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LONG ARITHMETIC PROGRESSIONS IN SUMSETS:
THRESHOLDS AND BOUNDS

E. SZEMERÉDI AND V. VU

1. Overview

One of the main tasks of additive number theory is to examine structural prop-
erties of sumsets. For a set A of integers, the sumset lA = A + · · · + A consists of
those numbers which can be represented as a sum of l elements of A:

lA = {a1 + · · · + al|ai ∈ Ai}.
Closely related and equally interesting notion is that of l∗A, which is the col-

lection of numbers which can be represented as a sum of l different elements of
A:

l∗A = {a1 + · · · + al|ai ∈ Ai, ai �= aj}.
Among the most well-known results in all of mathematics are Vinogradov’s the-

orem, which says that 3P (P is the set of primes) contains all sufficiently large odd
numbers, and Waring’s conjecture (proved by Hilbert, Hardy and Littlewood, Hua,
and many others), which asserts that for any given r, there is a number l such
that l∗N

r (Nr denotes the set of rth powers) contains all sufficiently large positive
integers (see [29] for an excellent exposition concerning these results).

In recent years, a considerable amount of attention has been paid to the study
of finite sumsets. Given a finite set A and a positive integer l, the natural analogue
of Vinogadov-Waring results is to show that under proper conditions, the sumset
lA (l∗A) contains a long arithmetic progression.

Let us assume that A is a subset of the interval [n] = {1, . . . , n}, where n is a
large positive integer. The concrete problem we would like to address is to estimate
the minimum length of the longest arithmetic progression in lA (l∗A) as a function
of l, n, and |A|. We denote this function by f(|A|, l, n) (f∗(|A|, l, n)), following the
notation in [13]. Many estimates for f(|A|, l, n) have been discovered by Bourgain,
Freiman, Halberstam, Green, Ruzsa, and Sárközy (see Section 3), but most of these
results focus on sets with very high density, namely |A| is close to n. Estimating
f∗(|A|, l, n) seems much harder, and not much was known prior to our study.
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120 E. SZEMERÉDI AND V. VU

In this paper, we solve both problems almost completely for a wide range of
l and |A|. Our study reveals a surprising fact that the functions f(|A|, l, n) and
f∗(|A|, l, n) are not continuous and admits a threshold rule. We have successfully
located the threshold points within constant errors and established the asymptotic
behavior of the functions between consecutive threshold points. It has also turned
out, during our study, that the sum l∗A is indeed fundamentally harder to attack
than its counterpart lA.

Central to our study is the development of a new, purely combinatorial, method.
This method is totally different from harmonic analysis methods used by most
researchers and seems quite flexible. For instance, it is easy to extend our results
in many directions. Moreover, the method carries us far beyond our original aim
of estimating lengths of arithmetic progressions, leading to more general theorems
about proper generalized arithmetic progressions (GAPs).

Our results also have some interesting applications. In particular, we settle two
forty-year-old conjectures of Erdös [8] and Folkman [14] (respectively) concerning
infinite arithmetic progressions.

Let us now present a brief introduction to the content of our paper:

• In Section 2 we present the notion of GAPs and state Freiman’s famous
inverse theorem, both of which play a crucial role in our study. In Section
3, we first describe some earlier results on the topic. Next, we present a
construction which suggests a conjecture about the length of the longest
arithmetic progression in lA. It would be important to keep this construc-
tion in mind as it motivates lots of our arguments later on. The first main
result of Section 3 confirms the conjecture motivated by the construction.
This result, among others, reveals the surprising fact that f(|A|, l, n) is not
continuous and admits a threshold behavior. There are many threshold
points, and we are able to locate them within a constant factor. The sec-
ond main result, which refines the first one, provides a more general and
complete picture. We can prove that lA not only contains long arithmetic
progressions, but it also contains large proper generalized arithmetic pro-
gressions (a regular arithmetic progression is a special proper generalized
arithmetic progression of rank one). In Section 4 we prove these two results.
The first four subsections of Section 4 are devoted to the development of a
variety of tools, through which we could establish a connection between our
study and inverse theorems of Freiman type. Exploiting this connection,
we complete the proofs in the final two subsections. This concludes the
first part of the paper.

• The second part of the paper consists of Section 5 and Section 6. In Section
5, we generalize the results in Section 3 to sums of different sets. Instead
of considering lA, we consider the sum A1 + · · · + Al, where |A|1 = · · · =
|Al| = |A|. Thanks to the flexibility of our method, we can extend the
results of Section 3 to this setting in a relatively simple manner. Also in
this part of the paper we discuss an application which settles a conjecture
posed by Folkman in 1966. This conjecture was considered by Erdös and
Graham ([9], Section 6) to be the most important problem in the study
of subcomplete sequences. An infinite sequence is subcomplete if its par-
tial sums contain an infinite arithmetic progression. Folkman conjectured
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LONG ARITHMETIC PROGRESSIONS IN SUMSETS 121

that a sufficiently dense sequence of positive integers (with possible repeti-
tions) is subcomplete. In Section 6, we first work out a sufficient condition
for subcompleteness and next use the results in Section 5 to show that a
sufficiently dense sequence should satisfy this condition.

• Sections 7, 8, and 9 form the third part of the paper. This part contains
our strongest result, the proof of which is also the most technical. The
heart of this part of the paper is Theorem 7.1, which extends the results
in Section 3 to the sumset l∗A. The proof comprises several phases. In
the first phase, we prove a structural property of a set A where l∗A does
not contain a generalized arithmetic progression as large as we desire. This
property, which might be of independent interest, shows that such a set A
contains a very rigid subset which almost looks like a generalized arithmetic
progression. The verification of the structural lemma occupies most of
Section 7. Section 8 contains the rest of the proof, whose core consists
of an observation about proper GAPs (subsection 8.3) and a variant of
the so-called tiling technique, introduced in an earlier paper [28]. Section
9 discusses a conjecture of Erdös (posed in 1962) which is related to the
above-mentioned conjecture of Folkman. This conjecture was proved in
an earlier paper [28] using a special case of the main result in Section 7,
but here we give a shorter proof using the general condition worked out in
Section 6. Several other applications of the main result of this part will
appear in future papers [30, 31].

• The last part of the paper contains Section 10, in which we extend all
previous results to finite fields. We assume that n is a prime and consider
arithmetic progressions modulo n. This modification will lead to a natural
change in the statement of the results, but the proofs remain basically the
same. We conclude this part by mentioning an application concerning the
problem of counting zero-sum-free sets.

The paper contains several new technical ingredients, some of which (such as the
study of proper GAPs in Sections 3 and 7 and the rank reduction argument used
in Sections 3 and 4) would be of independent interest. Our writing benefits from
two earlier papers [27, 28], which established several partial results and launched
the foundation of our study. Many ideas from these two papers will be used here,
frequently in more general and more comprehensible forms.

2. Inverse theorems

A generalized arithmetic progression (GAP) of rank d is subset Q of Z of the
form {a +

∑d
i=1 xiai|0 ≤ xi ≤ ni}; the product

∏d
i=1 ni is its volume, and we

denote it by Vol(Q). In fact, as two different GAPs might represent the same set,
we always consider GAPs together with their structures. The set (a1, . . . , ad) is
called the difference set of Q.

Freiman’s famous inverse theorem [12] asserts that if |A + A| ≤ c|A|, where c
is a constant, then A is a dense subset of a generalized arithmetic progression of
constant rank. In fact, the statement still holds in a slightly more general situation,
when one considers A + B instead of A + A. This was shown by Ruzsa [24], who
gave a very elegant proof which was different from Freiman’s.

Theorem 2.1. For every positive constant c there is a positive integer d and a
positive constant k such that the following holds. If A and B are two subsets of Z
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122 E. SZEMERÉDI AND V. VU

with the same cardinality and |A + B| ≤ c|A|, then A is a subset of a generalized
arithmetic progression P of rank d with volume at most k|A|.

The most recent estimate on k (as a function of c) is due to Chang [5]. In
our paper, however, we shall be more concerned with the best value of d (see
Lemma 4.9). The following result is a simple consequence of Fremain’s theorem
and Plüneke’s theorem (for the statement of Plüneke’s theorem see, e.g., [24]).

Theorem 2.2. For every positive constant c there is a positive integer d and a
positive constant k such that the following holds. If A and B are two subsets of Z

with the same cardinality and |A+B| ≤ c|A|, then A+B is a subset of a generalized
arithmetic progression P of rank d with volume at most k|A|.

For the special case when c is relatively small, one can set d = 1. The following
is a consequence of another theorem of Freiman [12].

Lemma 2.3. The following holds for all sufficiently large m. If A is a set of
integers of cardinality m and |A + A| ≤ 2.1m, then A is a subset of an arithmetic
progression of length 1.1m.

Again, we can replace A + A by A + B. The following is a corollary of a result
by Lev and Smeliansky (Theorem 6 of [19]).

Lemma 2.4. The following holds for all sufficiently large m. If A and B are two
sets of integers of cardinality m and |A + B| ≤ 2.1m, then A is a subset of an
arithmetic progression of length 1.1m.

Both Lemmas 2.3 and 2.4 are relatively simple and do not require the inverse
theorem to be proved.

3. Long arithmetic progressions in lA

3.1. Some previous results. Problems concerning arithmetic progressions in
sumsets are non-trivial, and not too many results are known. In the following,
we describe some of the main results in this area. Bourgain [3] proved that if
|A| = δn where δ is a positive constant, then 2A contains an arithmetic progres-
sion of length eεlog1/3 n, where ε is a positive constant depending on δ. Freiman,
Halberstam, and Ruzsa [10] consider sumsets modulo a prime and proved

Theorem 3.2. Let n be a prime and A a set of residues modulo n, |A| = γn,
0 < γ < 1, may depend on n. Let l be a positive integer at least 3. Then lA

contains an arithmetic progression (modulo n) of length Ω(γn
1
16γl/(l−2)

).

Notice that Theorem 3.2 is stated for any γ, but it is really efficient only when
γ is relatively large. Indeed, if one wants to have γn

1
16γl/(l−2) ≥ 1, one needs to set

γ = Ω(
1

lnn
).

So Theorem 3.2 does not give a non-trivial bound in the case |A| = o( n
ln n ). Bour-

gain’s result and Theorem 3.2 have recently been improved by Green [16], but the
applicable range does not change.

Prior to our study, the only result (that we know of) which applies to sets with
relatively small cardinality is the following theorem, proved by Sárközy [25].
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LONG ARITHMETIC PROGRESSIONS IN SUMSETS 123

Theorem 3.3. There are positive constants c and C such that the following holds.
If A is a subset of [n] and l is a positive integer such that l|A| ≥ Cn, then lA
contains an arithmetic progression of length cl|A|.

Answering a question of Sárközy, Lev [20] has shown that one can set C equal
to 2, which is the optimal value.

It is clear that Theorem 3.3 is sharp, up to a constant factor. Let A be the set
of all positive integers from 1 to |A|. Then lA is the set of all positive integers from
l to l|A|.

The main result of this section gives a sharp estimate for a wide range of |A| and
l, including Theorem 3.3 as a special case. More importantly, our proof reveals the
structures of those sets A whose sumsets lA do not contain a very long arithmetic
progression. In the next subsection, we describe the construction that motivates
our result.

To conclude this subsection, let us mention that the proofs of all results men-
tioned in this paper, with the exception of Sárközy’s proof, are analytic, making
heavy use of harmonic analysis, and are very different from the proofs in this paper.

3.4. Sudden jumps. Our first crucial observation is that the statement of Theo-
rem 3.3 no longer holds when l|A| becomes a little bit less than n. The following
construction shows that there is a set A ⊂ [n] and a number l such that l|A| ≈ n/4
while the length of the longest arithmetic progression in lA is only O(l|A|1/2) (here
and later ≈ means “approximately”).

The construction. Let A = {p1x1 + p2x2|1 ≤ x1 ≤ m}, where p1 ≈ p2 ≈ n
2m

are two primes and p2 > m. It is convenient to think of A as a square in the two
dimensional lattice Z

2. A point (x1, x2) corresponds to the number p1x1 + p2x2. It
is easy to show that this correspondence is one-to-one. Indeed

p1x1 + p2x2 = p1x
′
1 + p2x

′
2

implies that
p1(x1 − x′

1) = p2(x′
2 − x2),

which is impossible because of divisibility and the fact that |x1 − x′
1| < m < p2.

Thus, |A| = m2. Let l = n
(4+ε)|A| = n

(4+ε)m2 , where ε is an arbitrary positive
constant. We have

lA = {p1x1 + p2x2|l ≤ x1 ≤ lm}.
Let P be an arithmetic progression (AP) in lA, we are going to show that the

coordinates of the elements of P also form an AP of the same length. Thus |P | is
at most the length of an edge of l|A|, which is less than lm = l|A|1/2. Observe that

p2 ≈ n/2m ≥ 2lm since l = n/(4 + ε)|A| = n/(4 + ε)m2.

Consider three consecutive terms in P , z + z
′′

= 2z′. Write z = p1x1 +p2x2. We
have

(p1x1 + p2x2) + (p1x
′′

1 + p2x
′′

2 ) = 2(p1x
′
1 + p2x

′
2),

which implies
p1(x1 + x

′′

1 − 2x′
1) = −p2(x2 + x

′′

2 − 2x′
2),

which is again impossible as

|x1 + x
′′

1 − 2x′
1| < 2lm ≤ p2.

Next, we generalize the above construction to higher dimensions.
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124 E. SZEMERÉDI AND V. VU

The general construction. Let d be a constant positive integer at least 2, and
let δ be a small positive constant. Consider two numbers |A| and l satisfying
ld−1|A| ≤ 1−δ

2d n. We shall construct a set A of cardinality |A| such that the longest
arithmetic progression in lA has length l|A|1/d.

Set a = � (1−δ/3)n
d|A|1/d � and b = �( n

d|A|1/d )1/(d−1)�. Set b1 = 0, b2 = 1, and if d ≥ 3,

then set bi = �b(i−2)/(d−1)� for all 3 ≤ i ≤ d. Finally set ai = a + bi. It is routine
to verify that for a sufficiently large n

(1) (1 − δ/3)a1/(d−1) ≥ 2l|A|1/d.

Consider the set

A = {
d∑

i=1

aixi|1 ≤ xi ≤ |A|1/d}

(for convenience we assume that |A|1/d is an integer). The term 1−δ
d in the definition

of a guarantees that P is a subset of [n]. It is convenient to view both A and lA
as d-dimensional integral boxes. The edges of lA form arithmetic progressions of
length l|A|1/d. Similarly to the case d = 2, we are going to prove the following two
claims.

Claim 3.5. lA does not contain an arithmetic progression of length greater than
l|A|1/d.

Claim 3.6. The cardinality of A is |A|.

Proof of Claim 3.5. Consider an arithmetic progression P in lA, and let z, z
′
, z

′′
be

three consecutive elements of P ′. We have z + z
′′

= 2z
′
. Write z =

∑d
i=1 aixi, z

′ =∑d
i=1 aix

′

i and z
′′

=
∑d

i=1 aix
′′

i . It follows that
∑d

i=1(xi + x
′′

i − 2x
′

i)ai = 0. Notice
that 1 ≤ xi, x

′

i, x
′′

i ≤ l|A|1/d, so |xi + x
′′

i − 2x
′

i| < 2l|A|1/d, for all i’s.
Next, we show that the diophantine equation

∑d
i=1 riai = 0 cannot have non-

trivial roots with small absolute values; namely, |ri| < 2l|A|1/d cannot hold si-
multaneously for all i’s. Consider a non-trivial root {r1, . . . , rd}. There are two
cases.

(I)
∑d

i=1 ri = 0. By the definition of the ai’s, it follows that
∑d

i=1 ribi = 0 and
d should be at least 3. Let j be the largest index where rj �= 0. It is easy to see
that j ≥ 3. On the other hand, by the definition of the bi’s, for any j ≥ 3

(2) max
1≤i≤d

|ri| ≥
bj∑j−1

i=1 bi

≥ a1/(d−1) ≥ 2l|A|1/d,

where the last inequality is from (1).
(II)

∑d
i=1 ri �= 0. In this case, it is obvious that

(3) max
1≤i≤d

|ri| ≥
a∑d

i=1 bi

≥ (1 − δ)a1/(d−1) ≥ 2l|A|1/d.

By the previous facts, we can conclude that xi + x
′′

i − 2x
′

i = 0 for all i’s. So for
each i, the coordinates of zi form an arithmetic progression. This implies that the
length of P could be at most the length of the “edges” of A, which is l|A|1/d. �
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LONG ARITHMETIC PROGRESSIONS IN SUMSETS 125

From the previous proof, it is obvious that if
∑d

i=1 aixi =
∑d

i=1 aix
′
i for 1 ≤

xi, x
′
i ≤ |A|1/d for all 1 ≤ i ≤ d, then xi = x′

i for all i’s. This implies that the
cardinality of A is |A|, proving Claim 3.6.

This construction plays a very important role in the whole paper. It not only
leads us to the statements of our theorems, but also motivates many of our argu-
ments.

The sudden jumps. For the sake of simplicity, let us consider l and n fixed and
view f(|A|, l, n) as a function of |A| (we call this function g(|A|)). The special case
d = 2 shows that if |A| ≤ 1−δ

4
n
l , then g(|A|) is upper bounded by l|A|1/2. This and

Theorem 3.3 imply that g(|A|) admits a dramatical change in order of magnitude
somewhere near the point n

l . If |A| ≥ C n
l for some sufficiently large constant C,

then g(|A|) (up to a multiplicative constant) behaves like l|A|. On the other hand,
if |A| ≤ 1−δ

4
n
l , then g(|A|) is upper bounded by l|A|1/2. This indicates that g(|A|)

is not a continuous function, and its behavior must follow a threshold rule.
The general construction suggests that n/l is not the only threshold (a place

where g(|A|) jumps). Assume, for a moment, that we could prove that close to the
left of n/l, g(|A|) behaves like l|A|1/2. This behavior, however, cannot continue
to hold with |A| getting significantly smaller than n/l. Indeed, once |A| becomes
less than 1−δ

6
n
l2 , then g(|A|) is upper bounded by l|A|1/3. Thus, another threshold

should occur around the point n
l2 . Motivated by this reasoning, one would conjec-

ture that there is a threshold around n
ld

for any fixed positive integer d. To the
right of the threshold, g(|A|) behaves like l|A|1/d, while to the left it behaves like
l|A|1/(d+1).

3.7. g(|A|) must jump. Our first main result confirms the above conjecture.

Theorem 3.8. For any fixed positive integer d there are positive constants C and
c depending on d such that the following holds. For any positive integers n and l
and any set A ⊂ [n] satisfying ld|A| ≥ Cn, lA contains an arithmetic progression
of length cl|A|1/d.

Corollary 3.9. For any fixed positive integer d there are positive constants C1, C2,
c1, and c2 depending on d and ε such that whenever C1n

ld
≤ |A| ≤ C2n

ld−1 ,

c1l|A|1/d ≤ f(|A|, l, n) ≤ c2l|A|1/d.

Let us again consider f(|A|, l, n) as a function g(|A|) of |A|, assuming n and l are
fixed. It is more convenient to view g(|A|) on a logarithmic scale. For this purpose,
let us define x = ln |A| and y(x) = ln g(|A|). Corollary 3.9 implies

Corollary 3.10. For any fixed positive integer d there are constants C1, C2, c1, and
c2 depending on d such that whenever ln n−d ln l+C1 ≤ x ≤ ln n− (d−1) ln l+C2,

1
d
x + ln l + c1 ≤ y(x) ≤ 1

d
x + ln l + c2.

The values of the constants C1, C2, c1, c2 in this corollary are, of course, different
from the values of C1, C2, c1, c2 in Theorem 3.8. Corollary 3.10 determines the
value of y(x) up to a constant additive term for all x except for a few intervals of
constant lengths. An exceptional interval is a neighborhood of a threshold point
ln n− d ln l = ln n

ld
and is of the form [lnn− d ln l + C2(d− 1), lnn− d ln l + C1(d)],

which has length C1(d)−C2(d− 1). Here we write C1(d) and C2(d− 1) instead of
C1 and C2 to emphasize the dependence on d and d − 1, respectively.
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126 E. SZEMERÉDI AND V. VU

The above results locate the thresholds within constant factors. It would be nice
to find the exact locations of these thresholds.

Question. What are the exact values of the constants C and c in Theorem 3.8?
The case d = 1 was treated by Lev in [20]. For general d, our construction shows

that C(d) is at least (1 − o(1))/2d.

3.11. A stronger theorem about generalized arithmetic progressions. The-
orem 3.8 is only the tip of the iceberg, and we are going to extend it in various
directions. In the first extension, we show that Theorem 3.8 is a consequence of a
stronger theorem about GAPs.

In order to guess what we may say about the possible existence of GAPs in lA,
let us go back to the construction. Observe that the constructed sumset lA contains
not only an arithmetic progression of length l|A|1/d, but also a proper GAP of rank
d and cardinality Ω(ld|A|). The arithmetic progression of length l|A|1/d we talked
about is actually an edge of this GAP. Thus, our first guess is, naturally, that lA
contains a GAP of rank d and cardinality Ω(ld|A|). This guess is, nevertheless,
false. To see this, notice that if we let A in the construction be a GAP of dimension
d′ < d with appropriate parameters, then lA is a GAP of dimension d′ of cardinality
Ω(ld

′ |A|) which is much less than Ω(ld|A|) (it is interesting to note that in this case
lA contains an arithmetic progression of length Ω(l|A|1/d′

) 	 Ω(l|A|1/d)). So, the
strongest statement one could make is that lA contains a proper GAP of rank d′

and cardinality Ω(ld
′ |A|) for some integer 1 ≤ d′ ≤ d. This turns out to be the

truth.

Theorem 3.12. For any fixed positive integer d there are positive constants C and
c depending on d such that the following holds. For any positive integers n and l
and any set A ⊂ [n] satisfying ld|A| ≥ Cn, lA contains a proper GAP of rank d′

and volume at least cld
′ |A|, for some integer 1 ≤ d′ ≤ d.

The other main results of this paper, Theorems 5.1, 7.1, 8.13, and 10.3, are
extensions of this theorem in various directions.

To conclude this subsection, let us point out that both Theorem 3.8 and Theorem
3.12 are invariant under affine transformations. Instead of assuming that A is a
subset of [n], we can assume that A is a subset of an arithmetic progression of
length n. In fact, for technical reasons, we will frequently assume that A contains
0.

3.13. More about generalized arithmetic progressions. Consider a GAP
Q = {a +

∑d
i=1 xiai|0 ≤ xi ≤ ni}. It is convenient to consider Q together with the

box BQ = {(x1, . . . , xd)| 0 ≤ xi ≤ ni} of d-dimensional vectors and the following
map Φ from Z

d to Z:

Φ(x1, . . . , xd) = a +
d∑

i=1

xiai.

The volume of Q is the geometrical volume of the d-dimensional box spanned by
BQ:

Vol(Q) = Vol(BQ) =
d∏

i=1

ni.
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We say that Q is proper if Φ(BQ) is injective. In this case the cardinality of Q

is
∏d

i=1(ni + 1) = |BQ|. It is trivial that

(4) |Q| ≤ 2dVol(Q),

and if Q is proper, then

(5) Vol(BQ) < |BQ| ≤ 2dVol(BQ).

If Q is not proper, then there are two vectors u and w in BQ such that Φ(u) =
Φ(w). The vector v = u − w is called a vanishing vector. By linearity, it is clear
that if v is vanishing, then Φ(v) = 0 and Φ(v + u) = Φ(u) for any u ∈ Z

d.
In the following we specify some rules used in calculations involving GAPs.
Addition. We only add two GAPs with the same difference set, and the result

is a GAP with this difference set. For instance, if P = {a + a1x1 + · · · + adxd|0 ≤
xi ≤ mi} and Q = {b + a1x1 + · · · + adxd|0 ≤ xi ≤ ni}, then

P + Q = {(a + b) + a1x1 + · · · + adxd|0 ≤ xi ≤ mi + ni}.

Substraction is defined similarly.
Multiplication. For a GAP P , we have 2P = P + P and lP = (l − 1)P + P .
Division. Consider a GAP P = {a + a1x1 + · · ·+ adxd|0 ≤ xi ≤ mi}. We say P

is normal if a = 0. In this case, we define

1
s
P = {a1x1 + · · · + adxd|0 ≤ xi ≤ mi/s}.

All of our arguments concerning GAPs are invariant with respect to affine transfor-
mation (shiftings in particular), so we could (and shall) automatically assume that
a GAP is normal when it is involved in division.

3.14. Some simple tricks. In this subsection, we describe several simple tricks
which we use frequently throughout the paper.

As C can be set arbitrarily large, we can sacrifice constant factors in many
arguments. So we are going to make several assumptions, whose “prices” are only
constant factors, which are very convenient for the proofs.

Divisibility. By increasing the value of C, we can assume that l is a power of
two. Indeed, if we replace l by the closest power of two, then the magnitude of l
decreases by at most 2. Similarly, once we have a GAP of constant rank and all we
care about is the volume of this GAP, up to a constant factor, then we can assume
that the lengths of the edges are divisible by 2 (or by any fixed integer). This latter
assumption is convenient for divisions. For instance, whenever we need to divide a
GAP P by a constant s, we shall always assume that the lengths of the edges of P
are divisible by s.

Passing to subsets. In many situations, it is useful to assume that a certain set,
say X, has a certain property. On the other hand, we can only prove that X has
a subset X ′ with the desired property. However, when X ′ has constant density in
X, we can frequently assume that X has the desired property, again by increasing
the value of C.

A graph with small degrees contains a large independent set. A graph consists
of a set V of vertices and a set E of edges, where an edge is a pair of two different
vertices. The degree of a vertex v is the number of edges containing v. If (u, v) is an
edge, then u is a neighbor of v and vice versa. A subset of V is called independent
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if it does not contain any edge. We are going to use the following simple fact from
graph theory.

Fact 3.15. Let G be a graph on n vertices. Assume that any vertex of G has
degree at most d. Then G contains an independent set of size n/(d + 1).

Proof. Let I be a maximal independent set. Since I is maximal, the neighbors of
the vertices in I and I together cover the vertex set of G. Since the vertices of I
have at most d|I| neighbors, it follows that

d|I| + |I| ≥ n,

proving the claim. �

The above fact implies that if G does not contain an independent set of size s,
then G has a vertex with degree at least n/s.

4. Proofs of Theorem 3.8 and Theorem 3.12

This section has six subsections. In the first four subsections we develop a variety
of tools. The proofs of Theorem 3.8 and Theorem 3.12 are presented in the last
two subsections.

Let us start with a sketch of the proof of Theorem 3.8. Consider the sequence

A, 2A, 4A, ..., lA

(without loss of generality we can assume that l is a power of 2). Since lA is a subset
of the interval [ln], |lA| is at most ln. This implies that the ratio |2i+1A|/|2iA|
cannot always be large. In particular, there is a constant K such that |2i+1A| ≤
K|2iA| holds for some index i less than log2 l. On the other hand, 2i+1A = 2iA +
2iA, so by applying Freiman’s theorem, we can deduce that 2iA is a dense subset
of a GAP P with constant rank.

Let us assume, for a moment, that 2iA has density one in P , namely, 2iA = P .
Thus 2iA contains a long arithmetic progression B of length at least (VolP )1/rank(P ).
As i is less than log2 l, lA contains an even longer arithmetic progression of length
at least l

2i |B|.
In order to carry out this scheme, we first need to show that assuming 2iA = P

is not oversimplifying. This will be carried out in the second subsection, where we
show that at the cost of constant factors we can think of a dense subset of a GAP
as the whole set.

With the aid of this assertion, it is now not so hard to prove that lA contains
an arithmetic progression of length l|A|ε for some small ε. In order to optimize ε,
we need to optimize K and the rank of P . The optimal value of K is easy to guess
while the optimal value of the rank of P will be provided by a result of Bilu [2],
which is a part of his proof of Freiman’s theorem.

Now comes the last, and perhaps most intriguing, point. Even with these optimal
parameters, we could not obtain the bound claimed in the theorem (however, we can
obtain a weaker theorem proved in an earlier paper [27]). To fill in the gap, we need
to prove certain properties of non-proper and proper GAPs. These properties lead
us to Lemma 4.13, which is the main lemma of the proof. The verification of this
lemma requires the preparation carried out throughout the first three subsections.

Now let us say something about the proof of Theorem 3.12. The first step is
to realize that we can assume that 2iA is not only a GAP, but also a proper one.
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The sumset lA contains a multiple of this GAP. The trouble is that a multiple
of a proper GAP does not need to be proper. What saves us here is a technique
called “rank reduction”. The heart of this technique is an argument which shows
that under certain circumstances a multiple of a proper GAP either is proper or
contains a proper GAP of strictly smaller rank and comparable cardinality. Thus if
we fail to complete our task in the first attempt, we can pass to a proper GAP with
smaller rank and try again. The GAP we start with has a constant rank so sooner
or later we must be done. The reader should notice that this approach, in spirit, is
consistent with the statement of Theorem 3.12, which confirms the existence of a
GAP of rank d′ where d′ is an undetermined quantity between 1 and d. This value
d′ is exactly where the rank reduction terminates.

4.1. A property of non-proper GAPs. Let us consider the ratio between the
cardinality and the volume of a GAP P . Assume that P has the form P = {a +
a1x1 + · · · + adxd|0 ≤ xi ≤ ni}, where all n′

is ≥ 1. The volume of P is
∏d

i=1 ni.
If P is proper, then its cardinality is

∏d
i=1(ni + 1) and the ratio in question is∏d

i=1(1 + 1
ni

), which is a number between 1 and 2d. For a non-proper GAP, it is
safe to say that the ratio is less than 2d, but it could still be larger than 1. We are
going to show, nevertheless, that if P is a sufficiently large multiple of a non-proper
GAP, then this ratio is bounded from above by any fixed positive constant ε.

Lemma 4.2. For any positive constants ε and d there is a constant g such that
the following holds. If a GAP Q of rank d is not proper, then |gQ| ≤ εVol(gQ).
Moreover,

|2Q| ≤ (1 − 1
2d+1

)|2BQ|.

In the proof, we are going to use terminologies introduced in subsection 3.13.
The reader may want to read this subsection again before checking the proof.

Proof of Lemma 4.2. We can assume that Q = {x1a1 + · · · + xdad|0 ≤ xi ≤ ni}.
We consider Q together with the box BQ and the canonical map Φ from BQ to Q.
Since Q is not proper, there is a vanishing vector v where −ni ≤ vi ≤ ni for all
i = 1, . . . , d. Without loss of generality, we can assume that the first d′ coordinates
of v are positive and the remaining ones are non-positive. Thus 0 < vi ≤ ni for
i = 1, . . . , d′ and −ni ≤ vi ≤ 0 for d′ < i ≤ d.

Let h < g be sufficiently large integers, and let B′ be the set of vectors w in
gBQ such that w + v, w + 2v, . . . , w + hv are also in gBQ. As v is vanishing,
Φ(w) = Φ(w + v) = · · · = Φ(w + hv). It follows that

(6) |gQ| ≤ |gBQ\B′| + 1
h + 1

|B′| = |gBQ| −
h

h + 1
|B′|,

which implies

(7) |gQ| ≤ (1 − h

h + 1
|B′|
|gBQ|

)|gBQ| ≤ 2d(1 − h

h + 1
|B′|
|gBQ| )Vol(gBQ),

where in the last inequality we use the trivial fact that |gBQ| ≤ 2dVol(gBQ) (see
(4)). Next we bound |B′| from below. A vector w is surely in B′ if 0 ≤ wi ≤ (g−h)ni

for i ≤ d′ and hni ≤ wi ≤ gni for d′ < i ≤ d. Thus the cardinality of B′ is at least
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∏d
i=1

(
(g − h)ni + 1

)
. Moreover, |gBQ| ≤

∏d
i=1(gni + 1), so

(8)
h

h + 1
|B′|
|gBQ|

≥ h

h + 1

n∏
i=1

(
(g − h)ni + 1

)
gni + 1

.

For any given ε, d we could choose g and h (depending only ε and d) so that

h

h + 1

d∏
i=1

(
(g − h)ni + 1

)
gni + 1

≥ 1 − ε/2d

holds for any positive integers ni’s. With this choice of g and h, the rightmost
formula in (7) is thus at most εVol(gQ), proving the first statement of the lemma.
To verify the second statement, set g = 2 and h = 1. We obtain

(9) |2Q| ≤ (1 − 1
2

|B′|
|gBQ|

)|gBQ| ≤ (1 − 1
2

d∏
i=1

ni + 1
2ni + 1

)|2BQ|.

The product
∏d

i=1
ni+1
2ni+1 is larger than 1

2d so it follows that

(10) |2Q| ≤ (1 − 1
2d+1

)|2BQ|,

completing the proof. �

4.3. The proper filling lemma. In this subsection, we present several lemmas
which allow us to think of a dense subset of a GAP as the whole set, at the cost of
constant factors. The first such lemma was proved in [27].

Lemma 4.4. For any positive constant γ and any positive integer d there is a
constant positive integer h and a positive constant γ′ depending on γ and d such
that the following holds. If P is a generalized arithmetic progression of rank d
and B is a subset of P such that |B| ≥ γVol(P ), then hB contains a generalized
arithmetic progression of rank d with cardinality at least γ′|B|.

We call this lemma the “filling lemma”, as our motivation is to fill out a complete
GAP. Next, we strengthen this lemma by adding the requirement that the GAP
contained in hB must be proper.

Lemma 4.5. For any positive constant γ and any positive integer d there is a
constant positive integer h and a positive constant γ′ depending on γ and d such
that the following holds. If P is a generalized arithmetic progression of rank d and
B is a subset of P such that |B| ≥ γVol(P ), then hB contains a proper generalized
arithmetic progression of rank d with cardinality at least γ′|B|.

We shall, naturally, refer to Lemma 4.5 as the “proper filling lemma”. The proof
of Lemma 4.5 combines Lemma 4.4 with the result of the previous subsection.

Proof of Lemma 4.5. By Lemma 4.4, hB contains a GAP Q with cardinality Ω(|B|).
It suffices to show that Q contains a proper GAP of the same rank with cardinality
Ω(|Q|). As h = O(1), Vol(hP ) = O(Vol(P )) = O(|B|), so we can assume that

(11) |Q| ≥ γ1Vol(hP )

for some positive constant γ1.
Let g be a large constant integer. Without loss of generality we can assume that

Q = {x1a1 + · · · + xdad|0 ≤ xi ≤ ni} and ni is divisible by g. Let ε be a positive
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constant smaller than γ1 and consider the GAP Q′ = 1
g Q. If Q′ is proper, then we

are done as
|Q′| ≥ Vol(Q′) = Ω(Vol(Q)) = Ω(|Q|).

We next show that Q′ is indeed proper given that g is sufficiently large. Assume
otherwise. Choosing g as in Lemma 4.2, we have

(12) |Q| = |gQ′| ≤ εVol(gQ′) = εVol(Q) ≤ εVol(hP ) < γ1Vol(hP ),

which contradicts (11). This completes the proof. �

4.6. (δ, d)-sets. We begin this subsection with an important definition.

Definition 4.7. A set A is a (δ, d)-set if one can find a GAP Q of rank d such that
B = Q ∩ A satisfies |B| ≥ δ max{|A|, Vol(Q)}.

The filling lemmas tell us that a (δ, d)-set (where both δ and d are constant) can
be treated as a GAP of rank d, if we are allowed to sacrifice constant factors.

Lemma 4.8. For any positive constants δ and d there are positive constants g and
γ such that the following holds. If A is a (δ, d)-set, then gA contains a proper GAP
of rank d with cardinality at least γ|A|.

Now we are going to present another lemma, which supplies a sufficient condition
for a set to be a (δ, d)-set. In order to motivate this lemma, let us go back to
Freiman’s inverse theorem. Freiman’s theorem shows that if |A+A| ≤ c|A|, then A
is a dense subset of a GAP P of rank d = d(c). As we mentioned at the beginning
of this section, the optimal value of d is critical to us. Observe that if A is a proper
GAP of dimension d, then |A + A| ≤ 2d|A|. So, one may wonder whether one can
set d = �log2 c�. Unfortunately, Freiman’s theorem is not true with this value of d
(the best-known bound is d = �c�). On the other hand, if we can afford to sacrifice
constant factors, then we can actually obtain this optimal value of d. To be more
precise, if |A + A| ≤ c|A|, then a constant fraction of A is contained in a GAP P of
ranked d = �log2 c� with small volume. The following lemma is a consequence of
Theorem 1.3 of [2].

Lemma 4.9. For any positive constants ε and d there is a positive constant δ such
that the following holds. If |A + A| ≤ (2d − ε)|A|, then A is a (δ, d)-set.

This lemma is a coproduct of the proof of Freiman’s theorem given by Bilu in
[2].

4.10. Rank reduction. Now we are in a position to develop the so-called rank
reduction technique, mentioned in the beginning of this section. This technique
plays an important role not only in the proofs of Theorems 3.8 and 3.12, but also
in the proof of Theorem 7.1.

The rank reduction technique allows us to pass from one GAP to another which
has strictly smaller rank and comparable cardinality. We are going to present
several lemmas which constitute the technique. The first lemmas is as follows.

Lemma 4.11. For any positive constant d there is a positive constant δ such that
the following holds. If a GAP Q of rank d is proper but 2Q is not, then 2Q is a
(δ, d − 1)-set.
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132 E. SZEMERÉDI AND V. VU

Proof of Lemma 4.11. Applying the second statement of Lemma 4.2 to 2Q, we have
that

(13) |4Q| = |2(2Q)| ≤ (1 − 1
2d+1

)|4BQ| ≤ (1 − 1
2d+1

)4d|BQ|,

where in the last inequality we used the fact that |4BQ| ≤ 4d|BQ|. Since Q is
proper, |BQ| = |Q|. It follows that

(14) |4Q| < (1 − 1
2d+1

)4d|Q| ≤ (2d − γ)2|Q|,

for some constant γ = γ(d). It follows that either |2Q| ≤ (2d − γ)|Q| or |4Q| ≤
(2d − γ)|2Q|. In the first case Q is a (δ, d − 1)-set; in the second case 2Q is a
(δ, d − 1)-set (both statements follow immediately from Lemma 4.9). But Q is a
translation of a subset of 2Q, so in both cases 2Q is a (δ, d− 1)-set (notice that the
three δ’s in the last two sentences might have different values). �

The previous lemma and Lemma 4.8 together yield

Lemma 4.12. For any positive constant d there are positive constants g and γ
such that the following holds. If a GAP Q of rank d is proper but 2Q is not, then
gQ contains a proper GAP of rank (d − 1) with cardinality at least γ|Q|.

We are now ready to present the main lemma of the proofs of Theorems 3.8 and
3.12.

Lemma 4.13. For any positive constants ε and d there are positive constants c
and γ such that the following holds. Let Q be a proper GAP of rank d, and assume
that there are positive integers l1 = 2s1 and m satisfying l1Q ⊂ [m] and ld1 |Q| ≥ cm.
Then there is a positive integer l′1 = 2s′

1 < l1 such that l′1Q contains a proper GAP
Q′ of rank (d − 1) where |Q′| ≥ γl′d1 |Q|.

Proof of Lemma 4.13. Consider the sets Q0 = Q, Qi = 2Qi−1, for i = 1, . . . , s1 −
h1 = s2, where h1 is the largest integer satisfying 2dh1+d < c. If Qi were proper for
all i, then |Qi| > Vol(Qi) and Vol(Qi) = 2dVol(Qi−1), and this would imply that

(15) |Qs2 | > Vol(Qs2) = 2ds2Vol(Q0) ≥
ld1

2dk1

|Q|
2d

≥ ld|Q|
2dk1+d

≥ cm

2dk1+d
> m,

which is impossible as we assume l1Q ⊂ [m]. (In the second inequality we used
the fact that Vol(Q0) = Vol(Q) ≥ |Q|

2d .) Therefore, there is some i between 1 and
s2 for which Qi is not proper. Let j be the smallest such i. Thus, Qj−1 is proper
and Qj = 2Qj−1 is not. By Lemma 4.12, there are constants h2 and γ1 such that
h2Qj−1 contains a proper GAP Q′ of rank (d−1) with cardinality at least γ1|Qj−1|.
Without loss of generality we can assume that h2 is a power of 2, h2 = 2h3 . By
increasing c, we can assume that h1 > h3, which guarantees that l′1 = h22j ≤ l1.
The set l′1Q = h2Qj−1 contains a proper GAP Q′ of rank (d − 1) and cardinality

(16) |Q′| ≥ γ1|Qj−1| = γ12(j−1)d|Q| ≥ γ1

hd
2

l′d1 |Q| = γl′d1 |Q|,

where γ = γ1
hd
2
, concluding the proof. �
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4.14. Proof of Theorem 3.8. Before starting the proof, let us mention that all
constants (γ1, γ2, etc.) in the proof depend on d, but they do not depend on C.
By setting C sufficiently large, we can satisfy all relations required between these
constants. Without loss of generality, we can assume l is a power of two, l = 2s,
where s is sufficiently large. Consider the set sequence A0 = A, Ai+1 = 2Ai. We
first need the following fact, which asserts that for some i significantly smaller than
s = log2 l, the ratio |Ai|/|Ai−1| is not too large.

Fact 4.15. There is some i ≤ d+1
d+3/2s such that |Ai| ≤ 2d+3/2|Ai−1|.

Proof of Fact 4.15. Assume otherwise. Then

(17) |A d+1
d+3/2 s| ≥ 2(d+3/2) d+1

d+3/2 s|A0| = 2(d+1)s|A| = ld+1|A| ≥ Cln,

a contradiction as A d+1
d+3/2 s is a subset of [ln] (C is set to be larger than 1). The

proof of the claim is completed. �
Let s1 be the first index where |As1+1| ≤ 2d+3/2|As1 |. Lemmas 4.8, 4.9, and 4.5

imply that there are constants g1 and γ1 depending only on d such that 2g1As1

contains a proper GAP Q of rank d + 1 and cardinality at least γ1|As1 |. By the
definition of s1

|As1 | ≥ 2(d+3/2)s1 |A|,
so

|Q| ≥ γ12(d+3/2)s1 |A|.
By setting C sufficiently large, we can assume that s is sufficiently large so that
s ≥ s1 + g1 (notice that s1 ≤ d+1

d+3/2s). This implies that l
2s1+g1 Q is a subset of lA.

Next we apply Lemma 4.13 to Q with m = ln, l1 = l
2s1+g1 , and d + 1 instead of d.

In order to verify the conditions of this lemma, observe that

(18) ld+1
1 |Q| ≥ ld+1

2(s1+g1)(d+1)
γ12(d+3/2)s1 |A| ≥ γ1lcn2s1/2−g1(d+1).

Again by assuming that C is large, we could guarantee that the condition of Lemma
4.13 is met. Lemma 4.13 implies that we have a proper GAP Q′ ⊂ l′1Q = 2s′

1Q of
rank d with cardinality at least

(19) γ22s′
1(d+1)|Q| ≥ γ2γ12(d+1)(s1+s′

1)2s1/2|A|,
where s1 + s′1 ≤ s. The GAP P = 2s−s1−s′

1Q′ is a subset of 2sA = lA, and its
volume is

2d(s−s1−s′
1)Vol(Q′) ≥ 2d(s−s1−s′

1)
|Q′|
2d

≥ 2d(s−s1−s′
1−1)γ1γ22(d+1)(s1+s′

1)2s1/2|A|

= γ1γ22ds|A|23s1/2+s′
1−d

≥ γ1γ2

2d
ld|A|.

Since P has rank d, its longest edge forms an AP of length at least(γ1γ2

2d
ld|A|

)1/d

= Ω(l|A|1/d),

completing the proof of Theorem 3.8. �
Remark. The reader may notice that in this proof we used the estimate on the
cardinality of Q′, but we did not use the fact that Q′ is proper. The properness of
Q′, however, is critical in the next proof.
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134 E. SZEMERÉDI AND V. VU

4.16. Proof of Theorem 3.12. Without loss of generality, we can assume that
0 ∈ A. Consider Q′ as in the proof of Theorem 3.8. Again by increasing C, we
may assume that s − s1 − s′1 is lower bounded by a sufficiently large constant.
Consider the GAP Q

′′
= 2s−s1−s′

1−g2Q′, where g2 is a large constant satisfying
s − s1 − s′1 − g2 ≥ 0. Since 0 ∈ A, Q

′′
is a subset of lA. Moreover, as Q′ and Q

′′

are of ranked d, we have, using inequality (19), that

Vol(Q
′′
) ≥ 2(s−s1−s′

1−g2)dγ2γ12(d+1)(s1+s′
1)2s1/2|A|

= γ1γ22sd2
3s1
2 +s′

1−g2d|A|
= Ω(ld|A|).

We are going to examine two cases:
Case 1: Q

′′
is proper. In this case lA contains the proper GAP Q

′′
of rank d

and volume Ω(ld|A|). So we are done by setting d′ = d.
Case 2: Q

′′
is not proper. Now we make crucial use of the fact that Q′ is proper.

The properness of Q′ implies that there is a positive integer s2 ≤ s−s1−s′1−g2 ≤ s

such that 1
2s2 Q

′′
is proper. As usual, we choose s2 to be the smallest such integer,

which implies that 1
2s2−1 Q

′′
= 2

2s2 Q
′′

is not proper. Applying Lemma 4.12 to 1
2s2 Q

′′

we obtain a GAP Q
′′′

of rank d − 1 and volume

Ω(Vol(
1

2s2
Q

′′
)) = Ω(

1
2ds2

Vol(Q
′′
) = Ω(

1
2ds2

ld|A|).

Furthermore, there is a constant g3 such that Q
′′′′

= 2s2−g3Q
′′′

is a subset of lA.
The GAP Q

′′′′
has rank d − 1 and volume

2(s2−g3)(d−1)Vol(Q
′′′

) = Ω(2s2(d−1) 1
2ds2

ld|A|) = Ω(2−s2 ld|A|).

Since s ≥ s2, 2−s2 ≥ 2−s = l−1. Thus, the volume of Q
′′′′

is Ω(ld−1|A|). Now if
Q

′′′′
is proper, then we are done by setting d′ = d − 1. Otherwise we repeat the

analysis of Case 2 to obtain a GAP of rank d− 2 and so on. This repetition cannot
continue forever, so sooner or later we must obtain a proper GAP of some rank
d′ < d which satisfies the claim of the theorem. �

5. Sums of different sets

The goal of this section is to generalize the results in Section 3 by considering the
sum of different sets, instead of the sum of the same sets. Given l sets A1, . . . , Al,
we define

A1 + · · · + Al = {a1 + · · · + al|ai ∈ Ai, 1 ≤ i ≤ l}.
We obtain the following generalization of Theorem 3.12.

Theorem 5.1. For any fixed positive integer d there are positive constants C and
c depending on d such that the following holds. Let A1, . . . , Al be subsets of [n] of
size |A| where l and |A| satisfy ld|A| ≥ Cn. Then A1 + · · ·+ Al contains a GAP of
rank d′ and volume at least cld

′ |A|, for some integer 1 ≤ d′ ≤ d.

The following corollary generalizes Theorem 3.8.

Corollary 5.2. For any fixed positive integer d there are positive constants C and
c depending on d such that the following holds. Let A1, . . . , Al be subsets of [n]
of size |A| where l and |A| satisfy ld|A| ≥ Cn. Then A1 + · · · + Al contains an
arithmetic progression of length cl|A|1/d.
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Theorem 5.1 has a nice application. In Section 6, we use this theorem to confirm
a conjecture of Folkman posed in 1966.

5.3. The basic idea. The basic idea behind the proof of Theorem 5.1 is the fol-
lowing. Given the sets A1, . . . , Al as in Theorem 5.1, we are going to show that
there are numbers l′, n′ and a set A′ such that

• l′A′ is a subset of A1 + · · · + Al; A′ is a subset of [n′].
• l′, n′, |A′| satisfy the conditions of Theorem 3.12. (This can be done by

setting the constant C in Theorem 5.1 much larger than the constant C in
Theorem 3.12.)

• (l′)d′ |A′| = Ω(ld
′ |A|) for all 1 ≤ d′ ≤ d.

An application of Theorem 3.12 to the triple (l′, n′, A′) immediately implies the
statement of Theorem 5.1.

The proof of Theorem 5.1 uses a technical lemma, Lemma 5.8. This lemma pro-
vides a sufficient condition for the existence of a sumset of form l′A′ in a sumset of
different sets. The verification of this lemma requires extensions of the filling lem-
mas described in Section 4. These extensions are the topic of the next subsection.

5.4. Filling with different sets. In the proof of Theorem 5.1, we shall need the
following lemma, which generalizes Lemma 4.4 the way Theorem 5.1 generalizes
Theorem 3.8. This lemma was proved in an earlier paper [28].

Lemma 5.5. For any positive constant γ and positive integer d, there is a positive
constant γ′ and a positive integer g such that the following holds. If X1, . . . , Xg are
subsets of a generalized arithmetic progression P of rank d and |Xi| ≥ γVol(P ),
then X1 + · · · + Xg contains a generalized arithmetic progression Q of rank d and
cardinality at least γ′Vol(P ). Moreover, the distances of Q are multiples of the
distances of P .

One can further strengthen this lemma by requiring Q to be proper. The proof
is similar to the proof of the proper filling lemma, Lemma 4.5.

Lemma 5.6. For any positive constant γ and positive integer d, there is a positive
constant γ′ and a positive integer g such that the following holds. If X1, . . . , Xg are
subsets of a generalized arithmetic progression P of rank d and |Xi| ≥ γVol(P ),
then X1 + · · · + Xg contains a proper generalized arithmetic progression Q of rank
d and cardinality at least γ′Vol(P ). Moreover, the distances of Q are multiples of
the distances of P .

Later on, we shall refer to Lemmas 5.5 and 5.6 as the general filling and general
proper filling lemmas, respectively.

5.7. The main lemma of Theorem 5.1. We are now in a position to present
and prove the main lemma of the proof of Theorem 5.1.

Lemma 5.8. For every positive constant c there are positive constants ε and d
depending on c such that the following holds. If the sets X1, . . . , Xl, each of cardi-
nality |X|, satisfy |X1 +Xi| ≤ c|X| for all 2 ≤ i ≤ l, then there is a proper GAP Q
of rank at most d and cardinality at least ε|X| and a number l′ ≥ εl such that the
sum X1 + · · · + Xl contains a translation of l′Q.
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Proof of Lemma 5.8. The condition |X1 +Xi| ≤ c|X| and Freiman’s theorem imply
that X1 is contained in a GAP R with constant rank and volume O(|X|). Consider
Xi, for some 2 ≤ i ≤ l. We say that two elements x and y of Xi are equivalent
if x − y ∈ R − R. It is trivial that if x and y are not equivalent, then x + X1

and y + X1 are disjoint sets. Since |X1 + Xi| ≤ c|X| where |X| = |X1| = |Xi|,
the number of equivalent classes is at most c. It follows that there is a class with
cardinality Ω(|X|); let us call this class Yi. The class Yi is a translation of a subset
Zi (of constant density) of R. The hidden constants in the asymptotic notations
depend on c.

Consider the sets Z2, . . . , Zl. These sets are subsets of R and |Zi| ≥ γVol(R)
for some positive constant γ depending on c. Let g be a large constant integer.
With the exception of at most g− 1 sets, we partition the Zi’s into l1 = �(l− 1)/g�
disjoint groups of size g: G1, . . . , Gl1 . Thus each group Gj contains g sets, each
of which is a subset of R with cardinality γVol(R) for some positive constant γ.
By setting g sufficiently large, the general filling lemma (Lemma 5.5) applies and
shows that the sum of the sets in any group Gj contains a proper GAP Qj of
cardinality Ω(Vol(R)). Moreover, the rank of Qj is the same as the rank of R and
the differences of Qj are multiples of the differences of R.

Since |Qj | = Ω(Vol(R)), there are only O(1) choices for the difference set of Qj

(for the definition of difference sets, see Section 3). Thus, a constant fraction of the
Qj ’s has the same difference set. Without loss of generality, we may assume that
these Qj ’s are Q1, Q2, . . . , Ql2 , where l2 = Ω(l1).

Since |Qj | = Ω(Vol(R)), the length of the hth edge of Qj is Ω(1) times the length
of the corresponding edge of R, for all 1 ≤ h ≤ rank(R). Thus the lengths of the
hth edge of the Qj ’s are within a constant factor from each other, for all 1 ≤ k ≤
rank(R). This implies that the intersection of the boxes BQ1 , . . . , BQl2

contains
a box B with volume Ω(Vol(R)) (for the definition of these boxes, see subsection
3.13). Let m1, . . . , md be the lengths of the edges of B, and let (a1, . . . , ad) be
the (common) set of differences of Q1, . . . , Ql2 . It follows that each of Q1, . . . , Ql2

contains a translation of the proper GAP Q = {a1x1 + · · ·+ adxd|0 ≤ xi ≤ mi} (Q
is proper because the Qj ’s are proper). We have that

|Q| = |B| = Ω(Vol(R)) = Ω(|X|)

and
l2 = Ω(l1) = Ω(l).

Moreover, a translation of l2Q is contained in Q1 + · · · + Ql2 , and a translation of
Q1 + · · ·+Ql2 is contained in X1 + · · ·+Xl. So X1 + · · ·+Xl contains a translation
of l2Q, completing the proof. �

5.9. Proof of Theorem 5.1. With the main lemma in hand, we are ready to
conclude the proof of Theorem 5.1. In order to find a triplet (A′, l′, n′) as desired,
we are going to apply the so-called tree argument. This argument was introduced
in [28] and, in spirit, works as follows. Assume that we want to add several sets
A1, . . . , Al. We shall add them in a special way following an algorithm which assigns
sets to the vertices of a tree. A set of any vertex contains the sum of the sets of
its children. If the set at the root of the tree is not too large, then there is a
level where the sizes of the sets do not increase (compared with the sizes of their
children) too much. Thus, we can apply Freiman’s inverse theorems at this level to
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deduce useful information. The creative part of this argument is to come up with
a proper algorithm which suits our need.

The reader has already seen a simple version of this argument in the proof of
Theorem 3.8. In that proof, the sets at the leaves of the tree are copies of A, the
sets at a level i are copies of 2iA, and the set at the root is lA. A set of any vertex
is the sum of the sets at its two children.

The algorithm in the current case is more complicated. Before describing it, let
us assume, without loss of generality, that l is a power of 4 (l = 4s) and |Ai| = n1

and 0 ∈ Ai for all 1 ≤ i ≤ l. Set Ai = A1
1 for i = 1, . . . , l and l1 = l. Here is the

description of the algorithm.
The algorithm. At the tth step, the input is a sequence At

1, . . . , A
t
lt

of the same
cardinality nt where lt is an even number. Choose a pair 1 ≤ i < j ≤ lt which
maximizes |At

i +At
j | (if there are many such pairs, choose an arbitrary one). Denote

the sum At
i+At

j by A′
1. Remove i and j from the index set and repeat the operation

to obtain A′
2 and so on. After lt/2 operations we obtain a sequence A′

1, . . . , A
′
lt/2

of sets with decreasing cardinalities. Define lt+1 = lt/4. Consider the sequence
A′

1, . . . , A
′
lt+1

, and truncate all but the last set so that all of them have the same
cardinality (which is |A′

lt+1
|). The truncated sets will be named At+1

1 , . . . , At+1
lt+1

,
and they form the input of the next step. It is clear that lt = l1

4t−1 for all plausible
t’s. The algorithm halts at time s + 1 where ls+1 = 1.

Notice that At+1
lt+1

is a subset of [2tn], so nt+1 ≤ 2tn. We first show that there is
some t ≤ s so that nt+1 ≤ 4d+1nt. Assume otherwise. Then

ns+1 ≥ (4d+1)sn1 = (4s)d4s|A| = 4sld|A| > 2sn,

a contradiction. In the following, let t be the first index so that nt+1 ≤ 4d+1nt. By
the description of the algorithm, there are lt/2 sets among the sets At

i’s such that
every pair of them has cardinality at most nt+1 ≤ 4d+1nt. Let us call these sets
B1, . . . , Blt/2. We have

• |B1| = · · · = Blt/2 = nt,

• Bi’s are subsets of the interval [2t−1n],
• |Bi + Bj | ≤ 4d+1nt, for all 1 ≤ i < j ≤ lt/2.

By Lemma 5.8, the sum B1 + · · · + Blt/2 contains a translation of l′A′, where
l′ ≥ εlt/2 and A′ is a proper GAP with cardinality at least εnt and ε is a positive
constant depending on d. Moreover, A′ is a subset of [k12t−1n], for some constant
k1 depending on d. Set n′ = k12t−1n. To conclude the proof, let us verify that
l′, n′, and A′ satisfy the required relations. First of all

(20) (l′)d|A′| ≥ (εlt/2)dεnt ≥
εd+1

2d

ld

4(t−1)d
4(d+1)(t−1)|A| ≥ εd+1

2d
2t−1ld|A|.

Since ld|A| ≥ Cn, it follows that

(l′)d|A′| ≥ Cεd+1

2d
2t−1n =

Cεd+1

k12d
n′.

By increasing C (notice that ε and k1 do not depend on C), we can assume that
(l′)d|A′|/n′ is sufficiently large. This guarantees that the condition of Theorem 3.12
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is met. Replacing d by d′ in (20), one can verify that for any d′ ≤ d

(l′)d′ |A′| = Ω(ld
′ |A|),

This concludes the proof. �

6. Folkman’s conjecture on subcomplete sequences

For a (finite or infinite) set A, SA denotes the collection of subset sums of A:

SA = {
∑
x∈B

x|B ⊂ A, |B| < ∞}.

An infinite sequence A of positive integers is subcomplete if SA contains an infinite
arithmetic progression. Subcomplete sequences have been studied extensively, and
we refer the reader to Section 6 of the monograph [9] by Erdös and Graham for a
survey. For an infinite sequence A, we use A(n) to denote the number of elements
of A between 1 and n. This number could be larger than n as A might contain the
same number many times. In 1966, Folkman made the following conjecture.

Conjecture 6.1. There is a constant C such that the following holds. If A =
{a1 ≤ a2 ≤ a3 ≤ . . . } is an infinite non-decreasing sequence of positive integers
and A(n) ≥ Cn, for all sufficiently large n, then A is subcomplete.

Folkman’s conjecture was considered by Erdös and Graham as the most impor-
tant conjecture concerning subcomplete sequences ([9], Section 6). Folkman himself
proved that the conjecture holds under the stronger condition that A(n) ≥ n1+ε,
where ε is an arbitrary positive constant. The conjecture is sharp, as one cannot
replace n by n1−ε. To show this, let us present an observation of Erdös [8].

Fact 6.2. Consider an infinite sequence A = {a1, a2, . . . }. If

(21) lim sup
i→∞

⎛
⎝ai −

i−1∑
j=1

aj

⎞
⎠ → ∞,

then A is not subcomplete.

To verify Fact 6.2, notice that if A is subcomplete and d is the difference of
an infinite arithmetic progression contained in SA, then d is lower bounded by
lim supi→∞(ai −

∑i−1
j=1 aj).

For any fixed ε > 0, it is simple to find a non-decreasing sequence A such that
A(n) = Ω(n1−ε) and A satisfies (21).

Using a special case of Theorem 5.1, we are able to confirm Folkman’s conjecture.

Theorem 6.3. There is a constant C such that the following holds. If A = {a1 ≤
a2 ≤ a3 ≤ . . . } is an infinite non-decreasing sequence of positive integers and
A(n) ≥ Cn, for all sufficiently large n, then A is subcomplete.

The rest of this section is devoted to the proof of Theorem 6.3, which relies
on Corollary 5.2. First, we prove a sufficient condition for subcompleteness. This
condition is of independent interest and will be used for another problem in Section
9. To complete the proof, we show that any sufficiently dense sequence satisfies
this condition. This part of the proof makes significant use of Corollary 5.2.
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6.4. A sufficient condition for subcompleteness. We say that a sequence A
admits a good partition if it can be partitioned into two subsequences A′ and A

′′

with the following two properties:
• There is a number d such that SA′ contains an arbitrarily long arithmetic

progression with difference d.
• Let A

′′
= b1 ≤ b2 ≤ b3 ≤ . . . . For any number K, there is an index i(K)

such that
∑i−1

j=1 bj ≥ bi + K for all i ≥ i(K).
Admitting a good partition is a sufficient condition for subcompleteness.

Lemma 6.5. Any sequence A which admits a good partition is subcomplete.

Proof of Lemma 6.5. We start with a definition.

Definition 6.6. An infinite sequence B = {b1 ≤ b2 ≤ b3 ≤ . . . } is a (d, L)-net if
bi+1 − bi < L and is divisible by d for all i = 1, 2 . . . .

Observe that if B is a (d, L)-net and Q is a finite arithmetic progression with
difference d and length greater than L/d, then B+Q contains an infinite arithmetic
progression with difference d. This observation is the leading idea in what follows.

Assume that A admits a good partition, and let Q0, Q1, Q2, . . . be arithmetic
progressions with the same difference d and strictly increasing lengths contained
in SA′ . The existence of the Qi’s is guaranteed by the first property of a good
partition.

Next, we focus on A
′′
. Let X be the set of divisors d′ of d with the following

property: All but at most a finite number of elements of A
′′

are divisible by d′. Since
1 ∈ X, X is not empty and thus has a maximum element d1. By throwing away
a finite number of elements, we can assume that all elements of A

′′
are divisible

by d1. Next, discard all elements y (in the remaining sequence) if there is only a
finite number of elements of A

′′
which equal y modulo d. Again, we discard only a

finite number of elements so the remaining sequence still has the same density as
A

′′
. Thus, we can assume that A

′′
= {b1d1 ≤ b2d1 ≤ . . . } where the bi’s have the

following property: Let b′i be the remainder when dividing bi by d. For each i, there
are infinitely many j’s such that b′i = b′j . Moreover, the greatest common divisor
of the b′i’s equals 1 modulo d by the definition of d1. We next need the following
elementary fact, which is a consequence of the Chinese remainder theorem.

Fact 6.7. Let 1 ≤ z1 ≤ z2 ≤ · · · ≤ zh < d be positive integers. If gcd(z1, . . . , zh) =
1(mod d), then there are integers 0 ≤ a1, . . . , ah < d such that

∑h
j=1 ajzj ≡

1(mod d).

By Fact 6.7 and the property of A
′′

described in the previous paragraph, we
can find (d − 1) mutually disjoint finite subsets X1, . . . , Xd−1 of A

′′
so that the

sum of the elements in each subset equals d1 modulo d. Denote these sums by
x1d+d1, . . . , xd−1d+d1, where the xi’s are non-negative integers. For any arithmetic
progression Qj with length l ≥ 3(x1 + · · ·+xd−1), the set Qj +S{x1d+d1,...,xd−1d+d1}
contains an arithmetic progression with difference d1 and length at least l/2 (recall
that Qj has difference d which is divisible by d1). Since the lengths of the Qj ’s
go to infinity with j, we can conclude that SA′ + S{x1d+d1,...,xd−1d+d1} contains an
arbitrarily long arithmetic progression with difference d1.

Set A
′′′

= A
′′\

⋃d−1
i=1 Xi; to complete the proof of the lemma, it suffices to prove

that SA′′′ contains a (d1, L)-net for some constant L. Let SA′′′ = {s1 < s2 < . . . }.
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Every elements of A
′′

is divisible by d1 and so are all si’s. Therefore, it suffices
to exhibit the existence of a constant L satisfying si+1 − si ≤ L for all i. The
existence of L follows directly from the following observation, due to Graham [15],
and the second property of a good partition (this is the only place where we use
this property).

Fact 6.8. Let Y = y1 < y2 < . . . be an infinite sequence of positive integers, and
let SY = {s1 < s2 < . . . }. If ym+1 ≤

∑m
i=1 yi for all sufficiently large m, then there

is some L such that si+1 − si ≤ L for all i.

Proving Fact 6.8 is not too hard, and the reader might want to consider it as an
exercise. �

6.9. Proof of Theorem 6.3. We first present a lemma which provides a link
between good partitions and subcompleteness. This lemma is a simple, but a bit
tricky, consequence of Corollary 5.2.

Lemma 6.10. There is a constant C such that the following holds. If A is a
multi-set of positive integers between 1 and n and |A| ≥ Cn, then SA contains an
arithmetic progression of length n.

Proof of Lemma 6.10. We show that the same constant C in Corollary 5.2 suffices.
Without loss of generality, we assume that C is an integer and |A| = Cn. If the
multi-set A contains an element a of multiplicity n, then the arithmetic progression
a, 2a, . . . , na is a subset of SA and we are done. In the other case, we can partition
the Cn elements of A into n sets X1, . . . , Xn such that each Xi consists of exactly C
different elements. The sum X1 + · · ·+ Xn is a subset of SA. Corollary 5.2 implies
that the sum X1 + · · · + Xn contains an arithmetic progression of length n, given
that C is sufficiently large. This concludes the proof of the lemma. �

With Lemma 6.10 in hand, we are in a position to prove that the sequence
A in Theorem 6.3 admits a good partition, provided that the constant C in this
theorem is sufficiently large. The partition is the most natural one. Assume that
the elements of A are ordered non-decreasingly as A = a1 ≤ a2 ≤ a3 ≤ . . . ; A′

consists of the elements with odd indices, and A
′′

consists of those with even indices.
By definition, A

′′
= {a2, a4, a6, . . . }. Since A(n) ≥ Cn for all sufficiently large

n (recall that A(n) is the number of elements of A between 1 and n), for every
sufficiently large even number j,

aj ≤ j/C ≤ j/5 ≤ a2 + a4 + · · · + aj−2 − j/4,

which guarantees the property required for A
′′
.

It remains to check the property concerning A′. As A has density Cm, A′ has
density Cm/2, so we can assume that A′ = {b1 ≤ b2 ≤ . . . }, where bm ≤ 2m/C for
all sufficiently large m. Let A′[m] be the set consisting of the first m elements of
A′. Fix a sufficiently large m, and define A0 = A′[m] and Ai = A′[2im]\A′[2i−1m].
The set Ai has 2i−1m elements and is a subset of the interval [2i+1m/C].

To conclude the proof, we make use of the following lemma, proved in [27]:

Lemma 6.11. Let P be a generalized arithmetic progression of rank 2, P = {x1a1+
x2a2|0 ≤ xi ≤ li}, where li ≥ 5a3−i for i = 1, 2. Then P contains an arithmetic
progression of length l1 + l2 whose difference is gcd(a1, a2).
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By Lemma 6.10 (provided that C is sufficiently large), SAi
contains an arithmetic

progression Pi of length li = 2i+1m/C for all i. Set Q0 = P0 (and assume that d0 is
the difference of Q0), and consider the generalized arithmetic progression Q0 + P1.
This is a generalized arithmetic progression of rank 2 with volume l0l1. Moreover,
this two dimensional generalized arithmetic progression is a subset of an interval
of small length, so one can easily check that its differences are relatively small and
satisfy the assumption of Lemma 6.11. This lemma implies that Q0 +P1 = P0 +P1

contains an arithmetic progression Q1 of length l0 + l1 − 2 with difference d1 which
is a divisor of d0. (The −2 term comes from the fact that in Lemma 6.11, the edges
of P have length l1 + 1 and l2 + 1, respectively; this term, of course, plays no role.)
Similarly, by considering Q1 +P2, we obtain an arithmetic progression Q2 of length
l0 + l1 + l2 − 3 with difference d2 which is a divisor of d1 and so on. The sequence
d0, d1, d2, . . . is non-increasing, so there is an index j so that di = dj = d for
all i ≥ j. The arithmetic progressions Qj , Qj+1, Qj+2, . . . have strictly increasing
lengths and the same difference d. Moreover, each Qi is a subset of SA′ , and this
completes the proof. �

7. Sumsets with distinct summands

In this section, we strengthen Theorem 3.12 in another direction. Instead of the
sumset lA, we are going to consider the much more restricted sumset l∗A, which
consists of the sums a1 + · · · + al where the ai’s are different elements of A.

Theorem 7.1. For any fixed positive integer d there are positive constants C and
c depending on d such that the following holds. For any positive integers n and l
and any set A ⊂ [n] satisfying l ≤ |A|/2 and ld|A| ≥ Cn, l∗A contains a proper
GAP of rank d′ and volume at least cld

′ |A|, for some integer 1 ≤ d′ ≤ d.

The requirement that the summands must be different usually poses a great chal-
lenge in additive problems. One of the most well-known examples is the celebrated
Erdös-Heilbronn’s conjecture. In order to describe this conjecture, let us start with
the classical Cauchy-Davenport theorem which asserts that if A is a set of residues
modulo n, where n is a prime, then |2A| ≥ min{n, 2|A| − 1}. For A an arithmetic
progression, the bound is sharp. Now let us consider 2∗A. We want to bound |2∗A|
from below with something similar to Cauchy-Davenport’s bound. Observe that
in the special case when A is an arithmetic progression, |2∗A| = min{n, 2|A| − 3}.
Thus one may guess that

(22) |2∗A| ≥ min{n, 2|A| − 3}
holds for any set A. This is what Erdös and Heilbronn conjectured. While Cauchy-
Davenport’s theorem is quite easy to prove, Erdös-Heilbronn’s conjecture had been
open for about thirty years until it was solved by da Silva and Hamidoune in 1994
[7].

It is now not so big a surprise that Theorem 7.1 is harder and deeper than both
Theorem 3.12 and Theorem 5.1. The proof of Theorem 7.1 uses Theorem 3.12 as a
lemma and requires lots of additional arguments, but let us take a gentle start by
introducing some simple ideas.

7.2. The initial ideas. The initial ideas in the proof of Theorem 7.1 are similar
to those in the proof of Theorem 5.1. We want to show that there are numbers

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



142 E. SZEMERÉDI AND V. VU

l′, n′ and a set A′ such that
• A′ is a subset of [n′] and l′, n′, |A′| satisfy the conditions of Theorem 3.12,

namely l′d|A′|/n′ is sufficiently large;
• (l′)d′ |A′| = Ω(ld

′ |A|) for all 1 ≤ d′ ≤ d.
In the rest of the proof, we call a triple (A′, l′, n′) perfect if it satisfies the above

two conditions. If we could show that there is a perfect triple (A′, l′, n′) such
that l′A′ is a subset of l∗A, then an application of Theorem 3.12 to this triple
immediately implies the statement of Theorem 7.1.

It is useful to notice that in Theorem 7.1, instead of the assumption l ≤ |A|/2,
we can afford the stronger assumption that l ≤ ε|A| for any positive constant ε, at
the cost of increasing the constant C. One can argue as follows. First one puts
aside (1− ε)l elements from A. Next, consider the pair (A1, l1) where A1 is the set
of the remaining |A|− (1− ε)l elements and l1 = εl. It is trivial that l1 ≤ ε|A1|. On
the other hand, the sum of an element from l∗1A1 and of the (1 − ε)l elements put
aside is an element of l∗A. So if l∗1A1 contains a proper GAP P , then l∗A contains
a translation of P .

The above argument also shows that for any l1 < l, if A1 is a subset of at most
|A| − (l − l1) elements of A, then l∗1A1 is a subset of a translation of l∗A.

In the proof of Theorem 7.1, we shall assume that l ≤ ε|A|, whenever needed.
We shall also assume that l−1 elements of A are put aside in case we need them to
create the sum of exactly l elements. These assumptions provide us some flexibility
in constructing a perfect triple. In particular, we shall not need to show that l′A′

is a subset of l∗A; it suffices to show that l′A′ is a subset of a translation of l̃∗A,
for some l̃ ≤ l.

The main part of the proof is to construct a perfect triple, and this is significantly
harder than what we did in the proof of Theorem 5.1. However, when |A| is large,
the construction is relatively simple, and we start with this case. The treatment
of the harder case when |A| is relatively small starts in subsection 7.5, where we
present a key structural lemma. The proof of this lemma occupies the rest of this
section. In Section 8, we present the rest of the proof of Theorem 7.1.

7.3. The case when |A| is large. Let A1 be a subset of A with cardinality l− 1,
and set A2 = A\A1. Since |A| ≥ 2l,

(23) |A2| ≥
|A|
2

.

We assume, with foresight (and with room to spare), that |A|2 ≥ 80Cn log2 n
and ld|A| ≥ 160 × 2dCn, where C is the constant in Theorem 3.12.

Define mi = 2i for all 1 ≤ i ≤ t, where t is the smallest index such that
mt ≥ |A2|/2. Since |A2| ≤ |A| ≤ n, t ≤ log2 n. Let Si be the set of those numbers
in [2n] which can be represented as the sum of two different elements in A2 in at
least mi and less than mi+1 ways. It is essential to observe that miSi is a subset
of (2mi)∗A. On the other hand, a simple double counting argument gives

(24)
t∑

i=1

mi|Si| ≥
(
|A2|
2

)
− 4n ≥ q =

|A|2
5

.

Next, we split
∑t

i=1 mi|Si| into three parts. The first part comprises those mi|Si|
where mi|Si| ≤ q

4t . Obviously, the contribution of this part to the sum is at most
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t q
4t = q

4 . The second part consists of those mi|Si| where |Si| ≤ |A2|
40 . Since the

sequence mi is geometric, the sum of all mi’s is bounded from above by 2|A2|.
Thus, the contribution of the second part is upper bounded by 2|A2| |A2|

40 ≤ q
4 . The

third part contains the remaining mi|Si|’s and, as a consequence of the previous
estimates, its contribution is at least q

2 .
Let i1 < i2 < · · · < ij be the indices in the third part. We have

(25)
j∑

g=1

mig
|Sig

| ≥ q

2
.

We are going to consider two cases:
(I) 2mij

> l: In this case |Sij
| ≥ |A2|

40 ≥ |A|
80 , and l

2Sij
is a subset of l∗A. In view

of the initial ideas presented in the previous subsection, we set A′ = Sij
, n′ = 2n,

and l′ = l/2. Since ld|A| ≥ 160 × 2dCn,

l′d|A′| ≥ (l/2)d |A|
80

≥ 1
80 × 2d

ld|A| ≥ 2Cn = Cn′

and

l′d
′
|A| = Ω(ld

′
|A|),

for any 1 ≤ d′ ≤ d. The last two estimates guarantee that the triple (A′, n′, l′) is
perfect, and we are done.

(II) 2mij
≤ l: In this case, we prove that l∗A contains an arithmetic progression

of length cl|A| (in other words, one can set the parameter d′ in Theorem 7.1 equal
to one). For any integer a which is the sum of l − 2mij

different elements in A1

(the set we put aside at the beginning of the proof), a + mij
Sij

is a subset of l∗A.
On the other hand, as |A|2 ≥ 80n log2 n,

mij
|Sij

| ≥ q

4t
≥ |A|2

20 log2 n
≥ Cn.

Theorem 3.12 implies that mij
Sig

contains an arithmetic progression of length

cmij
|Sij

| ≥ c
q

4t
≥ c

|A|2
20 log2 n

≥ cl|A|

if l ≤ |A|/20 log2 n. The case when l is larger than |A|/20 log2 n requires an extra
argument. Notice that by the definition of the third partial sum and the assumption
on |A|

1
2
mig

|Sig
| ≥ 1

2
q

4t
≥ |A|2

40 log2 n
≥ Cn.

Given this, we can apply Theorem 3.12 to 1
2mig

Sig
to obtain an arithmetic progres-

sion of length cmig
|Sig

|, for every index g in the third partial sum. To conclude,
we use the following simple fact to glue these arithmetic progressions together.

Fact 7.4. Any element in
∑j

g=1
1
2mig

Sig
can be represented by the sum of m =∑j

g=1 mig
different elements from A2.

Proof of Fact 7.4. Greedy algorithm. �
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It follows that
∑j

g=1
1
2mig

Sig
is a subset of m∗A2, with m defined as in Fact

7.4. Finally, by applying Lemma 6.11 iteratively, one can show that
∑j

g=1
1
2mig

Sig

contains an arithmetic progression of length

c

j∑
g=1

mig
|Sig

| ≥ c
q

2
≥ c

|A|2
10

≥ c
l|A|
5

.

Now we can add additional elements from A1 to m∗A2 to obtain a subset of l∗A.
�

This simple proof, unfortunately, cannot be repeated for the case |A| = o(
√

n).
However, the arguments presented here will be useful later on.

7.5. A structural lemma. In view of the result in the previous subsection, we
only have to deal with the case |A| = O(

√
n log n). Actually, this upper bound

on |A| matters little, but it imposes a bound on l that is critical. Notice that
if |A| = O(

√
n log n), then in order to guarantee the assumption ld|A| ≥ Cn of

Theorem 7.1, we must have

l = Ω(n1/2d−o(1)) 	 log10
2 n.

In this subsection, we focus on those pairs (l, A), where ld|A| is close to n (but
not necessarily larger than n) and l is relatively large. A key step in our proof is
the following structural lemma, which asserts that if l∗A does not yield a proper
GAP as claimed by Theorem 7.1, then A must contain a big subset which has a
very rigid structure.

Lemma 7.6. For any positive constants ν and d there are positive constants δ, α,
and d1 such that the following holds. Let A be a subset of [n], let l be a positive
integer, and let n ≥ f(n) ≥ 1 be a function of n such that

max{log10 n, (40f(n) log2 n)1/3d} ≤ l ≤ |A|/2

and ld|A|f(n) ≥ n. Then one of the following two statements must hold:

• l∗A contains a proper GAP of rank d′ and volume Ω(ld
′ |A|) for some 1 ≤

d′ ≤ d.
• There is a subset Ã of A with cardinality at least δ|A| which is contained

in a GAP P of rank d1 and volume O(|A|f(n)1+ν logα n).

The function f(n) can be seen as a rigidity parameter. The closer ld|A| is to n,
the more rigid is the structure of Ã. With some extra work, the lower bound of l
in the lemma can be improved: 10 can be replaced by any constant larger than 1,
and 1/3d can be replaced by any positive constant. If we refine the result this way,
the constants α, ν, and d1 will also depend on the new constants.

For the proof of Theorem 7.1, we only need the special case when f(n) = 1. We,
however, choose to present Lemma 7.6 in the above general form since it might be
of independent interest, and the proof is not significantly harder than that of the
special case.

With f(n) = 1, Lemma 7.6 yields the following corollary.

Corollary 7.7. For any positive constant d there are positive constants δ, α and
d1 such that the following holds. Let A be a subset of [n], and let l be a positive
integer such that ld|A| ≥ Cn. Then one of the following two statements must hold.
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• l∗A contains a proper GAP of rank d′ and volume Ω(ld
′ |A|) for some 1 ≤

d′ ≤ d.
• There is a subset Ã of A with cardinality at least δ|A| which is contained

in a GAP P of rank d1 and volume O(|A| logα n).

Notice that the set Ã in Corollary 7.7 satisfies

ld|Ã| ≥ ldδ|A| ≥ δCn.

Since δ depends only on d, by increasing the constant C in Theorem 7.1, we can
always assume that δC is sufficiently large. Thus, given Corollary 7.7, it suffices to
prove Theorem 7.1 under the additional condition that A be a subset of density at
least 1

logα n of a GAP of constant rank, where both the rank and α are constants
depending on d. We present this proof in the next section. A reader who is eager
to see this proof can delay the reading of the rest of this section and jump right to
Section 8.

The rest of this section is devoted to the proof of Lemma 7.6. As this proof
is fairly long, we brake it into four parts, each of which contains arguments of
a fairly different nature. The main technical ingredient of this proof is again a
tree argument, similar to what we used in the proof of Theorem 5.1. However,
the algorithm here is more complicated than the algorithm in Section 5, and the
analysis is also more challenging.

In order to set up the algorithm, we first need to produce a great amount of
subsets of A with a certain property. This will be done in the next subsection. In
subsection 7.10, we describe our algorithm together with several simple observa-
tions. Subsection 7.12 is devoted to an inverse argument, which we use to derive
the desired properties of A. This derivation is quite different from and much more
tricky than the one in Section 5. We wrap up with the final subsection, subsection
7.14, which contains the verification of an estimate claimed in subsection 7.12.

7.8. Small sets with big sums. The goal of this subsection is to show that any
finite set A contains a subset B of small size (O(ln |A|)) such that |l∗B| is large,
where l = |B|/2.

Lemma 7.9. Let A be a finite set of real numbers where |A| is sufficiently large.
Then A contains a subset B of at most 20 log2 |A| elements such that ( |B|

2 )∗B has
cardinality at least |A|.

Proof of Lemma 7.9. We can assume, without loss of generality, that |A| is suffi-
ciently large so that |A| ≥ 100 log2 |A|. We choose the first two elements of A, say
a1, a2, arbitrarily. Once a1, . . . , a2i have been chosen, we next choose a2i+1 and
a2i+2 from A\{a1, . . . , a2i} such that

(26) |(i + 1)∗{a1, . . . , a2i+1, a2i+2}| ≥ 1.1|i∗{a1, . . . , a2i}|

(if there are many possible pairs, we choose an arbitrary one). We stop at time
T when |T ∗{a1, . . . , a2T }| ≥ |A|, and we let B = {a1, . . . , a2T }. It is clear that
|B| ≤ 2 log1.1 |A| ≤ 20 log2 |A|. The only point we need to make now is to show that
as far as |i∗{a1, . . . , a2i}| < |A|, we can always find a pair (a2i+1, a2i+2) to satisfy
(26). Assume (for contradiction) that we get stuck at the ith step, and denote
by S the sumset i∗{a1, . . . , a2i}. For any two numbers a, a′ ∈ A\{a1, . . . , a2i},
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(a + S) ∪ (a′ + S) is a subset of (i + 1)∗{a1, . . . , a2i, a, a′}. So by the assumption,
we have

|(a + S) ∪ (a′ + S)| ≤ 1.1|S|.
Since both a + S and a′ + S have |S| elements, it follows that their intersection
has at least .9|S| elements. This implies that the equation a′ − a = x − y has at
least .9|S| solutions (x, y) where x ∈ S and y ∈ S. Now let us fix a as the smallest
element of A\{a1, . . . , a2i} and choose a′ arbitrarily. There are |A| − 2i− 1 ≥ .9|A|
choices for a′, each of which generates at least .9|S| pairs (x, y) where both x and
y are elements of S. As all (x, y) pairs are different, we have that

.9|A| × .9|S| ≤
(
|S|
2

)
,

which implies that |S| > |A|, a contradiction. This concludes the proof. �

Many good small sets. Consider a set A as in Theorem 7.1. Apply Lemma 7.9 to
A to obtain a small set A1. Next, apply the lemma to A\A1 to obtain a small set A2

and so on. Each time we add to Ai a few “dummy” elements to make its cardinality
exactly 20 log2 |A|. Stop when A\(

⋃m
i=1 Ai) has less than 2|A|/3 elements for the

first time. Without loss of generality, we can assume that 20 log2 |A| is even and
set l0 = 10 log2 |A|. We have a collection A1, . . . , Am of disjoint subsets of A with
the following properties.

• |A1| = · · · = |Am| = 20 log2 |A| = 2l0.
• |l∗0Ai| =

∣∣∣ |Ai|
2

∗
Ai

∣∣∣ ≥ (2/3 − o(1))|A| > |A|/2.

• |A\(
⋃m

i=1 Ai)| = (2/3 + o(1))|A|.
Here we assume that log2 |A| = o(|A|), which explains the error terms o(1) in

the last two properties. In the next subsection, we consider an algorithm which
uses the sets Ai as input.

7.10. The algorithm. Set Bi = l∗0Ai for all 1 ≤ i ≤ m. We now give a description
of our algorithm. This algorithm constructs a subset of l∗A in a particular way.
We shall exploit the fact that the cardinality of this subset is at most |l∗A| ≤ ln
(since l∗A itself is a subset of [ln]) in order to derive information about A.

The algorithm. To start, set m0 = m. Truncate the set of Bi’s so each of them
has exactly b0 = |A|/2 elements. Denote by B0

i the truncation of Bi. We start with
the sequence of sets B0

1 , . . . , B0
m0

, each of which has exactly b0 elements. Without
loss of generality, we may assume that m0 is a power of 4. At the beginning, we
call the elements in A[1] = A\(

⋃m
i=1 Ai) available.

A general step of the algorithm functions as follows. The input is a sequence
Bt

1, . . . , B
t
mt

of sets of the same cardinality bt. Consider the sets
⋃K

h=1(B
t
i +Bt

j +xh)
where 1 ≤ i < j ≤ mt and x1, . . . , xK are different available elements (K is a large
constant to be specified later). Choose i, j, x1, . . . , xK such that the cardinality of
B′

1 =
⋃K

h=1(B
t
i + Bt

j + xh) is maximum (if there are many possibilities, choose an
arbitrary one). Remove i and j from the index set and the xi’s from the available
set and repeat the operation to obtain B′

2 and so on. We end up with a set sequence
B′

1, . . . , B
′
mt/2 where |B′

1| ≥ · · · ≥ |B′
mt/2|.

Let mt+1 = mt/4, and set bt+1 = |B′
mt+1

|. Truncate the B′
i’s (i < mt+1) so that

the remaining sets have exactly bt+1 elements each. Denote by Bt+1
i the remaining

subset of B′
i. The sequence Bt+1

1 , . . . , Bt+1
mt+1

is the output of the step.
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If mt+1 ≥ 4, then we continue with the next step. Otherwise, the algorithm
terminates.

Let us pause for a moment and make a series of observations. All of these
observations are easy to verify, so we omit their proofs.

• Define lt+1 = 2lt + 1 for t = 0, 1, 2 . . . . Then Bt
i is a subset of l∗t A for any

plausible t and i.
• As A is a subset of [n], Bt

i is a subset of [ltn].
• For any plausible t, bt+1 ≥ 2bt.
• After each step, the length of the sequence shrinks by a factor 4.
• At the beginning we have (2/3 − o(1)) available elements. The number of

elements xi’s used in the whole algorithm is o(|A|), so at any step, there
are always (2/3 − o(1))|A| available elements.

Since l 	 l0 = O(log2 n), we can assume, without loss of generality, that l/l0 is
a power of two, l/l0 = 2s2 . Recall that m0 = m ≈ 1

3
|A|
2l0

(m is slightly larger than
1
3
|A|
2l0

) and |A| ≥ 2l. It follows that l/l0 ≤ 4m0. As we assume m0 is a power of 4,
m0 = 4s1 , it follows that 2(s1 + 1) ≥ s2.

We set K = 2c1d, where c1 is a constant at least 9. We first claim that

(27) (K/2)s2/2 > 40ldf(n) log n.

Indeed, observe that

(28) (K/2)s1/2 ≥ (29d+1/2)s2/2 = 29ds2/2.

Recalling the definition of s2, 2s2 = l/l0. We assume that l ≥ log10
2 n ≥ l90, so

2s2 ≥ l8/9. It follows that

29ds2/2 ≥ l4d = ld × l3d ≥ 40ldf(n) log n,

by the assumption on l.
We next prove the following fact.

Fact 7.11. There is an index k ≤ s2/2 such that bk ≤ Kkb0.

Proof of Fact 7.11. By the second observation we have that bk ≤ lkn for any k.
From the definition of lt it is easy to prove (using induction) that

lk ≤ 2kl0 + 2k ≤ 2k+1l0.

It follows that bk ≤ 2k+1l0n for any k. Recall that b0 = |A|/2 and l0 = 10 log2 |A|.
If bk > Kkb0, then we should have

Kk|A|/2 = Kkb0 < bk ≤ 2k+1l0n ≤ 2k+1n × (10 log2 |A|),

which implies

(K/2)k|A| < 40n log2 |A| ≤ 40n log2 n.

On the other hand, (27) and the assumption ld|A|f(n) ≥ n of Lemma 7.6 together
imply

(K/2)s2/2|A| ≥ 40ld|A|f(n) log2 n ≥ 40n log2 n,

which is a contradiction. The proof is thus complete. �
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7.12. The inverse argument. Let k be the first index where bk ≤ Kkb0. This
means |Bk

mk
| ≤ Kkb0. By the description of the algorithm

(29) Bk
mk

=
K⋃

h=1

(Bk−1
i + Bk−1

j + xh)

for some i, j, and xh’s. Given (29), we are going to exploit the bound |Bk
mk

| ≤ Kkb0

in many ways. First, this bound and the definition of k means that |Bk−1
i + Bk−1

j |
is relatively small, and so we can use Freiman’s theorem to derive some facts about
the sets Bk−1

i and Bk−1
j . Next, (29) and the bound on |Bk

mk
| imply that there

should be a significant overlap among the sets of (Bk−1
i + Bk−1

j + xh)’s. Thus,
there should be a correlation between the (available) elements xh. This correlation
eventually leads us to a structural property of the set of available elements. The
set Ã claimed in the lemma will be a subset of this set.

To start, notice that (29) implies

(30) |Bk
mk

| ≥ |Bk−1
i + Bk−1

j |

where 1 ≤ i < j ≤ mk−1 and both Bk−1
i and Bk−1

j have cardinality bk−1 ≥ Kk−1b0.
The definition of k then implies that |Bk

mk
| ≤ Kbk−1, so

(31) |Bk−1
i + Bk−1

j | ≤ K|Bk−1
i |.

Applying Freiman’s theorem to (31), we could deduce that there is a generalized
AP R with constant rank containing Bk−1

i and Vol(R) = O(|Bk−1
i |) = O(bk−1).

We say that two elements u and v of Bk−1
j are equivalent if their difference is

in R − R. If u and v are not equivalent, then the sets u + Bk−1
i and v + Bk−1

i are
disjoint, since Bk−1

i is a subset of R. By (31), the number of equivalent classes is at
most K. Let us denote these classes by C1, . . . , CK , where some of the Cs’s might
be empty. We have Bk−1

i ⊂ R and Bk−1
j ⊂

⋃K
s=1 Cs.

Let us now take a close look at (29). The assumption |Bk
mk

| ≤ K|Bk−1
i | and (29)

imply that there must be a pair s1, s2 such that the intersection

(Bk−1
i + Bk−1

j + xs1) ∩ (Bk−1
i + Bk−1

j + xs2)

is not empty. Moreover, the set {x1, . . . , xK} in (29) was chosen optimally. Thus,
for any set of K available elements, there are two elements x and y such that

(Bk−1
i + Bk−1

j + x) ∩ (Bk−1
i + Bk−1

j + y)

is not empty. This implies

(32) x− y ∈ (Bk−1
i + Bk−1

j )− (Bk−1
i + Bk−1

j ) ⊂
⋃

1≤g,h≤K

(
(R + Cg)− (R + Ch)

)
.

Define a graph G on the set of available elements as follows: x and y are adjacent
if and only if x− y ∈ (Bk−1

i + Bk−1
j )− (Bk−1

i + Bk−1
j ). By the argument above, G

does not contain an independent set of size K, so there should be a vertex x with
degree at least |V (G)|/K. By (32), there is a pair (g, h) such that there are at least
|V (G)|/K3 elements y satisfying

(33) x − y ∈ (R + Cg) − (R + Ch).
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Both Cg and Ch are subsets of translations of R; so the set Ã of the elements y
satisfying (33) is a subset of a translation of P = (R + R) − (R + R). Recall that
at any step, the number of available elements is (1 − o(1))|A2|. We have

(34) |Ã| ≥ (1 − o(1))|A2|/K3 = Ω(|A2|).

Let us summarize what we have obtained here. We have found a subset Ã of
A of density at least (2/3 − o(1))/K3 = Ω(1) and a GAP P which contains Ã. In
order to complete the proof of the lemma, it remains to bound the volume of P .
We need to show that if the first statement of the lemma does not hold, then

(35) Vol(P ) = O(|A|f(n)1+ν logα n).

At this point, we know that

(36) Vol(P ) = O(Vol(R)) = O(bk),

where bk ≤ Kkb0 = Kk|A|. Unfortunately, we still do not know much about Kk.
Our next task is to prove that if the first statement of the lemma does not hold,
then

(37) Kk = O(f(n)1+ν logα n),

which implies (35).
In order to verify (37), we need to exploit the definition of the sets Bk

mk
even

more. Notice that when we define Bk
mk

, we choose i and j optimally. On the other
hand, as mk = 1

4mk−1, for any remaining index i, we have at least m′ = mk−1/2
choices for j. This means that there are m′ sets Bk−1

j1
, . . . , Bk−1

jl2
, all of the same

cardinality bk−1, such that

(38) |Bk−1
i + Bk−1

jr
| ≤ Kbk−1

for all 1 ≤ r ≤ m′.
From now on, we work with the sets Bk−1

jr
, 1 ≤ r ≤ m′. By considering equivalent

classes (as in the paragraph following (31)), we can show that for each r, Bk−1
jr

contains a subset Dr which is a subset of a translation of R and |Dr| ≥ |Bk−1
jr

|/K =
Ω(Vol(R)).

By Lemma 5.5, there is a constant g such that D1 + · · · + Dg contains a GAP
Q1 with cardinality at least γVol(R) for some positive constant γ. Using the next
g Di’s, we can create Q2 and so on. At the end, we have m

′′
= �m′/g� generalized

AP Q1, . . . , Qm′′ . Each of these has rank d1 = rank(R) (this parameter d1 is
irrelevant to the whole argument) and cardinality at least γVol(R). Moreover, they
are subsets of translations of the GAP R′ = gR which also has volume O(Vol(R)).

Consider a GAP Qi. Due to its large volume (compared to the volume of R′),
there are only O(1) possibilities for its difference set. Thus, there is a positive
constant γ1 such that at least a γ1 fraction of the Qi’s has the same difference
set. Truncating if necessary, we can assume the corresponding sides of these Qi’s
have the same length (the truncation could decrease the volumes by at most a
constant factor). Since two GAPs with the same difference sets and corresponding
sides having the same length are translations of each other, we conclude that there
is a GAP Q (of rank d1 and cardinality at least γVol(R)) and an integer m

′′′
=

Ω(m
′′
) such that there are least m

′′′
translations of Q among the Qi’s. Without
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loss of generality, we can assume that these translations are Q1, . . . , Qm′′′ . Before
continuing, let us gather some facts about Qi and m

′′′
.

• |Q| = |Qi| = Ω(Vol(R)) = Ω(bk) = Ω(Kkb0) ≥ βKkb0, for some positive
constant β.

• m
′′′

= Ω(m
′′
) = Ω(m

′
) = Ω(mk) = Ω(m0/4k) ≥ µm0/4k, for some positive

constant µ.

To proceed further, we need the following fact, whose proof is delayed until the
next subsection.

Fact 7.13. If
(

K
2×4d

)k

≥ f(n) logd+2 n, then there is l̄ ≤ l such that (l̄)∗A contains

a proper GAP of rank d′ and volume Ω(ld
′ |A|) for some 1 ≤ d′ ≤ d.

In order to have l∗A instead of (l̄)∗A, one can do the usual “reserving” trick.
Prior to Fact 7.4, put aside l elements from A for reserve. Repeat the whole proof
with the remaining set until Fact 7.13. Now, choose l − l̄ arbitrary elements from
the reserved set, and add their sum to the set (l̄)∗A obtained in Fact 7.13. The
resulting set is a subset of l∗A, and it contains a proper GAP as claimed in Theorem
7.1.

Now we conclude the proof of the lemma via Fact 7.13. If we assume that the
first statement of the lemma does not hold, then by this fact we have that

( K

2 × 4d

)k

< f(n) logd+2 n.

Recall that we set K = 2c1d where c1 is a constant. By setting c1 sufficiently large
compared to 1/ν, it follows that

Kk ≤ f(n)1+ν logα
2 n,

for some constant α = α(ν, d), proving (37). �

7.14. Proof of Fact 7.13. To prove Fact 7.13, let us set l
′

= εmin( l
lk

, mk/2),
where ε is a sufficiently small positive constant. Without loss of generality, we can
assume that l′ is an integer. The definition of l′ and the construction of the Qi’s
imply that for a proper choice of ε, l′Q is a translation of a subset of (l̄)∗A for some
l̄ ≤ l. Fact 7.13 follows from Theorem 3.12 and the following fact.

Fact 7.15. If
(

K
2×4d

)k

≥ f(n) logd+2
2 n, then the two inequalities

(l′)d|Q| 	 lkn,(39)

(l′)d′ |Q| ≥ ld
′ |A|, 1 ≤ d′ ≤ d(40)

hold, where (l′)d|Q| 	 lkn means that (l′)d|Q|
lkn tends to infinity with n.

We need to define l′ as above due to the following reason. The tree might be
too tall (having much more than log2(l/l0) levels) or too short (having less than
log2(l/l0) levels). In the first case we have to look at some immediate level between
the root and the leaves. This corresponds to the case l′ = ε(l/lk). In the second
case, we look at some level very close to the root, and this corresponds to the
definition l′ = ε(mk/2).
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Proof of Fact 7.15. Consider an arbitrary integer d′ between 1 and d. The definition
of l′ naturally leads to the following two cases:

Case 1. l/lk ≤ mk/2. In this case l′ = ε(l/lk). Recalling that there is a constant
β such that |Q| ≥ βKkb0 (see two paragraphs above Fact 7.13), we have that for
any d′ ≥ 1

(41) (l′)d′ |Q| ≥ εd′
(

l

lk
)d′ × βKkb0 =

εd′
β

2
ld

′ |A|K
k

ld
′

k

,

where in the last equation we use the fact that b0 = |A|/2. On the other hand,
recall that l0 = 10 log2 |A|. We have

lk ≤ 2k+1l0 = 20 × 2k log2 |A| ≤ 20 × 2k log2 n.

So, it follows from (41) that for any 1 ≤ d′ ≤ d

(42) (l′)d′ |Q| ≥ εd′
β

2 × 20d′ l
d′ |A| Kk

2kd′ logd′
2 n

≥ εdβ

2 × 20d
ld

′ |A|
(K

2d

)k 1
logd

2 n
,

where the second inequality follows from the assumption that d′ ≤ d. The assump-
tion on K in Fact 7.15 implies that

(K

2d

)k

≥ f(n) logd+2
2 n > (

εdβ

2 × 20d
)−1 logd

2 n,

so the rightmost formula in (42) is larger than ld
′ |A|, for any 1 ≤ d′ ≤ d. This

proves the second inequality in Fact 7.15. To verify the first inequality, notice that
(42) implies

(43)
(l′)d|Q|

lk
≥ εdβ

2 × 20d
ld|A|

(K

2d

)k 1
lk logd n

≥ εdβ

2 × 20d

(K

2d

)k ld|A|
lk logd n

.

Since lk ≤ 20 × 2k log2 n, it follows that

(44)
(l′)d|Q|

lk
≥ εdβ

40 × 20d

( K

2d+1

)k ld|A|
logd+1 n

.

The assumption on K implies that
(

K
2d+1

)k

≥ f(n) logd+2 n, so the rightmost
formula in (42) is at least

εdβ

40 × 20d

ld|A|f(n) logd+2 n

logd+1 n
	 n,

due to the assumption ld|A|f(n) ≥ n of Lemma 7.6. This verifies the first inequality
and completes the treatment of Case 1.

Case 2. l/lk > mk/2. In this case l′ = ε(mk/2). Since mk = m0/4k and

m0 ≥ |A|/6l0 = |A|/60 log2 n,

we have that

l′ ≥ εm0

2 × 4k
=

ε|A|
120 × 4k log2 n

.
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So for any 1 ≤ d′ ≤ d

(l′)d′ |Q| ≥
( ε|A|

4k × 120 log n

)d′

βKk |A|
2

=
εd′

β

2 × 120d′ |A|d′+1(
K

4d′ )k 1
logd′

2 n

≥ εd′
β

2 × 120d′ l
d′ |A|(K

4d
)k 1

logd
2 n

.

Similar to the previous case, the assumption on K guarantees that ( K
4d )k ≥ logd+2

2 n

	 logd
2 n, which implies that

εd′
β

4 × 120d′ l
d′
|A|(K

4d
)k 1

logd
2 n

	 ld
′
|A|,

for any 1 ≤ d′ ≤ d, which proves the second inequality in Fact 7.15. To verify the
first inequality, notice that

(45)
(l′)d|Q|

lk
≥ εdβ

2 × 120d
ld|A|(K

4d
)k 1

lk logd
2 n

.

Similar to the pervious case, we use the estimate lk ≤ 20× 2k log2 n. This and (45)
give

(l′)d|Q|
lk

≥ εdβ

40 × 120d
ld|A|( K

2 × 4d
)k 1

logd+1 n
.

Here we need the full strength of the assumption on K: ( K
2×4d )k ≥ logd+2

2 n. From
this and the assumption that ld|A|f(n) ≥ n, it follows that

(l′)d|Q|
lk

≥ εdβ

40 × 120d

ld|A|f(n) logd+2
2 n

logd+1
2 n

≥ εdβ

40 × 120d
n log2 n 	 n,

completing the proof. �

8. Proof of Theorem 7.1 (continued)

Thanks to Corollary 7.7, from now on we can assume that A is a subset of a GAP
P of rank d1 and volume at most |A| logα n, where both d1 and α are constants
depending on d. We first use this structural property to create a set B whose
elements have high multiplicity with respect to A. The set B is a candidate for the
set A′ in the perfect triplet that we desire. After having created B, the remaining
(and also the hard) part of the proof is to show that there is a sufficiently large
l′ ≤ l/2 such that each elements of l′B can be represented as a sum of 2l′ distinct
elements of A. This part requires a non-trivial extension of the tiling argument
used in our earlier paper [28]. In order to carry out this extension, we need to
prove some new properties of proper GAPs.

This section is organized as follows. In subsection 8.1, we define the set B and
derive several properties of this set. This subsection also contains a proof of the
theorem for the case when l is relatively small compared to |A| (see Corollary
8.2). Subsection 8.3 is devoted to the study of proper GAPs. The results of this
subsection will be used in the next subsection (8.6) to prove further properties of the
set B. In subsection 8.7, we specify a plan for constructing a sumset l′B as desired.
This plan is executed in the next three subsections, 8.8, 8.10, and 8.11. The final
subsection, subsection 8.12, discusses a common generalization of Theorem 5.1 and
Theorem 7.1.
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8.1. Sets with high multiplicity. We are going to show that there is a large
set of which every element has high multiplicity with respect to A. Consider a
monotone sequence m1, m2, . . . , and let Si be the set of numbers with multiplicities
between mi and mi+1. A natural way to find a large set with high multiplicity is to
set mi = 2i and process as in subsection 7.3. Here, however, we shall set the mi’s
somewhat differently, in order to serve a purpose which will become clear later.

We define mi = |A|
2ii for all i = 1, 2, . . . , log2 |A| (observe that the sequence mi is

decreasing). Let Si be the set of those numbers whose multiplicities with respect
to A are less than mi and at least mi+1. A simple double counting shows

(46)
log2 |A|∑

i=1

mi|Si| ≥
(
|A|
2

)
.

Now we are going to make some use of the structure of A. Since A is a subset
of a GAP P , 2A is a subset of 2P . On the other hand, as P is a GAP of constant
rank and volume O(|A| logα

2 n), so 2P is a GAP with the same rank and volume
O(|A| logα

2 n). The set Si (for all i) is a subset of 2A, so it follows that

(47) |Si| ≤ |2A| ≤ |2P | = O(Vol(2P )) = O(|A| logα
2 n).

By (47), the sum of those mi|Si| where mi ≤ |A|
logα+2

2 n
is at most

(48) O
( |A|

logα+2
2 n

|A| logα
2 n

)
× log |A| = O

( |A|
logα+2

2 n
|A| logα+1

2 n
)

= o(|A|2).

This estimate allows us to omit these terms from the sum in (46) and so significantly
reduce the number of terms in the sum. Notice that for any i > log2 logα+2

2 n,
mi ≤ |A|

logα+2
2 n

, so we only have to look at the small i’s, i ≤ log2 logα+2
2 n. From (46)

and (48), we have

(49)
log2 logα+2

2 n∑
i=1

|A|
i2i

|Si| =
log2 logα+2

2 n∑
i=1

mi|Si| ≥
(
|A|
2

)
− o(|A|2) = (

1
2
− o(1))|A|2.

The fact that
∑∞

i=1
1
i2 = π2/6 and (49) imply that there should be an index 1 ≤

i ≤ log logα+2 n so that

|Si| ≥
6
π2

2i

i
(
1
2
− o(1))|A| >

2i

4i
|A|.

Choose the smallest i satisfying the above inequality, and rename the corresponding
set Si to B. We are going to work with B in the rest of the proof. We set
l1 = |A|

(i+1)2i+1 . Since we shall use the letter i as an index later, let us set t = 2i+1

to avoid confusion. Under this new notation, l1 = |A|
t log2 t , where t = 2i+1 is at

most 2log2 logα+2
2 |A| ≤ logα+2

2 n. By the definition of the Si’s, every element of B
has multiplicity at least l1 with respect to A. This implies that kB is a subset of
(2k)∗A for any k ≤ l1. Now let us consider two cases:

Case 1: l ≤ 2l1. In this case, we set A′ = B, l′ = l/2, and n′ = 2n, and
we follow the plan described in subsection 7.2. It is easy to verify that the triplet
(A′, l′, n′) is perfect. Thus we have the following corollary, which proves Theorem
7.1 for the case when l is relatively small compared to |A|.
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Corollary 8.2. For any fixed positive integer d there are positive constants C, c,
and β depending on d such that the following holds. For any positive integers n and
l and any set A ⊂ [n] satisfying l ≤ |A|

logβ n
and ld|A| ≥ Cn, l∗A contains a proper

GAP of rank d′ and volume at least cld
′ |A|, for some 1 ≤ d′ ≤ d.

In the remaining part of the paper, we consider the case l ≥ 2l1. Before going to
the next subsection, let us summarize what we have at this stage. We have created
a set B ⊂ 2A ⊂ [2n] where

• B has at least |A|t
4 log2 t elements,

• each element of B has multiplicity at least l1 = |A|
t log2 t with respect to A,

• t ≤ logα+2
2 n.

8.3. Proper GAPs revisited. If A and 2A are subsets of a normal GAP Q, it
is tempting to conclude that A is a subset of 1

2Q. A naive “proof ” would go as
follows: Assume that there is an element x ∈ A\ 1

2Q. Since A ⊂ Q, x ∈ Q\ 1
2Q, and

so 2x ∈ 2Q\Q. But 2x ∈ 2A ⊂ Q, a contradiction.
The trap is in the second sentence. As reasonable as it sounds, the statement

“x ∈ Q\ 1
2Q implies 2x ∈ 2Q\Q” is not true. It is not hard to work out an example

where 2x ∈ Q ∩ 2Q. We can, however, easily avoid this subtlety. If we assume
that 2Q is proper, then x ∈ Q\ 1

2Q indeed implies that 2x ∈ 2Q\Q. Thus we can
conclude

Fact 8.4. If A and 2A are subsets of a normal GAP Q and 2Q is proper, then A
is a subset of 1

2Q.

The above fact motivates the following lemma, which is the main result of this
subsection. We assume Q is normal and its edges are divisible by l, so 1

l Q can be
defined.

Lemma 8.5. For any constants d and g there are constants γ and k such that
the following holds. Let B be a finite set of integers, l a positive integer, and Q a
(normal) proper GAP of rank d satisfying the following statements.

• The union of g translations of Q covers lB.
• kQ is proper.

Then there is a translation B1 of B such that B1 ∩ 1
l Q has at least γ|B| elements.

Proof of Lemma 8.5. We can assume, without loss of generality, that B contains 0.
The normal GAP Q can be represented as Q = {

∑d
i=1 xiai|0 ≤ xi ≤ ni}. If lB is

covered by g translations of Q, then lB − lB is covered by g1 = g2 translations of
P = Q − Q, which has the form P = {

∑d
i=1 xia1| − ni ≤ xi ≤ ni}. Let P1 = 1

2P

and P2 = 1
2P1; it is clear that P1 is a translation of Q. Since g1 translations of

P cover lB − lB and each translation of P is the union of hd translations of P1,
lB − lB is covered by 2dg1 translations of P1. Furthermore, as each translation of
P1 is the union of 2d translations of P2, lB − lB is covered by 4dg1 translations of
P2.

Since 0 ∈ B, lB − lB contains B. By the pigeon-hole principle, there is a
translation of P2 containing at least a 1

4dg1
fraction of B. Equivalently, P2 contains

a set B′ ⊂ a + B where |B′| ≥ γ|B| and a is an integer. Setting k = 2d+2g1 and
h = 2d+1g1 +1, we are going to show that B′−B′ is a subset of h

l P1. Since B′−B′
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contains a subset of constant density of a translation of B and P1 is a translation of
Q, it follows that there is a translation of B which intersects h

l Q in Ω(|B|) elements.
This implies the claim of the lemma since h

l Q is the union of 2h = O(1) translations
of 1

l Q.
In the rest of the proof, let us assume, for the sake of a contradiction, that there

is an element x of B′ − B′ not belonging to h
l P1. Since B′ − B′ is a subset of

P2 − P2 = P1, x is an element of P1. Let s1 be the smallest positive integer such
that s1x ∈ 2P1\P1. Since both 2P1 and P1 are proper, s1 is at most l/h.

Recall that B′ is a subset of a+B. So, an element of B′ has the form a+b where
b ∈ B. As x ∈ B′−B′, x = b1−b2 for some b1, b2 ∈ B. We set y = s1x and consider
the sequence y, 2y, 3y, . . . , �l/s1�y. As s1 ≤ l/h, �l/s1� ≥ h > 2d+1g1. Each element
of the above sequence has the form rb1 − rb2 for some r ≤ l. Since 0 ∈ B, these
elements belong to lB − lB. Let us now restrict ourself to the subsequence

y, 2y, . . . , (2d+1g + 1 + 1)y.

Recall that lB − lB is a subset of the union of 2dg1 translations of P1. The pigeon-
hole principle implies that there should be a translation, say a′+P1, containing two
elements iy and jy where 2 ≤ i− j ≤ 2d+1g1. The difference (i− j)y is an element
of (a′ + P1) − (a′ + P1) = P1 − P1 = 2P1. Since i − j < 2d+1g1 = k/2, 2(i − j)P1

is proper by the second assumption of the lemma. Moreover, y is an element of
2P1\P1 so (i − j)y is an element of 2(i − j)P1\(i − j)P1. This is a contradiction
because (i − j)P1 contains 2P1 as i − j ≥ 2. �

8.6. Properties of B. Let us consider the set l1B. By the lower bounds on l1 and
|B| (see the last paragraph of subsection 8.1) we have

ld1 |B| ≥ |A|d+1

4td−1 logd+1
2 t

.

The assumptions ld|A| ≥ Cn and l ≤ |A|/2 of Theorem 7.1 guarantee that |A|d+1 ≥
Cn and so

ld1 |B| ≥ C

4td−1 logd+1
2 t

n.

The factor td−1 logd+1
2 t is the main source of our troubles. If t is a constant bounded

by a function of d (say ed2
), then by increasing the value of C, we can assume that

C
4td−1 logd+1 t

is sufficiently large and so Theorem 3.12 can by applied. However, t

can be as large as a positive power of log2 n and in general cannot be bounded by
any function of d.

In the remaining part of the proof, we assume that t is very large compared to
d (for all purposes, it is sufficient to assume, say, t ≥ ee100d

). We are going to find
a way to play this assumption to our advantage (and through our arguments one
will see the reason for the somewhat artificial definition of mi’s). In the remaining
part of this subsection, we use Lemma 8.5 to derive some properties of B which are
useful for us.

Let us start with the usual “doubling” trick. Set B0 = B and define Bi+1 = 2Bi.
We claim that at some stage we will be in a position to apply Lemma 8.5.

It is easy to show (using an argument similar to those used in the proof of
Theorem 3.12) that there is some s such that 2s � l1 satisfying

|2Bs| ≤ (2d+2 − 1)|Bs|.
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As usual, we let s be the smallest number with this property. By Lemma 4.9,
Bs is a subset of a constant number of translations of a GAP P0 of rank d + 1
where Vol(P0) = O(|Bs|). Moreover, the proper filling lemma implies that there
is a constant g1 so that g1Bs contains a proper GAP P1 of rank d + 1 whose
volume is Θ(|Bs|). The differences of P1 are constant multiples of the corresponding
differences of P0, so P0 is covered by a constant number of translations of P1.
Therefore, Bs is covered by a constant number of translations of the proper GAP
P1.

In order to apply Lemma 8.5, we also need the assumption that there is a suf-
ficiently large constant k1 such that k1P1 is proper. Unfortunately, nothing guar-
antees the existence of k1. However, if we cannot find k1, then we can use our
“rank reduction” argument. Set k1 be a sufficiently large constant and consider the
sequence P1, 2P1, 4P1, . . . . If for some i ≤ log2 k1, 2iP1 fails to be proper, then by
the rank reduction argument, we can find a proper GAP P2 of rank strictly less
than the rank of P1 such that the following two properties hold:

• There is a constant g2 such that g2P1 contains P2.
• A constant number of translations of P2 covers P1.

It follows that a constant number of translations of P2 covers Bs. Now repeat the
above argument with P2. As the rank decreases each time, we should be done after
a constant number of steps. According to our arguments, the final proper GAP
(for which the assumptions of Lemma 8.5 are satisfied) still has volume Ω(|Bs|).
We call this final GAP P ′.

By applying Lemma 8.5 to P ′, we obtain a few new properties of B:

• For some m = O(2s), mB contains a GAP P ′ which has volume at least

Ω(|Bs|) = Ω
(
(2d+2 − 1)s|B|

)
= Ω(2s(d+1)|B|).

Moreover, since l1 	 2s, m � l1.
• There is a subset B′ of B such that |B′| ≥ γ|B| and B′ is a subset of a

GAP P which is a translation of 1
mP ′.

Since we are allowed to ignore constant factors, we assume that B′ = B for
convenience. Moreover, without loss of generality, we could assume that P ′ has
symmetric form, namely, P ′ = {a1x1 + · · · + ad1xd1 | − ni ≤ xi ≤ ni}.

8.7. A plan. Let us now give a rough discussion of our plan:

• We are going to find a set T of l2-tuples in B (a k-tuple is a set of k not
necessarily different elements) such that the sum of the elements in any
tuple is an element of (2l2)∗A, where l2 	 l1 is a parameter to be defined.
Let S be the collection of the sums of the tuples in T . We create T in a
particular manner so that S is sufficiently dense in l2B.

• We next prove that S+l1B contains l2B, relying on the fact that S is dense
in l2B. This way we obtain the sumset l2B where l2 is significantly larger
than l1.

• Since S is a subset of (2l2)∗A and l1B is a subset of (2l1)∗A, S + l1B is
a subset of (2l2)∗A + (2l1)∗A. The obvious obstacle here is that the same
element of A might be used twice, once in (2l2)∗A and once in (2l1)∗A. We
overcome this problem in subsection 8.10 and show that l2B is in fact an
element of (2l2 + 2l1)∗A.
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We call this plan a tiling operation as what it does is to tile many copies of l1B
together to get a bigger set l2B.

Would we be done after a successful implementation of this plan ? Well, we would
be in a very good position if we can guarantee that ld2 |B| 	 n (this inequality is
necessary for an application of Theorem 3.12 to l2B). In the case d = 1, we can
do this, and the above plan was carried out successfully in an earlier paper [27].
Unfortunately, there is a serious difference between the two cases case d = 1 and
d ≥ 2. For d = 1, the troublesome factor td−1 logd+1

2 t is only log2
2 t, and there is a

way to set up l2 so this polylogarithmic factor can be ignored. On the other hand,
in the general case d ≥ 2, the troublesome factor is a polynomial in t (which is of a
different order of magnitude) and even the optimal value we could get for l2 would
not be enough to kill this factor.

We are going to resolve this problem by repeating the second step of the plan
many times. Roughly speaking, what we shall do is to put many original tiles
(copies of the set l1B) together to get a larger tile l2B. Next, we put many copies
of l2B together to get an even larger tile l3B and so on. We repeat the operation
until we get a sufficiently large tile lkB which satisfies ldk|B| 	 n.

There is a trade-off in this argument. The repetitions make the problem men-
tioned in the last step of the above plan more severe: Now the same element of A
might be used as many as k times. Luckily, our treatment for this problem is not
sensitive to this modification as far as k remains a constant, which is the case.

Finally, let us go back to address the first step: How can we find l2 elements of
B such that their sum can be represented as the sum of 2l2 different elements of A?
The main idea is as follows: An element of B has multiplicity l1 with respect to A,
so it gives us l1 pairs of elements of A, all having the same sum. Therefore, a set
of m different elements of B gives us l1m different pairs. On the other hand, each
element in A occurs in at most |A| − 1 < |A| pairs. Using the greedy algorithm,
we can find at least l1m

2|A| mutually disjoint pairs. Thus, for any l2 ≤ l1m
2|A| , we have

a collection of l2 mutually disjoint pairs. Clearly, the sum of the l2 elements of B
corresponding to these pairs is an elements of (2l2)∗A.

The critical feature of this step is how to choose the set of m elements of B. We
discuss this issue in the next paragraph.

8.8. The tiling operation: Start. Let us start with the execution of the first
step. Recall, from the last paragraph of subsection 8.6, that B is a subset of a
proper GAP P of constant rank d1 (the value of d1 is irrelevant, but we do know
that d1 ≤ d + 1). It is easier for the reader to visualize the argument if he/she
identifies P with a d1-dimensional box. Partition each edge of P into T1 intervals
of equal length, where T1 is a parameter to be determined. The products of these
intervals partition P into (T1)d1 identical small boxes. A small box Q is dense if the
number of elements of B in Q is at least |B|

2(T1)d1
; Q is sparse otherwise. The sparse

boxes contain at most half of the elements of B, so at least half of the elements of
B should be contained in dense boxes. Since constants like 1/2 do not play any
significant role, we assume, for the sake of convenience, that all elements of B are
contained in dense boxes.

Let us recall that |B| ≥ |A|t
4 log2 t and l1 = |A|

t log2 t . By throwing away dummy

elements, we can assume that |B| is exactly |A|t
4 log2 t .
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Consider a dense box Q. For each element x ∈ B ∩Q, x has multiplicity l1 with
respect to A. We set the number m in the last paragraph of the previous subsection
to be |B|/2T d1

1 ; as Q is dense we are guaranteed to find this many elements of B
in Q. The argument in the above-mentioned paragraph shows that we can have at
least

l1|B|
4(T1)d1 |A|

disjoint pairs. For technical reasons, we do not set l2 equal to this value but equal
to one-third of it:

l2 =
l1|B|

12(T1)d1 |A| .

For x ∈ B let Nx be the collection of pairs (in A) summing up to x. We have
proved

Fact 8.9. For each dense box Q, the union of Nx’s (x ∈ B ∩ Q) contains at least
3l2 mutually disjoint pairs.

Substituting the values of l1 and |B| into the formula of l2, we have

(50) l2 =
|A|

48(T1)d1 log2
2 t

.

For each dense box Q, fix a collection NQ of 3l2 disjoint pairs. For a pair (a, b)
in NQ, the number a + b is a point of the box Q (a + b ∈ B ∩Q). In the following,
we denote by DQ the collection of these points; DQ is a multi-set as different pairs
may have the same sum. Let D be the union of the DQ’s.

Let us now take a closer look at the set l2B. An element x of this set can be
written as x = x1 + · · · + xl2 , where the xi’s are not necessarily different elements
of B. Moreover, we assumed that every element of B is in some dense box, so each
xi is in some dense box Q (different xi’s may, of course, belong to different boxes).
Fix a dense box Q; for each xi ∈ Q, we are going to replace it by some yi ∈ DQ.
Now comes a very important point. Since |DQ| ≥ 3l2 for any dense box Q, we can
replace x1, . . . , xl2 with elements y1, . . . , yl2 with the following property: There are
mutually disjoint pairs (a1, a

′
1), . . . , (al2 , a

′
l2

), ai, a
′
i ∈ A, such that ai + a′

i = yi. To
see this, let us consider the following rule. For x1, choose an arbitrary pair (a1, a

′
1)

from DQ1 where Q1 is the dense box containing x1; set y1 = a1 + a′
1. Assume that

(a1, a
′
1), . . . , (ai−1, a

′
i−1) have been chosen. Consider xi and the set DQi

where Qi

is the dense box containing xi. Delete from DQi
every pair which has a non-empty

intersection with the chosen pairs. Since the pairs in DQi
are disjoint, any pair

(aj , a
′
j) (1 ≤ j ≤ i − 1) could intersect at most two pairs in DQi

so we delete at
most

2(i − 1) ≤ 2(l2 − 1) < 2l2

pairs from DQi
. But DQi

contains 3l2 pairs so there are always some pairs left and
we choose an arbitrary one among these.

The disjointness of the chosen pairs guarantees that y = y1 + · · · + yl2 can be
represented as a sum of exactly 2l2 different elements from A. Let T denote the
collection of the tuples (y1, . . . , yl2), and let S be the collections of their sums.
Following the plan, we next show that S + l1B contains l2B.

Consider x = x1 + · · · + xl2 . Since xi ∈ B and B ⊂ P , each xi is an element of
the box P and can be viewed as a point in Z

d1 , so we can view x as a vector in Z
d1 .

By replacing xi with yi, we obtain another vector y =
∑l2

i=1 yi. We are going to
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find a box P1 centered at the origin so that P1 is a subset of l1B and the difference
x − y =

∑l2
i=1(xi − yi) is a vector in P1. The union of the copies of such a P1

centered at the points of S cover l2B. As P1 ⊂ l1B, it follows that l2B ⊂ S + l1B,
as desired.

The key observation in what follows is that xi − yi is small because they are in
the same small box (this is the main reason for why we partition P into many small
boxes). Let us fix an edge of P and assume that its length is s1. The absolute
value of the component of xi − yi in the direction of this edge is at most s1/T1.
It follows that the corresponding component of x − y is at most l2s1/T1. We are
going to choose T1 and define P1 so that this bound is at most half the length of
the corresponding edge of P1 (P1 is centered at the origin). This would imply that
P1 contains the vector x − y.

Now we are going to define P1. The last paragraph of subsection 8.6 tells us
that mB contains a GAP P ′ = mP , for some m � l1. Thus l1B contains the box
l1
mP ′ = l1P . This is our box P1. Observe that P1’s edge in the relevant direction
has length s1l1. In order to guarantee that this length is at least twice l2s1/T1, we
should set T1 so that

(51) s1l1 ≥ 2l2s1

T1
=

s1|A|
24T d1+1

1 log2
2 t

.

To satisfy (51), it is sufficient to set

T1 =
( |A|

24l1 log2
2 t

)1/(d1+1)

=
( t

24 log2 t

)1/(d1+1)

,

since l1 = |A|/t log1 t. For the sake of a cleaner calculation, we set T1 a little bit
larger:

T1 = t1/(d1+1).

Substituting the above value of T1 into the definition of l2 in (50), we obtain

(52) l2 =
|A|

48(T1)d1 log2
2 t

=
|A|

48td1/(d1+1) log2
2 t

≥ |A|
td1/(d1+1) log2

2 t
.

This l2 is still not large enough, namely, ld2 |B| could still be smaller than n. Indeed,
the above lower bound on l2 only guarantees that

(53) ld2 |B| ≥ |A|d

tdd1/(d1+1) log2d t
× |A|t

8 log2 t
= Θ(

|A|d+1

tdd1/(d1+1)−1 log2d+1
2 t

),

where the right-hand side can be significantly smaller than n if |A| = O(n1/(d+1))
and dd1/(d1 + 1)− 1 > 0. Our plan is to increase the value of l2 by repeated tiling.

To conclude this subsection, let us discuss the problem that the same element
of A might appear twice in a representation of an element of l2B. Observe that
l2B is a subset of (2l1 + 2l2)∗A, and thus any element of l2B is a sum of 2l1 + 2l2
elements of A. However, as we already pointed out, an element of A can appear
twice, once in (2l1)∗A and once in (2l1)∗A. This problem can be resolved by the
so-called cloning trick, introduced in [28].

8.10. The cloning argument. At the very beginning of the entire proof, we split
the set A into two sets A′ and A

′′
in such a way that |A′| ≈ |A′′ | and any number

x which has high multiplicity with respect to A′ should have almost the same
multiplicity with respect to A

′′
. Next, we continue with A′ and keep A

′′
for reserve.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



160 E. SZEMERÉDI AND V. VU

Repeat the entire proof with A′ playing the role of A until the last paragraph above
subsection 8.10. We call the set of elements with high multiplicity (with respect to
A′) B′ instead of B. Now doing the same with A

′′
, we obtain a set B

′′
.

The key point now is that with a proper splitting, the two sets B′ and B
′′

are
exactly the same. So when we look at l2B

′ as a subset of S + l1B
′, we can think of

an element of S as a sum of l2 elements from B
′′
, rather than from B′. Therefore,

when we replace each element from B′ and B
′′

by the sum of two elements from A,
the elements used for S come from A

′′
and the elements used for l1B

′ come from
A′, and this guarantees that no element of A is used twice.

A random splitting provides the sets A′ and A
′′

as required. For each element
of A throw a fair coin. If heads, we put it into A′; otherwise it goes to A

′′
. If

a number x has multiplicity mx 	 log n with respect to A, then standard large
deviation inequalities (such as Chernoff’s) tell us that with probability at least
1 − n−2, x has multiplicities mx

4 ± 10
√

mx log n = (1 + o(1))mx

4 with respect to
both A′ and A

′′
. Since there are only at most 2n numbers x to consider, with

probability close to 1, every x with multiplicity 	 log n has approximately the
same multiplicities in A′ and A

′′
.

When we create the set Si (which we later rename to B) in subsection 8.1, any
element x in Si has multiplicity m(x) at least |A|

2i+1(i+1) 	 log n with respect to

A. So x will have multiplicity roughly m(x)/4 with respect to both A′ and A
′′
.

Thus one can expect that x will appear in both B′ and B
′′
. The only case we may

have to worry about is when m(x) is very close to a threshold (say mi) and then
(because the error terms can go either way) x might be in B′ but not in B

′′
(or

vice versa). This problem is easy to deal with. We just force this x to be in both
B′ and B

′′
(of course, forcing x might decrease l1 slightly (by a factor .9, say) but

this does not influence anything).

8.11. The tiling operation: Finish. We repeat the tiling operation in subsection
8.8 with new parameters. Now P is cut into T d1

2 boxes, where T2 is a parameter to
be chosen. Instead of (50), we define

(54) l3 =
|A|

48(T2)d1 log2
2 t

.

Here is our key point: in order to obtain l3B, we now add S with l2B, instead of
with l1B as in subsection 8.8. This means that instead of P1 we can use the larger
box P2 = l2

l1
P1. As an analogue of (51), the condition we need on T2 is

(55) s1l2 ≥ 2l3s1

T2
.

Notice that in the left-hand side of (55) we have l2 instead of l1. The fact that l2 	
l1 allows us to set T2 much smaller than T1. Consequently, l3 becomes significantly
larger than l2. Repeating this results in a sequence l1 < l2 < l3 < l4 < . . . , where
for some constant k, lk will be sufficiently large.

Now let us present some computation. The derivation of T2 from (55) is similar
to that of T1 from (51). It is sufficient to set

T2 =
( |A|

24l2 log2
2 t

)1/(d1+1)
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in order to satisfy (55). Since l2 ≥ |A|
td1/d1+1 log2

2 t
,

( |A|
24l2 log2

2 t

)1/(d1+1)

≤
( td1/(d1+1)

24

)1/(d1+1)

,

so we can set T2 =
(

td1/(d1+1)t
24

)1/(d1+1)

. Again, for convenience, we set T2 a bit
larger:

T2 = td1/(d1+1)2 ,

which implies

(56) l3 =
|A|

48(T2)d1 log2
2 t

≥ |A|
td

2
1/(d1+1)2 log2

2 t
.

By induction, we can show that

(57) lk ≥ |A|
td

k
1/(d1+1)k log2

2 t
.

By choosing k sufficiently large (say, k = 2(d1 + 1) log(d + 1)), we have (using the
fact that t is much larger than d)

lk ≥ |A|
t1/2(d+1) log2

2 t
≥ |A|

t1/2d
.

Now lk is sufficiently large, namely, it satisfies the critical inequality ldk|B| 	 n

(one can easily check this by substituting |B| = |A|t
4 log t ). This inequality provides

the necessary condition we need to apply Theorem 3.12 to the set lkB.
Our proof shows that lkB is a subset of (2lk)∗A + (2lk−1)∗A + · · ·+ (2l1)∗A. In

this sum an element of A might be used k times. This problem can be handled
using the cloning argument exactly as before, with the only formal modification
that instead of splitting A into two subsets, we split it into k subsets.

To be completely finished, there is one last issue we need to discuss and that is
the magnitude of the sum l1 + · · · + lk.

As we have shown (with the aid of cloning), the set lkB is a subset of

(2l1 + · · · + 2lk)∗A = l̃∗A,

where l̃ = 2l1 + · · ·+2lk. We need to compare l̃ with l, and naturally there are two
cases. If l̃ ≤ l, then we set A′ = B, l′ = l̃, and n′ = 2n. In this case, we have

(l′)d′
|A′| ≥ ld

′

k |B|

≥ (
|A|

t1/2d
)d′

|B|

≥ (
|A|

t1/2d
)d′

× |A|t
4 log2 t

≥ |A|d′+1t1−(d′+1)/2d (as t is much larger than log2 t)

≥ |A|d
′+1

≥ ld
′
|A|,

for every 1 ≤ d′ ≤ d. This guarantees that the triple (A′, l′, n′) is perfect.
In the remaining case when l̃ > l, there is an index i < k such that

2l1 + · · · + 2li ≤ l < 2l1 + · · · + 2li+1.
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We now modify the tiling operation a little bit. First of all, it is clear that we do not
have to proceed beyond the ith tiling, so we make this tiling our last. Moreover, in
this last tiling we shall not use the whole set liB as a tile, but only a fraction of it,
say l′iB for some l′i < li (as we mentioned many times, our arguments are invariant
with respect to translations, so we can assume that l′iB is a subset of liB). As the
result, obtain a set l′i+1B instead of li+1B, for some l′i+1 ≤ li+1. The set l′i+1B
is a subset of (2l1 + · · · + 2li + 2l′i+1)

∗A where, with a proper choice of l′i, we can
guarantee that

l/2 ≤ (2l1 + · · · + 2li + 2l′i+1) ≤ l.

Now we can set A′ = B, l′ = l′i+1, n′ = 2n and conclude the proof as discussed in
subsection 7.2. �

8.12. A common generalization of Theorems 5.1 and 7.1. In this subsection,
we present a common generalization of Theorems 5.1 and 7.1. Let us first remind the
reader of the sumsets studied in these two theorems. In Theorem 5.1, we consider a
sum of different sets A1, . . . , Al, but allow the same number to appear many times in
a representation (the same number may occur in several Ai’s). On the other hand,
in Theorem 7.1 we have only one set A in the sum, but with the restriction that
the summands of a representation must be different. For a common generalization
of these theorems, we consider a sum which involves different elements of different
sets. Let A1, . . . , Al be sets of integers. We define A1

∗
+ A2

∗
+ · · ·

∗
+ Al as the

collection of all numbers which can be represented as a sum of l different numbers
a1 ∈ A1, . . . , al ∈ Al. Formally speaking,

A1

∗
+ A2

∗
+ · · ·

∗
+ Al = {a1 + · · · + al|ai ∈ Ai, ai �= aj for 1 ≤ i < j ≤ l}.

We refer to A1

∗
+ A2 as the star sum of A1 and A2.

Theorem 8.13. For any fixed positive integer d there are positive constants C and
c depending on d such that the following holds. Let A1, . . . , Al be subsets of size |A|
of [n] where l and |A| satisfy ld|A| ≥ Cn. Then A1

∗
+ A2

∗
+ · · ·

∗
+ Al contains a

GAP of rank d′ and volume at least cld
′ |A|, for some integer 1 ≤ d′ ≤ d.

About the proof, one’s first impression would be that one can prove Theorem
8.13 using Theorem 7.1 the same way that one proved Theorem 5.1 using Theorem
3.12. This, however, is not possible due to a subtle problem involving star sums.
While it is clear that the (set) equality

(A1 + A2) + (A3 + A4) = A1 + A2 + A3 + A4

is true, its star sum counterpart

(A1

∗
+ A2)

∗
+ (A3

∗
+ A4) = A1

∗
+ A2

∗
+ A3

∗
+ A4

is false.
So far, the only way (we know of) to verify Theorem 8.13 is to repeat the proof of

Theorem 7.1 with appropriate modifications. This is a tedious task, but no essential
new arguments are required, and we thus omit the details. Let us, however, present
the variant of a step in the proof of Theorem 7.1, Lemma 7.9, in order to give the
reader an idea about the kind of modifications one needs to carry out.
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Lemma 8.14. Let Ai, 1 ≤ i ≤ 20 log2 |A|, be finite sets of real numbers with
the same cardinality |A|, where |A| is sufficiently large. Then there is an integer
1 ≤ T ≤ 10 log2 |A| and elements a1 ∈ A1, a2 ∈ A2, . . . , a2T ∈ A2T such that all
ai’s are different and the set B = {a1, . . . , a2T } satisfies

|T ∗B| ≥ |A|.

Proof of Lemma 8.14. We assume |A| is sufficiently large so that |A| ≥ 100 log2 |A|.
We choose a1 and a2 from A1 and A2, respectively, with the only condition that
a1 �= a2. Once a1, . . . , a2i have been chosen, we next choose a2i+1 and a2i+2 from
A2i+1\{a1, . . . , a2i} and A2i+2\{a1, . . . , a2i} so that a2i+1 �= a2i+2 and

(58) |(i + 1)∗{a1, . . . , a2i+1, a2i+2}| ≥ 1.1|i∗{a1, . . . , a2i}|

(if there are many possible pairs, we choose an arbitrary one). We stop at time
T when |T ∗{a1, . . . , a2T }| ≥ |A| and set B = {a1, . . . , a2T }. It is clear that
|B| ≤ 2 log1.1 |A| ≤ 20 log2 |A|. The only point we need to make is to show that
as long as |i∗{a1, . . . , a2i}| < |A|, we can always find a pair (a2i+1, a2i+2) to satisfy
(58). Assume (for a contradiction) that we get stuck at the ith step, and denote
by S the sum set i∗{a1, . . . , a2i}. For any two numbers a ∈ A2i+1\{a1, . . . , a2i}, a′ ∈
A2i+2\{a1, . . . , a2i} the union (a+S)∪(a′+S) is a subset of (i+1)∗{a1, . . . , a2i, a, a′}.
So by the assumption we have

|(a + S) ∪ (a′ + S)| ≤ 1.1|S|.

Since both a + S and a′ + S have |S| elements, it follows that their intersection
has at least .9|S| elements. This implies that the equation a′ − a = x − y has at
least .9|S| solutions (x, y) where x ∈ S and y ∈ S. Now let us fix a as the smallest
element of A2i+1\{a1, . . . , a2i} and choose a′ arbitrarily from A2i+2\{a1, . . . , a2i, a}
(we exclude a′ from A2i+2, so we are guaranteed that a �= a′). There are at least
|A| − 2i− 1 ≥ .9|A| choices for a′, each of which generates at least .9|S| pairs (x, y)
where both x and y are elements of S. As all (x, y) pairs are different, we have that

.9|A| × .9|S| ≤
(
|S|
2

)
,

which implies that |S| > |A|, a contradiction. This concludes the proof. �

9. Erdös’s conjecture on complete sequences

In 1962, Erdös introduced the following notion, which has since become quite
popular: An infinite set A of positive integers is complete if every sufficiently large
positive integer can be represented as a sum of different elements of A (see Sec-
tion 6 of [9] or Section 4.3 of [23] for surveys about completeness). For instance,
Vinogradov’s result (mentioned in the Overview (Section 1)) implies that the set of
primes is complete. On the other hand, there is a big difference between the study
of complete sequences and the study of classical problems of Vinogradov-Waring
type. For completeness, we do not require the number of summands in a represen-
tation to be the same. This relaxation leads to a quite different kind of results. For
problems of Vinogradov-Waring type (where the number of summands is fixed),
one usually requires a very precise description of the sequence (the set of primes or
the set of squares, say). For problems concerning complete sequences, it has turned
out that there is much more flexibility.
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What would be the first condition for a sequence to be complete ? Well, density
must be the answer, as one cannot hope to represent every positive integer with
a very sparse sequence. But one would also notice instantly that density itself
would not be enough: The set of even numbers has very high density, but it is
clearly not complete. This shows that one should also consider a condition involving
modularity.

In number theory it happens quite frequently that the obvious necessary condi-
tions are also sufficient. In 1962, Erdös made the following conjecture.

Conjecture 9.1. There is a constant c such that the following holds. Any increas-
ing sequence A = {a1 < a2 < a3 < . . . } satisfying

(a) A(n) ≥ cn1/2,
(b) SA contains an element of every infinite arithmetic progression

is complete.

Here and later A(n) denotes the number of elements of A not exceeding n. The
bound on A(n) is best possible, up to the constant factor c, as shown by Cassels
[4].

Erdös [8] proved that the statement of the conjecture holds if one replaces (a) by
the stronger condition that A(n) ≥ cn(

√
5−1)/2. An important step was later made

by Folkman [14], who improved Erdös’s result by showing that A(n) ≥ cn1/2+ε is
sufficient, for any positive constant ε. The first and simpler part in Folkman’s proof
is to remove condition (b). He showed that any sequence satisfying (b) could be
partitioned into two subsequences with the same density, one of which still satisfies
(b). In the next and critical step, Folkman shows that if A is a sequence with density
at least n1/2+ε, then SA contains an infinite arithmetic progression (in other words,
A is subcomplete). His result follows immediately from these two steps. Folkman’s
proof, naturally, led him to the following conjecture, which is perhaps even more
to the point than Conjecture 9.1

Conjecture 9.2. There is a constant c such that the following holds. Any increas-
ing sequence A = {a1 < a2 < a3 < . . . } satisfying A(n) ≥ cn1/2 is subcomplete.

Folkman’s result has been further strengthened recently by Hegyvári [18] and
by �Luczak and Schoen [21], who (independently) reduced the density n1/2+ε to
cn1/2 log1/2 n, using the result of Sárközy (see Section 3).

In a previous paper [28], we proved Conjecture 9.2. However, we discuss this
problem here for pedagogical reasons. It would be more useful for the reader to
consider this problem together with Conjecture 6.1 and under the general sufficient
condition proved in Section 6. As a matter of fact, given this sufficient condition,
it is now very simple to prove Conjecture 9.2. The only modification one needs to
make is to replace Lemma 6.10 by the following.

Lemma 9.3. There is a constant C such that the following holds. If A is a set of
different positive integers between 1 and n and |A| ≥ C

√
n, then SA contains an

arithmetic progression of length n.

The rest of the proof is the same.

Theorem 9.4. There is a constant c such that the following holds. Any increasing
sequence A = {a1 < a2 < a3 < . . . } satisfying A(n) ≥ cn1/2 is subcomplete.
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Let us conclude with a comment on Conjecture 9.2 and Conjecture 6.1. These
conjectures look quite similar, which comes as no surprise as they appeared in the
same paper. The interesting point here is that the proof of Conjecture 6.1 requires
only Theorem 5.1, which is an easy application of Theorem 3.12, but the proof of
Conjecture 9.2 requires the much harder Theorem 7.1. On the other hand, prior to
our study, Conjecture 6.1 seemed harder to attack and fewer partial results were
known.

Remark. We have recently been informed by Lev (private communication) that
Chen [6] also proved a variant of Theorem 9.4, using a different method.

10. Arithmetic progressions in finite fields

In this section we assume that n is a prime. We are going to extends our previous
theorems to arithmetic progressions modulo n. The quantitative statements in these
theorems will change slightly, but the proofs remain essentially the same. We first
establish the results and then describe an application.

10.1. Results. In order to show why we need a modification in the statements
of the theorems, let us consider the proof of Theorem 3.12. At one point in the
proof (see the paragraph following (17)), we used the fact that lA is a subset of
the interval [ln] and thus has cardinality at most ln. In the finite field case, lA is
always a subset of the set of residues modulo n, and so its cardinality is always at
most n, no matter how large l is. This suggests that we should gain an extra factor
l in the assumption of the theorem, and that has indeed turned out to be the case.
The analogue of Theorem 3.12 is as follows.

Theorem 10.2. For any fixed positive integer d there are positive constants C and
c depending on d such that the following holds. Let n be a prime, let l be a positive
integer, and let A be a set of residues modulo n such that ld+1|A| ≥ Cn. Then
the sumset lA (modulo n) contains an arithmetic progression (modulo n) of length
min{n, cl|A|1/d}.

There are two modifications in Theorem 10.2 (compared with Theorem 3.12).
First we changed ld to ld+1, which is consistent with the above discussion. Second,
we changed the lower bound from cl|A|1/d to min{n, cl|A|1/d}. This modification
is natural and justified, as lA can have at most n elements. We shall comment on
this at the end of the next paragraph.

The proof of Theorem 10.2 is the same as the proof of Theorem 3.12. The
only place where one needs a (formal) modification is (17). In this inequality,
the rightmost formula should be Cn instead of Cln, which is consistent with the
discussion in the paragraph preceding Theorem 10.2. Freiman’s theorem and all
lemmas used for the proof of Theorem 3.12 hold for residue classes (see [27] for exact
statements). To explain the change in the lower bound, notice that in the proof of
Theorem 3.12 we actually showed that either lA = [ln] or lA contains an arithmetic
progression of length cl|A|1/d. Its finite field analogue says that either lA contains
all residues modulo n or it contains an arithmetic progression of length cl|A|1/d.
In Theorem 3.12, it is unnecessary to state the lower bound as min{ln, cl|A|1/d}
because ln is always larger than cl|A|1/d. On the other hand, in the finite field case,
it makes sense to write min{n, cl|A|1/d} since n can be smaller than cl|A|1/d.
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Theorem 10.2 demonstrates the flexibility of our method. It is not clear, for
instance, how to prove a finite field version of Theorem 3.3 (which is a special case
of Theorem 3.12) using the original approaches of Freiman and Sárközy.

Similar to Theorem 3.12, Theorem 10.2 is sharp. One can modify the general
construction in Section 3 to match the lower bound. This construction also mirrors
the extra term l.

A construction modulo n. We present a modification of the principal construction
in Section 3. Now set a = � (1−δ/3)n/l

d|A|1/d � (notice the extra l in the nominator) and

b = �( n
dl|A|1/d )1/(d−1)�. Notice that under the assumption of Theorem 10.2, (1)

stills hold with the new definition of a. We again have two cases:
(I)

∑d
i=1 ri = 0(mod n). By the definition of the ai’s, it follows that

∑d
i=1 ribi =

0(mod n) and d should be at least 3. By the definition of the bi’s, it follows
immediately that

(59) max
1≤i≤d

|ri| ≥ min( min
1≤j≤d

bj∑j−1
i=1 bi

,
n∑d

j=1 bj

) ≥ 1
2
a1/(d−1) ≥ 2l|A|1/d,

where the last inequality is from (1).
(II)

∑d
i=1 ri �= 0(mod n). In this case, we have

d∑
j=1

rja +
d∑

j=1

rjbj = pn

for some integer p. If p = 0, then

(60) max
1≤i≤d

|ri| ≥
a∑d

i=1 bi

≥ 1
2
a1/(d−1) ≥ 2l|A|1/d.

If p �= 0, then

(61) max
1≤i≤d

|ri| ≥
n

da +
∑d

j=1 bj

≥ n

(d + 1)a
≥ 1

2
a1/(d−1) ≥ 2l|A|1/d.

Without any further explanation, we now state the analogues of Theorems 5.1,
7.1 and 8.13.

Theorem 10.3. For any fixed positive integer d there are positive constants C and
c depending on d such that the following holds. Let A1, . . . , Al be sets of residue
classes modulo n of size |A| where l and |A| satisfy ld+1|A| ≥ Cn. Then A1+· · ·+Al

either contains all residue classes modulo n or contains a proper GAP of rank d′

and volume at least cld
′ |A|, for some integer 1 ≤ d′ ≤ d.

Theorem 10.4. For any fixed positive integer d there are positive constants C and
c depending on d such that the following holds. Let n be a prime, let l be a positive
integer, and let A be a set of residues modulo n such that ld+1|A| ≥ Cn. Then lA
either contains all residue classes modulo n or contains a proper GAP of rank d′

and volume at least cld
′ |A|, for some integer 1 ≤ d′ ≤ d.

Theorem 10.5. For any fixed positive integer d there are positive constants C
and c depending on d such that the following holds. Let n be a prime, let l be a
positive integer, and let A1, . . . , Al be sets of residues modulo n such that |A1| =

· · · = |Al| = |A| and ld+1|A| ≥ Cn. Then A1

∗
+ · · ·

∗
+ Al either contains all residue
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classes modulo n or it contains a proper GAP of rank d′ and volume at least cld
′ |A|,

for some integer 1 ≤ d′ ≤ d.

10.6. An application. A set A of residues modulo n is called zero-sum-free if
none of the subset of A adds up to zero modulo n. Zero-sum-free sets are objects
of considerable interest in additive number theory (see Section C of [17] and the
references therein). Here we address the following basic question:

How many zero-sum-free sets are there?
We denote by SA the collection of partial sums of A, so A is zero-sum-free if and

only if 0 /∈ A. Szemerédi [26] and Olson [22], answering a question of Erdös, proved
that a zero-sum-free set has at most 2n1/2 elements. This implies that the number
of zero-sum-free sets is at most

�2n1/2	∑
i=1

(
n

i

)
= 2Ω(n1/2 log2 n).

It is not hard to give a lower bound of 2Ω(
√

n); notice that every subset of the
interval [�

√
2n − 1�] is zero-sum-free, since

1 + 2 + · · · + [�
√

2n − 1�] < n.

The number of subsets of the above interval is clearly 2Ω(
√

n).
In an earlier paper [27], we succeeded in establishing a sharp bound, using a

weaker version of Theorem 10.5. (To be more precise, what we actually used was a
weaker version of the finite field analogue of Theorem 3.8.)

Theorem 10.7. Let n be a prime. The number of zero-sum-free sets (mod n) is

2(
√

1
3π log2 e+o(1))

√
n.

This surprising estimate might deserve an explanation. To reveals its origin, let
us give a short proof for the lower bound. We call a set A of positive integers n-small
if the sum of the elements in A is less than n. It is trivial that an n-small set is
zero-sum-free. On the other hand, the number of n-small sets is 2(

√
1
3π log2 e+o(1))

√
n

due to the following lemma, which is a well-known result in the theory of partitions
(see, for instance, Theorem 6.7 in [1]).

Lemma 10.8. The number of representations of n as a sum of different positive
integers is 2(

√
1
3π log2 e+o(1))

√
n. Consequently, the number of n-small sets is

2(
√

1
3π log2 e+o(1))

√
n.

The hard part of Theorem 10.7 is the upper bound. Using our results on long
arithmetic progressions (modulo n), we managed to show that if A is zero-sum-free
and has relatively many elements (the number of sets with at most n1/2/ log2

2 n

elements is 2o(n1/2) so we can ignore these sets), then A is close to be n-small (for
the exact statement, see [27]). The general idea is as follows. Let A′ be a relatively
small subset of A; our results show that SA′ contains a rather long arithmetic
progression. We next make many translations of this arithmetic progression by
adding to it elements from A\A′. If all these translations avoid 0, then we have a
good chance of deducing a structural property of A, and it turned out that typically
A should look like an n-small set. A similar argument can be applied to determine
the number of x-sum-free sets, for any non-zero residue class x. Trying not to
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spoil the fun, we do not state the theorem here (it can be found in [27]), but let
us mention that the bound for non-zero x is different from the bound in Theorem
10.7. Guessing this bound is a good puzzle that the reader who bears with us until
the very end might enjoy.
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[18] N. Hegyvári, On the representation of integers as sums of distinct terms from a fixed set,

Acta Arith. 92 (2000), no. 2, 99–104. MR1750309 (2001c:11014)
[19] V. Lev and P. Smeliansky, On addition of two distinct sets of integers, Acta Arithmetica 70

(1) (1995), 85–91. MR1318763 (96f:11035)
[20] V. Lev, Optimal representations by sumsets and subset sums, Journal of Number Theory 62

(1) (1997), 127–143. MR1430006 (97k:11015)
[21] T. �Luczak and T. Schoen, On the maximal density of sum-free sets, Acta Arith. 95 (2000),

no. 3, 225–229. MR1793162 (2001k:11018)
[22] J. Olsen, An addition theorem modulo p, Journal of Combin. Theory 5 (1968), 53-58.

MR0227130 (37:2715)
[23] C. Pomerance and A. Sárközy, Combinatorial number theory, Handbook of combinatorics,

Vol. 1, 2, pp. 967–1018, Elsevier, Amsterdam, 1995. MR1373676 (97e:11032)
[24] I. Ruzsa, Generalized arithmetical progressions and sumsets, Acta Math. Hungar. 65 (1994),

no. 4, 379–388. MR1281447 (95k:11011)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=1634067
http://www.ams.org/mathscinet-getitem?mr=1634067
http://www.ams.org/mathscinet-getitem?mr=1701189
http://www.ams.org/mathscinet-getitem?mr=1701189
http://www.ams.org/mathscinet-getitem?mr=1117007
http://www.ams.org/mathscinet-getitem?mr=1117007
http://www.ams.org/mathscinet-getitem?mr=0130236
http://www.ams.org/mathscinet-getitem?mr=0130236
http://www.ams.org/mathscinet-getitem?mr=1909605
http://www.ams.org/mathscinet-getitem?mr=1909605
http://www.ams.org/mathscinet-getitem?mr=1957105
http://www.ams.org/mathscinet-getitem?mr=1957105
http://www.ams.org/mathscinet-getitem?mr=1272299
http://www.ams.org/mathscinet-getitem?mr=1272299
http://www.ams.org/mathscinet-getitem?mr=0144846
http://www.ams.org/mathscinet-getitem?mr=0144846
http://www.ams.org/mathscinet-getitem?mr=0592420
http://www.ams.org/mathscinet-getitem?mr=0592420
http://www.ams.org/mathscinet-getitem?mr=1182477
http://www.ams.org/mathscinet-getitem?mr=1182477
http://www.ams.org/mathscinet-getitem?mr=1217753
http://www.ams.org/mathscinet-getitem?mr=1217753
http://www.ams.org/mathscinet-getitem?mr=0360496
http://www.ams.org/mathscinet-getitem?mr=0360496
http://www.ams.org/mathscinet-getitem?mr=1701187
http://www.ams.org/mathscinet-getitem?mr=1701187
http://www.ams.org/mathscinet-getitem?mr=0199169
http://www.ams.org/mathscinet-getitem?mr=0199169
http://www.ams.org/mathscinet-getitem?mr=0162759
http://www.ams.org/mathscinet-getitem?mr=0162759
http://www.ams.org/mathscinet-getitem?mr=1924373
http://www.ams.org/mathscinet-getitem?mr=1924373
http://www.ams.org/mathscinet-getitem?mr=1299330
http://www.ams.org/mathscinet-getitem?mr=1299330
http://www.ams.org/mathscinet-getitem?mr=1750309
http://www.ams.org/mathscinet-getitem?mr=1750309
http://www.ams.org/mathscinet-getitem?mr=1318763
http://www.ams.org/mathscinet-getitem?mr=1318763
http://www.ams.org/mathscinet-getitem?mr=1430006
http://www.ams.org/mathscinet-getitem?mr=1430006
http://www.ams.org/mathscinet-getitem?mr=1793162
http://www.ams.org/mathscinet-getitem?mr=1793162
http://www.ams.org/mathscinet-getitem?mr=0227130
http://www.ams.org/mathscinet-getitem?mr=0227130
http://www.ams.org/mathscinet-getitem?mr=1373676
http://www.ams.org/mathscinet-getitem?mr=1373676
http://www.ams.org/mathscinet-getitem?mr=1281447
http://www.ams.org/mathscinet-getitem?mr=1281447


LONG ARITHMETIC PROGRESSIONS IN SUMSETS 169
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