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Abstract

A new type of astrometric instrument, the astrometric

interferometer, is described. The instrument is a long baseline

Michelson stellar interferometer modified to track the fringe

motion caused by atmospheric turbulence. Simultaneous fringe

amplitude and phase measurements at two wavelengths are used to

correct atmospheric distortion when the field of view is much

larger than the isoplanatic patch. Ultimately, the relative

positions of stars brighter than 10 mag in a one degree field

of view could be measured to 0.0001 to 0.00001 arc see accuracy

in a single observation lasting several hours. Such an

instrument should have a number of interesting astrophysical

and geophysical applications, such as a search for planets

around nearby stars, the gravitational deflection of light, and

changes in the earth's rotation axis. This thesis describes the

first steps in the development of an astrometric

interferometer.
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I Introduction

Astrometry, the precise measurement of stellar positions,

is one of the oldest and historically important branches of

astronomy. When Galileo invented the telescope in the early

1600's astronomy changed radically. Observations of planetary

motion led Copernicus to a heliocentric theory of the solar

system, and accurate measurements of the position of the

planet Mars by T. Brahe led Kepler to formulate his three

laws. Accurate visual measurements with telescopes led to the

discovery of the planet Neptune while verifying both Newton's

law of gravity and the mathematical perturbation techniques

that were used to predict its existance and location. Accurate

astrometry also led to the discovery of the aberration of

starlight in 1728 by Bradley, and the finite velocity of light

in 1675 by Romer.

With the invention of photography, the accuracy of

astrometric measurements was again radically improved. By

1904, Schlesinger at Yerkes Observatory had analysed the

errors -inherent in photography and had devised measurement

procedures and data reduction techniques to minimize these

errors. These procedures have often been called basic and

complete with only irinor improvements possible. It might be

added that Schlesinger after leaving Yerkes, set up

astrometric programs at half a dozen observatories, and many

of them continue to employ Scheslinger's techniques today.
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The early photographic measurements of parallax by

Hertzsprung led to the Hertzsprung Russel diagram which is the

basis for theories of stellar evolution. In addition,

astrometry has confirmed the gravitational deflection of

light, measured the precession of the perihelion of Mercury,

and possibly discovered the presence of planets around

Barnard's star.

After Scheslinger's methods were adopted, astrometry

flourished. The reduction of major sources of error for

photographic astrometry made it possible to achieve 0.01 are

see accuracy by averaging several years of data. Futher

improvement in accuray would require even more time and

consequently the field lost its glamour and was viewed as one

which required a great deal of tedious work. The current

trend is to amass decades of data with which it is hoped, even

higher accuracies could be achieved. In the early 60's a

comparison of parallax measurements at different observatories

[1] showed that systematic errors and not random errors were

limiting the accuracy of measurements.

The history of stellar interferometry began with Fizeau

[21 who suggested in 1868 the use of an interferometer to

measure stellar diameters. In 1921 Michelson and Pease [3]

pulbished the first measurement of a stellar diameter. The

instrument was the famous 20 foot interferometer which was

attached to the 100 inch telescope on Mount Wilson. The next

major interferometer was a 50 foot baseline instrument built

1.0
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by Pease during the years 1923 and 1930, The 50 foot baseline

interferometer was plagued by a number of problems.

Kababian[4] pointed out an effect due to polarization which

reduced the fringe visibility of stars not on the celestial

equator. In addition, the 50 foot interferoemter unlike the 20

foot interferometer used an east-west baseline rather than a

north-south baseline and was much more sensitive to errors in

the sidereal drive.

In the late 60's the advances in photomultipliers and

electronics revived interest in spatial interferometers [5].

When Labeyrie demonstrated speckle interferometry in the early

70's [6] interferometers were once again considered new

exciting astronomical instruments with great potential. One

of these potentials was the ability to make extremely accurate

astrometric measurements. Both theory and observational

evidence published before 1975 showed that techniques such as

speckle and the traditional Michelson interferometer could

only achieve high accuracy in a very small field of view,

perhaps only a few arc sec.

This thesis is an experimental and theoretical study of

an astrometric interferometer. It started when I realized that

a two color technique, described in chapter 3 (7) could

correct the errors caused by the atmosphere when the field of

view was much larger than the isoplanatic patch. A prototype

interferometer with a one inch aperture was built and was used

to make atmospheric measurements at Wallace observatory (MIT).
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The analysis of the measurements showed that proper operation

of the interferometer would not be possible at Wallace. The

reason was that short integration time neccessary to freeze

the atmosphere was much shorter at Wallace Observatory (1-2

msec) than at a good site (10 msec). A method to determine

the optimum integration time using 'seeing' measurements was

developed. In addition a method for measuring the absolute

parallax of a star without the use of reference stars was

developed.

Chapter two describes the optical effects of atmospheric

turbulence. A brief history of early reasearch in this area

is given. While atmospheric turbulence is not considered a

major source of error in photographic astrometry, turbulence

is the main problem for new high spatial resolution and high

accuracy photoelectric astrometric instruments. Chapter two

presents the experimental and theoretical work in optical

propagation through turbulence that is relevant to astronomy,

in order to provide a background for the next few chapters.

Current astrometric techniques are reviewed in chapter

three. The first section describes the instruments used to

measure relative position of stars. Recently built astrometric

instruments such as SCLERA are discussed. The limitating

performance, due to atmospheric turbulence, of current

astrometric instruments is derived. The application of current

instruments to the measurement of proper motion and parallax

are discussed in the second section.
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The principle of the astrometric interferometer is

described in chapter four. Although the accuracy of the

instrument is unaffected by the atmosphere, the

interferometer, like all high spatial resolution that must

look through turbulence, will not work if the star is dimmer

than a certain threshold. The limiting magnitude and the

accuracy are calculated for an interferometer located at a

good astronomical site. The two color technique which enables

the interferometer to correct the errors that would limit the

performance of conventional astrometric instruments is

discussed.

Chapter five discribes the hardware and software of the

one inch aperture prototype built for Wallace Observatory.

The three major subsystems, laser interferometer, star

tracker, and fringe tracket are described as are possible

future improvements, especialll to the fringe tracking servo.

The atmospheric measurements at Wallace Observatory are

described in chaper six. All high resolution instruments use

short exposures or integration times to freeze the atmosphere.

Currently, astronomical observations with speckle and other

interferometers determine the optimum integration time by a

trial and error method. A method for estimating the optimum

integration time or detector bandwidth from angle of arrival

fluctuation data is discussed.

Chapter seven describes several possible applications of

an astrometric interferometer with 104 to 10 are see
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(chap 4) accuracy. These applications include the measurement

of parallax and the search for planets. The sensitivity of

several techniques for the search for planets are also

compared.
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II Atmospheric Turbulence

While astronomers have known about scintillation and seeing

for hundreds of years, and Maxwell's equations were formulated in

the 1870's, no systematic study of seeing was done until the

1950's. The first theoretical study of the optical effects of

turbulence was by Chandrashakar [8) in 1952. Most of the work

preceeding this was qualitative in nature[91. Since then, and

especially recently, a great deal of progress, experimental and

theoretical, has been made.

As an electromagnetic wave propagates through the

atmosphere, the wavefront is distorted by inhomogeneities in the

index of refraction of the atmosphere. The random nature of the

distortion requires that the mathematical discription of the

optical effects of atmospheric turbulence be statistical. A

method of analysis involving structure functions, spatial and

temporal correlation functions, is currently used in the study of

atmospheric seeing and scintillation.

Seeing and scintillation are caused by spatial and temporal

fluctuations in the refractive index of the atmosphere. The index

of refraction fluctuations are in turn caused by temperature

differences since pressure fluctuations are quickly damped out.

In theory, humidity fluctuations would also cause index of

refraction fluctuations. In practice this is not important for

optical propagation in clear weather. The change in the index of
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refraction per unit change in humidity is aproximately 70 times

less at optical wavelengths than at radio wavelegths [10].

Unlike temperature variations, humidity variations must originate

from a large body of water. For an astronomical observatory at

high altitude many miles from a large body of water, and in clear

weather, it should be safe to assume that index of refraction

variations are due primarily to temperature variations.

The temperature fluctuations originate from large scale

heating of the earth's surface. Wind flow and turbulence mixes

cold and warm air to create temperature fluctuations of many

scale sizes. The index of refraction of the atmosphere n is a

function of space and time as expressed in eq. II.1.

n(r)= n0 +n, (r) (II.1)

The autocorrelation of the variable part of the index of

refraction can then be written as eq. 11.2 and its fourier

transform eq. II.3.

44K)a .1J (cre cr dr7E.3

As wind shear breakes up temperature inhomogeneities to smaller

and smaller sizes, the inner scale of turbulence will be reached

where the viscosity of the air will prevent further turbulent
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mixing. Index of refraction fluctuations are therefore expected

to exist with scale sizes between the outer scale, the scale at

which temperature fluctuations are created by heating, and the

inner scale determined by the viscosity of the air. Work on

turbulence by Kolmogorov, Obukhov, and others [11,12] led

Tatarski [13] to use eq. 11.4 for the refractive index power

spectrum.

r(K) 033 C C",, 21#-4

Km s=S.q9/j,

4 iv 'the nner stcale rfturbulncc

The equation is not expected to be valid for spatial frequencies

lower than the corresponding frequency for the outer scale. This

model of the atmosphere has two parameters, the inner scale

l.(Km) and the refractive index structure constant C,,, which is a

measure of the strength of turbulence. From dimensional analysis,

%aZ/31
C4 has the units meters . Obviously, if another model of the

atmosphere with another power law were used, the constant would

have different units. Measurements of Ca show that this parameter

varies from 10 at high altitudes to 10O1 at sea

levelE[14].

Attempts to measure depolarization effects for optical

propagation have yielded null results[15J. As a result, all

theoretical calculations treat the electric field as a scalar

quantity. For atmospheric propagation the wave equation would be

eq. 11.5.
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LVL +It(r)J E-A
k-a "xutnumber. z1t/

Tatarski and most others during the 1960's used the Rytov method

which substitutes 4+=ln(E) into 11.5 to get 11.6. The real part

of I is the log amplitude X and the imaginary part is the

phase cf. The procedure was to solve 11.6 for fluctuations in

with a perturbation technique.

V 01 T V.-)+Itl V) 73-(0

The Rytov method is accurate only when the perturbations are

small. Recent theoretical calculations have used the extended

Huygens-Fresnel principle. The starting point, is a Green's

function representation of the electric field. The electric field

at the receiver or telescope is related to the electric field at

the star by eq. II..

EO..r) JJAfr E cr3 x IEF1~

tPLt b /a cr-r5+ Vr(,r)-LkLJ

where ED is the field at the star

L is the distance to the star

k is the wave number 21f/.

tis the complex phase caused by the turbulence

In order to evaluate statistical quantities involving E at

the receiver, it is necessary to evaluate the statistics of the

Green's function. The calculations[16] are quite lengthy and

complicated and will not be attempted here. The results of the
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calculations relevant to astronomy will be discussed in the

following sections.

II.A Scintillation

The simplest way to test a theory of turbulence is the

measurement of scintillation. For ground to ground experiments,

the temperature spatial correlation function can be measured and

CN calculated. Direct verifiation of the theory is then

possible. However, usually only a small number of temperature

sensors are used and it is often necessary to assume that the

turbulence is homogeneous throughout the optical path.

II.A.1 Intensity distribution

Most theoretical calculations predict that turbulence will

produce a log normal distribution for intensity or amplitude. In

Rytov's method, the solution to eq. II.6 for 'P-Of'> would be an

integral equation. Applying the central limit theorem to the

integral would result in a normal distribution for the log

amplitude. A normal distribution in the log amplitude implies a

normal distribution in the log intensity. If however, the

substitution of f=ln(E) were not made, the same procedure would

result in a normal distribution in the amplitude. For small

variances the difference between the two distributions would be

small. However significant differences exist for moderate and
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large variances.

The physical interpretations of the two distributions are

very different. A normal distribution in E-<E> would mean that

the electric field would consist of a constant part and a

component with a normal distribution. In the limit where the

constant part was small, the intensity distribution would be an

exponential or Raleigh distribution. A physical arguement which

would favor the log normal distribution goes as follows. The

turbulence in the optical path can be viewed as a large number of

thin layers of air. Each layer acts as a lens with random

properties. The effect is that each layer affects the intensity

of light in a multiplicative fashion. When the central limit

theorem is applied, valid because of the large number of layers,

the distribution in intensity would be a log normal distribution.

For a normal distribution in the electric field, each layer would

have to affect the electric field in an additive rather than a

multiplicative manner. A possible model for the additive effect

is that the atmosphere contains a large number of scattering

centers. For optical propagation in clear weather the log normal

distribution is probably more accurate.

The Rytov method, which is valid for small perturbations,

gives eq. II.8 (9] for the variance in the log intensity.
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k is the wave number

L is the length of the optical path through air

turbulence is assumed locally isotropic

Numerous experiments [18,191 have verified the log normal

distribution. Equation II.8 has been verified for weak turbulence

[20] where 61. <2.5. Scintillation measurements at 0.63 and 10.6

microns have also verified the wavelength dependence of 11.8

[21]. For strong turbulence, the measured variance 

%

saturates at a value between 2 and 3 [22]. The saturation effect

is not predicted by 11.8. Fortunately, for astronomical

observations, scintillation is almost never in the saturation

region.

II.A.2 Spatial Correlation of Scintillation

The correlation of intensity fluctuations at different

points in space may be calculated using the Rytov method. The

correlation function of the log amplitude is defined by eq.

11.9.
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where Y :1 iIand NQ is the position at

which the log amplitude is measured

For the astronomically relevant case, 8,,( r) is given by eq.

11.10 [9).

AR K 2vJK-ex(' 4

k-is the wave number

K is the spatial frequency

r is the distance between measured points

L the length of the optical path through air

J0 is the Bessel function

In order to compare theory with experiment, it is necessary to

relate the log amplitude spatial correlation to the intensity

spatial correlation. Following reference [9), the normalized

correlation of intensity can be defined as eq. II.11, and reduced

to eq. 11.12.

<z cr,~ crO>< .Zr)>Xa
i: (tk~><Zcro> X Cr)>Ea>u:
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b BX jr)_

The importance of II.10 is that it predicts that

scintillations will be essentially uncorrelated for two points

separated by a distance greater than (AL) , where L is typically

10 kilometers for astronomical observations. The scintillation

correlation distance is typically 7-8 cm. For a stellar

interferometer with a baseline of several meters, the

uncorrelated scintillation will result in a fringe visibility

below unity. The resulting loss in the signal to noise ratio is

discussed in greater detail in chapter 4.

Observations of the spatial correlation of scintillation

have essentially verified eq. II.10 for weak scintillation(23].

Photographs of the "shadow bands" from starlight (24] have shown

the width of the bands to be 7-8 cm.

From the spatial correlation function it is possible to

derive two related quantities. The first is the temporal spectrum

of scintillation and the second is the dependence of the log

intensity variance on the size of the telescope aperture.

II.A.3 Temporal Spectrum of Scintillation



PAGE 16

The temporal spectrum can be derived from the spatial

correlation function by use of Taylor's hypothesis of frozen

turbulence. The assumption is that temporal variations are due

to a wind translating a frozen turbulene past the telescope or

interferometer. The validity of the hypothesis is discussed

later.

The assumption of frozen turbulence greatly simplifies

calculations relating spatial and temporal quantities. Equation

11.13 relates the log amplitude at one point and time to another

point downwind. This is Taylor's hypothesis. Equation 11.14

follows immediately.

'X t Y'+V)t t4T

Rr(T) 5 (v) TIH4

R is the temporal correlation

B is the spatial correlation

V is wind speed perpendicular to the line of sight

Xis the log amplitude

The frequency spectrum F (f) of the intensity fluctuations is

simply the fourier transform of Rx(T). Using II.13 and 11.14 we

get eq. 11.15.
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* S fC05sC 27#fl C)&(V) dt

The integral in 11.15 has been evaluated by Tatarski [13], who

also derived expressions for the case where Taylor's hypothesis

is not valid.

Experimental measurements of the frequency spectrum [25] at

astronomical observatories, which cannot be directly compared

with theory because temperature measurements are not available,

show that the spectrum is flat out to~100 Hz and then decreases

rapidly . The modulation at 500 Hz is usually down several

orders of magnitude. For horizontal propagation, where

temperature measurements are available, agreement between theory

and experiment has been mixed. For short path lengths theory and

experiment agree [13]. For longer paths qualitative diifferences

appear even when the scintillation is not saturated[261.

II.A.4 Strong Scintillation

Within the past several years, the theoretical problem of

saturation of the variance of log intensity has been solved by a

number of researchers[27-29]. While saturation does not occure

for astronomical observations, the physical interpretation of one

theory [27] is that saturation is due to a loss of spatial

coherence of the wave front. This would imply that under

scintillation saturation conditions, a high resolution
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interferometer would not work even when signal to noise

considerations are ignored. One experimental paper [30) showed

the presence of phase discontinuities in the wavefront under

strong turbulence conditions.

II.B Phase Fluctuations

Unlike scintillation which decreases with increasing

telescope aperture, the effects of phase fluctuations become more

important as the telescope aperture increases. For small

telescopes, the image of a star is the telescope's diffraction

pattern. The effect of turbulence is to cause the position of the

image to wander randomly. As the the aperture is increased, the

image begins to deviate from the diffraction pattern. For large

telescopes, the image is a blur, which wanders randomly. While

image blurring and image wander seem to be different phenomena,

both are caused by phase fluctuations. Fluctuations of scale

sizes smaller than the telescope aperture cause bluring while

fluctuations larger than the telescope aperture produce image

wander.

This section is a review of the study of phase fluctuations

caused by atmospheric turbulence. The first subsection describes

the phase structure function calculated using the Rytov method

and other theoretical results. The relation of the phase

structure function to image bluring, image wander, as well as the

phase correlation length is discussed. The second subsection
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discusses the time dependence of phase fluctuations. It has long

been realized that the angular resolution of ground based

instruments need not be limited to the size of the blur caused by

turbulence. The third subsection reviews several techniques

currently used to achieve diffraction limited performance, such

as amplitude interferometery, speckle interferometery and active

wavefront correction. So far, I have only discussed the

distortion of a plane wave as it traverses the atmosphere. If an

astronomical object has large angular dimensions, the light from

one side of the object will distorted in a significantly

different way than the light from the opposite side. The last

subsection reviews the recent work on this problem often refered

to as the isoplanatic patch problem.

II.B.1 Theory of Phase Fluctuations

The study of phase fluctuations in principle is very similar

to the study of scintillation. However, several differences

should be mentioned. Variations in the delay through the

atmosphere are extremely large (10cm/C). At visible wavelengths

the phase delay is meaningless. In fact, phase delay through the

atmosphere is determined by weather conditions and gross motion

of the atmosphere rather than turbulence. The study of phase

fluctuations at optical wavelengths is therefore limited to phase
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differences between points.

II.B.1.a Phase Structure Function

The function that is studied is therefore the phase

structure function defined by eq. 11.16.

D+co < K Or) fdi. t

r= I i,-Vw

The probability distribution for phase differences, using the

same arguements for scintillation, should be a normal

distribution. However, in general, the phase differences are

much larger than 21'f and therefore the distribution modulo 2'f

will be almost uniform. The phase structure function has been

calculated using the Rytov method[9J. Eq. 11.17 is the

expression for the structure function relevant to astronomical

observations.

D ( cr) .9% y J 6 Lcch Il

/- Loi9A of turbedCe

II.B.1.b Applications of the Phase Structure Function

The importance of the phase structure function comes from

the fact that it may be used to calculate a large number of

parameters relevant to both imaging telescopes and stellar
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interferometers. One application is to find the phase coherence

length. The phase coherence length as defined by Fried [31] is

the diameter of the telescope at which the RMS phase error

averaged over the aperture is one radian eq. 11.18.

K Jf dxd 'ac(, ( 04)& ?5 =/ 32L/a

where A(x,y) is the aperture function

A(x,y)= 1 (x+yP<r

S=0 > r

c is the average phase over the aperture

< >represents ensemble average

Fried [31) derived an expression for the phase coherence length

r. eq. 11.19.

\ .9 &JCidSi)

k=2-e/X

A simple substitution of Dp for (4(x,y)-5) yields an expression

similar to eq. 11.19 except the constant 6.88 is replaced by

5.82.

Several properties have been shown to apply to the quantity

r.. The resolution of a long exposure photograph was shown to be

equal to the diffraction limited resolution of a telescope with a

diameter of r-[31J. The average gain of an antenna for a static
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optical heterodyne receiver could not exceed that of a receiver

of diameter r in free space. An analysis of the geometry of the

phase distortion [32] showed that the bulk of the phase

distortion for small apertures was tilt. If the tilt is removed,

the maximum effective aperture was 3.4 r0 [32] for a optical

heterodyne receiver.

In terms of maximum effective aperture, the relation between

an optical heterodyne receiver and a stellar interferometer is a

close one. In a stellar interferometer, starlight from two

spatially separated apertures are combined at a photodetector.

For a heterodyne receiver, light from the external source is

mixed with light from a laser at the photodetector. In both

cases, the interfering wavefronts must be parallel across the

sensitive area of the detector. For a stellar interferometer,

both wavefronts are distorted by turbulence, while for a

heterodyne receiver, the laser wavefront is plane. The maximum

effective aperture for a stellar interferometer could be defined

by eq. 11.20.

K jfdxayAci (c(-&r4 r.f ) to

A(x,y) is the aperture function

r' is the baseline vector

is the difference of the average phases at

the two apertures
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For a long baseline interferometer, the fluctuations at the two

apertures would be uncorrelated. Hence, the mean square phase

difference is twice as large as for eq. 11.18. Modifying eq.

11.19 for this factor of 2 yields eq. 11.21.

Y' --OR1 V

Since the interferometer has two apertures, the ratio of the

maximum effective area for a heterodyne receiver and

interferometer is eq. 11.22.

2.

The parameter r, is the maximum effective aperture for a static

interferometer and 3.4r, for an interferometer with high speed

angle trackers.

For ground to ground paths it is often possible to measure

Cn .However, for astronomical measurements the maximum aperture

must be determined by seeing measurements. Eq. 11.23 defines the

quantity "seeing" and eq 11.24 is the expression derived in

reference [31J relating seeing to r,.

L 1 AtL ( o 100 4 OCIO4Wittr
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r, ,r, , in cm, A in.,u , 2Or in arc sec

The quantity defined by 11.23 is the diameter of the blur of

a stellar image of a long exposure photograph taken with a small

telescope. While precise seeing measurements have been made at a

number of observatories, the seeing, as recorded nightly at

individual telescopes is usually the diameter of the blur as seen

by the astronomer through the telescope eyepiece. The diameter

of a stellar image depends on the size of a telescope and the

time constant of the detector. For a short exposure, wavefront

tilt results in a translation of the image without bluring. As

mentioned previously, phase fluctuations on a scale smaller than

the telescope aperture causes bluring while fluctuations on a

scale larger than the aperture cause image motion. Therefore,

fluctuations which cause bluring on a large telescope cause image

wander on a small telescope.

It has been shown (32] that the best short exposure

resolution is obtained with a telescope of diameter 3.8 r0 where

the resolution is equivalent to a telescope of 1.9 r. in free

space. For a long exposure image, image wander as well as image

bluring will contribute to the degradation of the recorded

image. The long exposure blur therefore should be independent of

telescope size.

In the preceeding paragraphs, the words long, short, large
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and small were undefined. It is possible to define these words in

terms of r. , the phase correlation length, Lo, the outer scale

and the V, wind speed. Small apertures refer to apertures where

wavefront tilt is the dominant form of wavefront distortion. Very

large apertures refer to sizes comparable to L0. Using Taylor's

hypothesis of frozen turbulence, short exposures would imply a

time scale of Z. r. /V and long exposures > L0 /V.

II.B.2 Temporal Structure of Phase Fluctuations

The derivation of the temporal spectrum of phase

fluctuations is similar to the derivation for scintillation.

Taylor's hypothesis is expressed as eq. 11.25.

4c r,t)=rf V 4 r vtYt-) .. 25

The temporal autocorrelation for phase is therefore eq. 11.26.

R 0 'r (#r)/ r)(Mer) ItVri JLQ

For many applications the quantity of interest is not R4(T) but

the temporal autocorrelation of the phase difference at two

points as defined by eq. 11.27.

r, ) =<tCr~t)-#C~, )]4't+ r) . n tt'nl> It. z
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Tatarski [13) showed that this is eq. 11.28.

Ground to ground measurements of R(V) have been made [33]

and these measurements are in good agreement with theory. There

have been no measurements of RS CT ) that can be directly

compared with theory.

Eq. II.28 is very closely related to the angle of arrival

temporal autocorrelation. If a telescope is used to measure the

angle of arrival, the measured quantity is the average tilt of

the wavefront over the telescope aperture. If an interferometer

is used to measure the angle of arrival, the measured quantity is

the difference of the average phase at one aperture and the

average phase at the second aperture.

A large aperture telescope measures the average tilt over a

large area and hence the variance of the angle of arrival should

be smaller. This is similar to the aperture averaging effect in

scintillation. Unlike scintillation, which is correlated over 7-8

cm, phase fluctuations are correlated at great distances out to

the outer scale of turbulence. The quantity r represents the

distance at which the correlation is so high that phase

differences are much less than a wavelength of light, hence r0 is

a function of wavelength. The variance of the angle of arrival of

a telescope as a function of diameter is given by eq. 11.29
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[13J.

The reason the variance of the angle of arrival decreases so

slowly with increasing aperture is because most of the

fluctuations in the angle of arrival is caused by turbulence of

very large scale sizes. As a result, the accuracy of astrometric

measurements, if they are limited by atmospheric turbulence,

would not improve dramatically with the use of larger

telescopes.

The spatial averaging of a large telescope aperture becomes

a temporal average when Taylor's hypothesis is applied. Hence,

image motion is slower for a large telescope than a small

telescope. For an interferometer, no spatial and hence no

temporal averaging occures. The temporal autocorrelation of the

angle of arrival of an interferometer is eq. 11.30.

II.B.3 High Resolution Instruments

Although work on a quantitative theory of atmospheric seeing

did not begin until the 1950's, techniques to overcome the

effects of turbulence. date back to the 1860's when Fizeau [2)
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suggested the use of a stellar interferometer to measure stellar

diameters. At the present time a number of different methods are

being used to overcome the effects of turbulence. While it is not

practical to review all of the techniques that have been proposed

to obtain high spatial resolution through the turbulent

atmosphere, the three most widely used techniques, Michelson

stellar interferometry, speckle interferometry, and real time

phase correction will be discussed.

II.B.3.a Michelson Stellar Interferometer

Fizeau [2] was the first to suggest the use of an

interferometer for measureing stellar diameters. The

interferometer was a variation of Young's double slit

interferometer. In 1874, Stephan (34] used a telescope as an

interferometer by placing a screen with two holes in front of the

telescope objective Fig. II.1. However, the baseline of his

interferometer was insufficient to resolve any star. After some

priliminary measurements with an interferometer similar to

Stephen's, Michelson and Pease built the 20 foot interferometer

shown in Fig. 11.2. In 1921, they published the first measurement

of a star's diameter [3] (other than the Sun).

Michelson's 20 foot interferometer was mounted on the 100

inch telescope on Mount Wilson. The light from the two entrance

apertures were brought together at the focal plane of the

telescope. If the pathlengths of the two interfering beams
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differed by less than a few wavelengths, fringes would observed.

The baseline was oriented in a north-south direction so that

telescope drive errors would only produce a second order error in

the relative pathlength of light. The fringe spacing is

determined by the angle between the interfering beams according

to eq. 11.31.

The quantity measured was the fringe visibility. The fringe

visibility for an interferometer with a baseline D is the

absolute value of the fourier component corresponding to the

angular frequency D/X cycles per radian. Michelson assumed that

the star was a circular disk. Hence, the fringe visibility should

have a minimum value at D= 1.22 X/0 where 0 is the angular

diameter of the star. The procedure for measuring the diameter of

a star is to increase the baseline D until the fringes

disappear.

Why doesn't the Michelson stellar interferometer suffer the

same effects of atmospheric turbulence which plague ordinary

telescopes? The reason is that the apertures were chosen to be

smaller than-*'r0 (defined in II.B.1.b) and phase distortion over

each of the apertures is much less than X . In addition the

average phase difference (square root of the phase structure

function) between the two apertures was sufficiently small for

temporal coherence to be maintained.
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In 1923, Pease began construction of a 50 foot

interferometer. Two design changes between the 20 foot

instrument and the 50 foot instrument resulted in an instrument

that was much more difficult into operate (see Kababian [4]).

Since the baseline of the 50 foot interferometer was oriented in

a east-west direction, telescope drive errors had a first order

effect on the relative path lengths rather than the second order

effects of the north-south 20 foot interferometer. The 50 foot

instrument also suffered a reduction in fringe visibility due to

polarization effects. For stars at a declination of 45 the two

images of the star that are superposed are rotated 90 degrees

relative to each other, hence the fringe visibility would be

zero.

The major difference between Michelson's 20 foot

interferometer and Stephan's interferometer is the use of

extension arms by Michelson to obtain a sufficiently long

baseline to resolve Alpha Orionis. Interestingly several modern

stellar interferometers are patterned after Stephan's

interferometer rather than Michelson's, these include the

interferometers built by Currie (35] and Low [36]. The different

configurations for long baseline interferometers, interferometers

not attached to existing telescopes, was studied by Kababian (4]

and will be reviewed in chap 4.

II.B.3.b Speckle Interferometer
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Speckle interferometry is a technique which obtains high

spatial resolution information from the grains or speckles is a

stellar image. A stellar speckle photograph is a short exposure

photograph taken with a narrow bandpass filter. The stellar

speckles are the same as laser speckles observed when a laser

beam is reflected from a diffuse surface. Stellar speckles have

been observed for some time, in particular, Debrus [37] in 1969

showed that the speckle pattern of a double star, two identical

patterns laterally displaced, could be analyzed to measure

angular separations smaller than the seeing blur. Labeyrie [38]

devised a more general procedure for analysing speckle patterns.

The method measures the spatial power spectrum of an

astronomical object. The speckle technique assumes that the

speckle pattern may be expressed as a convolution of the object

and a point spread function eq. 11.32.

I= Qg G
iWka'c. 0 L.Obija44tiutiv %nwi.ct ibtU61&t ,v

t1 i. IL. C cic*s pI&Aftc

Ca & ?Js prc.4 u&aIrcb%

Eq. 11.32 is not always valid since it assumes that the field of

view is within a single isoplanatic patch. This is discussed in

greater detail in (II.B.4) The fourier transform of eq. 11.32 is

eq. 11.33.

dcrwitc4 faurier 'transl'.tmn

It is well known that the resolution of a long exposure
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(I(x,y)> is limited by turbulence. Labeyrie's technique is to

average the power spectra < I I> rather than the image. For

normalization purposes, the average power spectrum of an

unresolved star must also be recorded, although not at the same

time. The power spectrum of the object is expressed in eq.

11.34.

Since the images of the target star and the reference star are

not recorded simultaneously, it is necessary to assume that

< IGI>, the time averaged power spectrum of the telescope and

atmosphere impulse response is constant. The speckle processing

procedure is usually implimented with a coherent optical analog

computer. Several digital signal processors have also been built

[39].

Because of the ease of speckle interferometry relative to

other spatial interferometers, the technique has been extensively

studied. The function < G >. has been calculated, assuming a

Kolmogorov turbulence spectrum, and using the Rytov method [40].

At high spatial frequencies, the function has the form of eq.

II. 35.
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N is the average number of speckles or A/r( Yo/2)

where A is the area of the telescope

T7f) is the optical transfer function of the telescope

(fourier transform of a point diffraction pattern)

In addition the signal to noise ratio R at low light levels has

been calculated [41] to be eq. 11.36.

Ps.-r.5)fK) t f0 j7CT
+ tNs Tcy)

Ns average number of photons detected per speckle

Ni is the number of speckle pictures averaged

From eq. 11.36, we see that even at high light levels, a moderate

number (50-100) of speckle pictures are necessary to average out

the "atmospheric" noise. At low light levels the signal to noise

ratio is proportional to the average number of photons per

speckle (not the square root of the number). This is the same as

for the intensity interferometer of Brown and Twiss (see

11.B. 3.d).
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This may understood with the following arguement. If only

one photon is detected in the image of a double star, the only

information we can deduce is that one star exists. The angular

separation of the double star can be estimated only if two or

more photons are detected. To generalize, in determining the

shape of an object, the signal to noise ratio is proportional to

the square root of the fraction of speckles for which two or more

photons have been detected. When the average number of detected

photons per speckle is less than one the vast majority of

speckles will have 0 or 1 detected photons and hence be useless

in determining the shape of the object. For very low light

levels, the probability of detecting 3 or more photons per

speckle is negligibly small and the signal to noise ratio is

proportional to the photon flux eq. 11.37.

the quantity inside [N is the poisson probability for

detecting two photons.

II.B.3.b.1 Variations of the Speckle Technique

In the recent past, numerous (42] techniques have been

proposed to extract phase and not just power spectra information

from the speckle pattern. The measurement of phase is

qualitatively different from amplitude or power measurements. If
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single speckle photograph, it is no longer possible to increase

the accuracy of the phase measurement by averaging a large number

of independent. measurements.

Since the speckles are a result of interference effects,

temporal coherence conditions must be met. Most speckle

observations with large telescopes use narrow bandwidth filters,

a

100 A to 250A wide, to maintain temporal coherence. The narrow

band widths are necessary because of the path length errors

produced by turbulence. If the speckles were visible in white

light, the sensitivity of speckle imaging techniques would be

enhanced. Speckle processing of the output of a real time phase

compensation system, used not to produce diffraction limited

images but to maintain temporal coherence, would be a way of

obtaining the advantages of both active and passive systems.

II.B.3.c Real Time Phase Compensation

All the high resolution techniques described so far are

passive measurement systems. Since the low resolution of ordinary

telescopes are primarily caused by phase front distortion, phase

compensation would result in a diffraction limited image. This

was first suggested by Babcock in 1953 [43].

A real time phase compensation system consists of a

wavefront sensor, a wavefront corrector, usually a "rubber"

mirror, and a control system which uses the wavefront sensor data

to actuate the wavefront corrector. Since the phase correlation
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length r, is typically 10 cm a large telescope such as a 5 meter

telescope would require thousands of correcting elements. The

components necessary to build a phase compensation system has

only recently become available. In many cases, the technology for

the components was developed as the need arose. Because of the

complexity and cost of a phase compensation system, most of the

research has been conducted outside of the astronomy community.

The advantage of phase compensation over passive "speckle"

imaging is that the optical bandwidth of the detectors need not

be limited to 100-200 A since temporal coherence is maintained

by a servo. The disadvantage of most phase compensation systems

is that diffraction limited images are achieved only if the

residual phase front errors are less than 0.1 X . This would

require the phase front measurement system to be much more

-accurate than 0.1A for any realizable control system. .Since the

accuracy of the wavefront sensor is photon noise limited, the

sensitivity of an active system is degraded by an amount that is

the difference between the measurement error and servo control

error.

Dozens of phase compensation systems have been proposed.

Successful operation of two image sharpening systems on small

telescopes have been reported [44,45]. There is little doubt,

given the enormous research effort in this area, that diffraction

limited imaging on large telescopes will be achieved, at least

for bright stars.

Both phase compensation and speckle imaging are severely
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limited by two constraints. The first is sensitivity, which would

probably be highest for a combined active-passive system. However

any phase measurement system is probably limited toAI0 mag

stars. The second limitation is the isoplanatic patch limitation

(see II.C) which limits the field of view to a few are seconds.

II.B.3.d Narrow Bandwidth Instruments

The high resolution instruments described in the previous

three subsections are all mechanically precise instruments.

Mechanical precision is required because temporal coherence must

be maintained. Another way to maintain temporal coherence is to

use a detector with a very narrow effective optical bandwidth.

Two examples of narrow band optical interferometers are the

Hanbury Brown and Twiss intensity interferometer [46] and the

infrared heterodyne interferometer [47].

The arguement for developing a narrow band interferometer is

that the high mechanical precision (20 micron) of passive

interferometers, and the very high precision (0.1 micron) of

phase compensation systems cannot be achieved for a long baseline

interferometer. While this was true in the 1950's when the

intensity interferometer was first proposed, many scientists do

not share this opinion at the present time.

For temporal coherence to be maintained, ALAv, the product

of the pathlength difference between the interfering beams and

the optical bandwidth, must be less than C. For both the
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intensity interferometer and the heterodyne interferometer, AL is

a few centimeters and is determined by instrumental uncertainties

such as the length of the coaxial cables and the position of the

telescopes rather than by atmospheric turbulence. AV is limited

by the electrical bandwidth of the detectors (photodiode and

photomultiplier) rather than the AL of the instrument. Despite

the great historical importance of the intensity interferometer,

the following discussion of narrow band interferometers will be

brief.

The intensity interferometer was first proposed as a radio

interferometer [48] to overcome the problem of variations in

cable delay. Later, [46] Brown and Twiss showed that the

intensity interferometer should work in the visible (Fig. 11.3).

The correlation of photon arrivals at two detectors from a

coherent source (both spatially and temporally) was a

controversial topic in 1958.

Let the intensity of light at one telescope be I (t) and

define the fluctuations in intensity by eq. 11.38.

Brown and Twiss [46] showed that the correlation function of the

fluctuations was the square of the mutual coherence. If temporal

coherence is maintained, the correlation is the square of the

spatial coherence (square of Michelson's fringe visibility) eq.

II.39.
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The effective optical bandwidth is the same as the electrical

bandwidth of the system which is limited by the electrical

bandwidth of the detector (~w1 GHz). Because of the high gain and

low noise of the electron multiplier in the phototubes, the

system was photon noise limited.

The infrared heterodyne interferometer [47) is very similar

to a radio interferometer. Stellar radiation is mixed with the

local oscillator (a C02 laser) on the face of a photodiode. The

two local oscillators for the two telescopes are phase locked.

The down-converted signals from the two telescopes are amplified

and processed in the same way as in a radio interferomter. The

instrument can measure phase, and amplitude and can also be used

as an intensity interferometer.

The ouput of the photomixer is proportional to the product

of the stellar field and the local oscillator field. By using a

high power local oscillator, the photomixer output can in theory,

be increased to the point where the dominent noise source of the

system is stellar photon noise. The effective optical bandwidth

is limited by the photomixer (1 GHz) [49). Because a heterodyne

receiver is capable of near photon noise limited operation in the

infrared, the huge difference in the bandwidth between a

heterodyne interferometer and an ordinary Michelson

interferometer does not accurately reflect the relative
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sensitivity of the two instruments.

However, the relative sensitivity of a visible wideband

interferometer versus a heterodyne interferometer is easily

calculated from bandwidth and quantum efficiency data. The wide

band instrument is more sensitive by aproximately 6.*10

II.C Isoplanatism

As mentioned earlier, the field of view of speckle and many

other high resolution techniques is limited to typically a few

are seconds. Because of the superposition priciple, it is

possible to express the image at the focal plane of a telescope

as eq. 11.40.

0 C14 u' (E(U,'/) CcJ~

LLjC w+r aslrttov

tiie ab 3J e.r realt&nct

where G is the atmosphere-telescope Green's function

If the Green's function is shift invariant, eq. 11.40 becomes a

convolution. This is the assumption of speckle interferometry

(eq. 11.32), and other high resolution techniques. The

isoplanatic patch is the area over which the green's function is

shift invariant.

If atmospheric turbulence were concentrated at a single thin

layer near the telescope, the whole sky would be isoplanatic. In

reality, turbulence exist throughout the troposphere up to an

altitude of 10 Km or more. Isoplanatism has been studied by a
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number of researchers (50-52]. Several different approaches to

the subject have been taken.

One approach is to quantify the degree of isoplanatism, in

terms of the loss of high resolution information as the field of

view is increased, or in terms of the correlation of the

irradiance patterns of two stars as a function of the angular

separation of those two stars[52 ]. For a telescope with a

diameter less than r0 the resolution is limited by diffraction

ard not atmospheric turbulence hence the whole sky is

isoplanatic.

If we only consider large aperture instruments (>>ro),

isoplanatism can be defined in the following way. Consider a

point source on the ground. A spherical wavefront is emitted.

The wavefront is progressively distorted by turbulence until the

wavefront is above the atmosphere. The size of the isoplanatic

patch can be defined as the solid angle over which the rms

wavefront distortion is 1 radian or less. Using a similar

definition, Shapiro 151] has calculated the size of the

isoplanatic patch to be eq. 11.41 for vertical propagation.

a

H u 11L44 afjau. ,Ku;kr'

ie, 10tk% F14.j,* wJ Aew & rt ,rJuA4
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If we assume H=10 Km , r. =0.1 m, the diameter of the patch is

1
2.5 are see. Note that since ro increases with increasing

wavelength the isoplanatic patch also increases with wavelength.
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III Conventional Astrometry

Astrometry, the oldest branch of astronomy, has been studied

for over two thousand years. In the past, significant advances in

astrometry instrumentation, such as the invention of the

telescope and the use of photographic film have resulted in new

discoveries. The purpose of this chapter is to review the current

state of astrometric instruments and to provide a historical

background for the astrometric interferometer.

III.A Conventional Instruments

A large number of astrometric instruments are currently in

use. These instruments fall into two catagories. The first

catagory includes instruments such as transit telescopes, zenith

telescopes, and astrolabes. These instruments are used for

absolute astrometry, relating the position of stars to the

earth's rotation axis. Instruments in the second catagory are

used for relative astrometry. While absolute astrometry is an

important part of astrometry, this review will concentrate on

relative astrometry instruments since the astrometric

interferometer can only make relative measurements.

For many decades after the turn of the century, the primary

astrometric instrument was the long focus camera. The use of long

focus refracting telescopes was due to the work of Schlesinger
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[53J who analyzed the errors in the instrument and devised

methods in both data collection and analysis to minimize these

errors. In more recent times, astrometric telescopes have been

built using moderate aperture (>1 meter) reflectors instead of

small refractors[54].

In the late 1960's photoelectric astrometric instruments

were proposed to replace photographic instrument. This was in

part a response to the measurement of solar oblateness by Dicke

[55). The subsequent measurement of solar oblateness by Hill et.

al. [56] was qualitatively different from Dicke's original

measurement. The goal of the photoelectric instruments such as

SCLERA is to achieve astrometric accuracies limited only by

atmospheric turbulence. The next two sections of this chapter

will describe first the systematic errors of photographic

instruments and second the ultimate performance of photoelectric

instruments.

III.B Systematic Errors in Photographic Astrometry

In photographic astrometry, the position of stars are

determined by measuring the position of stellar images on a

plate. Corrections are made for tangent plane distortion and

abberations in the optics. Errors due to mechanical flexure are

minimized by taking all photographs of a star only over a narrow

range of hour angles usually near transit. While it is not

possible to list all possible sources of systematic error, the
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more important ones will be mentioned. 

The magnitude error is caused by telescope guiding errors. 
If the tracking is not perfect, the star's image will be smeared, 
usually in an asymmetric manner. This blur should be identical 
for all the stars on the plate. While the relative positions of 
the centroids of the blurs would �emain constant if a linear 
detector is used, photographic film is logarithmic detector, As a 
result, the measurements of an astrometric plate where the 
intensity of the target star has been attenuated to the same 
magnitude of the reference stars is more accurate than a normal 
photograph such as a Palomar Sky Survey plate. On reflecting 
telescopes, c•ma produces an asymetric image and as a result 
produces an offset in the star's position which is dependent on 
the position of the star in the field of view and the magnitude 
of the star. Typical errors from the magnitude effect are 0.1 
arc sec per magnitude if left uncorrected. 

A second source of error is emulsign shift, The gelatin in 
which the silver grains are embedded is soft during film 
development and the amount •f shift depends on a large number of 
variables such as the angle at which the plate was held when it 
was dried. Although this source �f error may be as large as 0,02 
arc sec [57], the effect is small and was not noticed for many 
decades of photographic work, A number of techniques are used to 
minimize the error due to emulsion shift, A common technique is 
to take multiple exposures of the same star field with the s�me 
photographic plate in different orientations, 
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A third source of error is caused by chromatic effects. 
Chromatic effects arise from atmsopheric dispersion as well as 
dispersive effects in refracting telescopes. Stars of different 
spectral type will suffer different amounts of refraction by the 
atmosphere. To make matters worse, most photographic plates are 
more sensitive in the blue region of the spectrum where the 
atmospheric dispersion is greatest. To minimize chromatic 
effects, astrometric photographs are taken through a narrow band 

• .. 0 pass filter, usually 600 A wide cP.ntered at 5600 A [58]. In 
addition, the reference stars are usually chosen to approximate 
the color of the target star. As an example of the size of this .. effect, a shift of the effective wavelength of 50 A for a star 20 
degrees from the zenith would produce an error of 0.036 arc sec. 

Differential atmospheric refraction is also a potential 
source of error. For a 0.5 degree field of view, the effect is 
approximately 0.5 arc sec (near zenith). Typical day to day 
changes in the pressure of 4$ would produce astrometric errors of 
0.02 arc sec. However, modern data analysis techniques use a 
large number stars to model the distortion of the atmosphere 
caused by major weather patterns. 

Until about a dozen years ago, the positions of stellar 
images were measured by hand and this was considered a

significant source of error. With automatic laser monitored 
measuring engines, this source of error has almost disappeared. 

III.C Ultimate Accuracy of Conventional Instruments
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The discovery and elimination of systematic errors in

photographic astrometry made it possible to average years of data

to increase accuracy. To futher increase accuracy, many

observatories began extended observing programs averaging data

taken over a period of decades. The study of systematic errors

became even more important since the usefulness of decades of

data depends on the understanding and elimination of systematic

errors.

In the late sixties, another approach to high accuracy was

proposed. The goal was to construct a photoelectric astrometric

instrument whose accuracy was limited only by atmospheric

turbulence and hence achieve 0.001 are see accuracy in days to

weeks of observation instead of years and decades of observation.

One such instrument SCLERA has been built [59], and has been used

primarily for solar oblateness measurements. This section

estimates the ultimate performance of a turbulence limited

instrument, for comparison with the astrometric interferometer.

Turbulence limited instruments such as SCLERA eliminate

known systematic errors in a number of ways. Mechanical errors

are eliminated by positioning the telescope permanently in a

vertical position and using alt-az siderostat or heliostat

mirrors to direct the light into the telescope. Thermal effects

are minimized by using low expansion materials and placing the

telescope in a temperature controlled enviorment. A photoelectric

detector on an interferometric measuring engine is used in place

of the photographic plate eliminating the magnitude error and
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emulsion shift error. Chromatic effects are minimized by using

narrow bandpass filters and recording the spectrum of the stars.

Differential refraction can be minimized by measuring the local

pressure, temperature azid humidity (or local index of refraction

of air). In addition, SCLERA is enclosed in a vacuum system,

including siderostat mirrors.

Before evaluating the performance of a turbulence limited

instrument, we will difine the following quantities.

0< (t) C&(t) )<-I0(!LO9 It)

lkga.fluT<ax(jt)aQCttZ)>L22.

R is the temporal autocorrelation function

(> denotes ensemble average

For a measurement of duration T, the expected error in one

coordinate due to atmospheric turbulence defined by eq. 111.3.

aoe)r< T T ct) 4Tt>1U3

This may be rewritten as eq. 111.4.
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9-T Cr ) = (t.-tin)A1

Since phase fluctuations are correlated over distances out to the

outer scale of turbulence, each measurement of duration T is not

independent of other such measurements unless T>TO, where TO is

the wind speed divided by the outer scale. For measurement times

much longer than TO the error will decrease as IT.

The integral in eq. 111.4 was evaluated numerically using

measurements of R, from Wallace Observatory (see Chap 6). The

accuracy of a one second measurement at Wallace Observatory was

1.6 are see for 4.5 arc see seeing. However, for relative

astrometry over a small field of view, a part of the image motion

will be correlated over the whole field of view. Kolchinskii [60]

has studied the correlation of image motion and found a 50%

correlation for stars separated by 10 arc min. Hence the accuracy

of relative astrometry for 4.5 are see seeing is 0.8 arc see for

a one second measurement in a 10 arc min field. For 1 arc sec

seeing, the accuracy would be 0.18 arc sec and 0.001 arc see

accuracy would require 9 hr of observation. For 2 are see seeing

36 hours would be necessary.

Accuracies of 0.03 are sec in 4 min of observation with

SCLERA has been reported for a 0.5 degree field of view and 2 arc

sec seeing. This is close to the estmate in the preceeding

paragraph (0.03 are see in 2.4 min). At much higher accuracies,

SCLERA is limited by systematic errors and not turbulence.
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Probable errors of 0.012 arc sec were reported [56] for solar

oblateness measurement after 12 days of observation. However, a

major part this error was due to the difficulty of measuring an

edge of the sun, and the possibility of excess equatorial

brightness. Stellar measurements would probably be more

accurate.

III.D The Accuracy of Conventional Instruments

The random and systematic errors which limit the accuracy of

conventional instruments has been reviewed. However, even if all

known systematic errors are corrected to 0.001 arc sec and random

errors are below 0.001 arc sec the true accuracy of a measurement

may be significantly worse than 0.001 arc sec.

Analysis of photographic data has shown that the achievable

accuracy for one night of observation is limited to 0.02 arc

sec[61] independent of the number of plates taken. This was

calculated by comparing data from photographs of the same star

field with the same telescope taken over a period of years. The

same study showed that a yearly limit of 0.002 are see also

exists. Unfortunately, most of the historical data used in this

analysis did not include local weather information (see III.B

atmospheric refraction) and more recent photographic measurements

may be more accurate.

In the measurement of parallax by photographic astrometry,

the relative parallax of the target star is determined by the
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motion of the target star relative to background or reference

stars. The motion is an elipse. Measurement of either the major

or minor axis of the eslipse is sufficient to determine the

parallax. Comparing the two determinations provides a check on

the consistancy of the data. Typical errors are 2-3 x 1' arc

sec for parallax deterinations involving several years of data.

These estimates of the accuracy of photographic astrometry,

internal consistancy of data taken at a single observatory, are

quite different from the estimates of external errors, errors

calculated by comparing data from more than one observatory.

Vaselevskis [1] in the early 1960's compared the parallax

determinations from 6 observatories. The differences averaged

(rms) 0.018 arc sec significantly larger than the 0.002 to 0.003

arc sec internal agreements. The differences between repeated

measurements at the same observatory were only slightly better. A

more recent study (1976) [62] of external errors in the General

Catalog of Trigonometric Parallaxes (1963) reports the mean error

to be 0.016 arc sec.

In conclusion, the accuracy of photographic techniques could

be anywhere from 0.002 to 0.016 arc sec. For a few isolated cases

such as Barnard's star the lower number may be correct, although

measurements at Allegheny (63] do not confirm the measurements at

Sproul [64]. Photoelectric instruments are probably much more

accurate but at the present, SCLERA, the only photoelectric

instrument is not conducting a parallax program.
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IV Astrometric Interferometer

In chapter three we saw that the accuracy of modern

astrometric instruments now approach the limit imposed by

atmospheric turbulence. However, a number of instruments (II.B.3)

are capable of overcoming the deleterious effects of the

atmosphere. It is therefore only natural to try adapt a high

resolution instrument for astrometry. The idea for using a

Michelson stellar interferometer for astrometry probably dates

back to Michelson. However, serious attention has not been given

to an astrometric interferometer for a number of reasons. First,

long baseline interferometers are difficult to build because of

the requirements of temporal coherence. The most serious problem

however, was the isoplanatic patch problem discussed in section

II.C.

This chapter describes an astrometric interferometer that

theoretically can achieve 1iO are see accuracy. The first

section describes the principles of the astrometric

interferometer. This includes the detection and measurement of

fringe position at low light levels, astrometry with

interferometers, and the two color technique for correction of

nonisoplanatic errors. The second section discusses the

limitations imposed on the operations of the astrometric

interferometer by atmospheric turbulence. The magnitude limit

and accuracy of the astrometric interferometer are estimated.

The third section is a brief analysis of the major systematic
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errors of an astrometric interfereomter. The errors from the

laser reference interferometer, the calculation of baseline

coordinates, and the instabilities of the pedestals are

analysed.

IV.A Principle of the Astrometric Interferometer

IV.A.1 Fringe Detection and Position Measurement

A simplified optical schematic of an astrometric

interferometer is shown in fig. IV.1. Star light entering the

instrument at two entrance apertures, are linearly added at the

beam splitter. The output of the beam splitter is then focused

onto a photomultiplier. If we assume the star is an unresolved

spatially coherent source, the photocurrent from the

photomultiplier will only be a function of the path length

difference T, between the two interfering beams. For starlight,

which is not monochromatic, the detegtor output as a function of

t ,delay, is the fourier transform of the spectrum eq. (IV.1).

.(T) J ZCV) Ccos n t + g

.ScY3 zo t4 speetrus Cf -iAe s'ta

From eq. IV.1 we see that the detector output is a maximum if the

quantity t =0. In addition if I(v), the spectrum of the star, is
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centered around ))4 then the output would have other maxima at

T=n*c/90 , and would have minima at T =(n+1/2)'c/i4 , where n is

an integer. The central maxima or central fringe would be the

largest. The position of the central fringe of a star, which

depends on the position of the star and the orientation of the

baseline, can be defined as the position of the programmable

delay line that results in the maximum detector output.

In practice it is extremely difficult to position the delay

line with a servo system to the center of the fringe to within a

small fraction of a wavelength. However, as long as the

positioning error (servo error) is known, the size of the

positioning error is unimportant. The achievable accuracy is

therefore determined by the noise in the measurement of the servo

error.

A method for tracking fringes is the following. The path

length in one arm of the interferometer is modulated by a

triangle wave with peak to peak amplitude X. Each sweep of the

modulator is divided into four intervals, and the number of

photons detected during these intervals, i.e., A, B, C, D, is

used to estimate the intensity of light, N, the photon noise

level, the fringe visibility V, and the fringe phase , eq. IV.2

to IV.4.

/V= At.etC÷,D
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[C-c (-b) w 3t

The measurement of fringe phase must be made on a time scale

sufficiently short to freeze atmospheric turbulence (10 msec).

The need to make phase measurements on a short time scale sets a

stellar magnitude limit for this type of instrument (see

IV.B.1).

IV.A.2 Astrometry with an Interferometer

If we assign the value 0 to the position of the central

fringe when the star's position is perpendicular to the baseline,

eq. IV.5 then defines the relation between the fringe position

and the star's position and the baseline length and orientation.

Frinyc IPds~ion a .5 B

L. a u~tir irc r4 to te star

' b 7%c L>ose Lie Qecktor

A single measurement of the fringe position would not be

aufficient to determine the position of a star since 5 contains
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two independent variables. If the baseline vector were always

known, two measurements of the fringe postion at two different

baseline orientations would be sufficient to determine the

coordinates of the star. In general, however, neither the

baseline nor the star's position are known relative to an

inertial reference frame. Hence the absolute position of a star

may not be determined without additional information. If we make

simultaneous measurements of the fringe positions of a number of

stars, it is then possible to determine the relative positions of

the stars. Each measurement of a fringe position of star i at the

j'th baseline is represented by eq. IV.6. Each star represents

two unknowns, and each new baseline orientation represents 2 new

unknowns. The total number of baseline unknowns is 2j-3. In

order to find the relative positions of the stars the number of

measurements must be larger than the number of unknowns. This is

represented by eq. IV.7.

It is impossible to measure the fringe position of i stars

simultaneously with one interferometer. A switching scheme must

therefore be used to make quasisimultaneous measurements.

Optical interferornetric astrometry is similar to radio VLBI
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(very long baseline interferometry) astrometry. The most

important difference is that radio VLBI uses very long baselines

and are much less sensitive small lateral displacements of the

collecting apertures. For example, 10' arc sec times 5000 km is

2.4 mm while 10 arc sec times a 10 meter optical baseline is 5

nanometers. In radio VLBI, it is possible to model baseline

motion with earth rotation and solid earth tide. In the optical,

the baseline as determined by the position of the end mirrors

must be measured to very high accuracy (see sec. IV.C.2).

IV.A.3 Correction of Nonisoplanatic Errors

The measurement of fringe phase that was described in IV.A.1

yields the fringe position after the light has traversed tens of

kilometers of atmosphere. While the average atmospheric

refraction near zenith may perhaps be calculated to 10 arc sec

accuracy with the use of meterological data, the fringe position

caused by turbulence still persists. If a simultaneous

differential fringe position measurement were performed between

two stars, the isoplanatic limitations would restrict the field

of view to a few arc seconds. If high accuracy for large fields

of view is achieved by averaging the turbulent motion, this

atmospherically limited performance would be approximately the

same as for the other photoelectric astrometric instruments such

as SCLERA, which was mentioned earlier. This problem can be

bypassed as follows.
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By measuring the fringe position at two bandpasses centered

at A, , X (0.'4, 0.65 um) and using the known dispersion of the

atmosphere, we can calculate the zero atmosphere fringe position

P, eq. IV.8

nk is the index refraction at Xj

Pt is the corresponding fringe position

P, is calculated for each 10 ms period and then averaged. The

importance of averaging Po, a quantity with an accuracy limited

by photon statistics but not atmospheric statistics, cannot be

overstressed. This is the essence of the astrometric

interferometer technique.

That the two color correction scheme should work can be

understood by considering two rays from an unresolved star. Each

ray, defined by a trajectory everywhere perpendicular to the

isophase surface with a 12 cm aperture, executes a random walk,

the optical length which is determined by the geometry of the

path and the average refractive index along the path. Fortunately

it is the average refactive index that dominates the path length,

and not the geometric effects. A reasonable geometric effect,

under good seeing conditions, would result from two atmospheric

lenses with a 1 are sec deflection, one at the surface and one at

10 km altitude. This would lengthen the path by (1-cos 1")x10km=
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0.1 um or 0.2 wavelengths. A typical large wedge of air producing

a 1 are see deflection, however would contribute (sin 1")x1O m=

48 um or 100 wavelengths by refractive effects. This random

contribution to differential pathlength is the dominant one that

actually limits the performance of conventional astrometric

systems. Because it arises from variations in the index of

refraction it can be corrected by the two color procedure.

In eq. IV.8 the factor F as defined by eq. IV.9 may be

viewed as the normalized spectral dependence of the index of

refraction of air and is essentially independent of temperature

and pressure.

1 - N,

F = IV.9
Nx- NI

Although a change in the composition of the atmosphere could

alter F, in practice even large changes in humidity would not be

significant.

If the factor F in eq IV.8 is unknown, it may be derived in

the following way from the data. Two consecutive 10 msec

measurements yield eq. IV.10.

P0 :P, -( P, - P, )F
IV.10

PO= P,'-(P1 P,' F

PW2 are the measurement at the first 10 msec period

P 1A are the measurement at the second 10 msec

We see that, if we correct for earth rotation so that the true

fringe position is constant in time, two consecutive 10 meec
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measurements yield two equations in two unknowns. Since F would

normally be stable for a much longer period than 20 msec, a least

squares procedure should be used to evaluate both F and the true

stellar fringe position.

At large zenith angles, the dispersion of the atmosphere will

produce a spatial displacement of the two colors. When this dis-

placement is larger than the isoplanatic patch (za "~450) the two

color technique will not work.

IV.B Atmospheric Constraints

Although the astrometric interferometer overcomes many of

the atmospheric limitations of conventional astrometric

instruments, the operation of the astrometric interferometer is

still severely limited by the atmosphere. This section discusses

two limitations, magnitude limit and achievable accuracy.

IV.B.1 Magnitude Limit

The fringe phase must be measured on a time scale

sufficiently short to freeze atmospheric turbulence. In addition,

the measurement error must be significantly less than 27f,

otherwise it will be impossible to determined which fringe is

being tracked. These two conditions set the stellar magnitude

limit of the instrument.

Errors in the estimate ef f are primarily due to photon
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statistics. While scintillation does not bias 4, , it does

increase noise in two ways. First, during scintillation nulls,

the signal to noise ratio is decreased. The second and more

serious effect is that light from the two apertures scintillate

independently thereby reducing fringe visibility. For the fringe

detection method discussed in IV.A.1 the rms phase error At is

approximately eq. IV.11.

A 2~.VV. 2.

Vc4 - i e ui sib d{

/4i t L ocuIAqe nurbr-rc/ ddz:td pk itovns

From eq. IV.11 we see that the limiting magnitude depends on

the average number of detected photons per interval of time

during which the atmosphere can be considered frozen. The

limiting magnitude is therefore determined by the size of the

interferometer apertures and the atmospheric phase coherence

time.

The maximum usable aperture for an interferometer was

derived in chapter II, eq. 11.24. Under good seeing conditions (1

are see) the maximum efective aperture is 9.5 cm and 32.0 cm for

an interferometer without and with high speed star trackers (as

explained in II.B.1.b). This corresponds to a total collecting

area of 71 cm2  and 804 cm2' respectively. Since 804 cm applies

to an interferometer with a perfect star tracker, the following

calculations will assume a total collecting area of 200 cm1

The atmospheric phase coherence time, the period of time
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during which atmosphere turbulence will produce less than one

radian of phase motion, may be estimated as follows. Since r is

approximately 10 cm , if we assume a wind of 10 meters per second

and apply Taylor's hypothesis, the phase coherence time is r0 /v =

10 msec. This is discussed in greater detail in chapter VI.

The average number of detected photons from a 0.0 mag star

can be calculated in the following way. By definition, the flux

from a 0.0 mag star (visual magnitude) above the atmosphere is

1030 photons/cm*/ 'A/sec at X =0.55 um. The spectral distribution

depends on the temperature of the star's photosphere. For this

example a temperature of 6000 0K is assumed. For an

interferometer with maximum sensitivity, the spectrum from 0.4 to

0.9 um is divided into 2 colors, one from 0.4 to 0.6 um the other

0.6 to 0.9 um. If we assume the passive optical components,

mirrors etc., are perfect, the counting rate for a 0.0 mag star

will be eq. IV.12.

0aSS pikA lX 2Z00oo LAn C. x S

k Bf.0s 9p) CVm A SeC.

QE is the quantum efficiency of the detector (C31034A)

B is the normalized 6000K black body spectrum

T is the transmission of the atmosphere

1, 1X2 define the optical bandwidth

Numerical integration of eq. IV.12 yields the count rate of

7.63x105 photoelectrons per 10 msec from a 6000 *K star with 0.0
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visual magnitude. There is evidence that the quantum efficiency

of a typical C31034A tube is significantly lower than stated in

the data sheet[65]. If in addition we assume the optics (mirrors

etc) have a total efficiency of 0.8, a 0.0 mag star would produce

4.5x10t  counts per 10 msec.

If the servo requires 250 photons for proper operation

(current state of the servo) the magnitude limit would be 8.1

mag. Ultimately, one would expect the servo to be able to

operate with 25 photon counts (see V.D). The corresponding

magnitude limit is 10.6 mag.

IV.B.2 Accuracy of the Astrometric Interferometer

The accuracy of a ten meter astrometeric interferometer may

be calculated as follows. For a 10.6 mag star we expect 25 photon

counts per 10 msec. .The fringe visibility of an unresolved star

due to uncorrelated scintillation would be expected to be 0.85

(25]. The . fringe phase error would therefore be 0.37 radians

according to eq. IV.11.

The effective wavelength for the long wavelength channel is

0.68 um hence the single color measurement accuracy is

0.68x0.37/(2 x1O meters)=8.2x10 4 arc sec in 10 msec. The two

color turbulence corrected position accuracy is therefore

J2x50x8.2x10 =0.058 arc see in 10 msec or 10 arc see in 55

minutes. The factor C2 arises because measurements at the two

colors are subtracted, eq. IV.8, and the factor of 50 is F.
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For a 5.6 mag star the photon count is 100 times greater,

hence 10-4 are sec could be achieved in 33 sec if the accuracy is

limited to photon statistics. Similarly, 10' arc see is

achievable in 0.33 sec for a 0.6 mag star. For bright stars, the

accuracy is limited not by photon statistics but the geometric

contribution to the path length discussed previously (IV.A.3).

The error due to the geometric contribution to the path

length was estimated in IV.A.3 to be < 0.1 um for 1 arc see

seeing. For a 10 meter interferometer, this corresponds to

2x10 3 arc sec. However this is a random error which follows

atmospheric statistics, hence each 10 msec measurement is not

entirely independent of other 10 msec measurements. For bright

stars, the astrometric interferometer must average over the same

statistics as a conventional astrometric telescope. A

conventional telescope must average both refractive and geometric

effects while the interferometer only averages geometric effects.

In this example the geometric effects are 500 times smaller,

2x10f versus 1 arc sec. Following III.C, 10- arc see accuracy

for the astrometric interferometer is possible with 15 to 30 sec

of integration. However, this is only a rough estimate.

In conclusion, the accuracy of the astrometric

interferometer is considerably higher than conventional

astrometric instruments. In order to take advantage of this

improved accuracy, systematic errors must also be minimized.

IV.C Systematic Errors



The astrometric interferometer is radically different from

conventional astrometric instruments and therefore the sources of

systematic errors for the two types of instrument would not be

expected to be similar. Many of the errors of photographic

astrometry, see III.B, are related to the use of photographic

film, such as magnitude error and emulsion shift. These errors

obviously do not exist for the astrometric interferometer.

However, the errors of the laser reference interferometer

(IV.C.1) are similar to measuring engine errors in conventional

astrometry.

While there are few similarities between conventional

optical astrometry and the interferometric astrometry, there are

many similarities between radio VLBI astrometry and the

astrometric interferometer. A number of VLBI errors have no

counter part in an optical interferometer. These include errors

from unstable clocks, water vapor in the atmosphere, and

variations in cable delay. VLBI errors due to antenna offset and

antenna flexure have direct counterparts in the astrometric

interferometer and will be discussed in IV.C.2.

IV.C.1 Laser Reference Interferometer

In order to achieve 10'4 arc sec accuracy, the distance

between the central fringes of two stars must be measured to 50 X

precision. This may be accomplished with a laser interferometer.
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Since both the laser and stellar interferometers use the same

beam splitter, optical delay lines etc. (Fig. V.1),a stellar

position measurement is essentially a direct comparison of laser

and stellar fringes. The error in the fringe position due to

stellar photon noise has been discussed. The laser fringe

position error due to laser photon noise is negligible because of

the high intensity of laser light.

Several systematic errors in the reference interferometer

exist. The laser and stellar beams though using the same optics

may be misaligned. A tilt of 3 arc sec would produce an

astrometric error of 2x10-5 are sec. Another source of error is

the wavelength difference between laser light and star light. A

non ideal dielectric beam splitter introduces a phase delay

dependent on wavelength. For proper motion and parallax

measurements, systematic error result only if the beam splitter

is changed or if the star changes color. For absolute position

measurements significant errors , 10-3 arc sec, may result if the

wavelength dependence is not calibrated.

The sources of errors mentioned so far are independent of

the size of the field of view. A number of errors, however, are.

directly proportional to the field of view. The stability of the

laser frequency must be better than one part in 3x10 if a field

of view of 10 degrees is desired. Changes in atmospheric

pressure, temperature, etc., will affect the wavelength of the

laser. A two color laser system might be necessary to correct for

atmospheric effects on the reference laser system. The correction
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would be similar to the two color stellar atmospheric correction

system.

IV.C.2 Baseline Coordinates

The distance between central fringes of two stars is

proportional to the angle between the stars projected onto the

baseline vector. In order to achieve 104 arc see accuracy for

stars all over the sky, the baseline directions must also be

known to 10~* arc sec.

The baseline orientation is to first order, determined by

the location of the siderostat mirrors, although as shown in the

previous section, internal alignment of the interferometer has a

second order effect which may be reduced to 2x10-5 arc sec. The

location of the siderostat mirrors are in turn dependent on the

dimensions of the mirror mounts, bearings, and pedastle.

The basic multiple star switching procedure for

simultaneously measuring stellar position and baseline

coordinates was discussed in IV.A.2. The requirements of the star

switching technique are that irregularities in earth rotation,

pedastle motion, etc., are small, 1O ' arc sec, over a period of

time determined by the switching frequency (10 sec). In addition,

the process of switching should not introduce unknown baseline

changes larger than 50A or 10 are see.

The stability of earth rotation at the 10 arc see level

has not been measured. However it is known that earth rotation is
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stable to 10' arc sec on a time scale of hours to days[66]. It is

therefore highly probable that over a 10 see interval random

changes in earth rotation will be much less than 104 are see.

The stability of concrete or other pedestals depends on a

number of parameters. However, if the pedestals are shielded from

wind and other mechanical disturbances, the major source of

instability on a time scale of 10 sec is thermal expansion. For a

material with a coeficient of expansion of 10 /*C (low expansion

materials such as invar are 10 to 100 times lower) two one meter

tall pedestals must not experience differential temperature

changes of more than 0.3 degrees per hour. The use of low

expansion materials or thermal insulation may be necessary to

maintain stability.

The siderostat mounts cannot be manufactured to 50 A

accuracy at a reasonable cost. However, laser interferometers can

be used to measure the position of the siderostat mirror3,

relative to mirrors or corner cubes fixed to the pedestal. The

stability of the moving mechanical parts is. therefore made

identical to the stability of the pedestals.



V The One Inch Prototype

This chapter describes the one inch prototype

interferometer. The instrument, Fig. V.1 and Fig. V.2, contain

three optical subsystems, a PDP 8 computer, and interface

electronics. The three optical systems are the fringe tracking

servo, angle tracking servo, and laser interferometer. The

design philosophy followed throughout the project has been to

place the bulk of the complexity of the instrument into computer

software rather than in hardware. As a result the design of the

software algorithm is much more important than the design of the

electronics hardware. The reason for building a servo system in

software rather than hardware is that it is much easier to change

software than hardware. Long baseline astrometric

interferometers have never been built before and it was

anticipated that a successful fringe tracking servo would require

several trial and error interations.

V.A System Software and Hardware Notation

Before discussing the three optical subsystems, the

operating system software will be described. The operating system

is a simple multitask system. The software for each of the three

subsystems are subprograms. that compete for cpu time. The

software consists of a large number of tasks each with an

assigned priority. The system task scheduler performs the house
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keeping chores of saving the machine state for an interrupted

task, giving control to a higher priority task, and restarting

the interrupted task when the higher priority task is through.

A task may be in one of three states. A task is in the

executing state if it currently has control of the cpu. A task is

in the active state if it is waiting for control of the cpu. A

task is inactive if it does not have control and is not waiting

to get control. Some tasks are activated periodically by the

system clock. Others are activated by commands typed into the

teletype keyboard. Last of all, tasks may be activated by pushing

a button on a "paddle" that is interfaced to the computer.

Under normal conditions aproximately 85% of the cpu time is

used. The laser interferometer task uses aproximately 20% of the

time. The angle tracker tasks use 15% of the time, the fringe

tracking servo task uses 30% of the time and 20% of the time is

used by the system. Several earlier versions of the software were

unreliable because occasionally the tasks and system overhead

required more than 100% of the available cpu time.

When a task requires input data, it is assumed that the data

has been made available by another task or that the data is

available from an input device. On output, direct output is

usually performed on the high speed devices such as the pzt

(piezoelectric transducer), voice coil and LED's and buffered

output is performed on the low speed devices such as the teletype

and stepper motors. In buffered output, the data is stored in a

buffer in core and a very low priority task is enabled. This low
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priority task, which will receive control of the cpu only when

higher priority tasks have relinquished control, actually

performs the output operations using the data in the buffer.

When interpreting flowcharts, each task can be viewed as an

independent program. However, sometimes it is necessary to know

the order in which several quasi-independent tasks are executed.

Explicit scheduing commands are sometimes given by one task to

enable or kill another task. When several tasks are

simultaneously enabled, their priorities determine the order in

which they are executed. In some cases, the order of execution

is important because a high priority task generates the data for

a lower priority task. Therefore, in addition to conventional

flowchart symbols, each task contains a description of its

priority and a description of how often and by whom it's enabled

or killed.

The schematic diagrams for the electronics hardware are

almost always block diagrams. In most cases, the procedure for

filling in the details is straight forward. The main reason for

only supplying block diagrams is that most of the electronics

hareware are computer interfaces for what is effectively an

obsolete computer. Significant differences in the I/0 bus

structure between the PDP-8 and PDP-8/A (current model in the

PDP-8 series) exist. In addition many of the blocks in the block

diagrams will soon be integrated into single integrated circuits

as micro and minicomputer interfacing is made simpler by

integrated circuit manufacturers.



V.B Laser Interferometer Subsystem

Ideally, the laser system should be used to produce a

mechanical system immune to distortion from mechanical vibration,

mechanical flexure, and temperature variations. In the prototype

however, the laser interferometer only measures the position of

the mirrors.

The laser interferometer is a Michelson interferometer which

uses much of the optics used by the stellar interferometer. In

this way, motion of the mirrors on the baseplate will be

monitored by the laser interferometer. Fig. V.2 shows that the

path of laser light is very similar to the path of the star light

inside the interferometer. Fig. V.3 illustrates the relation

between the position of the stellar beam and laser beam at the

beam splitter. In addition, the two beams are tilted with respect

to each other so that the returning laser light will not enter

the stellar fringe detection phototube.

Laser light is detected by the photodiode, mounted on a

separate plate as shown in Fig. V.1. The laser interferometer

electronics and software was built by D. McDonough as a senior

thesis (June 1976 EE&CS). The pathlength in one arm of the laser

interferometer is modulated by a piezoelectrically driven mirror

(Fig. V.1 and V.2). The photodiode output is amplified and then

converted into digital format for input into the computer. The

software samples four outputs from the analog to digital
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converter per modulation cycle and calculates a fringe position

with a demodulation algorithm similar to the algorithm used to

determine stellar fringe position (to be described later). Fig.

V.4 is a schematic of the electronics for the laser

interferometer and Fig. V.5 is a flowchart of the laser

interferometer software.

Several additions to the laser system should be made for an

astrometric instrument. The first is that the position of the

siderostat mirrors should be monitored by interferometers. During

operation, the interferometer will measure the relative fringe

positions of several stars by switching between the stars. Since

the siderostat mirrors must move to each of the different stars,

the baseline vector will change as the mirrors tilt, unless the

mirrors rotate on perfect bearings (to 0.01 X ). Since mechanical

bearings of this high level of accuracy are extermely difficult

to manufacture, the baseline vector which is determined by the

postion of the siderostat mirrors must be monitored with a laser

interferometer system.

The second modification is that the laser fringe position be

used to compensate for vibration, thermal expansion and other

sources of mechanical instability. Fig. V.6 illustrates how such

a system might operate. Such a system could have been implimented

on the one inch prototype if the memory and speed of the computer

were significantly greater.

V.C Star Tracker Subsystem
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Two angle tracking servos are used in the one inch prototype

to keep the interfering wavefronts parallel. In addition, the

error signal from the angle tracking servo is used as described

in chap 6 to calculate various atmospheric parameters. The servo

was not designed to track the fast image motion due to

atmospheric turbulence, only the motion due to earth rotation.

Even for tracking earth rotation, a closed loop system was

necessary. The two independent siderostats must track the star

with an error less than 4 arc sec over a period of several hours.

While telescope drives with this level of accuracy exist, the

cost of a closed loop tracker is much less than the cost of an

open loop system at this level of accuracy. An additional

advantage of using star trackers is that the telescope drives

need not be precisely aligned with the north pole.

Since both east and west star trackers operate in the same

way, I will explain only the operation of one of the star

trackers. Fig. V.7 is an optical schematic of the west star

tracker. Light from the star is directed by the siderostat

mirrors toward the annular mirror. The inner one inch of the beam

goes through the hole in the annular mirror and is used by the

stellar interferometer. The rest of the light is used by the

star tracker. The lens, mirrors and microscope objective form an

image of the star on the four quadrant detector. The effective

focal length of the star tracker telescope is approximately 5

meters.
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The quadrant detector consists of a four sided pyramid

mirror and four phototubes operated in the photon counting mode.

The two quadrant detectors may be recognized in Fig. V.1 as the

cluster of four phototube assemblies. The phototube assemblies

(round cylindrical objects in cluster of four in Fig. V.1) each

contain a high voltage supply, preamplifier, discriminator and

pulse shaper. Originally, twelve such assemblies were built by

P. Kababian about 7 years ago for a stellar diameter

interferometer. The use of these phototubes resulted in a very

significant reduction in the cost of the project.

The image of the star is focused on the tip of the four

sided pyramid and the light is reflected into the four

corresponding phototubes. The error signal is derived from the

counting rate of the four tubes, A, B, C, and D, by equation V.1

and V.2.

Err (At) = -

+

A + S+c.+N

rr (60 A+ Fc - D

The four quadrant detector is approximately four times as

sensitive as a star tracker using an image dtsector tube and

twice as sensitive as a knife edge type error sensor. The choice

of the quadrant detector was however based on mechanical

complexity and cost considerations since almost any error sensor

will work for a servo designed to track the motion of Polaris.

The phototubes are interfaced to the computer as illustrated
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in Fig. V.8. Every clock cycle the contents of the counter are

stored in a latch, the counter reset, and an interupt request

generated. The clock frequency may be changed in software. An

interupt service routine then reads the number of photons

detected in the provious cycle and resets the interupt request

line.

The siderostat mirror mount is simply a conventional gimbal

mounted mirror with stepper motors attached to the micrometer

knobs. Anti-backlash gears were used to reduce the size of the

step to 4 arc see of tilt per step. For fine motion control

piezoelectric ceramic transducers were used in series with the

micrometer drive. The piezoelectric transducers were controlled

by the computer through an eight bit D/A converter and a high

voltage amplifier. This gave a minimum step size of 0.08 arc

sec.

Despite the fact that the whole gear train was spring

loaded, there were several are sec of backlash in all the stepper

motor drives. The exact amount of backlash varied with time,

temperature, position, and from motor to motor. The backlash of

the piezoelectric elements was much less than an are sec (not

measureable). On the other hand, there were significant

nonlinearities (0.5 are sec) in the piezoelectric transducers.

The defects described in - this paragraph would prevent proper

operation of the interferometer if the star trackers were

operated open loop. For closed loop operation, these errors are

reduced by a factor proportional to the servo loop gain. The
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motor control electronics are shown in Fig. V.9.

The star tracker software is illustrated in Fig. V.10. The

sidereal drive software was a subroutine which calculated the

stepper motor positions at the current sidereal time. Since no

effort was made to calibrate the errors in the gear train, the

sidereal drive was only used to position the siderostats to

within the.field of view of the star trackers (2 arc min).

The angle tracker servo task operates as follows. The clock

is set with a 20msee period. As a result, every 20 msec the

computer read in the number of photons detected in the previous

20 msec. The photon counts A, B, C, and D are corrected for

individual differences in quantum effiency, dark count and

background light level. Another task not shown in Fig. V.10 can

be made active from the keyboard to measure the background light

level. In future instruments it should by possible to have the

computer actuate shutters to individually calibrate the

phototubes.

If the servo is enabled, the software checks if a star is in

the field of view by comparing the total number of photons

detected in the previous 20 msec to a predetermined threshold. If

Polaris is in the field of view, the manual stepper motor

controls are disabled and the servo loop closed. If no star is in

the field of view, the loop is left open, this prevents the

computer from "tracking noise" when a cloud drifts overhead.

When the loop is closed, the software calculates the azimuth

and elevation error using eq. V.1 and V.2. The sidereal drive
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task is also killed if it is active. The motors are advanced an

amount proportional to the error signal. Usually this only

involves changing the voltage to the piezoelectric transducer,

but if the pzt reaches the end of its travel, the stepper motor

is stepped and the pzt moved back so that the total effective

motion is what was desired. Typical errors during this operation

is less than 0.3 arc see when the stepper motor is not reversing

direction.

The current values of A, B, etc. represent the average

photon flux over the previous 20 msec. The derived position is

therefore the most probable position in the middle of the 20msec

period or 10msec before the start of the computation cycle.

Since the task is made active every 20 msec, a constant

error signal will result in a constant motor velocity. The servo

may then be described by the difference equation V.3.

S -rM% arrow'

For t40 the difference equation becomes the differential

equation eq. V.4.
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at- k'at

This is perhaps the simplest possible servo. Since the servo was

designed to track the rotation of the earth at / Hz the

errors in the gear train become insignificant. The servo time

constant was 4 sec, much too slow to track the fluctuations due

to atmospheric turbulence. The rms tracking error was therefore

determined by atmospheric seeing. This varied between 2.5 and 4.5

arc sec (5 to 9 are sec seeing) at Wallace Observatory.

While this servo could be used to track the fast

fluctuations caused by turbulence, it would be desirable in the

future to use a filter matched to the angle of arrival spectrum

to achieve a minimum error.

V.D. Fringe Tracking Servo

V.D.1 Introduction

The fringe tracking servo consists of three parts. The first

is a device to measure fringe phase or position. The second is a

variable optical delay line. The last is a control system which

uses the information from the phase measurement to control the

delay line.
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V.D.2 Phase Measurement

There are many ways to measure fringe phase. Before

describing the system used in the one inch prototype, I will

briefly describe a few of the alternatives.

A fringe is a sinusoidal variation in the intensity of light

at the output of the interferometer as expressed in eq. V.5 for

monochromatic light.

M-...1(FCoss +aA)

6= $277/X

A= fringe amplitude 0<A<1

I,=Intensity of starlight

All current methods determine fringe phase by varying 9$ or 'C by

a known amount while measuring the intensity of light at the

output of the interfermeter. Since the expression for I in eq.

V.5 is a function of three unknowns, a minimum of three

independent measurements are necessary.

If a dielectric beam splitter is used to combine the

interfering wavefronts, the two outputs are 1800 out of phase and

in theory only one additional measurement is necessary for

unambiguious determination of phase. One technique for

introducing a controlled variation of path length or phase is to

use piezoelectric transducer or acoustic optic phase shifter. The

phase or pathlength is varied periodically and the output of the
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Interferometer is synchronously demodulated to obtain the fringe

ase. Another method is to use polarization multiplexing instead

time multiplexing. A quarter wave plate is inserted into one

m of the interferometer. The relative pathlengths of the two

[ thgonal polarizations will differ by 1/4 wave. At the output of

Pe interferometer the two polarization states are separated by a

rlarizing beam splitter.

In place of a dielectric beam splitter, a diffracting beam

plitter may be used. Kabebian [4] gives an excellent description

f the operation of this type of interferometer. Again two

utputs 1800 out of phase are available and fringe phase measure
u

lill require a third measurement- using temporal or polarization

incoding as described in the previous paragraph.

I A piezoelectric pathlength modulator was chosen for the one

nch prototype because of its simplicity. The modulation is a

riangle wave at 500 Hz, fig V.11. The resulting signal from the

etector at the output of the interferometer is also shown in

ig. V.11. The output is digitized, fig V.11, and synchronously

emodulated to produce fringe phase. Each cycle, 2 msec, is

ivided into four parts. The photon counts during these intervals

, B, C, and D are used to calculate the fringe phase using eq.

.6.
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I

V.D.3 Delay Line

This modulation scheme is slightly less sensitive than the one

described in chapter 4.

The hardware for the fringe detector is illustrated in fig.

V.1. The phototube detects photons via the photoelectric effect.

The electron multiplier provides a gain of approximately 105.

The signal is further amplified by the preamp (gain =100). The

preamp is connected to a discriminator which is set to reject

pulses with an amplitude less than 0.25 of the average single

photoelectron pulse. The pulses are then counted in the computer

interface.

The system clock at 4 MHz is counted down to 2 KHz. Two

indentical sets of counters are used to produce two 2KHz outputs

whose relative phase can be controled by the computer software.

One of the 2 KHz signals is used to generate a 500 Hz triangle

wave which is amplified by a high voltage amplifier to drive the

piezoelectric transducer. The other 2 KHz signal is used to reset

the counters in the computer interface and generate an interupt.

The photon counts A, B, C, D, are read into the computer by

the interupt handler. Every 10 msec ,20 samples, the fringe phase

is calculated using eq. V.6.

f 7
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The delay line as shown in fig. V.1 is a mirror mounted on a

parallelogram type flexure bearing driven by a voice coil. The

mechanical resonance of the bearing is approximately at 50 Hz.

The mechanical Q is approximately 10. Below 5 Hz, the position of

the mirror is linearly proportional to the current going through

the voice coil. Since a flexure bearing has no backlash, the

resolution of the delay line is determined by the resolution of

the digital to analog converter and the gain of the power

amplifier. The gain of the amplifier was set so that the least

significant bit of the D/A was 1/16 of a wavelength. For economic

reasons a 12 bit D/A was used and hence the range of the delay

line was 256 X or 0.13 mm.

In addition to the voice coil operated delay, a delay line

using two mirrors mounted on a translation stage driven by a

motor is used for coarse positioning.

In the next version of this instrument, the piezoelectric

transducer will be used as a delay line as well as a modulator.

The total delay will then be the sum of the three delay elements.

Table V.1 shows the range resolution and fiequency response of

the various delay lines.

Range resolution freq. res.

PZT 0.5 k 0.001>X 200Hz

Voice coil 256. X 0.062 X 5Hz
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V.D.4 Control Algorithm

V.D.4.a Introduction

In a long baseline interferometer, atmospheric and

instrumental pathlength errors will be much larger than the

coherence length of a broad band source (2 wavelengths). Hence it

is necessary. to search for the fringe by moving the delay line.

After the search algorithm finds a fringe the servo is

turned on to track the fringe. At high light levels, the first

fringe found may not be the central fringe. As a result, a wobble

algorithm must be used to find the central fringe. The wobble

algorithm introduces an offset into the fringe tracking servo to

force a different part of the fringe to be tracked. The fringe

visibility at different offsets are compared to determine i'f the

fringe that is being tracked is the central fringe.

At low light levels, near the threshold of operation, the

servo will occasionally lose track of the fringe. Since the

fringe is known to be nearby, the fringe recovery algorithm will

take advantage of this fact to find the fringe. The threshold of

operation can be defined as the point where the amount of time

spent in the fringe recovery phase is equal to the time spent in

the fringe tracking phase.

The algorithms described have been implimented in software.

In most cases, the implimentation is straight forward. Two
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algorithms will be discussed in greater detail. One is the fringe

amplitude signal-to-noise ratio monitor. The second is the servo

algorithm.

V.D.4.b Fringe Amplitude Monitor

It was explained in the previous section that the presence

or absence of fringes was determined by the fringe

signal-to-noise ratio. In the prototype interferometer, this

signal-to-noise ratio (FASN) was estimated by eq. V.7 (see

Appendix 3).

FA5N N

FASN is calculated every 10 msec. Unfortunately, the estimate of

FASN, eq. V.7 from 10 msec of data is a very noisy estimate. Fig

V.12 are histograms which show the distributions of FASN due to

photon statistics when fringes are present and when they are

absent. The data was obtained with a laser as a light source, the

interferometer was deliberately misaligned to obtain the

probability distribution of FASN when fringes were absent.

Because of the high noise level for FASN the presence of

fringes cannot be determined from just 10 msec of data except,

for bright stars. When the instrument is searching for a fringe

each 10 msec determination of FASN is compared to a predefined



-- ) Ei -. ~-j; V

. .. ...... ..P ..w.r..,. -r -r$

19

'U
A

rW vv? .PIV k d 

11A.5
4-.

-1 -- - -- - --- 1 -40 10D------.N- -Y

Ij

*1'

1 I
-' +-'- 

-

____________ 0 bit 'LtniS.-S--

I 

-

- - -

-

4-.

- a...'- 

-

- -as

*vkdro 'iL
4

1 

.

1

-- - ---I - -.

-I e --- -

-

4 --
4.-

MAVU #'nI t' ~

"M- t

P - -i- --lSP ----- *-

-* -m m 16

.Do

44

--

I-,

-e- - a

-

-F

.-imir.i

.5



PAGE 99

threshold. If FASN is below the threshold, the search would

continue. If FASN is above the threshold, the servo would be

turned on. The system is now in the semilock mode. If the value

of FASN for subsequent 10 msec intervals is less than the

threshold the search mode is reinstated. If however, FASN is

above the threshold for N successive 10 msec intervals the system

enters the lock mode (N=8 in the present sytem).

The lock mode differs from the semilock mode in that a

single 10 msec drop, FASN below the threshold, will not turn off

the servo in the lock mode. In the one inch prototype FASN must

be lower than the threshold for 30 msec before the servo is

turned off and the search mode reinstated.

The purpose of the fringe amplitude signal to noise monitor

is to determine if the phase calculated by the fringe phase

subroutine is meaningful. Two modes of operation are necessary.

The control algorithm can respond quickly with the semilock mode

if a fringe is encountered. On the other hand, the lock mode is

much more stable because several 10 msec intervals of data are

used to determine if the system should enter or leave the lock

mode.

Numerous variations this fringe amplitude monitor system are

possible. The particular algorithm used for the one inch

prototype was simply the first one that worked in the lab at a

light level of 200 photoelectrons per 10msec(the measured flux at

Wallace was aproximately 260 photoelectrons/I0msec). Operation

at 200p/10msec was marginal, as much time spent in the fringe
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recovery mode discussed earlier as in the tracking mode.

The fringe amplitude monitor will be a key part of any long

baseline interferometer where the fringe must be found, and the

design of future interferometers should include a systematic

study of a number of different fringe monitor algorithms.

Currently, the fringe amplitude monitor algorithm requires almost

twice as much cpu time as the servo algorithm and is a

significant drain on the computational resources of the

computer.

V.D.4.c Servo.Algorithm

As mentioned previously, temporal coherence is maintained

even if path length differences are 2X. As a result, a very

simple servo may be used. The servo algorithm consists of three

parts. The first part calculates the fringe phase from the

photon counts. The second part generates a linear error signal

from the fringe phase information. The third part filters the

linear error signal and outputs the result to the voice coil

delay line.

The calculation of fringe phase was described earlier and

will not be repeated. The fringe phase would a suitable error

signal for the servo if fringe motion was always less than A/2.

However, the 27f periodicity of fringe phase would cause erratic

servo behavior if the servo error was ever greater than A/2. In

the one-inch prototype,the fringe count was added to the fringe
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phase to produce a linear error signal when the error was greater

than X/2.

The third and last part of the servo algorithm is the error

signal filter. For the one inch prototype, the output was simply

the integral of the error signal as expressed by eq. V.9.

OwAtPut Vottage kjcrrir C*) 4t

to

k is the loop gain

to is the time at which the serve was turned on

This very simple algorithm is sufficient because it is not

necessary to track the fringe with high accuracy. For astrometry,

it is only necessary to measure the fringe position accurately.

Therefore it is also not necessary for the servo response time to

be less than the atmospheric coherence time az in many other

active optical systems. The major difference between this active

system and others is that the accuracy of the measurement is not

directly dependent or the accuracy of the servo.

Two sets of measurements were made of the performance of the

fringe detector. The first set measured the performance of eq.

V.9 for tracking fringes. The second set measured the performance

of the fringe finding algorithm.

The first test was conducted at a high light level, 600

photons/10 msec with an attenuated laser beam. A differential

amplifier was placed between the computer and the power amplifier

for the voice coil delay line. A signal generator was connected
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to produce a 4 X peak to peak sine wave on the delay line. The

servo loop was closed with a command to the computer. Fig. V.13

is a plot of the output of the diff. amp. divided by the output

of the signal generator versus frequency. The servo was unstable

at 4 Hz. It would occasionally jump from one fringe to the next.

At 4 Hz the serve must track fringe motion at ~50X/sec.

The fringe finder was tested with a white light point source

(@ 3200*K). The algorithm described previously found fringes at

200 photons/lomsec. The quantities A, B, C, and D, were monitored

with a D/A converter and a scope. Fig V.14 is a photograph of the

scope display which shows the presence of fringes as well as the

presence of a great deal of noise. ( Note that A,B,C,D are offset

from their definition in section V.D.2. The value A is not known

until the beginning of interval B.)
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VI Measurement of Atmospheric Parameters

VI.A Intr)duction

The original goal of the one inch prototype interferometer

was to track stellar fringes at Wallace Observatory. After

numerous unsucessful tries, the atmospheric turbulence data was

recorded and analysed to determine the values r and To These

two quantities, determine the maximum usable aperture and

integration time for a servocontrolled interferometer. In

addition, the data was used to determine the effects of seeing on

the noise in conventional astremetric instruments.

All of the atmospheric measurements were derived from the

star tracker error signals. The star tracker quadrant detectors

essentially measured the tilt of the wavefront averaged over a

two inch aperture. The wavefront tilt or error signal was

calculated every 20 msec. This data was then used to calculate

the various correlation functions, as explained in the next

section. The correlation functions were then used to determine

r4 and '., as explained in section VI.C.

One conclusion which is obvious from the data is that

Wallace Observatory is not a good site for an astrometric

interferometer or any high resolution instrument whose

sensitivity depends on the quality of "seeing". The data was

taken over a period of several months from August 1976 to

December 1976. However, the raw data was not recorded because no
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high speed data recorder was available. The software which

calculated the correlation functions in real time was

continuously modified until late September. All of the data

tabulated in Appendix II was taken during October and November.

VI.B Correlation of Angle of Arrival Fluctuations

The use of the correlation functions to determine the r and

t,, is 'discussed in the next section. This section describes the

procedure used to calculate the temporal correlation functions af

angle of arrival fluctuations from the error signal.

If the star trackers were perfect, the error signals would

approach zero and the correlation of the error signals would not

be an accurate measure of the correlation of the angle of arrival.

If the servo were turned off, the error signal would be the sum

of two components, one due to turbulence and one due to earth

rotation. In theory, it should be possible to subtract the effect

of earth rotation but in practice, the star would quickly drift

out of the linear region of the quadrant error sensors.

However, the star trackers were only designed to track earth

rotation. Since the response time of the servo was approximately

4 sec, the correlation functions of the error signal should be a

reasonable approximation of the correlation functions of the

wavefront for lags less than 4 seconds.

In addition, the 4 see response time of the trackers, as ex-

plained in chap 5, result in a constant servo error of 2 arc sec.
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This is the angular motion of Polaris in 4 sec of time. While

this offset would not affe.ct *p6ration of the interferometer,

since both star trackers would have the same offset, it does have

an effect on the calculation of the correlation functions. The

relation between the error signal and the angle of arrival

fluctuations is illustrated in eq. VI.1 to VI.4.

Error -f Atmosphere Ct) tservo off-d -Z7.

<'Error-> < Offset )> . a

JRk 8  ) <Err Ct) Er-'t6V> ~7.3

R, = ~rn + ( OrtCCrJ 

-

With eq. VI.4 it is possible to calculate the correlation

fuentions of the wavefront tilts using the error signal from the

star trackers. However, another source of error must also be

considered. Eq. VI.2 becomes eq. VI.5 when photon noise is

added.

Ferret) 4#t ro C)toCeT4e 

)

e(t) is the error due to photon noise

Since the error signal E(t) is calculated from the number of

photons detected in the 4 phototubes using eq. V.I and V.2, the

statistics of e(t) are easily calculted to be eq. VI.7 (see App.
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K(aNc)(Apj)> 44.

e. K ect)Cect)>I

I)

Ni is the number of phetons detected for each measurement

interval (20 msec) in the i'th phototube

The effect of photen noise is to produce a spurious increase in

,the autocorrelation functions at zero lag. Eq. VI.4 should be

Ichanged to eq. VI.8 when calculating autocorrelations.

I ' f a e r

VI.C Estimate of r, and ' from Wavefront Tilt Correlations

From chap. 2 it is possible to derive the shape of the

autocorrelation function for Kolmegorov turbulence. The shape of

this autocorrelation function is characterized by two parameters,

from which it is possible to calculate r, and 4, 

.

I The spatial autocorrelation of the fluctuations of angle of

arrival from eq. 11.29 is



PAGE 107

t (r) c,( Y .. 29

If we assume Taylor's hypothesis, r=vV , where v is the

transverse wind speed, the temporal autocorrelation of the

wavefront tilt is simply eq. VI.9.

Eq. 11.29 is not valid for r(l , the inner scale of turbulence.

For r<1. the correlation is a constant approximately equal to

D4(1.). The temporal correlation of the wavefront tilt should

therefore exhibit the same behavior. However, the star trackers

average the wavefront tilt over a 1.75 inch aperture, much larger

than the inner scale of turbulence, hence R,( i) should level off

at T =1.75inch/v instead of 1./v. Fig VI.1 is an example of the

data taken at Wallace Observatory compared with the Kolmogerov

spectrum. The seeing was quite good for Wallace Observatory when

the data was taken for figure VI.1.

It can be seen in fig VI.1 that the Kolmogerov spectrum is a

good fit to the wavefrent tilt data. The value of R(0) is

inversly proportional to r as derived in chapter 2 eq. 11.24.
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X in microns

R, in arc sec'

The wind speed can be determined by the position of the knee and

the 1.75 inch aperture of the star tracker using eq. VI.10. The

quantity 't. then can be calculated using eq. VI.11.

V.r.'{cc tve wwd s/ee!

V

Figure VI.1 shows that the data within a limited range is in

excellent agreement with a Kolmogorev spectrum and Taylor's

hypothesis. However for long lags (large T ), three effects

make interpretation of the data difficult. The first is that the

Kolmogerov spectrum is valid only to the outer scale of

turbulence. In addition Taylor's hypothesis would not be valid

for large C because over a long period of time, several

seconds, the turbulence cannot be considered frozen. Last of all,

for long lags the time constant of the star tracker servoes would

invalidate the assumption that the error signal is a good

approximation of the wavefront tilt.

However, the region of the autocorrelation function of

greatest interest for interferometry is the region where the

measurements are known to be valid and where the measurements

agree with theory.
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VII Astrophysical Applications of Astrometry

VII.A Introduction

This chapter explains the motivation for the thesis. The

present lack of excitement in optical astrometry is due in part

to the extreme length of time necessary to collect data. In

addition, the state of the art in astrometry instrumentation

has not advanced at -the same rate as other areas of astronomy.

However, the development of a new instrument such as the

astrometric interferometer will take a great deal of effort

which cannot be justified if the only goal is "another decimal

point". The increased accuracy must have astronomical or

astrophysical significance.

Sometimes a new instrument is proposed because "it has

never been done before" and "who knows what we'll find". While

both of these arguements are valid for the astrometric

interferometer, there are a number of current astronomical

problems which could be resolved with an astrometric

inter ferometer.

Traditional application of astrometry would be profoundly

affected if accuracy were increased by two orders of magnitude

. Proper motion surveys which would have taken 200 years could

now be completed in 2 years. Since the history of photographic

astrometry is slightly less than 100 years old, most of the

historical data could be verified in the first year of
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operation.

The rest of this chapter describes three possible

applications of an astrometric interferometer, gravitational

deflection of light, search for planets, and measurement of

absolute parallax. The measurement techniques used for these

applications, are in most cases, minor variations of current

techniques. The exception is the measurement of parallax. A

variation of this technique might one day be used to measure

distances to objects, such as quasars, for which there are no

background stars or objects (VII.D).

VII.B. Gravitational Deflection of Light

The gravitational bending of light is one of the classic

tests of general relativity. The deflection of light due to the

gravitational field of the sun has been calculated to be (67]

A -.- 0.0041 ( ;) se .27T 

/

where o( is the angle between the star and the center of sun.

For a star at the limb of the sun o=0.27 degrees and Ac=1.75

are see

The first experimental test came in 1919 during an eclipse

of the sun. Until 1968 all gravitational deflection

experiments were conducted during eclipses. The accuracy of
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these measurements were roughly 10% or 0.2 are sec. The

portable telescopes used for eclipse observations are obviously

inferior to permanent astrometric observatories. In addition

the short duration of an eclipse makes it impossible to improve

accuracy by taking thousands of plates and averaging the

results.

The most accurate deflection measurements at present are

radio VLBI measurements, slightly more than an order of

magnitude more accurate than optical measurements. For an

optical astrometric interferometer with 0.0001 arc see accuracy

a confirmation of eq. 2.3 to 1% is possible without daytime

operation (o=45 deg). Confirmation to 0.1. % would require the

measurement of stellar positions within 0c=4.5 degrees of the

sun. Confirmation to 0.01 % would be possible only if the

interferometer were built at the site of a future eclipse.

The gravitational deflection effect is also observable

during an occultation of a star by a planet. The effect is

greater than 10~ arc 'see for the planets Venus, Mars,

Jupiter, Saturn, Uranus, and Neptune. For Jupiter, the

gravitational effect would be significant (> 10 q ) as far as

50 arc min from the planet. At the limb of Jupiter, the effect

is approximately 0.07 are sec. While this implies that a

measurement to 0.15% accuracy is possible, in practice, the

short duration of an occultation (< 1 hr) would probably limit

accuracies to 0.3%, about a factor of 3 more accurate than

night time solar deflection measurements and a factor of 3 less
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accurate than daytime solar deflection measurements.

The gravitational deflection of starlight due to the earth

can be calculated from a formula very similar to eq.2.3 except

the constant 0.0041 arc see would be replaced by 2.8*,4 are

sec. For a ground based observatory looking at a star 45

degrees from zenith the effect is 1.1xio 4 arc sec. For

differential measurements over a 10 deg field of view the

effect of the earth's gravitational field is less than 3.0xlO

arc sec.

The gravitational deflection experiment, as a test of

general relativity measures the PPN (parameterized post

newtonian formalism) parameter r . Another experiment that

measures this parameter is a light or radio transit time

measurement which measures the time delay caused by the

gravitational field. Since light deflection can be viewed as a

differential time delay, we would expect that the time delay

experiment would ultimately be more sensitive. The time delay

experiment is carried out with radar astronomy or with space

probes. The high degree of agreement of this and other first

order tests of general relativity has led most astrophysicists

to consider only those theories that agree with general

relativity at low gravitational field strengths. While the

measurement of the gravitational deflection of light will be an

important application of the astrometric interferometer, the

effect will soon be treated as a source of systematic error to

be eliminated in a search for other effects.
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VII.C Search for Planets and Dark Objects

VII.C.1 Historical Introduction

The detection of dark or faint companions of stars dates

back to 1844 when Bessel anounced the presence of a

perturbation in the proper motion of Sirius. The companion of

Sirius, a white dwarf was seen visually in 1862. In 1846 the

planet Neptune was found from the perturbation it produced in

the orbit of Uranus. The search for dark objects has

historically been one of the most fruitful applications of

astrometry.

Two methods are currently used to detect dark objects.

Both techniques detect the presence of an unseen object by its

gravitational influence of a nearby visible star. One method is

astrometric detection where the orbit of the visible star

around the system's center of mass produces a periodic change

in the star's position. The second method is spectroscopic

detection which measures the periodic doppler shift due to the

orbital motion of the visible star.

There are over 800 spectroscopic binaries [10). The mass

of the unseen companion, when known indicate that these are

multiple star systems. There are 17 unresolved astrometric

binaries [58] with large and undisputed astrometric motions

>0.04 are sec. The calculated mass of the companions indicate
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in all 17 cases that the companion is a star. There are 15

stars that show significant astrometric perturbations, which

are suspected to be due to an unseen companion [58]. At one

time it was claimed that several of these stars had planets. In

addition to the 15, Van de Kamp has claimed and defended the

existance of two planets around Barnard's star.

A short summary of the recent arguments for and against

the existance of planets is given for the interested reader.

Van de Kamp first reported the presence of a single planet

around Barnard's Star (1963) [68]. Subsequently, he reported

the presence of two planets (1969)[69] using the huge quantity.

of historical data taken at Sproul Observatory. Gatewood et.

al. then published an unsuccessful search for planets around

Barnard's Star in 1973[63] using data from Allegeny and Van

Vleck observatory. Van de Kamp subsequently reanalysed his

data. This involved remeasuring the plates and was not purely a

numerical exercise.

The new results[64J still showed the presence of two

planets but their total astrometric perturbation was smaller by

aproximately a factor of two. Van de Kamp's data was

independently analysed by Jensen et. al. (70] who reported the

probable existance of three planets. The analysis however, was

carried out not with the raw data but with the residuals

calculated by Van de Kamp. Sproul, Van Vleck, and Allegany

observatories have actively searched for dark objects around

nearby stars since the late 1930's.

1'
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There is no consensus. The proper motion of Barnard's star

is 10. are sec/year the largest of any star. This alone made it

one of the most heavily studied objects for astrometers. Much

more astrometric data is available for Barnard's star than any

other star. On the other hand it is not clear that all

systematic errors have been deleted and hence the larger

quantity of data may orrmay not result in higher accuracy. The

reported perturbations of Barnard's star is 0.009 arc see for

the larger planet (16 M>, 26 year). The smallest perturbation

of the 17 undisputed and unresolved astrometric double stars is

0.04 arc sec. Also, the reported perturbations of Barnard's Star

0.009 arc see is significantly smaller than the average error

(0.016 arc see) in the general catalog of parallaxes [71]. It

is my admittedly biased opinion that the question of the

existance of planets around Barnard's or any other star will

not be resolved until the next generation of astrometric

instruments are built.

VII.C.2 Instrumental Limitations for the Detection of Planets

For a planetary system with one large planet, the

astrometric perturbations are expressed by eq. VII.2. Eq. VII.3

gives the size of the spectroscopic perturbations.

R m where m,Nare in M
A = - are see L in parsec (VIIa2)

L M R in A.U.
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' V 1 .41
-- = m - * 10 spectroscopic motion (VII.3)

C M R

The sensitivity of current spectroscopic techniques is

approximately 0.7 km/sec [72]. At 5000 A this corresponds to

0.011 A shift in the center of a spectral line. Although 0.011

A is considerably smaller than the width of stellar spectral

lines, this level of accuracy is not sufficient to detect

planets. For example a Sun-Jupiter system would produce a

spectroscopic perturbation of 26 m/sec. Barnard's star would

produce a shift of 44 m/sec.

In order to detect a Sun Jupiter system with spectroscopic

techniques, a number of systematic errors must be eliminated.

The doppler shift caused by the Earth'e motion around the Sun

is 30 km/sec, the shift caused by the moon's motion is 10

meters/sec. However, the most serious errors are in the

wavelength calibration of the spectrometers. For most

dispersive spectmeters, those using gratings or prisms, the

wavelengths are calibrated with a lamp which emits a large

number of lines. For detection of planets, it 'will be

neccessary to use a spectrometer which directly compares the

stellar line with a laser wavelength standard. There are two

types of spectrometers which are suitable for detection of

planets, fourier spectrometers and heterodyne spectrometers.

These spectrometers unfortunately are much less sensitive than

dispersive spectrometers, which can monitor many spectral lines

simultaneously.
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The photon noise limit for spectroscopic detection of

planets may be estimated as follows. Assume a thermally

broadened line (6000 K) of 10km/sec width (0.16 A) is monitored

with a spectrometer. Also assume that the desired accuracy is 1

meter/see (signal/noise of 20 for Sun-Jupiter). This would

require the spectrometer to detect 100 million photons in the

spectral line. Using a 10% quantum efficiency detector on a 5

meter telescope, the integration time for a 10.0 mag star is

approximately 100 hours.

The spectroscopic detection of planets may be possible

if an instruement with very high wavelength accuracy is built.

However, the search for planets would be limited to bright

stars and would require a great deal of observing time on the

largest telescopes.

The accuracy of current astrometric instruments and the

astrometric interferometer has been discussed. Table VII.1

lists the spectroscopic and astrometric perturbations of three

planetary systems. The detection of Sun-Earth systems would

not be possible with the next generation of astrometric or

spectroscopic instruments.

Table VII.1

Astrometric Spectroscopic

Barnard's Star 0.009 are see 44 m/sec

Sun-Jupiter (10 pa) 0.001 are see 26 m/sec

Sun-Earth (10 pO) 0.6s16 are see 0.2 m/sec
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VIIC.3 Theoretical Constraints on the Formation of Planets

In current theories, the formation of planets is

intimately related to the formation of stars. All the physical

processes that inhibit the formation of stars will also inhibit

the formation of planets. In addition, tidal forces and the

heat generated by the protostar will inhibit the process of

planet formation near the star.

In most cases, the astrometric detection of a single

planet will have very little effect on current theories of star

and planet formation. The reason is that either the theory

has not been worked out in sufficient detail to predict the

size and/or orbit of planets, or the theories have so many free

parameters that any number of planets including zero may orbit

about a given star. However, a search for planets will provide

important statistical information on the existance and angular

momentum of planets which may enable more detailed theories to

be formulated.

VII.D The Measurement of Parallax Without Background Stars

In photographic parallax measurements, the distance to a

target star is determined by measuring the position of the

target star relative to a. number of background stars. The

astrometric interferometer, because of its higher accuracy of
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101 to 10~ arc see, needs background stars that are 10 to

100 kiloparsec away from the sun. If the star is brighter

than the magnitude limit of a ground based interferometer,

aprox. 10 mag. , its luminosity or absolute magnitude would

have to be extremely high, from -5 to -10 mag even when

interstellar absorption is ignored. A crude estimate for

absorption by interstellar dust of 0.8 mag/kiloparsec [10]

means that a background star at 10 kiloparsec would have to

have a luminosity of -13 mag, 10 solar luminosity, if its

apparant magnitude is to be +10 mag. No stars this luminous are

known to exist. As a comparison, novae have a peak luminosity

of aproximately -8 mag and supernovae, -17 to -19 mag.

VII.D.1 General Method

The first method derives the distance to two stars from

the measurements of the angle between these two stars as a

function of time. The major difference between this method, to

be described, and photographic data analysis is that in

photographic techniques, the parallax motion of the star is

described by some astrometers in a tangent plane coordinate

system [61] while I will describe its motion in spherical

coordinates. The tangent plane coordinate system is of course

an approximation to the exact formulation. This approximation

deletes a second order effect which is the basis of measuring

parallax without reference stars. The fact that the effect is a
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second order effect results in the loss of accuracy of a factor

5 to 10.

This method is best illustrated in fig VII.1. Two stars

are located 90 degrees apart on the ecliptic. By measuring the

angle between the two stars four times in one year when the

earth is at postions a,b,c, and d it is possible to determine

the distance to both stars. The measurements at a and a differ

by exactly the parallax of star A since the parallax for star B

for these- two measurement points is zero. Similarly,

measurements at positions b and d will give the absolute

parallax for star B. More generally, the angle between two

stars will change in a sinusoidal fashion as a function of time

eq. VII.4. This change is due to the fact that both stars are

at a finite distance from the sun. This sine wave with a period

of one year is characterized by two parameters, amplitude and

phase (eq. VII.4). These two parameters are determined by the

position of the two stars eq. VII.5 and VII.6.

fnqlr bCtM&ttn stars r /1SLn Cec* a c) J t

A) -/

If we previously measure the values of: o( , , , oQ, & and

measure A and / eq. VII.5 and VII.6 become two equations in

two unknowns. .The solution of these equations yields the
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distances rl and r2. C M,, 6, , and ri are the spherical

coordinates of star 1)

In the following calculations, we may assume that the two

stars have the coordinates

040 C

sIt S

OK =a

t t1t

The position of the earth as a furction of time is then

se 160 r6, 161uA..

A circular orbit is assumed to simplify the algebra.

The angle between the stars as seen from the earth as a

function of time is then described by eq. VII.7.

Cos ( Oce)) = i-- --- ---- c E

However, since ri and r2 ar'e so large compared to 1 A.U., the

equation may be simplified by dropping the second and higher

terms. For stars at a distance of 5 parsec or more, the second

order term will be 10" radians or 2xr'arc see. 4(t)

may be expressed as eq. VII.8.
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0Cc)? e 0 + '%9CtS f4e *t'SIN (u.)t +q) v.a

The right side of eq. VII.7 is simplified to eq. VII.9.

Cosp(Oct))> C SGo- SzO abece) '19

Further simplifying ad solving for A9(t) we get eq. VII.10.

& o A cofWtt 

.

1B It4 WLO- t z i 

.

4 ..L ( .os%,--cose.cosScs ) /c4/
I-2.

MI. //

slow4000 Q2

Four measurements of aS(t) at times such that 4=0, --r/2 , IT',

and 3110/2 would enable us to calculate A and B from eq.

VII.10. If the measurement error for each measurement of -&
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were 4 , the probable error for the parameters A and B would

be Gqft. Since A and B can be derived from measurement, eq.

VII.11 and VII.12 represent the two equations for two unknowns

ri and r2.

Abolute paralla. 7rc: c /r;-

A (ccps% $ 40(1 C~OS Oe')z B (cos ti-Cost0o cosacos a ff'3

~ R~s~~svc4-B coa. co-o E ~ s e.wosc) 77/

In order to calculate the probable error in the determination

of i1' and tf1.we may use eq. VII.15.

The quantity in the square brackets in eq. VII.15 represents

the loss in accuracy when this technique is used. For the

special case 6, = the factor is expressed in equation

VII. 16.
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ti-tcoe. a- :cose. cosCcL/

stG, cOseS stnocz

In particular, we see that for 6 '=&,=0 the factor is

1/sin(9.). If the field of view of the astrometric

interferometer is 10 degrees, the error in absolute parallax

would be 5.8 times the error of the relative measurement.

The analysis that led to eq.VII.16 assumed that the

positions of the stars in ecliptic coordinates are known.

Errors in the values used for O and S of the stars will

result in an error in the parallax. Fortunately the required

accuracy for the absolute coordinates is not very great. Eq.

VII.17 states the level of accuracy required.

An examination of VII.13 and VII.14 shows that this would be

approximately satisfied if eq. VII.18 is satisfied.
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The sqrt(A**2+B**2) ,the relative parallax, must be less than

one are see and we may assume L=1O4 are sec. Therefore

must be less than 10~4 radians. For a 10 meter astrometric

interferometer, the measurement of absolute parallax requires

that the absolute coordinates of the stars be known to an

accuracy of 20. are see. In addition eq. VII.14 and VII.15 the

absolute coordinates are needed to correct for the effects of

differential stellar abberation. For 1O 4  are see accuracy,

the absolute positions of the stars must be known to 6 arc

see.

VII.D.2 Absolute Parallax of Spectroscopic Binaries

The second method uses both astrometric measurements and

spectroscopic measurements to determine the distance to a star.

In principle the technique works as follows. From spectroscopy

of a double star, the Velocity of the star as a function of

time can be measured. The integral of the velocity is the

distance. Astremetry measures the angular motion of the star;

since the angular motion is simply the motion of the star

divided by the distance to the star these two measurements can
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be used to determine the distance to the star.

Astrometric observations of course measure transverse

motion, and doppler measurements measure radial motion. The

motion of two objects in a stable orbit about their center of

mass is characterized by seven parameters. Measurement of the

motion of one of the two binaries through a full cycle is

sufficient to determine all the parameters.

In photographic astrometry, the opportunity to combine

spectroscopic and astrometric data is rare. As explained in the

section describing the search for planets, astrometry and

spectroscopy are complementary techniques. The objects for

which spectroscopy will yield results are close binary systems

where orbital velocities are high. Astrometry is sensitive to

binary systems that have widely separated components. The

increase of accuracy possible with the astrometric

interferometer should create a sizeable area of overlap. A

similar technique is currently being used with speckle

inter ferometry.

As mentioned previously, this technique is accurate only

for double star systems that are detectable both

astrometrically and spectroscopically. Systems with short

orbital periods (weeks) usually will not have a measureable

astremetric motion, while those with very long periods (> 10

years) usually will not have a measurable spectroscopic motion.

For an ideal system with a' period of aproximately 3 years and a

peak to peak astrometric motion of 5 A.U., absolute parallax
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measurements to 2.x10 are see (1 ') accuracy are possible

with 11O 4 are see astrometric accuracy.
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VIII Conclusions

Currently, there are no operational astrometric

interferometers. This thesis described a prototype of an

astrometric interferometer and three problems associated with

the operation of such an instrument. The first and most

important problem is the isoplanatic patch problem. The small

size of the isoplanatic patch, a few are see for high

resolution instruments, would render other high resolution

instruments usless for astrometry of widely separated stars.

The solution of the isoplanatic patch problem provided the

initial motivation for the thesis.

The second problem is one of a number of problems which

illustrates the fact that new measurement techniques are

necessary to take advantage of a radically new instrument. The

problem was the measurement of absolute parallax. Current

techniques measure the distance to stars by measuring changes

in the apparant position of stars relative to background stars.

As explained in the last chapter, for practical purposes, there

are no background stars. While I had recognized the existance

of the problem, much of the motivation for finding a specific

solution came from the reviews of an NSF proposal for an

interferometer.

Two important atmospheric parameters r snd Z0 determine

the sensitivity of all high resolution instruments. r is the

maximum usable aperture for a Michelson interferometer and
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T is the time during which the atmosphere can be considered

frozen. In the early days of speckle interferometery, Z. was

determined by a trial and error process. In the next version of

the astrometric interferometer, these parameters calculated in

real time will be used to optimize the operation of the fringe

tracking servo under changing atmospheric conditions.

Several conclusions may be drawn. One is that the most

important problem, isoplanatism, has a solution at least in

theory. Another that the Kolmogorov spectrum provides an

excellent description of atmospheric turbulence for

astronomical applications. Las.t of all, it is obvious that

this thesis is only the first step toward an operational

astrometric interferometer.

The second step will start immediately after the first

step and will be funded by a small NSF grant0  Hopefully, the

third step, the construction of an operational instrument will

be possible in the not too distant future. In my opinion, the

results will be worth the considerable effort needed to

develope the instrument.
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Appendix I Error Estimation

The measurement of any quantity involves noise. By

analysing the results of a number of independent measurements,

it is possible to derive an estimate of the quantity being

measured as well as the probable error of a single

measurement. While the measurement of the probable error is

simple, it is often desirable to estimate the probable error

before the instrument is built.

For the astrometric interferometer, the predominent source

of noise is hopefully, photon noise. Photon noise has the

property that the mean is equal to the variance. With this

information, it is possible to estimate the probable error in

fringe phase or visibility due to photon noise.

For example, the phase, arctan ((a-c)/(b-d)) is a

function of four random variables that obey possion

statistics. The probable error Cr may be calculated using

the following technique.

If we let the quantity that is being measured be a

function f of n independent random variables x,, ... x,f , then

we express the mean and variance of f by way of a taylor series

expansion.

4f~ ~AX a 1X

-fr0 .4 alit3 trrckeV talewns
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< > cACebotas eMSsetbde ooer ce

W AAX

and 4t firsT order terrm AN o

< Z 4XL . f y = 0
) XZ

because <(x( -i)>=<xI >-xj.=0

since x's are independent random variables,

< (XL -~iR) (Xi -x.5) >=O wvlet% . -* j

by definition the variance is <(f-t,)>, so

Cs cAJ < 4 > ( 3 kICOSCCtjrrnS

In the trivial case of f(x,,...,x,)=x,+...+x,, all the

second order and higher derivatives are 0 and the first

derivatives are 1. so

<5 g 4 .<x 

-

AX(Jj 2 <*4
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Appendix II

This appendix lists the data from several nights of

observation at Wallace Observatory. The numbers are in units of

(arc see), The tables of numbers start with the correlation

function at zero lag. Each subsequent number is the function

at 20, 40, 80, etc. msec lags. The lag step sizes in msec is

listed along with the type of function, auto correlation, cross

correlation etc.

Oct. 29 1976

time 3:33:50 sidt

11.1 5.5 4.4

2.9 2.9 2.4

time 3:49:11 sidt

11.3 5.3 4.0

2.7 2.5 2,4

time 3:51:15 sidt

13.0 6.9 5.4

3.4 3.2 2.9

time 4:45:10 sidt

6.5 3.7 2.8

1.1 1.0 1,2

1.0 .7 .5

time 4:47:15 sidt

6.0 3.2 2.4

1.0 .9 .8

west az

4.0

2.6

west az

3.6

2.6

west az

5.1

2.7

west az

2.5

1.2

.5

west az

2.0

.9

auto corr.

3.6

2.7

auto corr.

3.3

2.4

auto corr.

4.6

3.3

auto corr.

2.0

1.2

.4

auto corr.

1,6

.9

20msec

364

20msec

3.4

20msec

4.1

80msec

1.5

1.1

8Omsec

1.6,

.7

3.2

2.9

3.8

1.2

1.0

1.1

.7



.3 .5 .3 .2 .1

Nov 12 1976

time 4:54:0 sidt az-az cross corr. 40 msec

-0.13 0.06 0 -0.09 0 0 0.15

0,2 0.05 0 -0.14 -0.04 -0.09 0

-0.04 -0.19 -0.09 -0.09 -0.14 -0.14 0.05

time 5:08:0 sidt west az-el cross corr. 40 msec

2.62 .96 .74 .52 .49 .62 .54

.49 .62 .54 .45 .36 .34

time 5:22:0 sidt west az - east el cross corr. 40msee

-.24 -0.32 -0.13 -0.13 -0.1 -0.12 -0.1

-0.02 -0.10

Nov 13 1976

time 8:40:0 sidt west az auto corr. 40msec

9.1 4.6 3.8 3.4 2.9. 2.8 2.5

2.2 2.4 2.3 2.2 2.2 2.1 2.1

1.9 1.8 1.8 1.9 1.9 1.8 1.6

1.6 1.5

time 8:45:0 sidt west az auto corr. 20msee

12.7 5.6 4.6 4.2 3.6 3.5 3.3

3.1 3.2 2.9 2.8 2.7

time 10:18:0 sidt west el auto corr. 20msec

16. 7.5 6.1 5.6 5.0 4.9 4.6

4.6 4.2 3.8 3.7 3.6
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Appendix III

This appendix describes the expected distributions of FASN

due to photon noise. These calculations of FASN used the full

wavelength modulation pattern described in chapter IV. The

distributions were calculated using a monte-carlo technique.

The programming was done by R. Concia. While these figures are

not directly comparable with the one inch prototype, they

indicate that servo operation at low light levels is possible

when fringe visibility is near unity.

The graphs on the following pages represent the FASN

distributions for 200 photons/sample.
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