, Trondheim, Norway



Long- and Medium-term Operations Planning and Stochastic Modelling 55

Gjelsvik A, Wallace SW (1996) Methods for stochastic medium-term scheduling in hydrodom-
inated power systems. Tech. Rep. A4438, Norwegian Electric Power Research Institute,
Trondheim, Norway
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Shapiro A (eds) Handbooks in operations research, vol. 10. Elsevier, Amsterdam


