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Free space optical communication has the potential to transmit information with both high speed and
security. However, since it is unguided it suffers from losses due to atmospheric turbulence and diffrac-
tion. To overcome the diffraction limits the long distance propagation of Bessel beams is considered and
compared against Gaussian beam properties. Bessel beams are shown to have a number of benefits over
Gaussian beams when propagating through atmospheric turbulence. © 2015 Optical Society of America
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1. INTRODUCTION

Free Space Optics (FSO) for data transmission has the potential
to produce a very high capacity, secure and robust communica-
tion method[1–3]. Work has so far largely focused on the prop-
agation of Gaussian beams. However, Gaussian beams suffer
from diffraction, causing the spread of the beam’s energy and
so lowering the signal to noise ratio (SNR) at the receiver and
increasing the bit error rate (BER). This paper investigates possi-
ble improvements to FSO by simulating the propagation of non-
diffracting beams through unguided media. Gaussian beams
suffer from diffraction and atmospheric turbulence effects. A
non-diffracting self-healing Bessel beam could potentially miti-
gate these problems.

Bessel beams possess an intensity profile that is cylindrically
symmetrical: a central core surrounded by a set of concentric
rings. It has been shown that the central core of a Bessel beam is
remarkably resistant to diffractive spreading compared to that
of a Gaussian beam with a similar beam radius [4].

Bessel beams can be decomposed into an infinite set of plane
wave-fronts at different azimuths, but at a fixed inclination to-
wards the direction of travel. When propagating, these wave-
fronts travel inwardly adding to the energy of the central core
[5, 6]. This inward propagation helps the on-axis intensity to
remain constant as it propagates. Another effect of the inward
diffraction is an attribute called self- healing: the beam is ca-
pable of recovering back its profile after being partially scat-
tered by an obstruction. These properties make Bessel beams
very promising for various applications such as in terrestrial
and satellite communications, microscopy [7, 8] and the optical
manipulation of matter [9, 10].

One of the drawbacks of a Bessel beam is that to create a

true non-diffracting beam, the amplitude field of the beam must
have infinite radius and therefore power. Physically produced
beams are therefore an approximation in which the aperture
function of the optical system actually limits the extent over
which a Bessel beam will be non-diffracting. In this paper, we
analyse the maximum range over which a Bessel beam could be
realistically produced. Other authors [4] have shown that the
Bessel range is approximately equal to the Gaussian half inten-
sity range multiplied by the number of rings in the Bessel beam.
At first it appears that the Bessel beam offers significant advan-
tages, but we will show that this advantage is curtailed by the
increase in size of the optics required to produce the beam.

In this paper we simulate the propagation of both Gaussian
and Bessel beams from ground level, through atmospheric tur-
bulence. Previously, Nelson et al. [11] investigated the propaga-
tion of these beams within a short ground-to-ground range of
6.4km, with constant strength of turbulence. They showed how
the ring structure is disrupted by the atmosphere and that there
is an increasing on axis intensity loss with an increasing num-
ber of rings. In this paper we investigate the more difficult long
distance propagation from ground to space, with the C2

n larger
in the lower atmosphere but gradually weakening with altitude
based on a modified Hufnagel-Valley model[12, 13] over a con-
siderably larger distance.

In sections 2 and 3 we will compare the basic properties of
Gaussian beams and Bessel beams. Since both beams, strictly
speaking, have infinite support but in practice an aperture func-
tion that curtails this, we define a method of comparing the two
beams. Section 4 will discuss how to select a Bessel beam for
the maximum propagation distance possible with a given aper-
ture; section 5 will discuss how such a beam could be physically
produced; section 6 will discuss the propagation of the beams
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through turbulence; and section 7 presents the discussion.

2. GAUSSIAN BEAM PROPERTIES

Lasers with Gaussian beam profiles are extremely common and
their propagation through vacuum and atmospheric turbulence
is well understood [14]. The power of the beam through an
aperture of radius r is:

P = P0

(

1 − exp(−2r2/w(z)2)
)

(1)

where P0 = π/2I0w2
0, w0 is the initial beam width and I0 is

the peak intensity. An aperture of radius 1.5174w0 at z = 0 is
therefore required such that 99% of the beam power is transmit-
ted. Assuming that the receiver telescope has a radius equal to
1.5174w0 the width of the initial beam’s waist in which half of
the beams power has been lost when it reaches the receiver is

w(z) = 2.5775w0 (2)

and the distance travelled over which half the power is lost is
then:

zdp = 1.2560
πw2

0

λ
(3)

The waist radius of the aperture to ensure only half the power
is lost is:

w0 = 1.5174

√

zλ

1.2560π
(4)

Table 1 shows various beam widths required for Gaussian prop-
agation. For objects up to low Earth orbit, small telescopes
perform reasonably well. However, communication with GPS
and GSO require large diameter telescopes comparable to a ra-
dio wave dish with a much larger value for λ. Ideally, a non-
diffracting beam would be better in these scenarios.

3. BESSEL BEAM PROPERTIES

An ideal Bessel beam of the nth order can be represented by [6]

E(r, φ, z) = A0 exp (ikzz) Jn(krr) exp(±inφ) (5)

where kr is the radial wave-vector, kz is the longitudinal wave-
vector, r is the radial coordinate, i.e., r2 = x2 + y2, and:

k =
√

k2
z + k2

r =
2π

λ
(6)

For n = 0, which is normally the case for Bessel beams and will
be used in the rest of this paper, equation 5 can be decomposed
as follows:

E(r, φ, z) = A0 exp (ikzz)
∫ 2π

0
exp [ikr (x cos φ + y sin φ)]

dφ

2π
(7)

This shows how the Bessel beam can be considered as an in-
finite set of plane waves, each one at angle θ to the direction
of travel. The normals of each plane therefore produce a cone
shape. Following [6], the angle of the cone defined by the Bessel
beam’s wave-front is:

θ = arctan

(

kr

kz

)

(8)

and the beam radius is defined as the central core spot radius,
i.e., the location of the first root of J0(krr) is:

bw =
2.405

kr
(9)

Equation 5 is not physically realisable since it is of infinite ex-
tent. In practice there will be some aperture function, B(r, φ),
which limits the distance over which the beam will be non-
diffracting. Here we assume B(r, φ) is a circular aperture with
radius Bw. The maximum propagation distance the Bessel beam
can propagate is a simple geometric relationship [5]:

zmax =
Bwk

kr
=

Bw

tan θ
(10)

Thus, to produce a Bessel beam that propagates a long distance,
either Bw is large, making the telescope large, or kr is small.

The power contained in the Bessel beam up to radius b is
found by integrating equation 5:

P = A2
0

∫ 2π

0

∫ b

0
J2
0 (rkr)rdrdφ = A2

0b2π
(

J0(krb)2 + J1(krb)2
)

(11)
When we set b = Bw and kr = 2.4048/Bw this is the power from
the central peak up to the first zero in equation 5:

PBw
= A2

0B2
wπ J1(2.4048) = 0.8467A2

0B2
w (12)

We assume that a Gaussian beam is generated with a w0 such
that 99% of its power passes through an aperture of radius Bw

and a Bessel beam is generated with 100% of the laser power
within Bw. Then equating Equation 12 with Equation 1 shows
that the peak intensity of the Bessel beam is 1.1764 times greater
than the peak intensity of the Gaussian.

Since the Bessel beam is non-diffracting up to a distance zmax,
a first thought might be that the power of the Bessel beam con-
tained within the initial aperture function should remain high
up to and beyond zmax. However, this is not the case due to the
aperture function. Figure 1 shows a representation of equation
7 but for a single value of δφ. Q is the cylinder extruded by
the plane wave at angle θ after its interaction with the aperture.
W is the cylinder extruded from the aperture function itself. For
there to be no power loss Q must remain within W but it is clear
from the diagram that there is only a limited area, A = Q ∩ W,
in which the overlap occurs and this is a function of z and θ.

Fig. 1. Bessel beam decomposed into a plane wave Q which
diverges from the aperture function W over distance z.

The energy contained with the single plane wave-front at an-
gle δφ is then the integral of the wave-front over A. Integrating
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over all φ then gives the power contained with cylinder W.

P(z) =

∣

∣

∣

∣

∣

∣

∫∫

A

∫ 2π

0
exp [ikr (x cos φ + y sin φ)]

dφ

2π
dxdy

∣

∣

∣

∣

∣

∣

2

(13)

P(z) =

∣

∣

∣

∣

∣

∣

∫∫

A

J0(krr)dxdy

∣

∣

∣

∣

∣

∣

2

(14)

This simple model ignores diffraction effects from the aper-
ture but simulations suggest that it is a reasonable model. Fig-
ure 2 shows the total beam power within the original aperture
versus propagation distance calculated with Equation 14 and
by computer simulated Fresnel diffraction [15] for three differ-
ent values of kr.

To find the point at which half the power was lost stimula-
tions were performed. For a range of apertures from 0.01m to
1m the distance over which half the beam power was lost was
calculated by propagating the Bessel beam using a Fresnel prop-
agation code and using Equation 14. The half power distance
appears to be at zmax. However, when the value of kr is small
such that the first root of the Bessel function equals the radius
of the aperture function, the distance appears to be a constant
in terms of zmax at a value of (1.1803532 ± 0.0000067)zmax .

Fig. 2. Power contained within the original aperture versus
distance of propagation for a Bessel beam. The geometric
power model (dashed line) and Fresnel diffraction model
(solid line) are compared for different values of kr. Legend:
� kr = 0.0039m−1 ,♦ kr = 0.0079m−1 , © kr = 0.0278m−1

The additional distance factor can be understood since for
small values of kr the area A is always a subset of the larger
central lobe of the Bessel function. When kr is larger the area
A samples the smaller outer oscillations of the Bessel function,
thus reducing the total power within the beam.

4. SELECTION OF BW

It can be seen in Table 1 that using a large diameter telescope
will enable the long distance transmission of light with a Gaus-
sian beam profile without much loss due to diffraction. Clearly
though, the large diameter of the telescope has cost implications
as well as additional weight, size and inconvenience, especially
for space based applications.

From Equation 10, if we ensure the amplitude of the Bessel
beam is zero at the edge of the aperture function, we find an
equation for the minimum radius of the beam:

Bmin
w =

√

2.405zmax

k
(15)

However, as noted above when kr is small, the half power
distance is actually at 1.18zmax so Equation 15 is modified to be:

Bmin
w =

√

2.405zmax

1.18k
(16)

Examples for different transmission distances are shown in Ta-
ble 1.

Calculation of the on-axis intensity can be performed by di-
rect integration of the Fresnel diffraction equation. The on-axis
intensity for a radially symmetric function A(r) is given by [16]:

I(0, z) =

(

k

z

)2 ∣
∣

∣

∣

∫ Bw

0
rA(r) exp

(

ikρ2

2z

)

dr

∣

∣

∣

∣

2

(17)

The on axis intensities for various values of kr are shown in
Figure 3. For this Bw = 44mm and so for the Bessel beam root
to be at the edge of the aperture kr = 54m−1. It can be seen that
the maximum propagation length can be increased further than
this but at the cost of increased ringing effects from the edge of
the aperture.

5. BESSEL BEAM PRODUCTION

A Bessel beam can be produced from the Hankel transform of
a radially symmetric delta functional δ(r − kr), which is a in-
finitely thin ring structure [5]. However, this is extremely light
inefficient. The two most common methods for the production
of Bessel beams in the lab are based on either an axicon [17]
or by the direct modulation of phase [18] or amplitude [19] by a
computer generated hologram (CGH) often implemented using
a spatial light modulator (SLM) [18, 20]. We note that the delta
function and phase wedge of the axicon/CGH are both Hankel
transform pairs. We also note that is also possible to directly
encode the Bessel beam function in Equation 5 directly onto a
hologram that is capable of producing negative amplitudes, i.e.,
a π shift in phase.

An alternative promising method of production includes the
direct generation from customised lasers [21, 22]. We also note
that since the Bessel beam in this paper has no rings with neg-
ative amplitude components, it would possible to convert a
Gaussian laser beam profile with a suitable intensity mask.

A number of authors [19, 20, 23, 24] have implemented phase
only holograms that are intrinsically light efficient. These sys-
tems encode the CGH or SLM with the phase profile:

T(ρ, θ) = exp(inθ) exp(−i2πr/kr) (18)

which for n = 0 is the same profile as that produced by an
axicon.
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Fig. 3. On-axis intensity of the Bessel beam versus distance
for Bw = 0.044m for different values of kr . Legend: ◦ kr =
197m−1;+ kr = 125m−1;∗ kr = 55m−1;⋄ kr = 45m−1. The
radial frequencies are such that the aperture equals: the third
root; the second root; the first root; and 83% of the first root of
the Bessel function respectively.

For low values of kr , as discussed in this paper, this would
not produce a satisfactory Bessel beam since it maybe grossly
under sampled. For example, when using a binary SLM and
kr/Bw < 2.405 the phase of the modulation signal will be +π
for the whole SLM.

The axicon method has been shown to have greater light ef-
ficiency, at nearly 100%, when compared to CGH methods[25]
which is important for this application. However, production
would be challenging. To produce a Bessel beam using an axi-
con, the opening angle of the axicon, γ, is related to θ via:

θ = (n1/n2 − 1)γ (19)

so

zmax ≈
Bw

θ
=

Bw

γ (n1/n2 − 1)
(20)

where n1 is the refractive index of the axicon material and n2 is
that of the surrounding medium where the light exits the axicon
(1 for air).

For Bw = 44mm, zmax = 12km, n1 = 1.5 and n2 = 1.0, the
angle of the axicon would only be 1.5 arc-seconds making the
centre 0.32µm thick which is not easy to build. If axicon was im-
mersed in an index matching material such that n1− n2 = 0.001
the opening angle of the axicon becomes a more physically re-
alisable γ = 0.3◦ for Bw = 44mm and zmax = 12km. For the
most extreme case, the GSO in Table 1, with Bw = 2.41m and
zmax = 35, 786km, γ = 0.34 arc-minutes. The production of this
beam would still be possible with the correct phase angle by
using the γ = 0.3◦ axicon and a 54.4× magnification telescope.

6. ATMOSPHERIC SIMULATION

To simulate propagation through the atmosphere Fresnel
diffraction was employed. The simulation assumes the trans-
mitter is at ground level and then propagates vertically a dis-
tance 22km through the atmosphere. After 22km the turbulence
effects are assumed to be negligible and so the beam is propa-
gated a further 78km in a vacuum. The wavelength, λ = 500nm
and the inner and outer atmospheric scales were l0 = 0.01m
and L0 = 100m. The total data array size was 1024 × 1024 and
represented an array of width 40 × Bw. Each propagation dis-
tance was 220m and the simulation was repeated 100 times to
get a mean measurement.

The beam aperture, Bw, was varied from 0.044m to 3.23m as
in Table 1. The value of kr is set such that the Bessel beam’s first
zero or root is equal to the aperture width. This was compared
against a Gaussian beam with aperture equally to Bw and w0

such that 99% of the power could pass through. Both beams
pass through identical sets of randomly generated atmospheric
phase screens.

We use beam power to compare the two beams since we as-
sume that both beams would be generated from the same laser
system. Using other metrics such as the full width half maxi-
mum (FWHM) can be misleading since the two beams have a
different intensity cross sectional shape. The central lobe of the
Bessel beam is slightly narrower than a Gaussian beam of the
same peak intensity giving a different total beam power for the
same beam FWHM.

To simulate atmospheric turbulence the Andrews [26] vari-
ant of the Hufnagel-Valley C2

n model was used in which we
assume the propagation starts from sea-level and C2

n is the re-
fractive index structure parameter:

C2
n(h) = 6.5

[

3.593 × 10−3

(

h

105

)10

exp(−h/1000) + 2.7 × 10−16 exp(−h/15000)

]

(21)

where h is the height above sea-level. This provides an ap-
proximate model for the refractive index structure parameter
which ranges from C2

n(0) = 1.755 × 10−15 to C2
n(22km) =

1.731 × 10−18 and gives a Fried parameter of 0.038m through
all the modelled layers.

The phase screens are generated every 220m using Equation
21 and the inverse Fourier transform method is employed with
additional sub-harmonics as described in [27, 28] which uses
the modified von Kármán power spectrum:

Φ(κ) = 0.033C2
n

exp
(

−κ2/κ2
m

)

(

κ2 + κ2
0

)11/6
(22)

where κ is the angular spatial frequency, κm = 5.92/l0 and κ0 =
2π/L0. No additional inner scale effects where modelled.

The following metrics were measured: the peak intensity;
the peak to side-lobe ratio; the peak position error; the RMS
intensity error from the beam at z = 0; and the total power
captured by a receiver of the same aperture as the transmitter.

The propagation is halted if any power is detected at the
edge of an array. With our choice of parameters these cases
are due to the diffraction of the beam overfilling the array
rather than beam wander. In these cases, the actual captured
beam power will then be low and so the experiment can be
safely halted. This happens after approximately 5km for the
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Bw = 44mm case and 16km for the Bw = 77mm case. The larger
beam width are successfully simulated through the 22km of at-
mosphere. Figure 4 shows the intensity cross sections versus
propagation distances for the Bessel and Gaussian beams.

Fig. 4. The intensity cross-sections versus distance with a false
colour map. The left hand images are the Bessel beams and the
right hand images are the Gaussian beams. The vertical axis
are the beams’ radial coordinates in metres and the horizon-
tal axis are the propagation heights in kilometres. The initial
beam widths are taken from Table 1

7. DISCUSSION

To facilitate a good a FSO communication system, the transmis-
sion beam needs to have a high peak intensity with a high peak
power and it must not wander due to turbulence away from the
receiver. In addition, it is beneficial for the transmitter optics to
be as small as possible. We will now discuss if these criteria can
be achieved using Bessel beams. Table 1 shows that the aper-
ture radius to transmit to the half power loss distance is smaller
for Bessel beams than for Gaussian beams. This is possible since
we have shown that to get the maximum propagation distance
the Bessel beams’ radial frequency, kr , should be set such that
the aperture radius equals the first root of the Bessel function.

Figure 5 shows the amount of power captured by a receiver
of the same diameter as the transmitter. Both the Gaussian and
Bessel beams start with the same amount of power and so Fig-
ure 5 shows that the Bessel beam actually slightly out performs
the Gaussian beam in this metric.

To test the propagation code, Figure 6 shows several graphs:
the theoretical power captured by an aperture of 77mm from
Equation 1; the Fresnel diffraction result with and without any
77mm aperture at ground level (i.e. the telescope is assumed
to fill the entire numeric array), which is shown for both Bessel
and Gaussian beams. The parameters used were for the High
Altitude Aircraft in Table 1. This shows several interesting

Fig. 5. The amount of power captured by a receiver of the
same radius as Bw versus height. Solid lines are the Bessel
beams, dashed lines are Gaussian beams. The radii of the aper-
tures for each symbol are shown in Table 1

Fig. 6. The power captured by a receiver of the same radius
as Bw = 77mm versus height in vacuo. × Bessel beam with
no ground level aperture; ∗ theoretical power from equation
1; ◦ Fresnel simulation code for the Gaussian beam with no
ground level aperture; △ Bessel beam with an aperture; �
Gaussian beam with an aperture; ⋄ shows the power with the
simulated turbulence, the solid line is the Bessel beam and the
dashed line is the Gaussian beam.
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Table 1. Useful Propagation Targets and Distances. a is the beam width of the transmitter and receiver required for only half the
power of a Gaussian beam to be lost. b is the Bessel beam aperture radius, Bw, given by Equation 16

Label Target Height above sea level Beam widtha Bw
b

◦ A320 Aircraft ceiling 12km 59mm 44mm

+ High Altitude Aircraft 27km 89mm 77mm

∗ International Space Station (ISS) 340km 315mm 235mm

× Low Earth Orbit (LEO) Satellite 700km 452mm 337mm

� Global Position System (GPS) Satellite 20, 350km 2.44m 1.82m

⋄ Geostationary orbit (GSO) 35, 786km 3.23m 2.41m

Fig. 7. The peak intensity of the beam versus height. Solid
lines are the Bessel beams, dashed lines are Gaussian beams.
The radii of the apertures for each symbol are shown in Table 1

Fig. 8. The peak intensity to side lobe ratio of the beams ver-
sus height. Solid lines are the Bessel beams, dashed lines are
Gaussian beams. The radii of the apertures for each symbol
are shown in Table 1
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Fig. 9. The RMS intensity error versus height. The error is de-
fined as the propagated intensity minus the intensity of the
beam at sea-level. Solid lines are the Bessel beams, dashed
lines are Gaussian beams. The radii of the apertures for each
symbol are shown in Table 1

Fig. 10. The RMS intensity error versus height. The error is
defined as the propagated intensity minus the intensity of the
unaberrated beam that has travelled the same distance. Solid
lines are the Bessel beams, dashed lines are Gaussian beams.
The radii of the apertures for each symbol are shown in Table 1

Fig. 11. The peak position error versus height. Solid lines are
the Bessel beams, dashed lines are Gaussian beams. The radii
of the apertures for each symbol are shown in Table 1

Fig. 12. The amount of power captured by a receiver of the
same radius as Bw versus height for distances greater than
22km. The propagation is assumed to be in vacuo. Solid lines
are the Bessel beams, dashed lines are Gaussian beams. The
radii of the apertures for each symbol are shown in Table 1
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points. Firstly, the Gaussian propagation with no starting aper-
ture has a very close result to the Fresnel propagation result
giving us confidence in the simulation code. Secondly, the aper-
ture introduced at ground level from the physical edge of the
simulated telescope introduces significant ringing and power
loss for both the Bessel and Gaussian beams. Without the aper-
ture, the Bessel beam looses no power over the propagation dis-
tance. Thus, with the ground level aperture in place the Bessel
beam outperforms the equivalent Gaussian beam. The effects of
the atmosphere can also been seen. The ⋄ markers indicate the
captured power with the turbulence simulation added. With
the turbulence simulation the power captured drops to the 80%
point on the graph earlier than the in vacuo simulation.

Figures 7 to 10 are intensity measurements. Since the Bessel
and Gaussian beams are set to have unity power, the peak inten-
sity of the Bessel beam will be slightly higher then the equiva-
lent Gaussian beam, and the peak intensity drops as the aper-
ture is increased. Figure 7 shows the peak intensity. From
Equation 12 the Bessel beam has a slightly higher peak inten-
sity than the Gaussian beam. This can also be seen in Figure
7. The graph also shows that this peak intensity advantage is
maintained over distance and through atmospheric turbulence.
A similar result is shown in Figure 8 which graphs the peak in-
tensity to side-lobe ratio of the beams. A large value indicates
that power is concentrated in the centre region and not spread
out over the field. The two graphs are very similar since most
of the side-lobe power is captured by the receiver. Some of the
ringing from the aperture edge seen in Figure 3 is evident but
this is reduced since the peak intensity can be anywhere within
the beam aperture and not just on the optical axis. We note that
there is no ringing when we consider the integrated total power
as in Figure 5.

Figure 9 shows the RMS error in the beam intensity when
compared to the original beams at z = 0. Here, a lower value
is better. The Gaussian beam slightly out performs the Bessel
beam in this case. This is possibly because the Gaussian beam is
more spread out than the Bessel beam, so atmospheric induced
phase errors have less effect. Figure 10 shows a similar result
except the propagated beam is compared to an identical propa-
gated beam that has travelled the same distance but experiences
no atmospheric turbulence. Again it can be seen that the Gaus-
sian beam has a marginal advantage over the Bessel beam. We
conclude that the Bessel beam is slightly more effected by tur-
bulence than the Gaussian.

Figure 11 shows the error due to beam wander by measuring
the position of peak intensity. Both the Bessel and the Gaussian
beam have almost identical results. The self-healing aspect of
the Bessel beam can be seen to have little or no effect when the
beam is subjected to phase errors.

Figure 12 shows the captured power after the beam has left
the atmosphere. Above 22km the propagation is assumed to be
in vacuo. It can be seen that both of the beams continue propa-
gating.

It can be seen from the Figures 5 to 12 that the Bessel beam
has an advantage over a Gaussian beams of the same power.
The aperture radius is slightly smaller and the peak intensity
and power captured is better for the Bessel beam. The beam
wander appears to be identical for both beams.

To maintain this advantage though, the Bessel beam needs
to produced from a laser with very high efficiency. It also needs
to be produced with no side-lobes to make our comparisons ac-
curate. Gaussian beams here have the advantage since many
lasers produce beams with a near Gaussian profile inherently.

As discussed in section 5 the axicon method has a high effi-
ciency and the production of one for such a long range would
be challenging but not impossible.

These results are in line with other authors simulations such
as Nelson et al. [11] who showed that the turbulence disrupts
the ring structure of the Bessel beams and that the best power
transmission is when that Bessel beam has no rings at all as in
our case. In their paper they describe this case as a truncated
Gaussian beam. We have, however, shown that this is not the
case and the ring-less Bessel beam does actually perform better
than a Gaussian beam.

In conclusion, we have analysed various properties of both
Bessel and Gaussian beams in this paper with respect to long
distance propagation. We have shown that when consider-
ing long distance propagation for FSO communications Bessel
beams have a number of advantages over Gaussian beam pro-
files in terms of power delivery. This is, however, provided that
the Bessel beam can be produced efficiently. In addition to this
we have shown that to maximise the distance for a given aper-
ture that the beam can propagate, the radial frequency of the
beam should be such that the aperture equals the first root of
the Bessel function.

We have used the power through an aperture to compare the
two types of beam since we are assuming that a laser of fixed
power is used to generate both beams. The practical difficulties
of the Bessel beam’s production may mean that in many cases it
would better to use a Gaussian beam and to overcome the loss
of power at the receiver by simply using a more powerful laser
to generate the beam.
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