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Abstract

We describe a Bethe ansatz based method to derive, starting from a mul-

tiple integral representation, the long-distance asymptotic behavior at finite

temperature of the density-density correlation function in the interacting one-

dimensional Bose gas. We compute the correlation lengths in terms of so-

lutions of non-linear integral equations of the thermodynamic Bethe ansatz

type. Finally, we establish a connection between the results obtained in our

approach with the correlation lengths stemming from the quantum transfer

matrix method.
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1 Introduction

This article is devoted to the study the long-distance asymptotic behavior of the correlation

functions in the one-dimensional Bose-gas at finite temperature. The method of analysis we

apply builds on the method developed in the work [1]. There, the long-distance asymptotic

behavior of the zero temperature correlation functions of massless quantum integrable models

was derived in the framework of the algebraic Bethe ansatz. This setting allows one to present

the correlation functions at zero temperature as series of multiple integrals [2, 3, 4, 5, 6]. In

the long-distance regime, each of the multiple integrals appearing in one of these series can be

evaluated asymptotically. The resulting asymptotic series can then be summed up [1].

In [1], we have focused on the example of the generating function for correlation functions of

the third components of local spin in the XXZ spin-1/2 Heisenberg chain. We have mentioned,

however, that the method can be applied to other integrable models as well. In particular we

showed how one can use the same approach for the model of one-dimensional bosons described

by the quantum nonlinear Schrödinger equation (QNLS model) using [6].

We would like to stress that the algebraic Bethe ansatz approach of [1] was fit for the

analysis of the asymptotic behavior of correlation functions at zero temperature. However, in

some models such as the QNLS one, it can also be applied for the evaluation of the long-distance

asymptotic behavior of correlation functions at finite temperature. It is this problem that we

consider in the present article.

The Hamiltonian of the QNLS model is given by

H =

L∫

0

(
∂xΨ

†∂xΨ+ cΨ†Ψ†ΨΨ− hΨ†Ψ
)
dx . (1.1)

Here Ψ and Ψ† are Bose-fields subject to canonical, equal-time commutation relations, c is a

coupling constant and h the chemical potential. We focus on the case of the repulsive regime (i.e.

c > 0) and consider the model on a finite interval [0, L] subject to periodic boundary conditions.

We will take the thermodynamic limit L → ∞ later on.

This model, for generic c, was first introduced and solved by Lieb and Liniger in [7, 8]. It can

be considered as a generalization of the model of impenetrable bosons considered by Girardeau

[9]. The spectrum of this model can be obtained by the algebraic Bethe ansatz [10, 11, 12].

The thermodynamics of the QNLS model were first studied in [13] and this analysis was made

rigorous in [14]. It was shown there that the state of thermal equilibrium is described by a

non-linear integral equation for the excitation energy ε(λ)

ε(λ) = λ2 − h−
T

2π

∫

R

K(λ− µ) log
(
1 + e−

ε(µ)
T

)
dµ, (1.2)

where T is the temperature and

K(λ) =
2c

λ2 + c2
. (1.3)

2



Below we refer to equation (1.2) as the Yang–Yang equation. The state of the thermal equilibrium

is given by a Dirac sea filled with a certain density of particles ρp(λ) and an associated density

of holes ρh(λ). The total density is denoted ρt(λ) = ρp(λ) + ρh(λ). The Fermi weight ϑ(λ), as

usual, is defined as the ratio of the density of particles to the total density, namely,

ρp(λ)

ρt(λ)
= ϑ(λ) =

(
1 + e

ε(λ)
T

)−1
, (1.4)

and the functions ρp(λ) and ρt(λ) are related to each other by the integral equation

ρt(λ)−
1

2π

∫

R

K(λ, µ)ρp(µ) dµ =
1

2π
. (1.5)

The temperature dependent correlation functions are defined in a standard way

〈O〉T =
tr
(
Oe−H/T

)

tr
(
e−H/T

) =

∑
〈Ω|O|Ω〉e−E/T

∑
e−E/T

. (1.6)

Here |Ω〉 are eigenstates of the Hamiltonian (1.1) and E are their eigenvalues. The sums in (1.6)

are taken over the complete set of the eigenstates |Ω〉.

Exact representations for the temperature dependent correlation functions of the QNLS

model where obtained for the impenetrable Bose gas (c = ∞) in [15, 16, 17] by using the

free fermion structure of the model. The long-distance asymptotic behavior of the two-point

functions in the impenetrable Bose gas has been derived in [18, 19, 20] with the use of Riemann–

Hilbert problem method. The case of general coupling constant 0 < c < +∞ was considered in

[21] by the algebraic Bethe ansatz. There a series of multiple integrals was obtained for thermal

density-density correlation function of the QNLS model. The method of dual fields was applied

in [16, 22, 23, 24] for the derivation of determinant-type representations for various correlation

functions. Those representations were used in [25, 26] for the asymptotic analysis. One should

also mention the method of the asymptotic analysis based on the functional integral approach

[27]. Yet another approach to estimate these long-distance asymptotic behavior of correlation

functions at finite temperature is provided by the conformal field theory [28, 29, 30, 31] and

references therein. These last two methods are, however, restricted to the low-temperature

regime only.

Recently, in the work [32], the quantum transfer matrix (QTM) approach was applied to the

QNLS model. We recall that, originally, this method was developed for quantum spin chains

(see the nice review [33] and references therein), where one can construct the QTM Tq explicitly.

The diagonalization of the QTM gives access to its leading eigenvalue (the logarithm of which

corresponds to the free energy) as well as to the subdominant ones (which in their turn give

access to the correlation lengths at T > 0). In the infinite size limit, these eigenvalues are

expressed as weighted integrals involving a counting function which satisfies a thermodynamic

Bethe ansatz (TBA) non-linear integral equation (see also [34]). To the best of our knowledge,
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the analog of Tq in the QNLS model is not known nowadays. Therefore, in [32], the last model

was treated as some special, continuous limit of the XXZ spin chain. It was shown that, in

this limit, the non-linear integral equation describing the maximal eigenvalue of the QTM goes

to the Yang–Yang equation. This observation allowed the authors of [32] to obtain a multiple

integral representations for the temperature correlation functions in the QNLS model.

The first steps of our method are close to the ones adopted in [21]. Namely, we build on the

arguments given in [35] (see also [21, 12]): in the thermodynamic limit, the representation (1.6)

can be replaced, at least for local or quasi-local operators O, by a single expectation value

〈O〉T =
〈ΩT |O|ΩT 〉

〈ΩT |ΩT 〉
, (1.7)

where |ΩT 〉 is any one of the eigenstates of the Hamiltonian corresponding to the thermal equi-

librium. This representation constitutes the starting point for our calculations. The matter is

that the algebraic Bethe ansatz provides multiple integral representations for the expectation

values of a wide class of operators with respect to an arbitrary eigenstate of the Hamiltonian.

In particular, one can obtain such representations for the expectation values with respect to the

state of thermal equilibrium. In this way, we recast 〈O〉T as a series of multiple integrals. Once

this is done, it remains to evaluate the asymptotic behavior (in the distance) of the obtained

integrals. It is remarkable that our results are given in terms of solutions to TBA non-linear

integral equations. These can be understood as the limiting (in the sense of [32]) equations

describing the sub-leading eigenvalues of the QTM. Thus, our method provides a link between

the method based on the representation (1.7) and the QTM approach. In particular, we obtain

an extension of the QTM-based results [37, 38] for the correlation lengths in the XXZ spin chain

here for the QNLS model. By applying the scaling proposed in [32] one can actually map the

correlation lengths obtained for the XXZ spin chain to the ones obtained by our asymptotic

analysis.

We have already mentioned that the representation for temperature correlation functions of

QNLS model as a series of multiple integrals were obtained also in [21]. Later it was analyzed in

[39, 40, 41]. However the authors of those works restricted themselves to the analysis of the first

few terms of the series. This led them to the wrong conjecture for the long-distance asymptotic

behavior of the correlation functions. We would like to stress that the series of multiple integrals

obtained in [21], as well as ours are not well ordered in respect to the x → ∞ limit. That is to

say all the summands in both series contribute to the leading asymptotic behavior as well as to

the corrections. Our method allows us to compute all such contributions and re-sum them.

This article is organized as follows. In section 2, we state the problem to solve and the main

results of this paper. In section 3 we derive a series of multiple integral representation for the

generating function of the density-density correlation function at finite temperature. In section 4

we perform the asymptotic analysis of the individual multiple integrals appearing in the series.

We re-sum these asymptotic expressions in section 5 by the use of Lagrange series. Then, in

section 6 we obtain the long-distance asymptotic behavior of the density-density correlation
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function. There, we discuss the leading term and connect the various correlation lengths we

obtain with the quantum transfer matrix method. In appendix A we present a numerical analysis

of the expressions for the correlation lengths that we have obtained. Technical aspects relative to

the formulae for the amplitudes are gathered in appendix B. We discuss certain integral identities

in appendix C. Finally, in appendix D we briefly review the results we need on continuous

Lagrange series.

2 The problem to solve and the main results

To calculate the long-distance asymptotic behavior of the density-density correlation functions

we consider its generating function

〈e2πiαQx〉T =
〈ΩT |e

2πiαQx |ΩT 〉

〈ΩT |ΩT 〉
, (2.1)

were α is a complex number1. This generating function is defined in terms of the number of

particles on [0;x] operator Qx

Qx =

x∫

0

j(z) dz, with j(x) = Ψ†(x)Ψ(x), (2.2)

Then, the density-density correlation function 〈j(x)j(0)〉T is obtained from (2.1) by

〈j(x)j(0)〉T =
−1

8π2

∂2

∂x2
∂2

∂α2
〈e2πiαQx〉T

∣∣∣∣
α=0

. (2.3)

To describe the large-x asymptotic expansion of 〈e2πiαQx〉T , we first consider a set of functions

ui(λ) satisfying the non-linear integral equations

ui(λ) = λ2 − hα −
T

2π

∫

R

K(λ− µ) log
(
1 + e−

ui(µ)

T

)
dλ− iT

n∑

ℓ=1

[θ(ŝ+

ℓ − λ)− θ(ŝ−

ℓ − λ)], (2.4)

where n = 0, 1, . . . , the kernel K(λ− µ) is given by (1.3), hα = h+ 2πiαT , and

θ(λ) = i log

(
ic+ λ

ic− λ

)
, θ′(λ) = K(λ). (2.5)

The parameters {ŝ±

ℓ } belong to the upper (resp. lower) half-plane and are the roots of the

equation

1 + e−ui(ŝ
±
ℓ
)/T = 0. (2.6)

1We draw the reader’s attention to the fact that the combination 2πiα was denoted by β in [1]. We did not

use this notation here so as to avoid a confusion with the inverse temperature, that is traditionally denoted by β.
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The subscript i in ui serves as a way to label all the possible choices of n roots {ŝ±

ℓ }i. In

the framework of our analysis, the roots ŝ±

ℓ arise as deformations of the poles r±

ℓ of the Fermi

weight (1.4). Namely, there exist functions ŝ±

ℓ (γ) of some parameter γ such that ŝ±

ℓ (0) = r±

ℓ

and ŝ±

ℓ (1) = ŝ±

ℓ . Thus, one can associate every set {ŝ±

ℓ } with its pre-image {r±

ℓ }. Every choice

of the {r±

ℓ }i uniquely yields the image {ŝ±

ℓ }i and the corresponding function ui(λ). Thus, the

subscript i in the equation (2.4), in fact, enumerates different subsets of the Fermi weight poles

{r±

ℓ }i. Note that, for a given function ui(λ), there may exist other points wp 6= ŝ±

ℓ such that

1 + e−ui(wp)/T = 0. Following the terminology of the QTM-based approach, we call such roots

hole-type solutions.

Equation (2.4) differs from the Yang–Yang equation (1.2) by a shift of the chemical potential

and the term depending on the functions θ(ŝ±

ℓ − λ). Due to (2.6), one can get rid of this term

by changing the integration contour. Namely, let the contour Ĉi be a deformation of the real

axis such that moving from R to Ĉi one only crosses the roots {ŝ±

ℓ }i while all other solutions wp

as well as all the poles of the Fermi weight r±

ℓ are not crossed (see Fig. 1). Then, equation (2.4)

turns into

ui(λ) = λ2 − hα −
T

2π

∫

Ĉi

K(λ− µ) log
(
1 + e−

ui(µ)

T

)
dλ, (2.7)

and has the form of the Yang–Yang equation up to the shift of the chemical potential and the

change of the integration contour. Hence, different functions ui(λ) are enumerated by different

contours Ĉi: ui(λ) = u(λ, Ĉi). It is interesting to notice that this method of recasting equation

(2.4) into (2.7) is very similar to the one used in [42] to generate higher excited states within

the TBA equations by analytic continuation.

r
+

1
◦

ŝ
+

1

ŝ
−

1
r
−

1
◦

Ĉi
R

r
+

3◦

w2

×

ŝ
+

3

r
+

2◦

r
−

2◦

ŝ
−

2

w3 r
−

3◦
×

Figure 1: The poles of the Fermi weight r±

ℓ are denoted ◦, the zeros ŝ±

ℓ by •, the hole-type

solutions wp by ×. The integration contour Ĉi bypasses the points ŝ+

1 , ŝ+

3 in the upper half-plane

from above and bypasses the points ŝ−

1 , ŝ−

2 in the lower half-plane from below avoiding the points

r+

i and wi.
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The large x asymptotic expansion of 〈e2πiαQx〉T has the following form

〈e2πiαQx〉T →
∑

i

e−xpiB[ui], x → ∞, (2.8)

where

pi = −
1

2π

∫

Ĉi

log

(
1 + e−

ui(λ)

T

1 + e−
ε(λ)
T

)
dλ , (2.9)

and the constant in x amplitudes B[ui] are functionals of ui(λ). Their explicit but rather

cumbersome form is given in section 6. It follows from (2.3) that the correlation lengths pi at

α = 0 drive the long-distance exponential behavior of the two-point function. Our numerical

computations (cf appendix A) together with the low-temperature expansions [47] confirm that

given α = 0 and any i, i.e. for any solution ui to (2.7), ℜ(pi) ≥ 0 and even pi = 0 if Ĉi = R and

ℜ(pi) > 0 for all other contours Ĉi 6= R.

The sum in (2.8) is taken with respect to all possible solutions ui(λ), or what is equivalent,

with respect to all different contours Ĉi including Ĉi = R. In the last case, the function ui(λ) is

equal to the excitation energy ε(λ) with the chemical potential shifted by 2πiαT . It is precisely

this term that gives the leading contribution to the asymptotic behavior of the density-density

correlation function (see section 6).

In (2.8), we did not indicate the upper limit of the summation as well as the possible cor-

rections. We postpone the discussion of these topics to section 6. Here, we would like to draw

the reader’s attention to the obvious analogy of our results for the correlation lengths with the

ones obtained by the QTM approach for the temperature correlation functions of spin chains

[33]. We stress however that our method is completely different and that it is applied directly

to the QNLS model without any limiting procedure from the XXZ Heisenberg chain like the

one in [32].

3 Multiple integral representation

The master equation [4, 6] is a single multidimensional contour integral representation valid for

a wide class of integrable models. It allows one to obtain various types of series of multiple

integral representations for certain correlation functions. In the case of the one-dimensional

Bose gas at finite temperature, a series of multiple integral representation was obtained in [32]

through a scaling limit from the one of the XXZ chain. Here, we work with another one that we

obtain from [6] by literarily repeating the steps given in [1] for the case of the XXZ Heisenberg

spin chain.

Prior to taking the thermodynamic limit, one can describe the eigenstates |Ω〉 of the Hamil-

tonian (1.1) by sets of real parameters Λ = {λ1, . . . , λN}, N = 0, 1, . . . , i.e. |Ω〉 = |Ω(Λ)〉. These

parameters λj are solutions to the Bethe equations [11, 12], and different sets Λ yield different

eigenstates |Ω(Λ)〉.
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We remind that the master equation refers to a multidimensional contour integral representa-

tion for the normalized expectation value of the e2πiαQx operator with respect to any eigenstate

|Ω(Λ)〉 of the Hamiltonian. Moreover, the expansion of this multidimensional contour integral

representation into the aforementioned series of multiple integrals does not depend on the spe-

cific choice of the state |Ω(Λ)〉. Hence, even when computing the thermal averages, one can still

apply the results of [1]. Therefore,

〈Ω(Λ)|e2πiαQx |Ω(Λ)〉

〈Ω(Λ)|Ω(Λ)〉
=

1

detN Θ

N∑

n=0

1

n!

∮

Γ(Λ)

n∏

j=1

dzj
2πi

∑

µ1,...,µn∈Λ

Fn

(
{µ}

{z}

)

× det
n

(
1

zk − µj

) n∏

j=1

(
1

2πiLρ̃(µj)

eix(µj−zj)

µj − zj

)
, (3.1)

where

2πLρ̃(λj) = L+
N∑

a=1

K(λj − λa), Θjk = δjk −
K(λj − λk)

2πLρ̃(λk)
. (3.2)

The functions Fn appearing in (3.1) are symmetric functions in the n variables {z} and in the

n variables {λ}. Their detailed description will be given later on. What only matters for the

moment, is that these functions are holomorphic with respect to every variable in some open

strip of fixed width a around the real axis. As for the discrete summations, each parameter µk

runs independently through the entire set Λ. The integrals over zj are taken with respect to

a counterclockwise oriented, bounded and closed contour Γ(Λ) surrounding the set Λ in such a

way that the only singularities of the integrand within the contour are the poles at zj ∈ Λ. In

particular, the contour Γ(Λ) lies inside of the strip of width a.

In order to obtain the thermodynamic limit N,L → ∞, N/L = D = const of the expectation

value of the e2πiαQx operator, one starts by choosing a particular set Λ and then introduces the

density of particles defined by ρ−1
p (λj) = limN,L→∞ L(λj+1 − λj). In the QNLS model, it can

be shown that for sets Λ having a physical interpretation (the ground state, excited states of

finite energy above the ground state, states of thermal equilibrium) this limit always exists. The

density of particles allows one to replace the discrete sums over µk ∈ Λ by integrals,

lim
N,L→∞

1

L

∑

µ∈Λ

f(µ) =

∫

R

f(λ)ρp(λ) dλ . (3.3)

Above, we have made the assumption that f(λ)ρp(λ) is integrable on R.

We now consider the case where the state |Ω(Λ)〉 corresponds to any finite N,L representative

of the state of thermal equilibrium |Ω〉T . Then, due to (1.5), it follows that the thermodynamic

limit of the function ρ̃(λ) coincides with the total density ρt(λ). Respectively, the determinant

of the matrix Θjk goes to the Fredholm determinant

lim
N,L→∞

det
N

Θjk = det
[
I − 1

2πK
(ε)
]
, (3.4)
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where we used (1.4) and have introduced the kernel K(ε)(λ, µ) = ϑ(µ)K(λ− µ). Finally, using

(3.3) we can replace the discrete sums over the set Λ by integrals in every nth term of (3.1).

Then agreeing upon

〈〈e2πiαQx〉〉T = 〈e2πiαQx〉T · det
[
I − 1

2πK
(ε)
]
, (3.5)

we obtain

〈〈e2πiαQx〉〉T =
∞∑

n=0

1

n!

∫

R

dnλ

(2πi)n

∮

Γ({λ})

dnz

(2πi)n
·
n∏

j=1

(
ϑ(λj)e

ix(λj−zj)

λj − zj

)
·Fn

(
{λ}

{z}

)
·det

n

(
1

zk − λj

)
,

(3.6)

where the contour Γ({λ}) surrounds counterclockwise the variables λ1, . . . , λn avoiding any other

singularity of the integrand. Observe that apart from the replacement of the discrete sums by

integrals we also have replaced the finite sum over n in (3.1) by the infinite series in (3.6). The

question of convergence of this series will be discussed later, after the description of the functions

Fn entering the representation (3.6) for 〈〈e2πiαQx〉〉T will be given.

These functions depend on 2n variables λ1, . . . , λn and z1, . . . , zn and read,

Fn

(
{λ}

{z}

)
= Wn

(
{λ}

{z}

)
·

n∏

j=1

Vn

(
λj |

{λ}

{z}

)
. (3.7)

The explicit formulae for the functions Wn and Vn involve the set of auxiliary functions:

Vσ;n(µ) =
n∏

a=1

µ− λa + icσ

µ− za + icσ
, σ = 0,±, and Kα(λ) =

1

λ+ ic
−

e2πiα

λ− ic
. (3.8)

Namely,

Vn

(
µ |

{λ}

{z}

)
= e2πiα

V+;n(µ)

V−;n(µ)
− 1 . (3.9)

The expression for Wn is more involved. It can be represented as

Wn

(
{λ}

{z}

)
= W̃ [Vσ;n] ·

n∏

k=1

V−;n(zk)

V−;n(λk)
, (3.10)

where

W̃ [Vσ;n] =
(e2πiα − 1)2 det[I + 1

2πiU
(1)] det[I + 1

2πiU
(2)](

V −1
+;n(θ1)− e2πiαV −1

−;n(θ1)
)(
V−;n(θ2)− e2πiαV+;n(θ2)

) . (3.11)

Above appear two Fredholm determinants of integral operators whose kernels are

U (1)(w,w′) = −V −1
0;n (w) ·

Kα(w − w′)−Kα(θ1 − w′)

V −1
+;n(w)− e2πiαV −1

−;n(w)
, (3.12)

and

U (2)(w,w′) = V0;n(w
′) ·

Kα(w − w′)−Kα(w − θ2)

V−;n(w′)− e2πiαV+;n(w′)
. (3.13)
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These operators act on a counterclockwise oriented contour Γ(R) surrounding the real axis. By

definition, the only singularities of U (k)(w,w′) inside of Γ(R) are the zeros of V0;n(w) (resp. the

poles of V0;n(w
′)). In the following, when we will slightly deform the integration contour in (3.6),

we will always keep this prescription for Γ(R), making it larger, if necessary. The parameters θ1
and θ2 in (3.11)–(3.13) are arbitrary complex numbers lying inside of the contour Γ(R). It was

proved in [1] that the overall combination appearing in the r.h.s. of (3.11) does not depend on

a specific choice of these parameters.

Due to the rather complicated form of the functions Fn, we are unable to provide a proof

of the convergence of the series (3.6) in the case of general c. In fact, the situation is here

quite analogous to the one occurring in the zero temperature case [1]. One can easily prove the

convergence in the special case corresponding to the free fermion point c = ∞. Indeed, then

Fn =
(
e2πiα − 1

)n
and the integrals over zj can be taken explicitly. We obtain

〈e2πiαQx〉T
∣∣
c=∞

=
∞∑

n=0

(e2πiα − 1)n

n!

∫

R

det
n

[
sin x

2 (λj − λk)

π(λj − λk)
ϑ(λk)

] n∏

j=1

dλj . (3.14)

The series (3.14) is an expansion of the Fredholm determinant of the integral operator I + V0

with

V0(λ, µ) = (e2πiα − 1)
sin x

2 (λ− µ)

π(λ− µ)
ϑ(µ) . (3.15)

The general theory of Fredholm determinants ensures that the series (3.14) is absolutely con-

vergent and defines an entire function of e2πiα. It particular, the expansion coefficients decay

faster than exponentially.

In the case c < ∞, the series (3.6) cannot be reduced to a simple form as in (3.14). Nev-

ertheless, taking into account that the QNLS model with a general coupling constant can be

considered as a smooth deformation of the free fermions case, we shall assume in the following

that the series (3.6) is absolutely convergent.

In order to study the series (3.6) in the next sections, let us make two important remarks

concerning the functions Wn, Vn and Fn present in (3.6). Although their precise expressions

are rather cumbersome, it is easy to show that Wn and Vn (and hence Fn) are holomorphic

functions within some multi-dimensional strip S: |ℑ(zj)| ≤ a, |ℑ(λj)| ≤ a, j = 1, . . . , n.

Though we can not determine explicitly the width a of this strip, it is clear that the latter

is temperature independent, because the Fermi weight ϑ(λ) (1.4) is the only function present

in (3.6) that depends on T . In the case of positive chemical potential, the poles of the Fermi

weight accumulate, in the T → 0 limit, on certain points of R. Hence, there exists a crossover

temperature T0 such that, for T < T0, there are always poles of the Fermi weight that are located

inside of the strip |ℑ(λ)| < a. The precise value of T0 depends on the value of a which, in its

turn, is fixed by the analytic properties of Fn. For instance, in the free fermion point, one has

T0 = +∞ as Fn =
(
e2πiα − 1

)n
. We will not study this question further. Simply, when c < ∞

we shall limit ourselves to the regime T < T0. In such a case, the nearest (to the real axis)

singularity of the integrand in (3.6) always correspond to the poles of the Fermi weight.
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The other important features of the functions Wn and Vn concerns their reduction properties,

namely,

Vn

(
ω |

{λ}

{z}

)∣∣∣∣∣
λj=zk

= Vn−1

(
ω |

{λ} \ λj

{z} \ zk

)
, Wn

(
{λ}

{z}

)∣∣∣∣∣
λj=zk

= Wn−1

(
{λ} \ λj

{z} \ zk

)
. (3.16)

In the following, we will see that these reduction properties (3.16) are crucial for the re-

summation the series (3.6) in the asymptotic regime x → ∞.

4 Asymptotic behavior of multiple integrals

The asymptotic analysis of the series (3.6) can be done along the lines of the zero-temperature

case [1]. The first step of that method consists in extracting the large-x asymptotic behavior

of each 2n-fold integral appearing in the series (3.6). The main difference between the T = 0

and T > 0 situations is that, in the first case, the corrections to the leading terms have a

power-law behavior in x, whereas, at T > 0, they are exponentially small in x. Apart from

this difference, the general strategy of the asymptotic analysis is the same with however several

interesting technical simplifications in the case T > 0. Below, we recall the general framework

of our method.

The 2n-fold multiple integrals of interest have the form

In[Fn] =

∫

R

dnλ

(2πi)n

∮

Γ({λ})

dnz

(2πi)n

n∏

j=1

(
ϑ(λj)e

ix(λj−zj)

λj − zj

)
· det

n

(
1

zj − λk

)
· Fn

(
{λ}

{z}

)
, (4.1)

where Fn are holomorphic functions in some multi-dimensional strip S: |ℑ(zj)| ≤ a, |ℑ(λj)| ≤ a,

j = 1, . . . , n, a being n-independent. The nearest to the real axis singularities of the integrand

in (4.1) are the poles of the Fermi weight ϑ(λ).

4.1 The Fredholm determinant as a multiple integrals generating function

In this subsection, we briefly recall the connection between multiple integrals of the type (4.1)

and Fredholm determinants of integral operators [1].

Let us assume for a moment that the functions Fn take the form of a pure product as

Fn

(
{λ}

{z}

)
=

n∏

p=1

ϕ(λp)e
−g(zp) , (4.2)

where ϕ(λ) and e−g(λ) are holomorphic in the strip |ℑ(λ)| ≤ a. Then in (4.1), the integrals over

the zj separate and can be computed by taking the residues at zj = λj and zj = λk. A simple

calculation leads to

In[Fn] =

∫

R

det
n
[V (λj , λk)] d

nλ = ∂n
γ det

R

[I + γV ]

∣∣∣∣
γ=0

, (4.3)
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where

V (λ, µ) =
ϑ(λ)F (λ)

2πi(λ− µ)

(
e

ix
2
(λ−µ)+ 1

2
(g(λ)−g(µ)) − e−

ix
2
(λ−µ)− 1

2
(g(λ)−g(µ))

)
, (4.4)

and

F (λ) = ϕ(λ)e−g(λ) . (4.5)

Thus, in (4.3), we have identified the multiple integral (4.1) as the nth γ-derivative of the

Fredholm determinant of the operator I + γV acting on R with the integral kernel (4.4).

The large-x asymptotic behavior of the Fredholm determinant of the operator (4.4), up to

O(e−ax) corrections, has been established in [44]. This asymptotic expansion as well as any of its

finite order γ-derivatives is uniform in γ provided γ belongs to a sufficiently small neighborhood

of the origin. By taking the n-th γ-derivative of this asymptotic expansion at γ = 0, we obtain

the asymptotic behavior of (4.3).

In the case of interest, Fn cannot be represented as pure product functions. However, one

can proceed as in [1] and apply the density procedure (see [43] for more details), that is, to

decompose Fn on the class of pure product functions :

Fn

(
{λ}

{z}

)
=

∞∑

k=1

n∏

p=1

ϕk(λp)e
−gk(zp), (4.6)

where the functions ϕk(λ) and e−gk(λ) are holomorphic in the strip |ℑ(λ)| ≤ a. We thus define

Fk(λ) = ϕk(λ)e
−gk(λ) (4.7)

and denote Vk(λ, µ) the kernel obtained from V (λ, µ) by the replacement F →֒ Fk and g →֒ gk.

Then

In[Fn] =
∞∑

k=1

∂n

∂γn
det[I + γVk]

∣∣∣∣
γ=0

. (4.8)

We stress that in (4.8) there are no problems with permuting the symbols of integration along

R (contained in the Fredholm determinant) and summation over k induced by the density

procedure as the convergence in (4.6) holds in the supremum norm on the strip {|ℑ(z)| ≤ a}

and the weights ϑ(λ) ensure the convergence of the integrals1.

1We would like to point out that one could avoid the manipulation of infinite sums related to the density

procedure as follows. Namely, one first considers the case of functions Fn that are represented as finite linear

combinations of pure product functions and proceeds through all the steps in the re-summation below. At the

end, once that the function one started with has been reconstructed, it is enough to observe that the answer is

expressed in terms of a linear continuous functional defined on a dense subspace of a Banach space. Therefore,

the obtained asymptotic expansion can be extended, by continuity, to more general classes of functions Fn. As

this does not alter the final conclusions, we chose not to insist on that point later on.
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4.2 Large-x asymptotic behavior of the Fredholm determinant

We have seen that the problem of the calculation of the asymptotic behavior of the multiple

integrals (4.1) boils down to the asymptotic analysis of the Fredholm determinant of the integral

operator with the kernel (4.4). In this section, we present the results of this analysis [44]. Recall

that the Fermi weight ϑ(λ) (1.4) appearing in (4.4) is a meromorphic function in the strip

|ℑ(λ)| ≤ a with simple poles at λ = r±

j , where j = 1, . . . ,M . The superscripts ± indicate that

the corresponding pole lies in the upper (resp. lower) half-plane. The total number of poles 2M

is not essential for our analysis, however we have assumed that M > 0. It is also important that

the Fermi weight decays as a Gaussian when λ → ±∞.

Concerning the functions g(λ) and F (λ) entering the kernel (4.4), in addition to their ana-

lyticity in the strip |ℑ(λ)| ≤ a we assume that g′(λ)ϑ(λ)F (λ) and ϑ(λ)F (λ) are integrable along

any curve avoiding the poles of ϑ in this strip. This, in particular, means that | trV | < ∞.

Now we give several definitions and introduce new notations necessary for the formulation

of the theorem about the large-x asymptotic behavior of the Fredholm determinant det[I+γV ].

In addition to the points r±

j , we define the points s±

j such that 1 + γϑ(s±

j )F (s±

j ) = 0. For γ

small enough, these points are slightly shifted in respect to the poles r±

j (see Fig. 2), but their

overall number (equal to 2M) is the same in virtue of Rouché theorem.

r
+

1
◦

s
+

1

s
−

1r
−

1
◦

C13;12

Γ13;12

R

r
+

3◦

s
+

2

s
+

3

r
+

2◦

r
−

2◦

s
−

2

s
−

3 r
−

3◦

Figure 2: The poles of the Fermi weight r±

j are depicted by ◦, the zeros s±

j of 1 + γϑ(λ)F (λ) = 0 by •.

The integration contour Γ13;12 (dotted line) bypasses the points s+

1 , s+

3 , r+

1 , r+

3 from above and s−

1 , s−

2 ,

r−

1 , r−

2 from below. The contour C13;12 (solid line) separates the points s+

1 , s+

3 from r+

1 , r+

3 and s−

1 , s−

2

from r−

1 , r−

2 .

We also introduce the sets of contours Γj;k and Cj;k. Here j and k are multi-indices: j =

{j1, . . . , jp} and k = {k1, . . . , kp} with 1 ≤ js, ks ≤ M . Also #j = #k = p, with p =

0, 1, . . . ,M . In the following, we often denote the cardinality of the sets j and k by |j|, |k|, here

with |j| = |k|.
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The contour Γj;k is a deformation of the real axis such that, when moving from R to Γj;k,

one only crosses the roots s+

j , s−

k and the associated poles r+

j , r−

k , while all the other roots s±

ℓ

and poles r±

ℓ , ℓ 6= ja or ka, are not crossed (see Fig. 2). Note that here and below we agree upon

the notation

s+

j ≡ {s+

ja
} , s−

k ≡ {s+

ka
} , r+

j ≡ {r+

ja
} , r−

k ≡ {r−

ka
}, with a = 1, . . . , |j| . (4.9)

Similarly, the contours Cj;k are such that when moving from R to Cj;k, one only crosses the

roots s+

j , s
−

k ; all poles and other roots s±

ℓ are not crossed. In particular, Cj;k separates the roots

s+

j , s
−

k from their associated poles r+

j , r
−

k (see Fig. 2). We stress that C∅,∅ = Γ∅,∅ = R.

Finally we define an auxiliary function ν(λ) as

ν(λ) =
−1

2πi
log
(
1 + γϑ(λ)F (λ)

)
, (4.10)

and a contour dependent functional

AL([g], [ν]) = −

∫

L

(
ix+ g′(λ)

)
ν(λ) dλ+

∫∫

L

ν(λ)ν(µ)

(λ− µ+)2
dλ dµ , (4.11)

where the oriented contour L is either equal to Cj;k or Γj;k, for some j, k. In (4.11), we have

stressed that the second integral is double. The symbol µ+ means that µ is slightly shifted to

the left from the oriented integration contour L.

Theorem 4.1. [44] Let |γ| be small enough. Then in the x → ∞ limit and under the above

assumptions, the Fredholm determinant of the operator I + γV , with V given by (4.4), admits

the asymptotic expansion

det[I + γV ] =
∑

{j;k}

exp
(
ACj;k([g], [ν])

)
·
[
1 +O

(
e−ax

)]
, (4.12)

where the sum is taken with respect to all the possible choices of multi-indices j;k, including

j = ∅ and k = ∅.

Remark 1. In the following, we will use the above formula (4.12) to derive the asymptotic

behavior of In[Fn] from the relation (4.8). To do this we need to compute the nth γ-derivative of

the above Fredholm determinant’s asymptotic behavior (4.12). In this process one can produce

polynomial (in the distance x) contributions to the remainders of each term in (4.12). As a

consequence the remainders will no longer be O (e−ax). However, they will still be a o(e−a′x)

for arbitrary a′ < a. Hence in the following the remainders in all asymptotic formulae will be

given up to o(e−a′x) terms for arbitrary a′ < a.

Remark 2. Moving all the contours Cj;k in (4.12) to the real axis, one can recast the asymp-

totic expansion of the Fredholm determinant in the following form

det[I + γV ] = exp
(
AR([g], [ν])

) ∑

{j;k}

Aj;k

|j|∏

b=1

{e
ix(s+jb

−s−
kb

)
} ·
[
1 + o

(
e−a′x

)]
, (4.13)
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where Aj;k are some constant coefficients (see [44] for their explicit form). For γ small enough,

all the roots s+

j and s−

k belong to the strip |ℑ(λ)| < a. However, certain sums
∑|j|

b=1(s
+

jb
− s−

kb
)

may have their imaginary part greater then a. In such a case, the corresponding terms in the

expansion (4.13) (and hence, in (4.12)) can be sub-leading in respect to the correction O(e−ax).

Should such an effect occur, we will simply drop the corresponding contributions.

Remark 3. In the case of interest the parameters a (and a′) may depend on the coupling

constant c only. At the same time, for γ small enough, the roots s± are close to the poles of

the Fermi weight r±, whose positions depend not only on the coupling constant, but also on the

temperature and the chemical potential. In particular, for h > 0 and small T all these poles

(and thus, the roots s±) collapse on the real axis. Hence, for arbitrary choice of multi-indexes j

and k one can always make ℑ(
∑|j|

b=1(s
+

jb
− s−

kb
)) < a provided the temperature is small enough.

The asymptotic expansion (4.12) is uniform in γ small enough. However, it becomes incon-

venient for the calculation of the γ-derivatives of the Fredholm determinant at γ = 0. Indeed,

the contours Cj;k are squeezed between the roots s± and the poles r±. As s±

j → r±

j when γ → 0,

strictly speaking, the contours Cj;k do not exist at γ = 0.

A possible way to overcome this problem is to move all the contours Cj;k in (4.12) to the real

axis (see [44]). For our goal, it is however more convenient to deform each contour Cj;k in (4.12)

to its associated contour Γj;k that does exist in the above limit γ → 0. In doing so, one crosses

the poles r+

j and r−

k . This produces additional contributions to the functional ACj;k([g], [ν]) and

makes the formula (4.12) more cumbersome.

To describe the asymptotic expansion of det[I + γV ] in terms of a sum over the contours

Γj;k we introduce new notations. Let LL[f ](λ) be the Cauchy transform over a contour L of a

function f(λ):

LL[f ](λ) =

∫

L

f(µ)dµ

µ− λ
. (4.14)

Then the asymptotic expansion (4.12) can be written in the form

det[I + γV ] =
∑

{j;k}

Uj;k([g], [ν], [F ])
[
1 + o

(
e−a′x

)]
, (4.15)

Here, as before, the sum is taken over all the possible choices of multi-indices j;k. The functional

Uj;k reads

Uj;k([g], [ν], [F ]) = exp

{
−

∫

Γj;k

g′(λ)ν(λ)dλ

} |j|∏

a=1

{
γ2eg(r

−
ka

)−g(r+ja )F (r+

ja
)F (r−

ka
)
}
· Uj;k[ν] , (4.16)
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where

Uj;k[ν] =

{
det
n

[
1

r+

ja
− r−

kb

]}2

exp
(
AΓj;k

([0], [ν])
)

|j|∏

a=1

{
ϑreg(r

+

ja
)ϑreg(r

−

ka
)e

ix(r−
ka

−r+ja )+2LΓj;k
[ν](r−

ka
)−2LΓj;k

[ν](r+ja )
}
. (4.17)

Above, we have introduced the residues of the Fermi weight ϑ(λ) at the poles r±

ℓ : ϑreg(r
±
ℓ ) =

Res
(
ϑ(λ), λ = r±ℓ

)
. The detailed derivation of (4.16), (4.17) is presented in appendix C.

4.3 Asymptotic expansion of multiple integrals

It follows from (4.8) and the from of the expansion (4.12), that In[Fn] can be presented as

In[Fn] =
∑

{j;k}

Jj;k[Fn]
[
1 + o

(
e−a′x

)]
, (4.18)

where Jj;k are some functionals that we will construct below. They can be associated with the

contours Cj;k (or Γj;k), therefore we label them by multi-indices j;k. In order to obtain their

explicit form one has to perform the following steps:

• compute the nth γ-derivative of Uj;k([g], [ν], [F ]) at γ = 0 .

• Substitute in this final expression F →֒ Fk and g →֒ gk.

• Take the sum over k and use the decomposition (4.6) so as to express the result in terms

of Fn or its partial derivatives.

We stress that the derivation of this action as given in (4.19) and (4.20) is essentially a conse-

quence of the representation (3.7) for Fn along with the reduction properties of the functions

Wn and Vn as described in (3.16).

Proposition 4.1. Let Fn be as given in (3.7) with Vn and Wn satisfying to the reduction

properties (3.16). Then

Jj;k[Fn] = ∂n
γGj;k(γ)

∣∣∣
γ=0

, (4.19)

where, for γ small enough,

Gj;k(γ) =
∞∑

m=0

1

m!

m∏

i=1

∂ǫi

∫

Γj;k

m∏

i=1

ν̂(λi) ·Wm+|j| · Uj;k

(
[0], [ν̂], [Vm+|j|]

)
dmλ

∣∣
ǫi=0

. (4.20)

Here Uj;k

(
[0], [ν̂], [Vm+|j|]

)
is given by (4.16), where one should set g(λ) = 0 and replace the

original functions ν and F by ν̂ and Vm+|j| respectively. These new functions have the form

Vm+|j|(ω) ≡ Vm+|j|

(
ω |

r−k , {λa}

r+j , {λa + ǫa}

)
, (4.21)
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and

ν̂(ω) ≡ ν̂

(
ω |

r−k , {λa}

r+j , {λa + ǫa}

)
=

−1

2πi
log
[
1 + γϑ(ω)Vm+|j|(ω)

]
. (4.22)

Similarly, the notation Wm+|j| means

Wm+|j| ≡ Wm+|j|

(
r−k , {λa}

r+j , {λa + ǫa}

)
. (4.23)

We remind here that rj = {rja}
|j|
a=1, etc.

Proof. The explicit form of the functional Uj;k[ν] is given by (4.17). However, to prove

Proposition 4.1, it is enough to know that it can be written in the following, quite general, form:

Uj;k[ν] =
∞∑

p=0

∫

Γj;k

Up(ξ1, . . . , ξp)

p∏

j=1

ν(ξj) dξj , (4.24)

where Up are some functions or distributions. Their explicit form as well as the fact that they

depend on the poles r±

j/k does not play an essential role. Substituting the above expansion into

(4.16) and expanding the exponent of
∫
g′(λ)ν(λ) dλ into a series we obtain

Uj;k([g], [ν], [F ]) =
∞∑

m,p=0

γ2|j|

m!

∫

Γj;k

dmλ dpξ · Up({ξ})
m∏

a=1

{−g′(λa)ν(λa)} ·

p∏

a=1

ν(ξa)

×

|j|∏

a=1

{
eg(r

−
ka

)−g(r+ja )F (r+

ja
)F (r−

ka
)
}
. (4.25)

We should now differentiate (4.25) over γ. The nth γ-derivative at γ = 0 of the above expression

is non-vanishing only when n ≥ 2|j|, and then

∂nUj;k

∂γn

∣∣∣∣
γ=0

=

∞∑

m,p=0

∑

{ℓ},{q}

′Cn({ℓ}, {q})

∫

Γj;k

dmλ dpξ

m!
Up({ξ})

|j|∏

a=1

(
eg(r

−
ka

)−g(r+ja )F (r+

ja
)F (r−

ka
)
)

×
m∏

a=1

(
−g′(λa)ϑ

ℓa(λa)F
ℓa(λa)

∂ℓaν0
∂γℓa

) p∏

a=1

(
ϑqa(ξa)F

qa(ξa)
∂qaν0
∂γqa

)∣∣∣∣∣
γ=0

, (4.26)

where

ν0 =
−1

2πi
log(1 + γ), Cn({ℓ}, {q}) = (2|j|)!(n− 2|j|)!

(
m∏

a=1

ℓa!

p∏

a=1

qa!

)−1

, (4.27)

and the symbol
∑′ means that the sum over ℓa ≥ 0 and qa ≥ 0 in (4.26) is constrained by∑m

a=1 ℓa +
∑p

a=1 qa = n− 2|j|.
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We have brought the result of the action of the nth γ-derivative into a form convenient for

the application of the density procedure. We first substitute

F (ω) →֒ ϕk(ω)e
−gk(ω), g′(ω) →֒ g′k(ω) (4.28)

in (4.26). Then the sum over k is computed due to the identity

∞∑

k=1

m∏

a=1

{
ϕℓa
k (λa)e

−ℓagk(λa)[−g′k(λa)]
} p∏

a=1

{
ϕqa
k (ξa)e

−qagk(ξa)
} |j|∏

a=1

{
ϕk(r

+

ja
)ϕk(r

−

ka
)e−2gk(r

+
ja

)
}

=

m∏

a=1

∂ǫa · Fn

(
r+j , r

−
k , {

ℓa times︷ ︸︸ ︷
λa, . . . , λa}a=1,...,m, {

qb times︷ ︸︸ ︷
ξb, . . . , ξb}b=1,...,p

r+j , r
+
j , {λa + ǫa, λa, . . . , λa︸ ︷︷ ︸

ℓa−1 times

}a=1,...,m, {ξb, . . . , ξb︸ ︷︷ ︸
qb times

}b=1,...,p

)∣∣∣∣
ǫa=0

. (4.29)

Now, we use the representation (3.7) for Fn together with the reduction properties (3.16) of the

functions Vn and Wn. This leads to

Fn

(
r+j , r

−
k , {

ℓa times︷ ︸︸ ︷
λa, . . . , λa}a=1,...,m, {

qb times︷ ︸︸ ︷
ξb, . . . , ξb}b=1,...,p

r+j , r
+
j , {λa + ǫa, λa, . . . , λa︸ ︷︷ ︸

ℓa−1 times

}a=1,...,m, {ξb, . . . , ξb︸ ︷︷ ︸
qb times

}b=1,...,p

)

= Wm+|j| ·
m∏

b=1

Vℓb
m+|j|(λb) ·

p∏

b=1

Vqb
m+|j|(ξb) ·

|j|∏

b=1

{Vm+|j|(r
+

jb
)Vm+|j|(r

−

kb
)} (4.30)

where the functions Vm+|j| and Wm+|j| should be understood as in (4.21), (4.23). Substituting

this identity into (4.26) we obtain

Jj;k[Fn] =
∞∑

m,p=0

∂n
γ

m!

m∏

a=1

∂ǫa

∫

Γj;k

dmλ dpξ Up({ξj})Wm+|j|

×

|j|∏

b=1

{Vm+|j|(r
+

jb
)Vm+|j|(r

−

kb
)}

m∏

a=1

ν̂(λa)

p∏

a=1

ν̂(ξa)

∣∣∣∣
γ=0
ǫa=0

, (4.31)

where ν̂(ω) is given by (4.22). The sum over p in (4.31) produces Uj;k

(
[0], [ν̂], [Vm+|j|]

)
and we

arrive at the statement of Proposition. �

5 Lagrange series

We have presented the action of the functional Jj;k on the function Fn as the nth γ-derivative

at γ = 0 of the function Gj;k(γ) defined in terms of an infinite series (4.20). In this section, we
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show that this series is nothing else but the continuous generalization of a Lagrange series, in

complete analogy with the T = 0 case studied in [1]. It can be shown that, for γ small enough,

this series is absolutely convergent and that its sum can be expressed in terms of a solution of a

non-linear integral equation. This is a difference in respect to the T = 0 case where the integral

equation was, eventually, linear.

The series (4.20) only contains the first order derivatives in respect to each ǫa. Once that

these derivatives are computed, one should set all ǫa = 0. Therefore, starting from (4.20), one

can restrict to linear in ǫa, a = 1, . . . ,m contributions to the functions ν̂, Vm+|j|, and Wm+|j|.

It means that all ǫna terms with n > 1 can be dropped, while the terms ǫaǫb for a 6= b etc should

be kept. After such a linearization, the functions Vm+|j| and ν̂(ω) go to

Vm+|j|

(
ω |

r−k {λa}

r+j {λa + ǫa}

)
→֒ Φj;k

(
ω
∣∣∣ 2πiα− i

m∑

a=1

ǫaK(ω − λa)
)

(5.1)

and

ν̂

(
ω |

r−k {λa}

r+j {λa + ǫa}

)
→֒ φj;k

(
ω
∣∣∣ 2πiα− i

m∑

a=1

ǫaK(ω − λa)
)
, (5.2)

where

Φj;k(ω | X) = eX
|j|∏

a=1

eiθ(ω−r+ja )

eiθ(ω−r−
ka

)
− 1 , φj;k(ω | X) =

−1

2πi
log[1 + γϑ(ω)Φj;k(ω | X)] . (5.3)

We recall that K(λ) and θ(λ) are given resp. by (1.3), (2.5).

The linearization of the function Wm+|j| is carried out in appendix B. Even though its explicit

form is involved, this matters little at this stage of our calculations. Therefore we present it in

a rather symbolic form

Wm+|j|

(
r−k , {λa}

r+j , {λa + ǫa}

)
→֒ W̃j;k

(
m∑

a=1

ǫa g
(1)
σ (λa);

m∑

a=1

m∑

b=1

ǫa ǫb g
(2)(λa, λb)

)
(5.4)

where g
(1)
σ (with σ = 0,±) and g(2) are some functions. Their explicit expressions can be found

in appendix B. Here, we point out that W̃j;k depend on the three functions g
(1)
σ (λa), σ = 0,±

(cf appendix B).

In all of the above notations, the subscripts j,k indicate that the functions φj;k, Φj;k, and

W̃j;k depend on the sets of poles rj and rk. If these sets are empty, then we will omit the

subscripts and write simply φ, Φ, and W̃ .

Substituting (5.1), (5.2), and (5.4) into (4.20) we obtain

Gj;k(γ) =
∞∑

m=0

1

m!

m∏

a=1

∂ǫa

∫

Γj;k

m∏

a=1

φj;k

(
λa | 2πiα− i

m∑

b=1

ǫbK(λa − λb)
)

× W̃j;k

(
m∑

a=1

ǫa g
(1)
σ (λa);

m∑

a=1

m∑

b=1

ǫa ǫb g
(2)(λa, λb)

)
Uj;k([0], [φj;k], [Φj;k]) d

mλ

∣∣∣∣
ǫa=0

. (5.5)
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The above series is the continuous generalization of the Lagrange series (cf [45] for the scalar

case, [46] for the multi-dimensional case, [1] and Appendix D for the continuous generalization).

This series is absolutely convergent if there exists a R0 > 0 such that for all λ ∈ Γj;k

∣∣∣∣∣∣
1

2π
log


1 + |γϑ(λ)| ·

∣∣∣∣
n∏

j=1

eiθ(λ−r+ja )

eiθ(λ−r−
ka

)
· e2iπαe

R0

∫
Γj;k

|K(λ−ω)|dω
− 1

∣∣∣∣



∣∣∣∣∣∣
< R0 . (5.6)

This clearly holds for γ small enough and hence the series (5.5) is then absolutely convergent.

In this case, the result of summation reads (see appendix D)

Gj;k(γ) =
Uj;k([0], [zj;k],

[
(e−2iπzj;k − 1)/(γϑ)

]
)

detΓj;k
[I +Kj;k]

× W̃j;k

( ∫

Γj;k

g(1)σ (λ)zj;k(λ) dλ;

∫

Γj;k

g(2)(λ, µ)zj;k(λ)zj;k(µ) dλ dµ

)
. (5.7)

The function zj;k(λ) appearing above is the unique solution to the non-linear integral equation

zj;k(λ)− φj;k

(
λ | 2πiα− i

∫

Γj;k

K(λ− ω)zj;k(ω) dω

)
= 0. (5.8)

Note that, the uniqueness and existence of this solution is provided by the convergence of the

Lagrange series. The integral operator I +Kj;k acts on the contour Γj;k with the kernel

Kj;k(λ, µ) = iK(λ− µ)φ′
j;k

(
λ | 2iπα− i

∫

Γj;k

K(λ− τ)zj;k(τ) dτ

)
, (5.9)

where

φ′
j;k(ω | X) = ∂Xφj;k(ω | X). (5.10)

It is easy to see that its Fredholm determinant coincides with the functional Jacobian of equation

(5.8).

Observe that apart from the appearance of the Fredholm determinant described above, the

result of the Lagrange series summation reduces to the replacement of the discrete sums involving

the ǫa’s by integrals over the contour Γj;k with a weight function zj;k(λ). Due to this fact, and

the form of equation (5.8), one has that the original arguments φj;k and Φj;k of the functional

Uj;k are replaced by zj;k and (e−2iπzj;k − 1)/(γϑ)) respectively (taking into account that Φj;k =

(e−2iπφj;k − 1)/(γϑ)).

The obtained result can be slightly simplified by deforming the integration contours Γj;k.

Indeed, it follows straightforwardly from (5.8), (5.3) that e−2πizj;k(λ) has simple poles at r+

j and

r−

k . Define also the sets of zeros ŝ+

j and ŝ−

k of e−2πizj;k(λ) such that:

e−2πizj;k(ŝ
+
ja

) = 0 , e−2πizj;k(ŝ
−
ka

) = 0 , ŝ±

j/k → r±

j/k as γ → 0. (5.11)
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We now introduce the contour Ĉj;k. It is a deformation of the real axis such that moving from

R to Ĉj;k one only crosses the roots ŝ+

j1
, . . . , ŝ+

jn
and ŝ−

k1
, . . . , ŝ−

kn
, while the other roots ŝ±

ℓ and

all the poles r±

ℓ are not crossed (see Fig. 1). In particular, this contour separates the poles r±

j/k

from the roots ŝ±

j/k.

Let us shift the integration contour Γj;k to the contour Ĉj;k everywhere in (5.7). Observe

that, for γ small enough, the pole and zero structure of the function e−2πizj;k(λ) in a neighborhood

of the contours Γj;k and Ĉj;k is completely analogous to the one of the function e−2iπν(λ) (4.10).

This allows us to use the method described in appendix C. However, now, all the calculations

should be done in a reverse order.

In particular, the equation (C.1) applied to the contours Γj;k and Ĉj;k and the function zj;k
gives

∫

Γj;k

K(λ− ω)zj;k(ω) dω =

∫

Ĉj;k

K(λ− ω)zj;k(ω) dω −

|j|∑

a=1

[
θ(λ− r−

ka
)− θ(λ− r+

ja
)
]
. (5.12)

Substituting this into (5.8), we find that zj;k(λ) solves the integral equation

zj;k(λ)− φ

(
λ | 2πiα− i

∫

Ĉj;k

K(λ− ω)zj;k(ω) dω

)
= 0, (5.13)

(recall that φ(λ|X) is given by (5.3) with |j| = 0). The Jacobian of equation (5.8) naturally

turns into the Jacobian of the equation (5.13), and hence,

det
Γj;k

[I +Kj;k] = det
Ĉj;k

[I +K], (5.14)

where

K(λ, µ) = iK(λ− µ)φ′

(
λ | 2iπα− i

∫

Cj;k

K(λ− τ)zj;k(τ) dτ

)
, (5.15)

and φ′ is given by (5.10).

Formula (C.1) also yields

W̃j;k

( ∫

Γj;k

g(1)σ (λ)zj;k(λ) dλ; . . .

)
= W̃

( ∫

Ĉj;k

g(1)σ (λ)zj;k(λ) dλ; . . .

)
, (5.16)

(see appendix B for more details). Finally, making the calculations of appendix C in the reverse

order we find that

Uj;k([0], [zj;k],
[
(e−2iπzj;k − 1)/(γϑ))

]
) = exp

{
AĈj;k

([0], [zj;k])
}
, (5.17)

where the functional AĈj;k
([0], [z]) is given by (4.11) with L = Ĉj;k and g(λ) = 0.
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Thus, the sum of the series (4.20) for Gj;k(γ) takes the form

Gj;k(γ) =
exp
{
AĈj;k

([0], [zj;k])
}

detĈj;k [I +K]
· W̃

( ∫

Ĉj;k

g(1)σ (λ)zj;k(λ) dλ;

∫

Ĉj;k

g(2)(λ, µ)zj;k(λ)zj;k(µ) dλ dµ

)
.

(5.18)

We have expressed Gj;k(γ) as a functional of the function zj;k(λ) satisfying the non-linear

integral equation (5.13). We now show that this last integral equation can be transformed into

a TBA-like equation. For this, we introduce a new function uj;k(λ):

uj;k(λ)

T
= i

∫

Ĉj;k

K(λ− ω)zj;k(ω) dω − 2πiα+
ε(λ)

T
, (5.19)

where ε(λ) solves the Yang–Yang equation (1.2). Then, equation (5.13) yields

zj;k(λ) = −
1

2πi
log

[
1 + γϑ(λ)

(
e

ε(λ)−uj;k(λ)

T − 1

)]
. (5.20)

Multiplying both parts of (5.20) by iK(µ−λ) and integrating with respect to λ over the contour

Ĉj;k, after some simple algebra, we obtain

uj;k(µ)− ε(µ) + 2πiαT = −
T

2π

∫

Ĉj;k

K(µ− λ) log


1 + γe−

uj;k(λ)

T + (1− γ)e−
ε(λ)
T

1 + e−
ε(λ)
T


 d λ. (5.21)

It is easy to see that the roots ŝ+

j and ŝ−

k satisfy the equations

1 + γ exp
(
−uj;k(ŝ

±

j/k)/T
)
+ (1− γ) exp

(
−ε(ŝ±

j/k)/T
)
= 0. (5.22)

When deforming the contour Ĉj;k to the real axis in (5.21) we cross these roots, but do not cross

the poles of the Fermi weight r±

ℓ , i.e. the points where 1 + exp
(
−ε(r±

ℓ )/T
)
= 0. Therefore, we

obtain

uj;k(µ)− ε(µ) + 2πiαT = −
T

2π

∫

R

K(µ− λ) log

[
1 + γe−

uj;k(λ)

T + (1− γ)e−
ε(λ)
T

]
dλ

+
T

2π

∫

R

K(µ− λ) log
[
1 + e−

ε(λ)
T

]
dλ− iT

n∑

a=1

[
θ(ŝ+

ja
− µ)− θ(ŝ−

ka
− µ)

]
. (5.23)

Finally, using the Yang–Yang equation we arrive at

uj;k(µ) = µ2 − (h+ 2πiαT )−
T

2π

∫

R

K(µ− λ) log

[
1 + γe−

uj;k(λ)

T + (1− γ)e−
ε(λ)
T

]
dλ

− iT

n∑

a=1

[
θ(ŝ+

ja
− µ)− θ(ŝ−

ka
− µ)

]
. (5.24)
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Thus, we have reduced equation (5.13) for the function zj;k(λ) to equation (5.24) for the function

uj;k(λ). In the following, we shall consider the function uj;k(λ) as the primary object, while the

function zj;k(λ) will be defined by (5.20).

Let us summarize the obtained results. We have expressed the large x asymptotic behavior

of the multiple integrals In[Fn] (4.1) in terms of the function Gj;k(γ) via (4.18), (4.19). The

function Gj;k(γ) is given by (5.18). It is a functional of uj;k(λ), the solution to the non-linear

integral equation (5.24). In its turn, uj;k(λ) depends on the sets of parameters ŝ+

j and ŝ−

k

satisfying to the condition (5.22).

Observe that the roots ŝ±

j/k depend on γ: ŝ±

j/k = ŝ±

j/k(γ). One can treat them as γ-

deformations of the poles r±

j/k such that ŝ±

j/k(0) = r±

j/k. Similarly, the function uj;k(λ) =

uj;k(λ, γ) can be considered as a γ-deformation of the function uj;k(λ, 0) which satisfies equation

(5.24) at γ = 0:

uj;k(λ, 0) = ε(λ)− 2πiαT − iT

n∑

a=1

[
θ(r+

ja
− λ)− θ(r−

ka
− λ)

]
. (5.25)

The above γ-deformations are analytic in γ, at least for γ small enough.

To conclude this section we simplify the notations used above. Recall that we have originally

used the multi-indices j and k in order to denote certain subsets of the Fermi weight’s poles r+

j

and r−

k . Let us enumerate all subsets of multi-indices {j;k} by one number, say i. Then every

subset r±

j/k can be enumerated as {r±}i. In particular, we agree upon {r±}0 = ∅. However, in all

other respects, the order of enumeration is not essential. Given a subset {r±}i we can uniquely

determine the roots {ŝ±}i and the corresponding function ui(λ) as analytical γ-deformations of

{r±}i and ui(λ, 0) (5.25). In its turn, given {ŝ±}i, we can define the integration contours Ĉi, and

hence, find the function Gi(γ). Thus, the asymptotic behavior of the multiple integrals (4.1)

can be written in the form

In[Fn] =
∑

i

∂n
γGi(γ)

[
1 + o

(
e−a′x

)]∣∣∣
γ=0

, (5.26)

where i enumerates the subsets of multi-indices j and k.

We do not write explicitly the upper limit of summation over i in the formula (5.26). It

depends on how many poles of the Fermi weight belong to the strip |ℑ(λ)| < a′. In particular,

it follows from the Remark 3 given on page 15 that for h > 0 and T small enough and arbitrary

i0 there exists T (i0) such that

lim
x→∞

ea
′x∂n

γGi0(γ)
∣∣∣
γ=0

= 0, for T < T (i0). (5.27)

Therefore in this case the sum in (5.26) may contain an arbitrary number of terms.
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6 Asymptotic behavior of the correlation function

We have presented the large x asymptotic behavior of the integrals In[Fn] (4.1) in the form

(5.26). We should now substitute this result into the series (3.6), what leads us to

〈〈e2πiαQx〉〉T =
∞∑

n=0

∑

i

1

n!
∂n
γGi(γ)

∣∣∣
γ=0

+

∞∑

n=0

∑

i

1

n!
∂n
γGi(γ) · o

(
e−a′x

)∣∣∣
γ=0

. (6.1)

Since Gi(γ) does not depend on n, the first series gives the Taylor expansion for Gi(γ) at γ = 1.

Hence, this series should result in Gi(1) provided it is convergent at γ = 1. One can easily

convince himself that it is true at least for the case c = ∞. Indeed, in this case the sum of Gi(1)

coincides with the asymptotic expansion of the Fredholm determinant (3.15) obtained in [44].

Therefore considering the QNLS model with c < ∞ as a smooth deformation of the free fermion

case we assume that this series is convergent at γ = 1, and thus we obtain

∞∑

n=0

∑

i

1

n!
∂n
γGi(γ)

∣∣∣
γ=0

=
∑

i

Gi(1). (6.2)

Note that the convergence of the series (6.2) is related to the convergence of the Lagrange series

(5.5) at γ = 1. This means that the analytic γ-deformations described in the end of the previous

section can be continued from a vicinity of γ = 0 to the point γ = 1. Hence, for the computation

Gi(1) it is enough to set γ = 1 in the equations for the functions ui(λ) and zi(λ). The non-linear

integral equation (5.24) for ui(λ) takes the form (2.4), while the equation (5.20) for zi(λ) turns

into

zi(λ) = −
1

2πi
log

(
1 + e−

ui(λ)

T

1 + e−
ε(λ)
T

)
. (6.3)

Substituting this into the functional AĈi
([0], [zi]) we find

AĈi
([0], [zi]) = −ix

∫

Ĉi

zi(λ) dλ+

∫∫

Ĉi

zi(λ)zi(µ)

(λ− µ+)2
dλ dµ , (6.4)

and hence, every Gi(1) is proportional to e−xpi with pi given by (2.9). Note that the generating

function 〈e2πiαQx〉T is not necessary a decreasing function of x at arbitrary complex value of α.

Therefore the real parts of the obtained pi are not necessary non-negative. However we should

have ℜ(pi) ≥ 0 at α = 0, since this case describes the physical two-point correlation function

〈j(x)j(0)〉T . This property is confirmed by numerical computations (cf appendix A), and the

analysis of the low-temperature limit [47].

Concerning the series corresponding to the reminder in (6.1), we assume that it remains

exponentially small with respect to the first term, provided the sum over i in (6.2) is restricted

by some i0. Similarly to (5.26) we do not write this upper limit of summation explicitly, because

we can not find its exact value for arbitrary temperature. One can show however (cf [47]) that

i0 grows as the temperature decreases. In particular, it goes to infinity when T → 0.
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Thus, we reproduce the expansion (2.8)

〈e2πiαQx〉T =
∑

i

e−xpiB[ui] + o
(
e−xpmax

)
, x → ∞. (6.5)

where pmax = maxi(ℜ(pi)).

It remains to describe the constant coefficients B[ui] in (2.8). One part of these coefficients

comes from the constant term in the functional AĈi
([0], [zi]) (6.4). Another part is equal to the

Fredholm determinant detĈi [I + K] appearing in equation (5.18). Observe that, at γ = 1, the

derivative φ′ (5.10) reads

φ′

(
λ |

ε(λ)− ui(λ)

T

)
= −

1

2πi

1

1 + e−
ui(λ)

T

. (6.6)

Thus,

det
Ĉi

[I +K] = det
Ĉi

[
I −

1

2π
K(ui)

]
, (6.7)

where the kernel K(ui) is the analog of K(ε) where ε has been replaced by ui:

K(ui)(λ, µ) =
K(λ− µ)

1 + e
ui(µ)

T

. (6.8)

This operator acts on the contour Ĉi and not on R as it was the case for I +K(ε).

Finally, the most complicated part of the coefficients B[ui] comes from the function W̃ (this

part of the computations is given in appendix B). Combining all these results we get

B[ui] =

(e2πiα − 1)2 exp

(∫

Ĉi

zi(λ)zi(µ)

(λ− µ+)2
dλ dµ− C0[zi, Ĉi]

)

[e
L
Ĉi
[zi](θ1+ic)

− e
2πiα+L

Ĉi
[zi](θ1−ic)

][e
−L

Ĉi
[zi](θ2−ic)

− e
2πiα−L

Ĉi
[zi](θ2+ic)

]

×
det
[
I + 1

2πi Û
(1)[zi]

]
det
[
I + 1

2πi Û
(2)[zi]

]

det
[
I − 1

2πK
(ε)
]
det
[
I − 1

2πK
(ui)
] . (6.9)

Recall that LĈi
[zi] is the Cauchy transform (4.14) of the function zi(λ) on the contour Ĉi. The

functional C0 as well as the kernels of the integral operators Û (1)(w,w′, [zi]) and Û (2)(w,w′, [zi])

are given in appendix B (see resp.(B.6), (B.9), (B.10)). The latter operators act on an counter-

clockwise oriented contour surrounding Ĉi.

7 The leading term and corrections

Taking the second α-derivative of the expansion (2.8) for 〈e2πiαQx〉T at α = 0 we obtain the

asymptotic behavior of the density-density temperature correlation function 〈j(x)j(0)〉T . We

show below that the leading term of this asymptotic expansion is produced by e−xp0 correspond-

ing to the contour Ĉ0 = R while the other pi’s lead to sub-leading corrections.
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7.1 The leading term

As expected on general grounds, we obtain the following leading term of the asymptotic behavior.

Proposition 7.1. The leading term of the asymptotic behavior of the two-point function

〈j(x)j(0)〉T = 〈j(x)j(0)〉
(0)
T + O(x−∞) . (7.1)

is given by the square of the density of particles in the state of thermal equilibrium:

〈j(x)j(0)〉
(0)
T =

( ∫

R

ρp(λ) dλ

)2

= 〈j(0)〉2T . (7.2)

This contribution stems from the choice of the contour Ĉ0 = R.

Proof. Setting Ĉ0 = R in (2.7) we obtain

u0(µ) = µ2 − hα −
T

2π

∫

R

K(µ− λ) log
(
1 + e−

u0(λ)
T

)
dλ. (7.3)

The form of this equation coincides with the one of the Yang–Yang equation up to the shift of

the chemical potential. Thus, we have

u0(λ) = ε(λ|hα), (7.4)

where we have insisted explicitly on the dependence of ε(λ) on h. Substituting this into (2.9)

we find

p0 = −
1

2π

∫

R

log

(
1 + e−ε(λ|hα)/T

1 + e−ε(λ|h)/T

)
dλ =

1

T
(P − Pα), (7.5)

where we have defined

P =
T

2π

∫

R

log
(
1 + e−ε(λ|h)/T

)
dλ . (7.6)

The constant Pα in (7.5) corresponds to the shifted chemical potential, i.e. it is defined by (7.6)

with ε(λ|h) replaced by ε(λ|hα). This result reproduces the prediction of [12]. The quantity P

can be interpreted as the pressure in the gas, whereas Pα would correspond to the pressure in

the presence of a shifted complex valued chemical potential.

Thus, we see that p0 → 0 as α → 0 meaning that the contribution stemming from the

choice i = 0 (that is (j;k) = (∅, ∅)) to the density-density correlation function does not have an

exponential decay. Applying the second order derivatives over α and x to the presumed leading

order term of 〈e2πiαQx〉T we obtain

〈j(x)j(0)〉
(0)
T = −

1

8π2

∂2

∂x2
∂2

∂α2
e−xp0B[u0]

∣∣∣∣
α=0

= −
B[u0]

4π2

(
∂p0
∂α

)2
∣∣∣∣∣
α=0

, (7.7)
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and thus, to proceed further we should find u0(λ) and z0(λ) up to linear in α terms. Differenti-

ating (7.3) over α at α = 0 we obtain

∂u0(µ)

∂α

∣∣∣∣
α=0

= −2πiT +
1

2π

∫

R

K(ε)(µ, λ)
∂u0(λ)

∂α

∣∣∣∣
α=0

dλ, (7.8)

and hence,

u0(λ) = ε(λ)− 4π2iαTρt(λ) +O(α2), (7.9)

where ρt(λ) is the total density satisfying the integral equation (1.5). Equation (1.5) can be

solved in terms of the resolvent R(λ, µ) defined by
(
I − 1

2πK
(ε)
)
(I +R) = I:

2πρt(µ) = 1 +

∫

R

R(µ, λ) dλ. (7.10)

Substituting (7.9) into (6.3) we obtain

z0(λ) = −2παρt(λ)ϑ(λ) +O(α2), (7.11)

and thus, due to (2.9),

∂p0
∂α

∣∣∣∣
α=0

= −2πi

∫

R

ρt(λ)ϑ(λ) dλ = −2πi

∫

R

ρp(λ) dλ. (7.12)

Hence,

〈j(x)j(0)〉
(0)
T =



∫

R

ρp(λ) dλ




2

· B[u0]|α=0 , (7.13)

and it remains to apply Lemma 7.1 in order to conclude that B[u0] = 1 at α = 0. �

Lemma 7.1. B[u0] = 1 at α = 0.

Proof. Since z0(λ) → 0 at α → 0, we conclude that

exp

(∫

R

z0(λ)z0(µ)

(λ− µ+)2
dλ dµ− C0[z0,R]

)
= 1, at α = 0. (7.14)

For the calculation of the limit of the remaining part of equation (6.9), we use the obvious

properties of the Cauchy transform LR[z0](ω):

LR[z0](ω + i0)− LR[z0](ω − i0) = 2πiz0(ω),

LR[z0](ω + ic)− LR[z0](ω − ic) =
1

T
(u0(λ)− ε(λ) + 2πiαT ) = 2πiα(1− 2πρt(λ)) +O(α2).

(7.15)
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The last property follows from (5.19). Using (7.15) we find at α → 0

e2πiα − 1

eLR[z0](θ1+ic) − e2πiα+LR[z0](θ1−ic)
=

(
e2πiα − 1

)
e−2πiα−LR[z0](θ1−ic)

e

(
u0(θ1)−ε(θ1)

)
/T − 1

→ −
1

2πρt(θ1)
, (7.16)

and

e2πiα − 1

e−LR[z0](θ2−ic) − e2πiα−LR[z0](θ2+ic)
=

(
e2πiα − 1

)
e−2πiα+LR[z0](θ2−ic)

e

(
u0(θ2)−ε(θ2)

)
/T − 1

→ −
1

2πρt(θ2)
. (7.17)

Finally we should compute the ratio of determinants in the second line of (6.9). Consider,

for example the determinant of the operator I + 1
2πiU

(1). Due to the factor eLR[z0](w), the kernel

Û (1)(w,w′) has a cut on the real axis. Hence the action of the integral operator Û (1) can be

reduced to an action on the real axis with the kernel

Û (1)
∣∣∣
Γ(R)

→ Ũ (1)
∣∣∣
R

= (Û
(1)
− − Û

(1)
+ )
∣∣∣
R

, (7.18)

where Û
(1)
± are the limiting values of Û (1) from the upper (lower) half-planes. Using equations

(7.15) we obtain

det
Γ(R)

[
I +

1

2πi
Û (1)[z0]

]
= det

R

[
I +

1

2πi
Ũ (1)[z0]

]
, (7.19)

where the operator in the r.h.s. acts on R and its kernel reads

Ũ (1)(w,w′) = −eLR[z0](w−i0)−LR[z0](w−ic)−2πiα

(
1− e2πiz0(w)

)
(Kα(w − w′)−Kα(θ1 − w′))

e

(
u0(w)−ε(w)

)
/T − 1

.

(7.20)

Setting now α = 0 and using (7.9), (7.11) we obtain

det
Γ(R)

[
I +

1

2πi
Û (1)[z0]

]∣∣∣∣
α=0

= det
R

[
I −

1

2π
(K(ε)(w,w′)−K(ε)(θ1, w

′))
]
. (7.21)

Thus, in terms of the resolvent R(λ, µ) the ratio of determinants can be presented as

detR[I −
1
2π (K

(ε)(w,w′)−K(ε)(θ1, w
′))]

detR[I −
1
2πK

(ε)(w,w′)]
= det

R

[I +R(θ1, w
′)]

= 1 +

∫

R

R(θ1, w) dw = 2πρt(θ1), (7.22)

where we have used (7.10). Similarly one has

detΓ(R)[I +
1

2πi Û
(2)[z0]]

detR[I −
1
2πK

(u)(w,w′)]

∣∣∣∣∣
α=0

= 2πρt(θ2), (7.23)

and we arrive at the statement of Lemma 7.1. �

28



7.2 The corrections

It is clear that for other terms in the expansion (2.8) ui(λ) 6= ε(λ) even at α = 0. This yields

pi 6= 0 at α = 0 and Ĉ 6= R. Therefore after taking the second α-derivative and setting α = 0

the corresponding terms of the expansion contain exponential factors e−xpi . Our numerical

computations together with the low-temperature limit support that the real part of the pi’s

are indeed positive and, hence, the corresponding terms in the asymptotic expansion are sub-

leading. In particular, in the low-temperature limit, equation (2.7) can be solved for all possible

choices of subsets j,k. Respectively, one can find all pi. It follows from this analysis, that

the main sub-leading contribution to the asymptotic behavior of 〈e2πiαQx〉T originates from the

contours Ĉi, where {ŝ±}i are γ-deformations of the poles {r±}i lying nearest to the real axis.

We conjecture that this property holds for the finite temperature as well.

Finally, we would like to give an interpretation of the results obtained from the viewpoint

of the quantum transfer matrix approach [33]. As we have mentioned already this method was

developed for the description of quantum spin chains, but it was shown in [32] that in a special

continuous limit it can be applied to the description of thermodynamics in the one-dimensional

Bose gas. The central object of this method is a function a0(λ) constructed via certain solution

of Bethe equations and satisfying a non-linear integral equation. Knowing this function allows

one to calculate the maximal eigenvalue Λ0 of the quantum transfer matrix Tq. In the continuous

limit mentioned above, one can establish the following correspondence

a0(λ) 7→ e−ε(λ)/T ,

Λ0 7→
1

2π

∫

R

log
(
1 + e−ε(λ)/T

)
dλ.

(7.24)

The sub-leading eigenvalues Λi of Tq can be expressed in terms of functions ai(λ) satisfying

the same type of the integral equation, but on deformed integration contours surrounding some

zeros of 1 + ai(λ). It is easy to show that, in the continuous limit, these contours go into the

contours Ĉi. Then one should have the following correspondence

ai(λ) 7→ e−ui(λ)/T ,

Λi 7→
1

2π

∫

Ĉi

log
(
1 + e−ui(λ)/T

)
dλ. (7.25)

Taking into account (2.9) we obtain the following mapping

(
Λi(hα)

Λ0(h)

)m

7→ e−xpi , (7.26)

where m is the lattice distance that scales to the distance x in the continuous limit. In (7.26), we

have also stressed that the eigenvalue Λ0(h) corresponds to the quantum transfer matrix Tq(h)

with the chemical potential h, while the eigenvalues Λi(hα) correspond to the quantum transfer
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matrix Tq(hα) with the shifted chemical potential hα. Thus, the rates of the exponential decay

in the asymptotic behavior of 〈eαQx〉T appear to be nothing else but the ratios of the eigenvalues

of the quantum transfer matrix (in the continuous limit).

Conclusion

The main goal of this article was to derive the long distance asymptotic behavior of temperature

correlation functions of one-dimensional bosons in the framework of the algebraic Bethe ansatz

approach. Considering the example of the two-point function of densities we showed that this

asymptotic behavior can be expressed in terms of solutions of the TBA equations. This result

is quite expected from the viewpoint of the QTM method.

Comparing to the QTM approach, we should say that our derivation is certainly more in-

volved technically. However in our opinion these two methods are complementary, in particular

speaking about their range of applications. Our starting point is the master equation, which

is a multiple integral representation for various correlation functions, including the dynamical

ones. Recall that such type of representations is known now for an arbitrary integrable model

possessing the six-vertex R-matrix [6]. The expansion of the master equation into the series

allows us to take the thermodynamic limit. Then in the asymptotic regime this series turns

into the generalized Lagrange series, which can be summed up explicitly in terms of solutions to

some integral equations. The last ones appear to be just the equations providing the dressing

of bare variables originally entering the representation for the correlation function. We have

demonstrated such a mechanism already in the case of zero temperature correlations [1]. We

have now shown how it works in the case of thermal correlation functions.

Our derivation however is not free of several assumptions of technical kind. For example, such

questions as the convergence of the series (3.6) and (6.2) formally remain unsolved (although

these series are absolutely convergent at the free fermion point). We think nevertheless that

the results obtained under these assumptions are themselves strong arguments in favor of their

validity. As an additional test for our results we will consider the low-temperature limit of

our asymptotic expansion in a forthcoming publication. In this limit, the non-linear integral

equations determining the correlation functions in the asymptotic regime can be solved explicitly

in terms of dressed physical quantities such as the energy, momentum, and charge. In particular,

we will show [47] that the low-temperature limit of our results reproduces the conformal field

theory predictions for the exponential decay of the correlation functions. We are however able

to go well beyond these predictions as our results not only hold for all ranges of temperatures

but also provide explicit formulae for the corresponding amplitudes. Moreover, it will be shown

that the dependence of these amplitudes in terms of powers of the temperature in the low-

temperature limit can be computed explicitly, in complete agreement with the CFT predictions

[47].
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A Numerical analysis of the correlation lengths

The inverse correlation lengths ℜ(pi) are defined in terms of the integral (2.9) involving the

solution ui to the TBA non-linear integral equation (2.7). Hence, the pi depend on the coupling

constant c, the temperature T , and the chemical potential h. Apart from these parameters,

they also depend on the choice of the system of roots {ŝ±}i and it is to this dependence that

the subscript i refers to. In this appendix, we gather four plots resulting from our numeri-

cal computations of several correlation lengths (the real part of the pi) as functions of their

parameters.

Figure 3: The dependence p = p(h) in a) for a fixed temperature T = 2 and different coupling constants

c = 7 (black), c = 10 (blue) and c = ∞ (red). In b) the coupling constant is fixed at c = 10 and the

temperature is set to T = 1 (black), T = 3 (blue) and T = 5 (red).

The situation considered in the first three figures (Fig. 3 a) and b), Fig. 4 a)) corresponds

to the correlation length determined in terms of the solution to the non-linear integral equation
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Figure 4: In a), the dependence p = p(T ) is presented for the coupling constant c = 10 and at

different values of the chemical potential h = −1 (black), h = 4 (blue) and h = 9 (red). In b) we have

represented ℜ(p) as a function of the chemical potential h for the coupling constant fixed to c = 10 and

the temperature to T = 2. The three cases correspond to one pair of roots ŝ± in various positions : (i)

ŝ+ is the nearest root in the first quadrant, ŝ− is the nearest root in the fourth quadrant (black); (ii) ŝ+

is the nearest root in the first quadrant, ŝ− is the nearest root in the third quadrant (blue); (iii) ŝ+ is the

next after the nearest root in the first quadrant, ŝ− is the nearest root in the fourth quadrant (red). Two

cases with two pairs of roots ŝ±: (iv) ŝ±1 are the nearest roots in the first and the fourth quadrants, ŝ±2
are the next after the nearest roots in the first and the fourth quadrants (violet); (v) ŝ±1 are the nearest

roots in the first and the fourth quadrants, ŝ±2 are the next after the nearest roots in the first and the

third quadrants (brown).

with one root ŝ+ in the first quadrant of C and one root ŝ− in the fourth quadrant. These roots

are built as γ deformations of the poles of the Fermi weight lying closest to the real axis and

located in these quadrants. For this case, the corresponding p is real.

On Fig. 3 a) we have represented p as a function of chemical potential for a fixed temperature

and several values of the coupling constant c. Similarly, in Fig. 3 b) we have also represented p

as a function of chemical potential but for a fixed value of the coupling constant c and different

values of the temperature. On Fig. 4 a) we have represented p as a function of temperature for

a fixed value of the coupling constant and several values of the chemical potential. For all these

quantities, the numerical values are given in dimensionless units after proper rescaling of the

TBA non-linear integral equation (2.7).

The last plot Fig. 4 b) represents different correlation lengths ℜ(p) as a function of the

chemical potential and for a fixed value of the coupling constant and the temperature. There,

we have considered several possible configurations of the system of roots {ŝ±} for which p are

complex numbers.
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B Linearized form of Wm

The explicit expression for the function Wm is given by (3.10)–(3.13). It contains Fredholm

determinants whose kernels depend on the products (3.8). At {zk} = {λk + ǫk} we have, to the

linear order in each of the ǫa’s

V (m+|j|)
σ (w) →֒

|j|∏

a=1

w − r−

ka
+ icσ

w − r+

ja
+ icσ

· exp

{
m∑

a=1

ǫag
(1)
σ (λa)

}
, σ = 0,±, (B.1)

where

g(1)σ (λ) ≡ g(1)σ (w, λ) =
1

w − λ+ iσc
, σ = 0,±. (B.2)

Apart form the products of the type (B.1), the function Wm also contains the product of the

functions V
(m+|j|)
− (see (3.10)). Setting {zk} = {λk + ǫk} we obtain

m∏

a=1

V
(m+|j|)
− (za)

V
(m+|j|)
− (λa)

·

|j|∏

a=1

V
(m+|j|)
− (r+

ja
)

V
(m+|j|)
− (r−

ka
)
→֒

× exp





m∑

a=1

|j|∑

b=1

ǫa

[
g
(1)
+ (r+

jb
, λa) + g

(1)
− (r+

jb
, λa)− g

(1)
− (r−

kb
, λa)− g

(1)
+ (r−

kb
, λa)

]




×

|j|∏

a,b=1

(r−

ka
− r+

jb
− ic)(r+

ja
− r−

kb
− ic)

(r−

ka
− r−

kb
− ic)(r+

ja
− r+

jb
− ic)

· exp

{
m∑

a=1

m∑

b=1

ǫa ǫb g
(2)(λa, λb)

}
, (B.3)

where

g(2)(λ, µ) = −
1

(λ− µ− ic)2
. (B.4)

The expressions (B.1), (B.3) should be substituted into (3.10), what gives us the linearized

form W̃j;k (5.4).

The summation of the Lagrange series leads to the replacement of the sums by integrals over

the original contour Γj;k

m∑

k=1

ǫk g
(1)
σ (w, λk) →֒

∫

Γj;k

g(1)σ (w, λ)zj;k(λ) dλ = −LΓj;k
[zj;k](w + iσc),

m∑

k=1

m∑

k′=1

ǫk ǫk′ g
(2)(λk, λk′) →֒

∫

Γj;k

g(2)(λ, µ)zj;k(λ)zj;k(µ) dλ dµ = −C0[zj;k,Γj;k],

(B.5)

where zj;k(λ) solves the integral equation (5.8), LΓj;k
is the operator of Cauchy transform (4.14),

and for any contour L

C0[zj;k,L] =

∫

L

zj;k(λ)zj;k(µ)

(λ− µ− ic)2
dλ dµ . (B.6)
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Substituting these formulae into (3.10) and moving the contours from Γj;k to Ĉj;k we get

that all the explicit dependence on the poles r±

j/k cancels out and

W̃j;k

(∫

Γj;k

g(1)σ (λ) zj;k(λ) dλ;

∫

Γj;k

g(2)(λ, µ) zj;k(λ)zj;k(µ) dλ dµ

)

= W̃

(∫

Ĉj;k

g(1)σ (λ)zj;k(λ) dλ;

∫

Ĉj;k

g(2)(λ, µ)zj;k(λ)zj;k(µ) dλ dµ

)
, (B.7)

where

W̃

({∫

Ĉj;k

g(1)(λ) zj;k(λ) dω

}
;

∫

Ĉj;k

g(2)(λ, µ)zj;k(λ)zj;k(µ) dλ dµ

)

=
e−C0[zj;k,Ĉj;k](e2πiα − 1)2 det

(
I + 1

2πi Û
(1)[zj;k]

)
det
(
I + 1

2πi Û
(2)[zj;k]

)

[e
L
Ĉj;k

[zj;k](θ1+ic)
− e

2πiα+L
Ĉj;k

[zj;k](θ1−ic)
][e

−L
Ĉj;k

[zj;k](θ2−ic)
− e

2πiα−L
Ĉj;k

[zj;k](θ2+ic)
]
, (B.8)

and the kernels of the integral operators Û (1)(w,w′, [zj;k]) and Û (2)(w,w′, [zj;k]) have the form

Û (1)(w,w′, [zj;k]) = −e
L
Ĉj;k

[zj;k](w)
·

Kα(w − w′)−Kα(θ1 − w′)

e
L
Ĉj;k

[zj;k](w+ic)
− e

2πiα+L
Ĉj;k

[zj;k](w−ic)
, (B.9)

Û (2)(w,w′, [zj;k]) = e
−L

Ĉj;k
[zj;k](w

′)
·

Kα(w − w′)−Kα(w − θ2)

e
−L

Ĉj;k
[zj;k](w′−ic)

− e
2πiα−L

Ĉj;k
[zj;k](w′+ic)

. (B.10)

Both integral operators act on a counterclockwise oriented closed contour surrounding the con-

tour Ĉj;k.

C Deformation of the contours Cj;k

In this section we calculate the difference ACj;k([g], [ν]) − AΓj;k
([g], [ν]) (see (4.11)). We shall

consider some fixed contours Cj;k and Γj;k. Hence, for brevity, we omit the subscripts j;k in

the following. Moreover, it is clear that, without loss of any generality, we can set j = (1, . . . , n)

and k = (1, . . . , n). Also we note that we can carry out the intermediate computations up to

integer multiples of 2iπ. This is justified in as much as we take the exponential at the end.

Observe that the contour C ∪ −Γ surrounds the points r+

k in the counterclockwise direction

and the points r−

k in the clockwise direction. Therefore if f(ω) is holomorphic in a domain

containing Γ and C, then

∫

Γ

f ′(ω)ν(ω) dω =

∫

C

f ′(ω)ν(ω) dω +
n∑

k=1

(
f(r−

k )− f(r+

k )
)
. (C.1)
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Using (C.1) one can easily calculate the difference of single integrals entering (4.11):

−

∫

C

(
ix+ g′(λ)

)
ν(λ) dλ+

∫

Γ

(
ix+ g′(λ)

)
ν(λ) dλ =

n∑

k=1

(
ix(r−

k − r+

k ) + g(r−

k )− g(r+

k )
)
. (C.2)

The calculation of the difference of the double integrals in (4.11) is more involved. It is

convenient to present ν(λ) in the form

ν(λ) = ν̃(λ)−
1

2πi
log

{
n∏

k=1

(λ− s+

k )(λ− s−

k )

(λ− r+

k )(λ− r−

k )

}
, (C.3)

where ν̃(λ) is holomorphic in a domain containing both contours C and Γ. Let

J(C) =

∫∫

C

ν(λ)ν(µ)

(λ− µ+)2
dλ dµ, J(Γ) =

∫∫

Γ

ν(λ)ν(µ)

(λ− µ+)2
dλ dµ. (C.4)

Let us also introduce auxiliary functions

α+(λ; C) = log

{
n∏

k=1

λ− s+

k

λ− r−

k

}
, α−(λ; C) = log

{
n∏

k=1

λ− s−

k

λ− r+

k

}
, (C.5)

and

α+(λ; Γ) = log

{
n∏

k=1

(λ− s+

k )

(λ− r+

k )

}
, α−(λ; Γ) = log

{
n∏

k=1

(λ− s−

k )

(λ− r−

k )

}
. (C.6)

It is easy to see that the functions α±(λ; C) are holomorphic to the left (resp. to the right) from

the contour C. Similarly the functions α±(λ; Γ) are holomorphic to the left (resp. to the right)

from the contour Γ. All the functions (C.5) and (C.6) behave as O(λ−1) when λ → ∞, and

α+(λ; C) + α−(λ; C) = α+(λ; Γ) + α−(λ; Γ) = log

{
n∏

k=1

(λ− s+

k )(λ− s−

k )

(λ− r+

k )(λ− r−

k )

}
. (C.7)

Using (C.3) and (C.5) we can present J(C) as a sum of four integrals J(C) =
∑4

j=1 Jj(C),

where

J1(C) =

∫∫

C

ν̃(λ)ν̃(µ)

(λ− µ+)2
dλ dµ, (C.8)

J2(C) = −
1

2πi

∫∫

C

ν̃(λ)
(
α+(µ; C) + α−(µ; C)

)

(λ− µ+)2
dλ dµ, (C.9)

J3(C) = −
1

2πi

∫∫

C

(
α+(λ; C) + α−(λ; C)

)
ν̃(µ)

(λ− µ+)2
dλ dµ, (C.10)

J4(C) =
1

(2πi)2

∫∫

C

(
α+(λ; C) + α−(λ; C)

)(
α+(µ; C) + α−(µ; C)

)

(λ− µ+)2
dλ dµ. (C.11)
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Similarly J(Γ) =
∑4

j=1 Jj(Γ) where Jj(Γ) is obtained from Jj(C) by replacing everywhere C by

Γ in (C.8)–(C.11).

Since ν̃(λ) is holomorphic in a domain containing the contours C and Γ, we conclude that

J1(C) − J1(Γ) = 0. The integrals J4(C) and J4(Γ) can be taken explicitly. For example, using

the analytic properties of α±(λ; C) we have

J4(C) =
1

2πi

∫

C

α′
+(µ; C)

(
α+(µ; C) + α−(µ; C)

)
dµ =

1

2πi

∫

C

α′
+(µ; C)α−(µ; C) dµ

=
1

2πi

∫

C

n∑

k=1

(
1

µ− s+

k

−
1

µ− r−

k

)
α−(µ; C) dµ = log





n∏

j,k=1

(
r−

k − s−

j

r−

k − r+

j

·
s+

k − r+

j

s+

k − s−

j

)
 . (C.12)

The expression for J4(Γ) is obtained from (C.12) via the replacement r+ ↔ r−. Then we have

J4(C)− J4(Γ) = log





n∏

j,k=1

(
r−

k − s−

j

r−

k − r+

j

·
s+

k − r+

j

s+

k − r−

j

·
r+

k − r−

j

r+

k − s−

j

)
 . (C.13)

Calculating J2 and J3 we can take explicitly only one of two integrals. We have

J2(C) =

∫

C

α′
−(λ; C)ν̃(λ) dλ =

∫

C

n∑

k=1

(
1

λ− s−

k

−
1

λ− r+

k

)
ν̃(λ) dλ, (C.14)

and

J3(C) = −

∫

C

α′
+(µ; C)ν̃(µ) dµ =

∫

C

n∑

k=1

(
1

µ− r−

k

−
1

µ− s+

k

)
ν̃(µ) dµ. (C.15)

The expressions for J2(Γ) and J3(Γ) can be obtained from (C.14) and (C.15) via the replacements

C → Γ and r+ ↔ r−. Then we have

∑

s=2,3

(
Js(C)− Js(Γ)

)
=

∫

C∪−Γ

n∑

k=1

(
1

λ− s−

k

−
1

λ− s+

k

)
ν̃(λ) dλ

+

∫

C∪Γ

n∑

k=1

(
1

λ− r−

k

−
1

λ− r+

k

)
ν̃(λ) dλ. (C.16)

The integral in the first line of (C.16) vanishes as the contour C ∪ −Γ does not surround the

points s±

k . The second integral in (C.16) gives

∑

s=2,3

(
Js(C)− Js(Γ)

)
= 2

∫

Γ

n∑

k=1

(
1

λ− r−

k

−
1

λ− r+

k

)
ν̃(λ) dλ− 2πi

n∑

k=1

(
ν̃(r+

k ) + ν̃(r−

k )
)
. (C.17)
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Here we have used that the contour C ∪ −Γ surrounds the points r+

k in the counterclockwise

direction and the points r−

k in the clockwise direction. Substituting into (C.17) the function

ν̃(λ) in terms of ν(λ) via (C.3) we obtain after simple algebra

∑

s=2,3

(
Js(C)− Js(Γ)

)
=

n∑

k=1

(
2LΓ[ν](r

−

k )− 2LΓ[ν](r
+

k )− 2πiν̃(r+

k )− 2πiν̃(r−

k )
)

+ 2 log
n∏

j,k=1

(
r−

k − s+

j

r−

k − r+

j

·
r+

k − s−

j

r+

k − r−

j

)
, (C.18)

where we have used the Cauchy transform over the contour Γ of the function ν(λ) (see (4.14)).

It remains to find ν̃(r±

k ). These numbers can be expressed in terms of the residues of the

Fermi weight ϑreg(r
±

k ) in the points r±

k . We have

1 + γϑ(λ)F (λ) = e−2πiν(λ) = e−2πiν̃(λ)
n∏

j=1

(λ− s+

j )(λ− s−

j )

(λ− r+

j )(λ− r−

j )
. (C.19)

Hence,

γϑreg(r
±

k )F (r±

k ) = e−2πiν̃(r±
k
)

n∏

j=1

(r±

k − s+

j )(r
±

k − s−

j )

(r±

k − r∓

j )

n∏

j=1
j 6=k

1

r±

k − r±

j

. (C.20)

Thus, combining (C.13), (C.18), and (C.20) we obtain

eJ(C)−J(Γ) =

(
det
n

1

r+

j − r−

k

)2 n∏

k=1

[
γ2e2LΓ[ν](r

−
k
)−2LΓ[ν](r

+
k
)ϑreg(r

+

k )ϑreg(r
−

k )F (r+

k )F (r−

k )
]
,

(C.21)

where we have used

(
det
n

1

r+

j − r−

k

)2

=

n∏

j,k=1
j 6=k

(r+

j − r+

k )(r
−

j − r−

k )

n∏

j,k=1

(r+

j − r−

k )
−2. (C.22)

Taking into account (C.2) we immediately arrive at the formulae (4.16), (4.17).

We insist that all the above computations have been done by using the sole pole/zero struc-

ture of e−2iπν(ω). They are thus valid in the specific case where one considers ν = zj;k.

D Continuous generalization of the multiple Lagrange series

The continuous generalization of the multiple Lagrange series has the form

Ĝ =

∞∑

n=0

1

n!

∫

L

dnλ

n∏

j=1

∂

∂ǫj

n∏

j=1

f

(
n∑

a=1

ǫa ξ(λa, λj)

)
· F

(
n∑

a=1

h1(λa) ǫa; . . . ,

)∣∣∣∣∣∣
ǫj=0

. (D.1)
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Here the integrals are taken over some contour L, the functions f , F , ξ, and h1 are holomorphic

the corresponding neighborhoods. The argument of the function F may also contain double

sums
∑

a,b h2(λa, λb)ǫaǫb etc, like, for example, in (5.4). Apart from obvious modifications,

the presence of such multiple sums does not affect the result. Hence, we have omitted these

arguments of the function F for brevity.

This series was studied in [1]. If there exists a R0 > 0 such that

sup
φ∈[0;2π]

sup
µ∈L

∣∣∣∣f
(
R0e

iφ

∫

L

|ξ(λ, µ)| dλ

)∣∣∣∣ < R0, (D.2)

then it is absolutely convergent. In such a case, the result of the summation reads

Ĝ =

F

(∫
L h1(µ) z(µ) dµ; . . .

)

detL

[
δ(λ− µ)− ξ(µ, λ) f ′

(∫
L ξ(ν, λ) z(ν) dν

)] , (D.3)

where the function z(µ) is the unique solution to the integral equation

z(µ) = f

(∫

L

ξ(λ, µ) z(λ) dλ

)
. (D.4)

The denominator of (D.3) contains the Fredholm determinant of a linear integral operator acting

on L. If the function F depends on multiple sums, then these should be replaced by multiple

integrals, like, for example,

n∑

a,b=1

h2(λa, λb)ǫaǫb →֒

∫

L

h2(λ, µ) z(λ)z(µ) dλ dµ, (D.5)

etc. It is important to note that the form of the integral equation (D.4) does not depend on the

function F .

The result (D.3) can be directly applied to the summation of the series (5.5), where the

integration contour L coincides with Γj;k and the function f is φj;k (5.3).
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