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Abstract We discuss a novel approach to systematically

determine the dominant long-distance contribution to B →
K ∗ℓℓ decays in the kinematic region where the dilepton

invariant mass is below the open charm threshold. This

approach provides the most consistent and reliable determi-

nation to date and can be used to compute Standard Model

predictions for all observables of interest, including the kine-

matic region where the dilepton invariant mass lies between

the J/ψ and the ψ(2S) resonances. We illustrate the power

of our results by performing a New Physics fit to the Wilson

coefficient C9. This approach is systematically improvable

from theoretical and experimental sides, and applies to other

decay modes of the type B → V ℓℓ, B → Pℓℓ and B → V γ .

1 Introduction

B → K ∗ℓℓ decays are sensitive to modified short-distance

physics from sources beyond the Standard Model (SM), and

a great deal of experimental and theoretical work has been

devoted to extract short-distance information from them.

However, long-distance physics within the SM also con-

tributes significantly to the decay, and its effects are very

difficult to assess reliably from first principles. On the other

hand, tighter experimental constraints from increasingly pre-

cise measurements of b → s processes have significantly

limited the size of allowed New Physics (NP) effects in

B → K ∗ℓℓ, which are now comparable to current SM uncer-

tainties. Thus, our inability to reliably constrain these long-

distance contributions to acceptable levels stands in the way

of obtaining unambiguous information on physics beyond

the SM.

a e-mail: mchrzasz@cern.ch

The B → K ∗ℓℓ decay is conveniently described by the

K ∗ transversity amplitudes (λ =⊥, ‖, 0)

A
L ,R
λ = Nλ

{

(C9 ∓ C10)Fλ(q
2)

+2mb MB

q2

[

C7F
T
λ (q2) − 16π2 MB

mb

Hλ(q
2)

]}

(1)

where C7,9,10 are short-distance Wilson coefficients, and Nλ

are normalization factors. The non-trivial matter from the

theory point of view is the determination of the “local” and

“non-local” long-distance effects encoded in the functions

F
(T )
λ (q2) and Hλ(q

2), respectively, which depend on the

dilepton invariant mass squared q2.

The functions F
(T )
λ (q2) are form factors, which can be cal-

culated by means of Light-Cone Sum Rules (LCSRs) at low

q2 (� 10 GeV2) [1,2], or by numerical simulations (Lattice

QCD) at large q2 (� 15 GeV2) [3,4]. Both methods agree

reasonably well when extrapolated [5,6], and there are good

prospects for improvement [7–11]. The form factors are not

the focus of this work.

Here we focus on the functions Hλ(q
2), which are related

to the contribution from 4-quark and chromomagnetic oper-

ators in the Weak Effective Hamiltonian, and emerge from

the “non-local” matrix element

η∗
α H

αμ ≡ i

∫

d4x eiq·x 〈K̄ ∗(k, η)|Kμ(x, 0)|B̄(p)〉 , (2)

where p = q + k, η is the polarization vector of the K ∗, and

K(x, y) is a bi-local operator. The most relevant contribution

to this matrix element in the SM arises from the current-

current operators O1,2, since they come with large Wilson

coefficients. In this letter we consider only this contribution

– the so-called “charm-loop effect” – for which the object

Kμ(x, y) is given by:
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K
μ(x, y) = T

{

jμem(x), C1O1(y) + C2O2(y)
}

(3)

with j
μ
em(x) =

∑

q Qq q̄(x)γ μq(x) the electromagnetic cur-

rent. The scalar functions Hλ(q
2) are given by the Lorentz

decomposition:

H
αμ(q, k) = M2

B

[

S
αμ
⊥ H⊥ − S

αμ
‖ H‖ − S

αμ
0 H0

]

(4)

where S
αμ
λ are a set of structures given in the appendix.

In the heavy b-quark limit and for very small q2, the

functions Hλ(q
2) factorize into non-perturbative form fac-

tors and light-cone distribution amplitudes, up to perturba-

tively calculable “hard” functions [12]. However this per-

turbative expansion breaks down when q2 approaches 4m2
c ,

leading to questionable predictions for q2 � 6 GeV2. The

integral in Eq. (2) is in fact dominated by the region x2 �

(2mc −
√

q2)−2 [13], so for q2 ≪ 4m2
c one may expand

the operator Kμ(x, 0) around x2 = 0 (a light-cone operator-

product expansion, or LCOPE). This leads to an expansion

of Eq. (2) in powers of (2mc −
√

q2)−1, with matrix ele-

ments of operators that are non-local only along the light

cone. This theory framework has been worked out up to

NLO in αs [12,14] and including subleading terms in the

LCOPE [13], and can be safely applied for q2 ≪ 4m2
c

(preferably at q2 < 0). However, reliable predictions for

larger values of q2 remain a challenge.

In this letter we consider a consistent, model-independent

and systematically-improvable approach to determine the

dominant long-distance contributions Hλ(q
2) to B → K ∗ℓℓ

in the region q2 � 14 GeV2. It provides genuine SM predic-

tions even in the presence of NP in semileptonic operators. In

addition, this approach provides access to the inter-resonance

region 10 GeV2 � q2 � 13 GeV2. The idea is the follow-

ing: We determine the analytic properties of the functions

Hλ(q
2) in the complex plane, by considering their dominant

singularities. We then use this information to write down a

general and model-independent parametrization. Two pieces

of information are used to constrain the parametrized func-

tions: data on B → K ∗ J/ψ and B → K ∗ψ(2S), which is

independent of NP in semileptonic operators; and theory at

q2 < 0, where it is reliable. This method, which builds upon

Refs. [13,15], gives the most reliable and consistent a-priori

determination of the functions Hλ(q
2) to date. We use these

results to compute SM predictions (assuming no NP in O1,2),

and to perform a NP fit to C9. All our numerical computa-

tions are performed with the help of EOS [16], which has

been modified for this purpose [17].

2 Analytic structure and parametrization

It is a standard assumption in quantum field theory that the

only analytic singularities of a correlation function – as a

complex function of all its complexified kinematic invari-

ants – are those required by unitarity [18]. This principle

of “maximal analyticity” can sometimes be derived from

causality, and it is therefore well founded [19]. Unitarity,

in turn, relates analytic singularities with on-shell interme-

diate states: poles for one-particle states, and branch cuts for

multi-particle states. Thus, the analytic structure of a corre-

lation function can be learned by analysing its on-shell cuts.

In the case at hand, inspection of the correlation func-

tion (2) reveals the following analytic properties of the scalar

functions Hλ(q
2):

◮ On-shell cuts in the variable q2 include: two poles at

q2 = M2
J/ψ ≃ 9 GeV2 and q2 = M2

ψ(2S)
≃ 14 GeV2

corresponding to one-particle intermediate states through

B → K ∗ψn(→ ℓ+ℓ−), with ψ1 = J/ψ and ψ2 = ψ(2S);

a branch cut starting at q2 = t+ ≡ 4M2
D corresponding to

two-particle intermediate states through B → K ∗[D̄D](→
ℓ+ℓ−), plus other “cc̄” cuts with higher thresholds; and

“light-hadron” branch cuts starting at q2 ≃ 0 from interme-

diate states such as B → K ∗[3π ](→ ℓ+ℓ−), which include

finite-width effects of J/ψ and ψ(2S). The effects of these

“light-hadron” cuts are OZI suppressed [20–22]. Given the

limited precision of current data, we will neglect these OZI

suppressed contributions, keeping in mind that this is a pend-

ing assumption that should be tested in view of future experi-

mental prospects. These presumably small effects have never

been considered in previous analyses before.

◮ On-shell cuts in the variable (q + k)2 (the “forward”

or “decay” channel) include branch cuts from intermedi-

ate states such as B → D̄Ds → K ∗ℓ+ℓ−. The physical

point (q + k)2 = M2
B lies on these cuts, which implies that

the functions Hλ(q
2) are complex-valued for all values of

q2. But this imaginary part is not associated with any sin-

gularity in the variable q2. Thus, one can write Hλ(q
2) =

H
(re)
λ (q2)+i H

(im)
λ (q2), with H

(re,im)
λ (q2) satisfying the ana-

lytic properties of the previous point as functions of q2, and

obeying the same dispersion relation.

These properties can be exploited to write down a general

parametrization for the correlator consistent with unitarity. A

convenient way to do so is to re-express the functions Hλ(q
2)

in terms of the “conformal” variable z:

z(q2) ≡
√

t+ − q2 − √
t+ − t0

√

t+ − q2 + √
t+ − t0

, (5)

where t+ = 4M2
D and t0 = t+ −

√

t+(t+ − M2
ψ(2S)

). This

transformation maps the cc̄ branch cut in the q2 plane to

the unit circumference |z| = 1, and the entire first Riemann

sheet in the q2 plane to the interior of the unit circle |z| < 1.

Our choice for t0 implies that within the relevant interval

−7 GeV2 ≤ q2 ≤ M2
ψ(2S)

, |z| < 0.52.

123



Eur. Phys. J. C (2018) 78 :451 Page 3 of 10 451

The approach now resembles and is inspired by the z-

parametrization used for the form factors [23,24]. The func-

tions Hλ(z) ≡ Hλ(q
2(z)) are meromorphic in |z| < 1,

with two simple poles at z J/ψ ≡ z(M2
J/ψ ) ≃ 0.18 and

zψ(2S) ≡ z(M2
ψ(2S)

) ≃ −0.44. Therefore, multiplying by

the corresponding zeroes will give an analytic function in

|z| < 1 that can be Taylor-expanded around z = 0. This

expansion should converge reasonably well in the region of

interest, where |z| < 0.52. This is the basis of our proposed

parametrization.

In order to assure that the leading terms in the expan-

sion will capture most of the features of the function (thus

improving convergence), we use two more pieces of infor-

mation: First, the correlator inherits all the singularities of

the form factor (e.g. the MB∗
s

pole), and the leading OPE

contribution to the correlator is indeed proportional to the

form factor. Therefore it is better to parametrize the ratios

Hλ(q
2)/Fλ(q

2) instead. Second, the poles should not mod-

ify the asymptotic behaviour. This is achieved by introducing

appropriate “Blaschke factors” [23]. All in all, we propose

the following parametrization:

Hλ(z) =
1 − z z∗

J/ψ

z − z J/ψ

1 − z z∗
ψ(2S)

z − zψ(2S)

Ĥλ(z) , (6)

with

Ĥλ(z) =
[

K
∑

k=0

α
(λ)
k zk

]

Fλ(z) , (7)

where α
(λ)
k are complex coefficients, and the expansion is

truncated after the term zK . This truncation unavoidably

introduces some model dependence. The maximum value

that can be chosen for K will depend on the available set of

experimental measurements and theory inputs.

3 Experimental constraints

According to the LSZ reduction formula [25], the amplitudes

for the decays B → K ∗ψn (with ψ1 = J/ψ and ψ2 =
ψ(2S)) are defined by the residues of the functions Hλ(q

2)

on the ψn poles:

Hλ(q
2 → M2

ψn
) ∼

Mψn f ∗
ψn

A
ψn

λ

M2
B(q2 − M2

ψn
)

+ · · · , (8)

where the dots represent regular terms. Here 〈0| j
μ
em|ψn(q, ε)〉

= Mψn f ∗
ψn

εμ, and A
ψn

λ are the B → K ∗ψn transversity

amplitudes. The most precise constraints on these ampli-

tudes can be obtained from Babar [26,27], Belle [28–30]

and LHCb [31].

We use the data to produce two sets of five pseudo-

observables (three magnitudes and two relative phases on

each resonance):

|rψn

⊥ |, |rψn

‖ |, |rψn

0 |, arg{rψn

⊥ r
ψn∗
0 }, arg{rψn

‖ r
ψn∗
0 }, (9)

where

r
ψn

λ ≡ Res
q2→M2

ψn

Hλ(q
2)

Fλ(q2)
∼

Mψn f ∗
ψn

A
ψn

λ

M2
B Fλ(M2

ψn
)

. (10)

The numerical values for these pseudo-observables are

obtained from the posterior-predictive distributions of a

Bayesian fit. The inputs for this fit and the results are provided

for completeness in the appendix. These pseudo-observables

will act as constraints on the parameters of the correlators at

z = 0.18 and z = −0.44.

4 Theory constraints

At q2 < 0 the functions Hλ can be calculated with the cur-

rent approaches for the large recoil region. We use QCD-

factorization at next-to-leading order in αs , including the

form factor terms and hard-spectator contributions [12,32].

In addition, we include1 the soft-gluon correction calcu-

lated via a LCSR in Ref. [13]. For the form factors we

use the results from the LCSR with B-meson distribu-

tion amplitudes [2], in order to have a mutually consistent

description of form factors and non-local contributions and

benefit from theoretical correlations among both. In this

way we compute the ratios Hλ(q
2)/Fλ(q

2) at the points

q2 = {−7,−5,−3,−1} GeV2. These ratios are used as

pseudo-observables to constrain the parameters in Eq. (6) at

z = {0.52, 0.50, 0.48, 0.46}. Further details and results are

presented for completeness in the appendix. We emphasize

that no theory is used at q2 ≥ 0 at all.

5 SM predictions

We now perform a fit of Eq. (6) to the combined experimental

and theoretical constraints described above in Sects. 3 and

4. We find that Eq. (6) with K = 2 provides an excellent

fit to all inputs, with a p-value of 0.91. All 1D-marginalised

posteriors are reasonably symmetric around their modes. The

result of this fit is a set of correlated values for the complex

parameters α
(λ)
k , which are summarized in Table 1. These

values lead to a determination of the non-local correlator in

Eq. (2) that is consistent with the B → K ∗ψn measurements,

1 We thank Yuming Wang for providing us with the results for B →
K ∗γ ∗ in digital form.
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Table 1 Mean values and standard deviations (in units of 10−4) of the

prior PDF for the parameters α
(λ)
k

k 0 1 2

Re[α(⊥)
k ] −0.06 ± 0.21 −6.77 ± 0.27 18.96 ± 0.59

Re[α(‖)
k ] −0.35 ± 0.62 −3.13 ± 0.41 12.20 ± 1.34

Re[α(0)
k ] 0.05 ± 1.52 17.26 ± 1.64 –

Im[α(⊥)
k ] −0.21 ± 2.25 1.17 ± 3.58 −0.08 ± 2.24

Im[α(‖)
k ] −0.04 ± 3.67 −2.14 ± 2.46 6.03 ± 2.50

Im[α(0)
k ] −0.05 ± 4.99 4.29 ± 3.14 –

Fig. 1 Results of the prior and posterior fits for the ratio

Re[Ĥ⊥(z)]/F⊥(z). See the text for details

the theory calculations at negative q2, and it is independent

of new physics in semileptonic operators. This is very dif-

ferent compared to the approach of Ref. [33], which uses

short-distance dominated B → K ∗μ+μ− measurements to

determine the non-local correlators, thereby assuming SM

values of the b → sμ+μ− Wilson coefficients. As a conse-

quence, their SM predictions for the angular observables are

model-dependent posterior predictions. The study presented

here does not suffer from this model dependence, and thus

we determine the non-local correlators and provide a genuine

SM prediction of the angular observables.

The gray band in Fig. 1 shows the result of this “prior” fit

for the case of the real part of H⊥(q2). Similar plots for the

other correlators are provided in the appendix for complete-

ness.

With these results at hand, we can compute SM pre-

dictions for all observables of interest within the range

0 ≤ q2 � 14 GeV2. One of them is the angular observable

P ′
5 [34], which is the visible face of the “B → K ∗μ+μ−

anomaly” [35]. Our SM prediction for P ′
5 is represented by

the gray band in Fig. 2. We find relatively small uncertainties

and a clearly apparent tension with LHCb data (represented

by purple boxes in Fig. 2).

Fig. 2 Prior and posterior predictions for P ′
5 within the SM and the

NP C9 benchmark, compared to LHCb data

Another interesting SM prediction that we obtain from our

analysis is:

B R(B0 → K ∗0γ ) = (4.2+1.7
−1.3) · 10−5 , (11)

in agreement with the world average [36]. The larger uncer-

tainties as compared to Ref. [37] are due to our doubling of

the form factor uncertainties. SM predictions for all other

observables will be given elsewhere.

6 New physics analysis

We now perform a fit to B → K ∗μ+μ− data using as prior

information the SM predictions derived in Sect. 5. We include

the branching ratio and the angular observables Si [38] within

the q2 bins in the region 1 ≤ q2 � 14 GeV2. We use the lat-

est LHCb measurements [39,40], and perform different sep-

arate fits, using the results from the maximum-likelihood fit

excluding (LLH) and including (LLH2) the inter-resonance

bin, or using the results from the method of moments [41]

(MOM and MOM2), and both including (NP fit) and not

including (SM fit) a floating NP contribution to C9.

The fits provide posterior distributions for the correlator,

for B → K ∗μ+μ− and B → K ∗γ observables, and for C9.

We first discuss some illustrative results of the LLH2 fit. The

posteriors for the real part ofH⊥(q2) are shown in Fig. 1, both

for the SM and the NP fits. In this case it is reassuring that

both are consistent within errors with the result of the prior

fit, indicating that modifying the long-distance contribution

does not lead to improvement in the SM fit, and so the long-

distance contribution is not likely to mimic a NP contribution.

The posterior NP prediction for P ′
5 (corresponding to

the LLH2 fit) is shown in Fig. 2, exhibiting a much better
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Fig. 3 Posterior distributions for C9 from the NP fits and their respec-

tive pulls. Dark and light shaded regions correspond to 68% and 99%

probability

agreement with the experimental measurements than the SM

(prior) prediction.

The main conclusion of the fits is the following. The SM

fits are relatively inefficient in comparison with the NP fits,

with posterior odds [42] ranging from ∼ 2.7 to ∼ 10 (on the

log scale) in favor of the NP hypothesis. The one-dimensional

marginalized posteriors yield:

(LLH) : C9 = 2.51 ± 0.29, (12)

(LLH2) : C9 = 3.01 ± 0.25, (13)

(MOM) : C9 = 2.81 ± 0.37, (14)

(MOM2) : C9 = 3.20 ± 0.31. (15)

The corresponding pulls with respect to the SM point

CSM
9 (μ = 4.2 GeV) = 4.27 range from 3.4 to 6.1 standard

deviations, and are illustrated in Fig. 3. These results, from a

fit to B → K ∗μ+μ− data only, are in qualitative agreement

with global fits [42–48], but rely on a more fundamented

theory treatment.

7 Conclusions

Analyticity provides strong constraints on the hadronic con-

tribution to B → K ∗ℓℓ observables, and fixes the q2 depen-

dence up to a polynomial, which under some circumstances

is an expansion in a small kinematical parameter. In this letter

we have exploited this idea to propose a systematic approach

to determine the dominant non-local contributions, which

at this time are the main source of theory uncertainty. This

approach is systematically improvable with more precise data

on B → K ∗ψn and/or more precise theory calculations at

negative q2. In addition, this approach allows access to the

inter-resonance region, which provides valuable information

on short-distance physics. We have focused on B → K ∗ℓℓ,

but the approach applies to any other B → Mℓℓ modes such

as B → {K , π, ρ}ℓℓ and Bs → φℓℓ.

We have performed a numerical analysis implementing

this idea, and conclude that significantly improved theory

predictions can be obtained, leading to a more precise and

robust interpretation of experimental data and an improved

sensitivity to short-distance physics. We identify two issues

worth exploring further. One has to do with neglecting the

OZI-suppressed cut and charmonium width. A dispersive

approach should be able to exploit present and future data

on charmless non-leptonic multi-body B → K ∗ X decays in

order to properly bound these presumably small effects. The

other has to do with the convergence of the z expansion. In

this respect, the fit including B → K ∗ℓℓ data can provide

enough constraints to increase the order of the expansion

considerably, especially in view of the extraordinary experi-

mental prospects for the next ten years [49]. We thus believe

that this approach will become very useful in future analyses

of exclusive b → s and b → d transitions.
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Appendix A: Supplemental details and results

The effective Lagrangian that governs b → s transitions

contains the following terms relevant for our analysis:

Leff = 4G F√
2

VtbV ∗
ts

∑

i=1,2,7,9,10

Ci (μ)Oi (μ) + · · · (A1)
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with the current-current operators defined as

O1 =
[

s̄γ μ PL T Ac
] [

c̄γμ PL T Ab
]

, (A2)

O2 =
[

s̄γ μ PLc
] [

c̄γμ PLb
]

, (A3)

such that C2(μ = MW ) = 1 + O(αs), with PL(R) = (1 ∓
γ5)/2 and T A the generators of SU(3), and the dipole and

semileptonic operators given by

O7 = e mb

(4π)2

[

s̄σμν PRb
]

Fμν, (A4)

O9 = αe

4π

[

s̄γ μ PLb
] [

ℓ̄γμℓ
]

, (A5)

O10 = αe

4π

[

s̄γ μ PLb
] [

ℓ̄γμγ5ℓ
]

. (A6)

In the SM, the values of the Wilson coefficients are:

CSM
1 (mb) = −0.3, CSM

2 (mb) = 1.0,

CSM
7 (mb) = −0.3,

CSM
9 (mb) = 4.3, CSM

10 (mb) = −4.2 .

(A7)

The Lorentz decomposition for the form factors that we

use in this analysis is given by

〈s̄γ μb〉 = η∗
α S

αμ
⊥ F⊥ ,

〈s̄γ μγ5b〉 = η∗
α (S

αμ
‖ F‖ + S

αμ
0 F0 + S

αμ
t Ft ) ,

〈s̄σμνqνb〉 = i MB η∗
α S

αμ
⊥ F

T
⊥ ,

〈s̄σμνqνγ5b〉 = −i MB η∗
α

(

S
αμ
‖ F

T
‖ + S

αμ
0 F

T
0

)

, (A8)

denoting 〈Ŵ〉 ≡ 〈K̄ ∗(k, η)|Ŵ|B̄(q + k)〉. The non-local cor-

relator Hαμ is decomposed analogously according to Eq. (4):

H
αμ = M2

B

[

S
αμ
⊥ H⊥ − S

αμ
‖ H‖ − S

αμ
0 H0

]

.

The Lorentz structures S
αμ
λ are given by:

S
αμ
⊥ =

√
2MB

√

λ(q2)
εαμρσ kρqσ ,

S
αμ
‖ = i MB√

2λ(q2)

[

λ(q2)gαμ + 4M2
K ∗qαqμ − 4(q · k) qαkμ

]

,

S
αμ
0 = − i 4MK ∗(MB + MK ∗)

λ(q2)
√

q2

[

(q · k) qαqμ − q2 qαkμ
]

,

S
αμ
t = i 2MK ∗

q2
qαqμ , (A9)

where the kinematic function λ(q2) is defined as

λ(q2) =
[

(MB + MK ∗)2 − q2
] [

(MB − MK ∗)2 − q2
]

.

(A10)

Table 2 Uncorrelated priors for the CKM parameters in our analysis,

taken from the tree-level-only fit in Ref. [50]

Parameter Prior (68% gaussian)

λ 0.225 ± 0.006

A 0.829 ± 0.012

ρ̄ 0.132 ± 0.018

η̄ 0.348 ± 0.012

Table 3 Pseudo-observables from B → K ∗ψn

Pseudo-observable Value (68% gaussian)

|r J/ψ

⊥ | (2.027 ± 0.190) · 10−3

|r J/ψ

‖ | (1.713 ± 0.260) · 10−3

|r J/ψ

0 | (2.303 ± 0.357) · 10−3

arg{r J/ψ

⊥ r
J/ψ∗
0 } +2.926 ± 0.032

arg{r J/ψ

‖ r
J/ψ∗
0 } −2.944 ± 0.036

|rψ(2S)

⊥ | (1.06 ± 0.21) · 10−3

|rψ(2S)

‖ | (0.98 ± 0.18) · 10−3

|rψ(2S)
0 | (1.40 ± 0.36) · 10−3

arg{rψ(2S)

⊥ r
ψ(2S)∗
0 } +2.799 ± 0.314

arg{rψ(2S)

‖ r
ψ(2S)∗
0 } −2.815 ± 0.403

The experimental constraints in Sect. 3 are based on

the experimental pseudo-observables in Eq. (9), which are

obtained by fit to B → K ∗ψn data. For B → K ∗ J/ψ this

data includes the branching ratio as measured by Belle [30],

as well as the full set of angular observables F⊥, F‖, δ⊥ and δ‖
measured by BaBar [27] and LHCb [31]. For B → K ∗ψ(2S)

the data includes the branching ratio and the longitudinal

polarization measured by Belle [29], and the full set of angu-

lar observables from BaBar [27]. For all measurements, cor-

relations have been taken into account where available. More

recent results for the full angular distributions, stemming

from amplitude analyses that take into account tetra-quark

contributions [29,30], are not used here. The ansatz involv-

ing tetra-quark amplitudes is incompatible with the basis of

our analysis. Although we expect to be able to use these addi-

tional results in future studies, this requires further dedicated

work.

The relevant input to this fit are the CKM parameters,

listed in Table 2, and the form factors (see Eq. (10)). Since

the experimental inputs are sensitive to the form factors at

q2 ≤ 10 GeV2, we use the combined fit to K ∗-meson LCSR

and Lattice results performed in Ref. [6]. However, we dou-

ble the uncertainties quoted in [6] to ensure full agreement

among the LCSRs and Lattice results. Note that we do not

account for correlations among the r
ψn

λ due to correlations

among the form factor parameters. The results for the pseudo-
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Table 4 Mean values μi (in units of 10−4), and standard deviations σi (in units of 10−4) of the theory constraints at negative q2 (in units of GeV2)

Re[H⊥]/F⊥ Re[H‖]/F‖ Re[H0]/F0

q2 − 7.0 − 5.0 − 3.0 − 1.0 − 7.0 − 5.0 − 3.0 − 1.0 − 7.0 − 5.0 − 3.0 − 1.0

μ 6.656 4.878 4.076 3.750 6.033 4.384 3.728 3.586 − 1.997 1.596 1.818 0.768

σ 2.553 1.048 0.621 0.561 2.446 0.971 0.575 0.538 4.077 1.368 0.472 0.125

Im[H⊥]/F⊥ Im[H‖]/F‖ Im[H0]/F0

q2 −7.0 −5.0 −3.0 −1.0 −7.0 −5.0 −3.0 −1.0 −7.0 −5.0 −3.0 −1.0

μ 1.581 1.294 1.291 1.380 1.517 1.246 1.257 1.366 6.328 1.970 0.583 0.136

σ 0.835 0.610 0.565 0.585 0.803 0.590 0.553 0.581 7.411 2.107 0.528 0.082

Fig. 4 A-priori predictions of the form factor V and the symmetry ratio rA1 as functions of q2, and comparison with two a-posteriori results

observables are given in Table 3. The two sets of observables

for J/ψ and ψ(2S) are correlated with correlation matrices:

ρJ/ψ =

⎛

⎜

⎜

⎜

⎝

1.000 0.786 0.213 −0.007 −0.026

1.000 0.177 0.003 0.011

1.000 −0.003 −0.004

1.000 0.652

1.000

⎞

⎟

⎟

⎟

⎠

, (A11)

ρψ(2S) =

⎛

⎜

⎜

⎜

⎝

1.000 −0.116 0.233 −0.222 −0.204

1.000 0.252 0.204 0.173

1.000 −0.007 0.008

1.000 0.679

1.000

⎞

⎟

⎟

⎟

⎠

. (A12)

In both cases, the mean and standard deviations have been

obtained from a fit to 106 samples of the posterior predictive

distributions. On the other hand, the correlation coefficients

have been obtained from the sample covariance of these 106

samples. It is noteworthy that none of the coefficients exceeds

a level of 78% for the J/ψ and 68% for the ψ(2S), respec-

tively.

The theory constraints in Sect. 4 are based on pseudo-

observables at four different points at spacelike q2. The

derived values including uncertainties and correlations are

listed in Table 4.

Nominally, for K = 2 the fit would involve 18 real-valued

parameters α
(λ)
k . Using the property that the longitudinal cor-

relator must vanish at zero momentum transfer q2 = 0,

Ĥ0(z(q
2 = 0)) = 0, we can reduce the number of parame-

ters by 2 through the replacement

α
(0)
0 → α

′(0)
0 ≡ −z(0) α

(0)
0 ,

α
(0)
1 → α

′(0)
1 ≡ α

(0)
0 − z(0) α

(0)
1 ,

α
(0)
2 → α

′(0)
2 ≡ α

(0)
1 .

(A13)

From the fit of the parameters α
(λ)
k to the theory constraints

and the pseudo-observables r
ψn

λ we find all 1D-marginalized

posteriors to be reasonably symmetric around their modes.

As for the pseudo-observables, we obtain means and stan-

dard deviations from fits to 106 samples of the PDF, while

the correlation coefficients are obtained through computa-

tion of the sample covariance. Our results are summarized

in Table 1. Finally, the set of predictive distributions for the

ratios Hλ/Fλ are shown in Fig. 5 for all transversities, includ-

ing real and imaginary parts.

A key result of our analysis is that modifications to the

correlator parameters cannot bring the theory predictions
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Fig. 5 A-priori predictions of the ratios Hλ/Fλ as functions of z, and comparison with two a-posteriori results. Note that the SM fit posterior is

multi-modal, and we therefore choose not to illustrate its best-fit curves
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and measurements into better agreement. However, modifi-

cations to the form factor parameters can reduce the tensions,

albeit not completely. We show in Fig. 4a the impact on the

form factor V (q2), which is the one most affected. Moreover,

since the form factor A1 is almost unaffected, we find that

the SM fit prefers a substantial violation of the large-recoil

symmetry relation [51,52] involving V and A1,

rA1(q
2) ≡ (MB + MK ∗)2

2MB EK ∗(q2)

A1(q
2)

V (q2)
, (A14)

as shown in Fig. 4(b).
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