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Long-distance entanglement of spin qubits via quantum Hall edge states
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The implementation of a functional quantum computer involves entangling and coherent manipulation of a
large number of qubits. For qubits based on electron spins confined in quantum dots, which are among the most
investigated solid-state qubits at present, architectural challenges are often encountered in the design of quantum
circuits attempting to assemble the qubits within the very limited space available. Here, we provide a solution
to such challenges based on an approach to realizing entanglement of spin qubits over long distances. We show
that long-range Ruderman-Kittel-Kasuya-Yosida interaction of confined electron spins can be established by
quantum Hall edge states, leading to an exchange coupling of spin qubits. The coupling is anisotropic and can
be either Ising type or XY type, depending on the spin polarization of the edge state. Such a property, combined
with the dependence of the electron spin susceptibility on the chirality of the edge state, can be utilized to gain
valuable insights into the topological nature of various quantum Hall states.
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I. INTRODUCTION

Quantum computers, exploiting entanglement and super-
position of quantum mechanical states, promise much better
performance than classical computers tackling a collection
of important mathematical problems [1]. Over the past few
decades, a variety of solid-state systems have been studied for
the implementation of qubits, the building blocks of a quantum
computer. Among such systems, a very promising candidate
[2] makes use of the spin of electrons confined in semicon-
ductor quantum dots (QDs). In that scheme, entanglement
of qubits is achieved through the direct exchange interaction
between confined electrons, and manipulation of individual
qubits can be realized by magnetic or electrical means [3].
Recent advances in QD technology have established long
coherence times [4] exceeding 0.2 ms and fast gate-operation
times [3] on the order of tens of nanoseconds for spin qubits
in QDs.

With the great progress in the development of quality
spin qubits, scalability becomes the next major challenge
towards building a functional quantum computer capable
of performing fault-tolerant quantum computing [5]. The
implementation of quantum-error-correction algorithms [6]
requires that the system reach a size of several thousands of
qubits. In practice, however, one faces tremendous difficulties
in assembling so many spin qubits, among which entanglement
must be selectively established and maintained. Indeed, the
nearest-neighbor nature of the direct exchange interaction, the
primary source of entanglement, restricts drastically access of
each qubit to the rest of the system and thus the space that can
be used for installing the quantum circuits. A natural way to
overcome such difficulties is to employ means of entangling
spin qubits over long distances, which creates extra space for
wiring the quantum circuits. In principle, this may be achieved
by coupling the spin qubits to an electromagnetic cavity
[7–10], a floating metallic gate [11], or a dipolar ferromagnet
[12]. Recently, it was shown that coupling of distant spin qubits
can also be realized via photon-assisted cotunneling [13].

In this paper, we propose a mechanism to achieve long-
distance entanglement of spin qubits. We make use of the

Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction [14–16]
between confined electron spins in QDs, mediated by the
conducting edge states of quantum Hall (QH) liquids [17],
to which the QDs are tunnel coupled [18]. The spin qubit
coupling obtained in such a way is particularly interesting.
Depending on whether the edge state is spin polarized or not,
the induced coupling between the spin qubits can be Ising type
and perpendicular to the plane of the system, or XY type and in
plane. This offers great versatility in the design of large-scale
quantum circuits. The advantage of using QH edge states is
twofold. First, the edge states and the QDs can be formed in
the same material (by top gates) such as a two-dimensional
electron gas (2DEG) in GaAs heterostructures. Second, the
QH edge states are topologically stable and thus much more
robust against disorder effects compared to one-dimensional
(1D) conduction channels in quantum wires. Moreover, we find
that the spin susceptibility of QH edge states manifests the
inequivalence between the opposite directions, “clockwise”
and “counterclockwise”, along the QH edge. In chiral edge
states, conduction electrons propagate in only one direction,
leading to a “rectified” spin susceptibility in the propagation
direction of electrons. In nonchiral edge states, the spin
susceptibility is nonzero in both directions along the QH edge,
but with different magnitudes. The spin susceptibility has the
same type of anisotropy as the coupling between qubits. Thus,
measuring the spatial dependence of the spin susceptibility
[19] can serve as a powerful probe of the chirality and spin
polarization of the edge state, and thus of the topological order
[17] in a QH liquid.

II. MODEL

We now discuss the physics of RKKY interaction mediated
by QH edge states. The basic setup is shown in Fig. 1. Two
QDs are placed adjacent to a QH liquid, separated by a distance
L and labeled by the site index i = 1,2. Conduction electrons
in the QH edge state can tunnel into and out of the QDs
[18] and thus can interact with the localized spins in them.
This establishes coupling between the QH edge and the QDs.
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FIG. 1. The basic setup consisting of two QDs (yellow disks)
tunnel coupled to the edge (white lines and arrows) of a QH liquid
(blue sheet) confined in the x-y plane. In general, the QH edge may
support multiple edge modes, propagating in the same or opposite
direction(s), which we do not depict explicitly. The QDs are separated
by a distance L along the QH edge. Each QD contains a single electron
(blue spheres), whose spin (red arrows) serves as a qubit. The coupling
strength between the QDs and the QH edge is controlled by gates
(not shown). We assume no direct interaction between the localized
electron spins I1 and I2 in the QDs.

For simplicity, we treat the QDs as two spatial points. The
Hamiltonian describing such a system has the form

H = Hedge +
∑
i=1,2

�iSi · Ii , (1)

where Hedge is the Hamiltonian of conduction electrons in
the edge state, Ii = (I x

i ,I
y

i ,I z
i ) denotes the localized spin

in the ith QD, and Si = (Sx
i ,S

y

i ,Sz
i ) denotes the spin of

conduction electrons coupled to Ii , with coupling strength �i .
Experimentally, �i can be tuned by gating. We define Si to be
the spin density in the edge state multiplied by the confinement
length of the QDs. For the setup, we assume L is large so that
there is no direct interaction between the spins in the QDs.

In the weak tunnel coupling regime such that �i � EF ,
where EF is the Fermi energy of conduction electrons, the
dynamics of the spins in the QDs effectively decouples from
that of the conduction electrons. In such a case, one can
derive an effective Hamiltonian for the spins in QDs, valid
in the adiabatic regime, by performing a Schrieffer-Wolff
transformation [20,21] of Eq. (1) followed by tracing out the
degrees of freedom of conduction electrons (see Appendix A
for the derivation of effective Hamiltonian and a discussion of
adiabaticity),

Heff =
∑
ij,αβ

J
αβ

ij I α
i I

β

j −
∑

i

Bi · Ii , (2)

where the spin-component indices α,β = x,y,z. The first
term is the RKKY interaction, with J

αβ

ij = �i�jχ
αβ

ij /2. Here,

χ
αβ

ij is the static spin susceptibility of conduction electrons,

χ
αβ

ij = −i
∫∞

0 dt e−ηt 〈[Sα
i (t),Sβ

j (0)]〉, where η = 0+ and 〈. . . 〉
denotes the average determined by Hedge. Physically, conduc-
tion electrons in the vicinity of a QD develop a spin-density
oscillation due to their interaction with the spin in the QD. This
spin-density response, determined by χ

αβ

ij , can be perceived by
the spins in other QDs coupled to the QH edge. In this way,
the RKKY interaction is established. For spin-unpolarized

QH states, we assume 〈Sx
i 〉 = 〈Sy

i 〉 = 〈Sz
i 〉 = 0, such that

χ
αβ

ij = δαβχαα
ij . On the other hand, the in-plane spin operators

Sx
i , S

y

i are less relevant (in the renormalization group sense)
than the out-of-plane ones Sz

i in a QH state with full spin
polarization, as we discuss in the following. In this case,
we set Sx

i = S
y

i = 0 and hence χ
αβ

ij = δαzδβzχzz
ij . Thus, in

general we have J
αβ

ij = δαβJ αα
ij . The RKKY interaction leads

to an effective exchange coupling J α = J αα
12 + J αα

21 , as a
function of the interdot distance L, between the localized
spins Iα

1 and Iα
2 . The effective onsite Zeeman fields Bi are a

direct consequence of time-reversal (TR) symmetry breaking
in QH systems, Bα

i = (�2
i /4)

∫∞
0 dt e−ηt εαβγ 〈{Sβ

i (t),Sγ

i (0)}〉.
We find that Bα

i = δαzBz
i in spin-unpolarized QH states and

Bi = 0 in spin-polarized QH states (for more details and
estimates, we refer to Appendix A).

III. RKKY INTERACTION IN VARIOUS QH STATES

The RKKY interaction in Eq. (2) is by nature long ranged
and can be used as an approach to entangle spin qubits over
long distances. Thus, it is important to understand how the
interaction looks in various QH systems. To this end, it is
convenient to adopt a continuum description of the QH edge
states that is well approximated by the chiral Luttinger liquid
(LL) model at low energy [17]. In general, the edge of a QH
liquid may support (electron-) density-fluctuation modes as
well as Majorana fermions (zero modes), with the action

Sedge =
∫

dx dt

[∑
IJ

1

4π
(KIJ ∂tφI ∂xφJ − VIJ ∂xφI ∂xφJ )

+
∑
K

iλK (∂t − vK∂x)λK

]
, (3)

written in the bosonization language [17] (throughout the paper
we set � = 1). The bosonic fields φI describe the density
modes, and λK denote the Majorana fermions. The symmetric
matrix KIJ encodes the topological properties of the QH state,
while the positive-definite symmetric matrix VIJ specifies the
velocities and interactions of φI . The parameter vK is the
velocity of λK : vK > 0 (vK < 0) if the λK is left moving
(right moving).

Upon passing to the continuum limit, we replace the spin
operators Sα

i (t)/l with spin-density operators Sα(xi,t), where l

is the confinement length of the QDs and xi is the position of the
ith QD. The nonvanishing components of the spin susceptibil-
ity are given by χαα

ij = −il2
∫∞

0 dt e−ηt 〈[Sα(xi,t),Sα(xj ,0)]〉.
Assuming translation invariance along the QH edge, which
is justified for clean samples, we may further write χαα

ij =
χαα(xi − xj ) [22], where

χαα(x) = 2l2
∫ ∞

0
dt e−ηt Im〈T Sα(x,t)Sα(0,0)〉, (4)

with T the time-ordering operator. The correlators are evalu-
ated in the zero-temperature limit. We define

Sα(x,t) = 1

2

∑
σσ ′

ψ†
σ (x,t)σα

σσ ′ψσ ′(x,t), (5)
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where ψσ = ∑
μ ψμ

σ is the sum of the most relevant electron
operators ψμ

σ with spin σ = ↑,↓ on the QH edge.
The number of ψ

μ

↑ operators is not necessarily equal to that
of ψ

μ

↓ operators since TR symmetry is broken. For instance,
the most relevant electron operators have the same spin in
a spin-polarized QH state, so that Sx = Sy = 0. This is in
contrast to the situation in 1D systems where TR symmetry is
present [23,24]. Using bosonization, we express Sα in terms
of the fields φI and λK , and compute the spin susceptibility.

We sketch the calculation of the spin susceptibility for
a generic QH edge state (for particular examples, see
Appendix B). First of all, we assume separation of charged
and neutral degrees of freedom in the QH edge state. This
phenomenon, as has been demonstrated experimentally in a
number of QH systems [25,26], results from strong Coulomb
interaction among the elementary density modes φI and
resembles “charge-spin separation” in a generic TR-invariant
1D system [22]. As a result, the physical modes that propagate
on the QH edge are the charged and neutral collective
modes as well as Majorana fermions. The physical parameters
relevant to experiment are the velocities and interactions
of these propagating modes, whose magnitudes are set by
different energy scales in the QH system. For instance, the
charged-mode velocity, determined by the dominant Coulomb
energy scale, is much greater than the velocity of neutral
mode and other parameters [25]. We make use of this fact
in our calculation. For a moment, we consider the case of two
density modes in the edge theory [see Eq. (3)]. To compute
the correlators in Eq. (4), we define a new set of fields which
diagonalize the action of the density modes φI . The action
takes the form

Sdensity =
∫

dx dt
1

4π
[∂tφ+∂xφ+ + ε∂tφ−∂xφ−

− v+∂xφ+∂xφ+ − v−∂xφ−∂xφ−] (6)

in the basis of new fields φ+ and φ−. Here, ε = 1 (ε = −1)
if the edge states are chiral (nonchiral) and v+,v− > 0. New
velocities v+ and v− are well approximated by the velocities
of the physical charged mode and neutral mode, respectively,
so that v+ 	 v−. Upon expressing the spin-density operators
in terms of the free fields φ+, φ−, and λK , it is straightforward
to compute the correlators

〈T Sα(x,t)Sα(0,0)〉 ∝ cos(�kx)

[
1

δ + i(t + x/v+)

]gα
+

×
[

1

δ + i(t + εx/v−)

]gα
−
, (7)

where δ > 0 is an infinitesimal and �k is the gauge-invariant
momentum difference between the edge modes. The case
�k = 0 corresponds to the scattering of an edge mode with
itself. Here, we have omitted the terms that are less relevant,
and assumed |vK | = v− as both of the velocities are determined
by less dominant energy scales in the system. The exponents
gα

+, gα
− are functions of the matrices KIJ and VIJ and

as we show 0 < gα
+ � 1 and gα

− > 1 (see Appendix B for
the expressions in different QH states). Evaluating the time
integral in Eq. (4), we obtain χαα(x), which in general may
contain multiple terms for different momentum differences.
We keep only the most relevant terms.

The various QH states can be divided into three types:
(i) those with a chiral edge state containing a single density
mode, such as the Laughlin states at filling factors ν = 1/m,
where m is an odd integer; (ii) those with a chiral edge
state containing multiple interacting density modes, such as
the QH state at ν = 2; (iii) those with a nonchiral edge
state, such as the particle-hole dual states [27] of Laughlin
states.

For QH states of type (i), we find χαα(x) = 0, taking into
account the most relevant spin operators in the edge state.
Thus, to the lowest order, the RKKY interaction cannot be es-
tablished. Physically, the vanishing spin susceptibility reflects
the homogeneous electronic structure in an independent QH
edge mode, a property originating from the incompressibility
of the QH liquid which prevents the formation of electronic
spin texture. In reality, however, a small nonzero spin suscep-
tibility may still be measured, due to higher-order processes
involving virtual transitions to edge states in higher Landau
levels.

In QH edge states of types (ii) and (iii), the spin sus-
ceptibility is nonzero to the lowest order. In these cases,
the interedge interactions introduce inhomogeneous degrees
of freedom (“noise”) to the stream of conduction electrons,
allowing for the development of spin-density oscillations. We
find

χαα(x) = cos(�kx)

|x|gα �(−x)Cα(gα,v) (8)

for left-moving type (ii) edge states, where gα = gα
+ + gα

− − 1,
�(x) is the Heaviside step function, and Cα(gα,v) are
functions of gα = (gα

+,gα
−) and v = (v+,v−), whose explicit

definitions are given in Appendix B. If the edge state is right
moving, one replaces �(−x) with �(x), and sends v → −v in
Cα(gα,v). These findings suggest that the spin susceptibility
in type (ii) edge states is “rectified”, i.e., directed in the
downstream direction of the propagation of conduction elec-
trons [see Fig. 2(a)], where left- and right-moving directions
are defined with respect to the lower edge of the QH liquid
[the same in Fig. 2(b)]. This result is not surprising and can
be understood also intuitively. In a left-moving edge state,
conduction electrons move in the −x direction, leading to the
factor �(−x) in the expression of χαα(x). Formally, such an
interesting form of the spin susceptibility is a manifestation of

I1 I2

x

y

I1 I2

x

y

(a) (b)

FIG. 2. Spin susceptibility in QH edge states of (a) type (ii) and
(b) type (iii). For the type (ii) case, the spin susceptibility is directed
in the propagation direction of the edge modes. For the type (iii) case,
the spin susceptibility is nonzero in both directions along the QH
edge.
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the causality principle in 1D chiral systems, where information
is transported one way and novel physical rules can emerge,
e.g., see Ref. [28] for fluctuation-dissipation relations in chiral
QH systems.

Lastly, we find

χαα(x) = cos(�kx)

|x|gα {�(x)Cα
>(gα,v) + �(−x)Cα

<(gα,v)}
(9)

for type (iii) edge states, where Cα
>(gα,v) and Cα

<(gα,v) are
functions of gα and v, defined in Appendix B. The spin
susceptibility in this case is “both-way”, as shown in Fig. 2(b),
with different magnitudes in the +x and −x directions, i.e.,
Cα

>(gα,v) �= Cα
<(gα,v). This again reflects the inequivalence

between left moving and right-moving edge modes. Imagining
now the chirality of all edge modes is reverted, e.g., by TR
operation, the profile of the spin susceptibility should also be
reverted. Indeed, we find that Cα

>(gα,v) are related to Cα
<(gα,v)

by the exchange of arguments v+ ↔ v− and gα
+ ↔ gα

−, which
technically carries out the chirality-reverting procedure (see
Appendix B). In the above discussion, we have assumed that
spin excitations do not extend into the L0 − L part of the
QH edge, where L0 is the total edge length. In practice, this
is realized by grounding the L0 − L part or by choosing the
sample such that L0 	 L.

The exponents gα , where α = x,y,z, determine how the
RKKY interaction scales with distance. In Table I, we list
them in different QH states. In general, gα depend on both the
chirality and spin polarization of the QH edge state. For chiral
edge states, i.e., those of type (ii), these exponents are integral
invariants depending on the topological order of the bulk
liquid, whereas for nonchiral edge states they are nonuniversal
and depend on the parameters in the Hamiltonian. In the latter
case, we write gα = gα

0 + δgα , where gα
0 is the integer part of

gα . As shown in Appendix B, δgα/gα
0 � 1 for all the nonchiral

edge states in the table, assuming “charge-neutral separation”
on the edge. Moreover, we find that the in-plane components
of the RKKY interaction vanish in a spin-polarized QH
state, leading to an Ising-type exchange coupling of spin
qubits. On the other hand, the RKKY interaction has zero
out-of-plane component and equal in-plane components in a
spin-unpolarized QH state, which is XY type. This suggests
that a transformation of the anisotropy type of the RKKY
interaction may be observed in the QH liquid at ν = 2

3 , which
was found to be spin unpolarized at low fields and spin
polarized at high fields [29].

The QH state at ν = 5
2 is also of special interest. We

consider both Abelian and non-Abelian topological orders
proposed to describe this state. The former include the Halperin
331 state [30] and 113 state [31], and the latter include
the Moore-Read (Pfaffian) state [32], the anti-Pfaffian state
[33,34], and the SU(2)2 state [35]. The 331 and 113 states can
be both spin polarized and unpolarized, just like the ν = 2

3
QH state. The Pfaffian state, like the Laughlin states, supports
a single density mode on the edge and thus has vanishing
RKKY interaction. The particle-hole dual state of the Pfaffian
state, the anti-Pfaffian state, has a nonchiral edge state and a
noninteger scaling exponent. For the SU(2)2 state, we assume
that the Majorana fermion and the neutral collective mode
propagate at different velocities, as they should in reality,

which is necessary to obtain a nonvanishing scaling exponent.
Such careful treatment is not essential for other ν = 5

2 states.
We have assumed that the RKKY interaction is mediated
solely by the fractional edge modes in the second Landau
level, while the integer edge modes in the lowest Landau
level do not play a role. Experimentally, this can be fulfilled,
using the fact that edge modes in different Landau levels are
spatially separated [36]. For instance, the QDs in Fig. 1 can
be moved out of the plane of the QH liquid and formed
in a second two- or quasi-one-dimensional electron gas in
the vertical direction [37–40], such that they are in tunnel
contact with the fractional edge modes but far away from
the integer edge modes. The coupling between the integer
edge and the QDs and the interaction between the integer
edge and the fractional edge can be neglected to a good
approximation.

IV. DISCUSSION

Let us estimate the coupling between the two spin qubits
in Fig. 1, given by J α = �1�2{χαα(L) + χαα(−L)}/2. In
Appendix B, we obtain the dimensional part [χαα(x)] of the
spin susceptibility

[χαα(x)] � l2agα−1|x|−gα

/v− (10)

for both type (ii) and type (iii) edge states, where a is the
lattice constant of the underlying material hosting the QH
system. For example, let us consider the QH state at ν = 2,
realized in GaAs heterostructures. We have a = 0.565 nm
for GaAs, gx = gy = 1, and v− � 104 m/s [25]. Using �1 =
�2 = � � 0.1 meV and l = 30 nm (see Appendix C for the
estimates), we find J x = J y � 1 μeV for L = 1 μm. This is
about one order of magnitude smaller than the direct exchange
strength Jdirect � 10–100 μeV in typical GaAs double QDs
[2] and is experimentally measurable. The RKKY interaction
established by QH edge states thus provides a way to realize
entangled quantum gates over mesoscopic distances. The
implementation of two-qubit gates using Hamiltonians of the
form of Eq. (2) is well known: see, e.g., Ref. [2] (footnote 13)
for Ising-type coupling and Ref. [7] for XY-type coupling. The
μeV exchange strength converts to gate-operation times of the
order of nanoseconds, which is well below the coherence times
[3] of spin qubits.

It is interesting to compare the RKKY interaction in QH
edge states with that in semiconductor quantum wires. As-
suming spin-rotation symmetry, the dimensional part [χw(x)]
of the spin susceptibility in quantum wires can be found in
Ref. [23]. The ratio

rα(x) = [χαα(x)]

[χw(x)]
= vF

v−

(
a

|x|
)gα−gw

(11)

characterizes the relative strength of the RKKY interaction in
the two sorts of systems, where vF is the Fermi velocity in the
quantum wire and gw depends on the interaction of electrons.
In noninteracting case, gw = 1. Consider the ν = 2 QH edge
state and GaAs quantum wire. We find rx(L) = ry(L) � 1.5
for L = 1 μm, using gw = 0.75 and vF � 105 m/s [23]. In
principle, quantum wires can also be used to mediated RKKY
interaction between spin qubits. However, using QH edge
states offers more advantages. From technical aspect, the edge
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TABLE I. Scaling exponents gα and anisotropy type of the RKKY interaction in various QH states. An overline is used to indicate a

spin-polarized state, e.g., 2
3 denotes the spin-polarized QH state at ν = 2

3 . We consider several topological orders at ν = 5
2 , including both

Abelian ones (the 331 state and the 113 state, denoted as 331/331 and 113/113, respectively) and non-Abelian ones (the Pfaffian state, the
anti-Pfaffian state, and the SU(2)2 state, denoted as Pf, APf, and SU(2)2, respectively). The 331 state and the 113 state both have spin-unpolarized
and spin-polarized versions. For chiral edge states, the exponents are integers and we add arrows to indicate that the spin susceptibility is
nonzero only in the downstream direction. For nonchiral edge states, the exponents are nonintegers and we enter the integer parts gα

0 of the
exponents. We put “−” in the entry if the corresponding component of the spin susceptibility (and thus that of the RKKY interaction) vanishes.
The RKKY interaction is XY type in spin-unpolarized states and Ising type in spin-polarized states.

QH state 1/m 2 2
3

2
3 331 331 113 113 Pf APf SU(2)2

gx –
−→
1 1 –

−→
3 – 3 – – – –

gy –
−→
1 1 –

−→
3 – 3 – – – –

gz – – – 1 –
−→
3 – 3 – 1

−→
1

RKKY type XY XY Ising XY Ising XY Ising Ising Ising

states and the spin qubits can be realized in the same material,
for instance, in a 2DEG in GaAs heterostructures, which is
more experimentally accessible than a setup with quantum
wires. More importantly, the topologically protected QH edge
states are more immune to disorder effects and perturbations
in the system than quantum wires. This guarantees a better
quality of the long-distance quantum gates.

Our discussions so far have focused on the RKKY in-
teraction between spin qubits. Interestingly, the treatments
can also be applied to obtain the RKKY interaction between
nuclear spins embedded in the 1D QH edge state (see also
Ref. [41]). To this end, let �i → A/N and Ii → Ĩi in Eq. (1)
and the following equations, where A is the hyperfine coupling
constant, N is the number of nuclear spins in a cross section
(labeled by i) of the QH edge, and Ĩi is the total nuclear
spin operator in a given cross section. Given a nonchiral
edge state with both spin-up and -down electrons, e.g., the
spin-unpolarized state at ν = 2

3 , the nuclear spins may form a
helical magnetic order [23] at low temperatures, induced by the
RKKY interaction. The nuclear magnetic order acts back on
the electronic system by gapping out conducting edge modes.
Experimentally, such an order is evidenced by the reduction
of the conductance at low temperatures [40].

By measuring the spatial dependence of RKKY interaction
[19,42], one can obtain information about the chirality and
spin polarization of the QH edge state, which in turn are
related to the topological order of the bulk QH liquid [17].
In particular, this technique may be used to detect the nature
of the QH liquid at ν = 5

2 : One can distinguish between a
chiral edge state and a nonchiral edge state by confirming
whether the spin susceptibility is unidirectional along the
edge. One can rule out either a spin-polarized state or a
spin-unpolarized state by comparing the in-plane and out-of-
plane components of the RKKY interaction, by measuring
the spin states in the QDs. For this, one can make use of
experimental techniques based on spin-to-charge conversion
[2] developed for readout of spin qubits in QDs [43–45].
The numerical values of the scaling exponents also help to
identify the true ν = 5

2 state. The advantages of measuring
the spin susceptibility are obvious, compared with other
approaches detecting topological orders based on edge-bulk
correspondence [17], such as measuring the temperature and
voltage dependence of quasiparticle tunneling [46]. First, it is

easier to vary the sampling point in space than in temperature
or voltage, e.g., one may use the setup in Fig. 1 with an
array of QDs. Second, information encoded in spin degrees
of freedom is more robust than that encoded in charge current,
against unfavorable modification due to long-range Coulomb
interaction in the device [47]. Compared with electronic Fabry-
Pérot [48,49] and Mach-Zehnder [50–52] interferometries, our
setup probes the non-Abelian topological orders at ν = 5

2 with
a much simpler device geometry and more straightforward
data.

The scenario becomes more complicated if one replaces
the QDs with quantum antidots [53]. In that case, tunneling
of quasiparticles, rather than electrons, defines the coupling
between the QH edge and the antidots. It is still possible to
define an RKKY interaction mediated by quasiparticles in the
edge state, whose spatial dependence can be used to distinguish
different Abelian QH states. For non-Abelian states, however,
there are ambiguities in the scaling behavior of the RKKY
interaction, arising from the multiple fusion channels of non-
Abelian quasiparticles.

To conclude, we have introduced an approach to achieving
long-distance entanglement of spin qubits confined in QDs,
based on the RKKY interaction mediated by QH edge states.
The approach allows for the implementation of quantum
gates with long coupling ranges and fast operation times,
which would greatly facilitate the development of large-scale
quantum computers. From a fundamental point of view, the
ability to probe the chirality and the spin polarization of a
QH edge state via measuring the spatial form of the RKKY
interaction opens up a new venue for studying electronic and
spin physics in QH systems.

ACKNOWLEDGMENT

We acknowledge support from the Swiss NSF and NCCR
QSIT.

APPENDIX A: EFFECTIVE HAMILTONIAN

Our starting point is the Hamiltonian in Eq. (1). For weak
tunnel coupling between the QH edge and the QDs, we
can treat H� = ∑

i �iSi · Ii as a perturbation and make a
Schrieffer-Wolff transformation [20,21] to remove terms linear
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in �i from the Hamiltonian. The transformed Hamiltonian
reads as

H̄ = eSHe−S = Hedge − 1
2 [[Hedge,S],S] + . . . , (A1)

where S satisfies [Hedge,S] = H� . Written in terms of the
Liouvillian superoperator L, S = L−1H� . The leading-order
terms in �i in H̄ are given by

H̄� = − 1
2 [[Hedge,S],S] = 1

2 [L−1H�,H�]. (A2)

Using L−1 = −i
∫∞

0 dt e−ηt eiLt , where η = 0+, we find

H̄� = − i

2

∫ ∞

0
dt e−ηt [H�(t),H�]

= − i

2

∑
ij

�i�j

∫ ∞

0
dt e−ηt [Si(t) · Ii ,Sj (0) · Ij ]

= − 1

2

∫ ∞

0
dt e−ηt

⎧⎨
⎩
∑
ij

i�i�j I
α
i I

β

j

[
Sα

i (t),Sβ

j (0)
]

+
∑

i

�2
i ε

αβγ I α
i S

β

i (t)Sγ

i (0)

}
, (A3)

where we have defined Ô(t) = eiHedget Ôe−iHedget for an oper-
ator Ô and used [Iα

i ,I
β

j ] = iδij ε
αβγ I

γ

i , with εαβγ the Levi-
Civita symbol. Summation over repeated spin-component
indices (Greek letters) is implied throughout this appendix.

Next, we take the expectation 〈. . . 〉 over the electronic
degrees of freedom in the QH edge state. This gives an effective
Hamiltonian describing the dynamics of localized spins in the
adiabatic limit,

Heff = 〈H̄�〉 =
∑
ij

�i�j

2
χ

αβ

ij I α
i I

β

j −
∑

i

Bα
i I α

i , (A4)

where we have identified the spin susceptibility of conduction
electrons

χ
αβ

ij = −i

∫ ∞

0
dt e−ηt

〈[
Sα

i (t),Sβ

j (0)
]〉
, (A5)

and defined effective onsite Zeeman fields for the QDs

Bα
i = �2

i

2

∫ ∞

0
dt e−ηt εαβγ

〈
S

β

i (t)Sγ

i (0)
〉
. (A6)

Hermiticity of the Hamiltonian (A4) requires Bα
i be real,

and thus the correlator 〈Sβ

i (t)Sγ

i (0)〉 should be replaced by
〈{Sβ

i (t),Sγ

i (0)}〉/2. We are thus led to the Hamiltonian in
Eq. (2).

In deriving the above effective Hamiltonian, we have
neglected the external magnetic field Bext that leads to the
formation of the QH liquid. We now estimate Bα

i (in units
of energy) and compare it with Bext. To this end, we take
the continuum limit of Eq. (A6) assuming translation invari-
ance: Bα

i = Bα(x = a), where a is the natural short-distance
cutoff, taken as the lattice constant of the host material,

and

Bα(x) = l2�2
i

4

∫ ∞

0
dt e−ηt εαβγ 〈{Sβ(x,t),Sγ (0,0)}〉, (A7)

which in turn can be written as a time-ordered product, such
that

Bα
i = lim

x→a

l2�2
i

2

∫ ∞

0
dt e−ηt εαβγ Re〈T Sβ(x,t)Sγ (0,0)〉.

(A8)

In Appendix B, we have obtained the expressions of the
spin-density operators Sα(x,t) in various QH states. For
spin-unpolarized QH states we find Sx ∝ cos(φn + �kx),
Sy ∝ sin(φn + �kx), and Sz ∝ ∂xφn, where φn is a neutral
edge mode (defined up to a multiplicative constant). Evaluating
the correlators in Eq. (A8), we find Bx

i = B
y

i = 0 and Bz
i ∼

(sin �ka)�2
i [χzz(a)], where [χzz(x)] is given by Eq. (10).

The momentum difference �k depends on the transverse
distance between edge modes and can be taken as �k ∼
1/lB , where lB ∼ 10 nm is the magnetic length (the precise
evaluation of �k gives a similar result). Using a = 0.565 nm
for GaAs, we perform an estimation similar to that for the
effective exchange coupling J α and find Bz

i � 0.06 meV.
This result is independent of the particular QH state in
consideration. On the other hand, Bext � 0.1 meV for typical
field strengths of several Tesla in QH liquids. Thus, Bz

i is in
general smaller than or comparable to Bext in spin-unpolarized
states.

For spin-polarized QH states, applying the assumption
Sx

i = S
y

i = 0 yields Bx
i = B

y

i = Bz
i = 0. In this case, we

consider fluctuations in the next order, associated with the
next-most-relevant spin operators δSx

i ,δS
y

i in the edge theory.
We have 〈δSx

i 〉 = 〈δSy

i 〉 = 0. The fluctuations give rise to
effective onsite Zeeman fields

δBα
i = �2

i

4

∫ ∞

0
dt e−ηt εαβγ

〈{
δS

β

i (t),δSγ

i (0)
}〉

, (A9)

which are fully out of plane δBα
i = δαzδBz

i . Simple dimen-
sional analysis shows that the order of magnitude of δSx

i ,δS
y

i

differs from those of the (nonvanishing) most relevant spin
operators by a factor of a/v̄τ , where v̄ is the mean edge
velocity and τ ∼ 1/EF is a typical time scale for the dynamics
of conduction electrons. Accordingly, the factor (a/v̄τ )2

enters the relative strength of the effective onsite fields (Bz
i )

in spin-unpolarized states to those (δBz
i ) in spin-polarized

states (where Bx
i = B

y

i = Bz
i = 0). Our estimation shows that

a/v̄τ < 0.1, so that δBz
i � Bz

i < Bext. In the main text we
have neglected δBz

i for simplicity.
In principle, the Zeeman terms HZ = −∑

i B
extI z

i (as-
suming Bext = Bextẑ) should be included in the unperturbed
Hamiltonian in the Schrieffer-Wolff procedure, i.e., Hedge →
Hedge + HZ in Eqs. (A1) and (A2) and the definition of time
evolution. As a consequence, the first localized-spin operator
Iα
i appearing in the two terms in Eq. (A3) acquires time

dependence, in addition to the time dependence in the first
conduction-spin operator Sα

i . The dynamics of Iα
i , set by

the Zeeman energy Bext, however decouples from that of
Sα

i , set by the Fermi energy EF , since EF 	 Bext according
to the estimation above. Thus, to a good approximation we
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may neglect the time dependence in Iα
i . We do this for

spin-unpolarized states. For spin-polarized states, Eq. (A3)
is exact: only the terms with α = β = z survive in the
equation and we have Iα

i (t) = Iα
i (0) since HZ commutes

with I z
i .

We note moreover that HZ also appears in Eq. (A4) for
both spin-unpolarized and -polarized QH states. In the main
text, we have neglected this term for simplicity. However, HZ

must be taken into account for the purpose of implementing
two-qubit quantum gates (see Ref. [11] for spin qubits working
in perpendicular Zeeman fields).

The effective Hamiltonian in Eq. (A4) describes the system
in Fig. 1 in equilibrium. Given a change in the spin state of one
of the qubits, the entire electronic system readjusts to achieve
new equilibrium. The change of the qubit must be adiabatic
in order for the other qubit to sense the change and respond.
This means that the switching time tsw of the first qubit satisfies
tsw 	 L/v̄. On the other hand, if the qubit state is changed very
fast (nonadiabatically), there will be no effect on the second
qubit within time L/v̄. In that case, the process is dynamic
and is described by the spin susceptibility at finite frequencies.
For L = 1 μm, L/v̄ � 10 ps, which is much shorter than the
ideal gate-operation time tsw � 1 ns. Thus, the requirement for
adiabaticity does not place much restriction on the operation
of spin qubits.

APPENDIX B: SPIN SUSCEPTIBILITY

In this appendix, we calculate the spin susceptibility for the
QH states listed in Table I. The formula is given by Eq. (4).
First, we compute the correlators in the zero-temperature
limit

Gα(x,t) = 〈T Sα(x,t)Sα(0,0)〉, (B1)

where α = x,y,z. We focus on the scaling behaviors of these
correlators and neglect the proportionality constants. Next, we
evaluate the time integral

χαα(x) = 2l2
∫ ∞

0
dt e−ηt ImGα(x,t), (B2)

where η = 0+. Restoring the proportionality constants, we
obtain the full expression of the spin susceptibility.

1. Correlators

a. Laughlin states at ν = 1/m

The Lagrangian density that describes the edge state of the
ν = 1/m (m is an odd integer) Laughlin state is

L = m

4π
[∂tφ∂xφ − v(∂xφ)2], (B3)

where v is the velocity of the edge mode described by bosonic
field φ. We assume the edge state is left moving. Electrons
in the edge state are described by the vertex operator ψ =

1√
2πa

e−ikF xe−imφ , where a is the short-distance cutoff and kF

is the Fermi momentum. Here and throughout this appendix,
we omit the Klein factors in the electron operators, which will
drop out when evaluating the average. Since the edge state
is spin polarized, all the electrons have the same spin σ . Let
us assume σ =↑. Using Eq. (5) and neglecting transitions to

higher Landau levels, we find Sx = Sy = 0, and

Sz = 1
2ψ†ψ ∝ ∂xφ. (B4)

The correlator of φ can be read from Eq. (B3),
〈T φ(x,t)φ(0,0)〉 = −ν ln(x + vt − iδ) + const, where δ is
defined as a positive infinitesimal throughout the appendix.
This gives

Gz(x,t) ∝ ν

(x + vt − iδ)2
, (B5)

whereas Gx = Gy = 0. Substituting Eq. (B5) in Eq. (B2) we
obtain the spin susceptibility in Laughlin states.

b. QH state at ν = 2

The ν = 2 QH state has two bosonic edge modes φ↑,φ↓,
propagating in the same direction, where φ↑ has spin up and
φ↓ has spin down. The Lagrangian density is

L = 1

4π

⎧⎨
⎩
∑

i=↑,↓
[∂tφi∂xφi − vi(∂xφi)

2] − 2u∂xφ↑∂xφ↓

⎫⎬
⎭,

(B6)
where vi is the velocity of φi and u > 0 is the repulsive
Coulomb interaction between φ↑ and φ↓. We assume the edge
modes are left moving. The most relevant electron operators
are ψi = 1√

2πa
e−ikF,ixe−iφi , where kF,i is the Fermi momentum

of φi . The spin-density operators are

Sx = 1
2 (ψ†

↑ψ↓ + H.c.) ∝ ei�kxei(φ↑−φ↓) + H.c.,

Sy = 1
2 (−iψ

†
↑ψ↓ + H.c.) ∝ −iei�kxei(φ↑−φ↓) + H.c.,

Sz = 1
2 (ψ†

↑ψ↑ − ψ
†
↓ψ↓) ∝ ∂x(φ↑ − φ↓), (B7)

where �k = kF,↑ − kF,↓ is the gauge-invariant momentum
difference, proportional to the magnetic flux penetrating
between the two edge modes.

To compute the correlators, we define eigenmodes

φ+ = cos ϕφ↑ + sin ϕφ↓,
(B8)

φ− = − sin ϕφ↑ + cos ϕφ↓,

where tan 2ϕ = 2u
v↑−v↓

, which diagonalize the edge theory

L = 1

4π

∑
i=+,−

[∂tφi∂xφi − vi(∂xφi)
2], (B9)

where v± = 1
2 [v↑ + v↓ ±√

(v↑ − v↓)2 + 4u2]. According to
the experiment [25], v+ 	 v− as a result of the strong
Coulomb interaction u. Expressing the spin-density operators
in eigenmodes, it is straightforward to obtain

Gx(x,t) ∝ cos(�kx)

[
1

x + v+t − iδ

]c2
+[ 1

x + v−t − iδ

]c2
−
,

Gy(x,t) ∝ cos(�kx)

[
1

x + v+t − iδ

]c2
+[ 1

x + v−t − iδ

]c2
−
,

Gz(x,t) ∝ c2
+

(x + v+t − iδ)2
+ c2

−
(x + v−t − iδ)2

, (B10)
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where the functions c±(ϕ) = cos ϕ ∓ sin ϕ. Notice that
c2
+(ϕ) + c2

−(ϕ) = 2, i.e., the scaling exponents of the corre-
lators are integral invariant, independent of the angle ϕ which
depends on the interedge interaction. This is a well-known
property of chiral QH edge states [17].

c. QH state at ν = 2
3

The ν = 2
3 QH state can be spin unpolarized at low fields

and spin polarized at high fields [29]. We first consider the spin-
unpolarized state. It has two bosonic edge modes φ↑ and φ↓,
where φ↑ has spin up and φ↓ has spin down. The Lagrangian
density is

L = 1

4π

∑
i,j=↑,↓

[Kij∂tφi∂xφj − Vij ∂xφi∂xφj ], (B11)

where

K =
(

1 2
2 1

)
and V =

(
v↑ u

u v↓

)
, (B12)

with vi the velocity of φi and u the interedge interaction. The
eigenvalues of the K matrix have opposite signs, so the edge
state is nonchiral.

Experiment [26] revealed that the ν = 2
3 edge state consists

of a charged mode and a neutral mode, moving in opposite
directions. To connect the parameters in the edge theory
described by Eq. (B11) with experiment, we change to the
physical basis of charged mode φρ = φ↑ + φ↓ and neutral
mode φn = φ↑ − φ↓:

L = 1

4π

[
3

2
∂tφρ∂xφρ − 1

2
∂tφn∂xφn − 3

2
vρ(∂xφρ)2

− 1

2
vn(∂xφn)2 − 2vρn∂xφρ∂xφn

]
, (B13)

where vρ = 1
3 ( v↑

2 + v↓
2 + u), vn = v↑

2 + v↓
2 − u, and vρn =

1
4 (v↑ − v↓). In general, v↑ �= v↓ due to finite Zeeman splitting.
The charged-mode velocity vρ , determined by the large
Coulomb energy scale, is expected to be much greater in
order of magnitude than the neutral-mode velocity vn and
the interaction vρn. We therefore assume vρ 	 vn ∼ vρn.
In particular, we assume that the scaling dimensions of
quasiparticle operators in the real case do not deviate much
from those in the case vρn = 0. With this assumption, we can
determine the most relevant electron operators in the edge
theory, which are ψ↑ ∝ e−i(2kF,↑+kF,↓)xe−i(2φ↑+φ↓), with spin
up, and ψ↓ ∝ e−i(kF,↑+2kF,↓)xe−i(φ↑+2φ↓), with spin down, where
kF,↑ and kF,↓ are momentumlike constants related to the spatial
locations of the edge modes φ↑ and φ↓. The spin-density
operators are obtained by computing the operator product
expansions (OPEs) of the electron operators and keeping the
most singular terms. We find

Sx = 1
2 (ψ†

↑ψ↓ + H.c.) ∝ ei�kxeiφn + H.c.,

Sy = 1
2 (−iψ

†
↑ψ↓ + H.c.) ∝ −iei�kxeiφn + H.c., (B14)

Sz = 1
2 (ψ†

↑ψ↑ − ψ
†
↓ψ↓) ∝ ∂xφn,

where �k = kF,↑ − kF,↓.

In terms of eigenmodes

φ+ =
√

3

2
cosh θφρ +

√
1

2
sinh θφn,

(B15)

φ− =
√

3

2
sinh θφρ +

√
1

2
cosh θφn,

where tanh 2θ = 4√
3

vρn

vρ+vn
, the edge theory is diagonalized,

L = 1

4π

[
∂tφ+∂xφ+ − ∂tφ−∂xφ− −

∑
i=+,−

vi(∂xφi)
2

]
,

(B16)

where v+ = 1
cosh 2θ

(cosh2 θvρ − sinh2 θvn) and v− =
1

cosh 2θ
(cosh2 θvn − sinh2 θvρ). Since vρ 	 vn ∼ vρn, we

have θ � 1 and thus v+ � vρ , v− � vn, and v+ 	 v−. The
correlators are evaluated to be

Gx(x,t) ∝ cos(�kx)

[
1

x + v+t − iδ

]c̃2
+[ 1

x − v−t + iδ

]c̃2
−
,

Gy(x,t) ∝ cos(�kx)

[
1

x + v+t − iδ

]c̃2
+[ 1

x − v−t + iδ

]c̃2
−
,

Gz(x,t) ∝ c̃2
+

(x + v+t − iδ)2
+ c̃2

−
(x − v−t + iδ)2

, (B17)

where the functions c̃+(θ ) = √
2 sinh θ and c̃−(θ ) =√

2 cosh θ . Notice that c̃2
+(θ ) + c̃2

−(θ ) = 2(1 + 2 sinh2 θ ), i.e.,
the scaling exponents are nonuniversal and depend on the
parameters in the Hamiltonian, through θ . This reflects the
nonchiral nature of the edge state.

Next, we discuss the spin-polarized state at ν = 2
3 . It has

two bosonic edge modes φ1 and φ2, having the same spin
polarization (assuming they are spin up). The Lagrangian
density has the same form of Eq. (B11), with

K =
(

1 0
0 −3

)
and V =

(
v1 u′
u′ 3v2

)
. (B18)

This is also a nonchiral state. The charged mode and the neutral
mode in the edge theory are identified as φρ = φ1 + φ2 and
φn = φ1 + 3φ2, respectively, in terms of which the Lagrangian
density recovers the expression in Eq. (B13), with vρ = 3

2v1 +
1
2v2 − u′, vn = 1

2v1 + 3
2v2 − u′, and vρn = − 3

4v1 − 3
4v2 + u′.

Again, we assume vρ 	 vn ∼ vρn. The most relevant elec-
tron operators are ψ1 ∝ e−i(2kF,1+3kF,2)xe−i(2φ1+3φ2) and ψ2 ∝
e−ikF,1xe−iφ1 , both with spin up, where kF,1 and kF,2 are
constants. Using Eq. (5) and OPE, we find Sx = Sy = 0 and
Sz = Sz

f + Sz
b , where

Sz
f = 1

2 (ψ†
1ψ1 + ψ

†
2ψ2) ∝ ∂xφρ,

(B19)
Sz

b = 1
2 (ψ†

1ψ2 + H.c.) ∝ ei�kxeiφn + H.c.,

where �k = kF,1 + 3kF,2 is interpreted as the Fermi-
momentum difference between the elementary edge modes
φ1 and φ2. The rest of the analysis resembles that for the
spin-unpolarized state. We diagonalize the edge theory using
the free fields φ+,φ− defined in Eq. (B15) and evaluate the
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correlators. We find Gx = Gy = 0 and Gz = Gz
f + Gz

b , where

Gz
f (x,t) ∝ c̃2

−
(x + v+t − iδ)2

+ c̃2
+

(x − v−t + iδ)2
,

Gz
b(x,t) ∝ cos(�kx)

[
1

x + v+t − iδ

]c̃2
+[ 1

x − v−t + iδ

]c̃2
−
.

(B20)

d. 331 state at ν = 5
2

We now turn to the QH state at ν = 5
2 . This QH state is

usually modeled by combining a ν = 2 integer QH state in the
lowest Landau level, which is treated as an inert background
assuming no Landau level mixing, and a ν = 1

2 fractional QH
state in the second Landau level, which is assumed to capture
the full topological order of the QH liquid. We study the RKKY
interaction mediated solely by the fractional edge state. In the
following, we consider several topological orders proposed
for the fractional edge state, including Halperin’s 331 and 113
states [30,31], the Pfaffian state [32], the anti-Pfaffian state
[33,34] and the SU(2)2 state [35]. Motivated by the experiment
[26], we will always assume separation of charged and neutral
degrees of freedom in the edge state. Moreover, we assume that
the charged-mode velocity is much greater than other physical
parameters, by a similar argument to that for the QH state at
ν = 2

3 .
We start from Halperin’s 331 state, which has a spin-

unpolarized version and a spin-polarized version. The
Lagrangian density for the edge of the spin-unpolarized 331
state has the same form of Eq. (B11), with

K =
(

3 1
1 3

)
and V =

(
v↑ u

u v↓

)
, (B21)

where v↑ and v↓ are the velocities of edge modes φ↑ and
φ↓, respectively, and u the interedge interaction. Here, φ↑ is
a spin-up mode and φ↓ is a spin-down mode. The 331 state
is chiral. The physical charged mode and neutral mode are
defined as φρ = φ↑ + φ↓ and φn = φ↑ − φ↓, respectively, in
terms of which the Lagrangian density is

L = 1

4π
[2∂tφρ∂xφρ + ∂tφn∂xφn − 2vρ(∂xφρ)2

− vn(∂xφn)2 − 2vρn∂xφρ∂xφn], (B22)

where vρ = v↑
8 + v↓

8 + u
4 , vn = v↑

4 + v↓
4 − u

2 , and vρn =
1
4 (v↑ − v↓). Assuming vρ 	 vn ∼ vρn, the most relevant
electron operators are ψ↑ ∝ e−i(3kF,↑+kF,↓)xe−i(3φ↑+φ↓), with
spin up, and ψ↓ ∝ e−i(kF,↑+3kF,↓)xe−i(φ↑+3φ↓), with spin down,
where kF,↑ and kF,↓ are constants. The spin-density operators
are

Sx = 1
2 (ψ†

↑ψ↓ + H.c.) ∝ ei�kxei2φn + H.c.,

Sy = 1
2 (−iψ

†
↑ψ↓ + H.c.) ∝ −iei�kxei2φn + H.c., (B23)

Sz = 1
2 (ψ†

↑ψ↑ − ψ
†
↓ψ↓) ∝ ∂xφn,

where �k = 2kF,↑ − 2kF,↓. To evaluate the correlators of Sα ,
we define eigenmodes

φ+ =
√

2 cos θφρ + sin θφn,
(B24)

φ− = −
√

2 sin θφρ + cos θφn,

where tan 2θ =
√

2vρn

vρ−vn
. We have θ � 1. We find

Gx(x,t) ∝ cos(�kx)

[
1

x + v+t − iδ

]c̄2
+[ 1

x + v−t − iδ

]c̄2
−
,

Gy(x,t) ∝ cos(�kx)

[
1

x + v+t − iδ

]c̄2
+[ 1

x + v−t − iδ

]c̄2
−
,

Gz(x,t) ∝ c̄2
+

(x + v+t − iδ)2
+ c̄2

−
(x + v−t − iδ)2

, (B25)

where c̄+(θ ) = 2 sin θ and c̄−(θ ) = 2 cos θ . The parameters v+
and v− are the velocities of φ+ and φ−, respectively. We have
v+ � vρ , v− � vn, and v+ 	 v−.

The spin-polarized 331 state has two bosonic edge modes
φ1 and φ2, having the same spin polarization (assuming they
are spin up). The Lagrangian density has the same form of
Eq. (B11), with

K =
(

3 −2
−2 4

)
and V =

(
v1 u′
u′ v2

)
. (B26)

The physical charged and neutral modes are identified as φρ =
φ1 and φn = −φ1 + 2φ2, respectively, in terms of which the
Lagrangian density recovers the form in Eq. (B22), with vρ =
1
2v1 + 1

8v2 + 1
2u′, vn = 1

4v2, and vρn = 1
4v2 + 1

2u′. Assuming
vρ 	 vn ∼ vρn, the most relevant electron operators are ψ1 ∝
e−i(kF,1+2kF,2)xe−i(φ1+2φ2) and ψ2 ∝ e−i(3kF,1−2kF,2)xe−i(3φ1−2φ2),
both with spin up, where kF,1 and kF,2 are constants. The spin-
density operators are Sx = Sy = 0 and Sz = Sz

f + Sz
b , where

Sz
f = 1

2 (ψ†
1ψ1 + ψ

†
2ψ2) ∝ ∂xφρ,

(B27)
Sz

b = 1
2 (ψ†

1ψ2 + H.c.) ∝ ei�kxei2φn + H.c.,

with �k = −2kF,1 + 4kF,2. Using the definition of eigen-
modes in Eq. (B24), we find Gx = Gy = 0 and Gz = Gz

f + Gz
b ,

where

Gz
f (x,t) ∝ c̄2

−
(x + v+t − iδ)2

+ c̄2
+

(x + v−t − iδ)2
,

(B28)

Gz
b(x,t) ∝ cos(�kx)

[
1

x + v+t − iδ

]c̄2
+[ 1

x + v−t − iδ

]c̄2
−
.

e. 113 state at ν = 5
2

The 113 state also has a spin-unpolarized version and a spin-
polarized version. The edge theory of the spin-unpolarized 113
state is of the form of Eq. (B11), with

K =
(

1 3
3 1

)
and V =

(
v↑ u

u v↓

)
, (B29)

where v↑ and v↓ are the velocities of edge modes φ↑ and
φ↓, respectively, and u the interedge interaction. Here, φ↑
is a spin-up mode and φ↓ is a spin-down mode. The 113
state is nonchiral. Switching to the physical basis of charged
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mode φρ = φ↑ + φ↓ and neutral mode φn = φ↑ − φ↓, the
Lagrangian density becomes

L = 1

4π
[2∂tφρ∂xφρ − ∂tφn∂xφn − 2vρ(∂xφρ)2

− vn(∂xφn)2 − 2vρn∂xφρ∂xφn], (B30)

where vρ = v↑
8 + v↓

8 + u
4 , vn = v↑

4 + v↓
4 − u

2 , and vρn =
1
4 (v↑ − v↓). Assuming vρ 	 vn ∼ vρn, the most relevant elec-
tron operators are ψ↑ ∝ e−i(3kF,↑+kF,↓)xe−i(3φ↑+φ↓), with spin
up, and ψ↓ ∝ e−i(kF,↑+3kF,↓)xe−i(φ↑+3φ↓), with spin down, where
kF,↑ and kF,↓ are constants. The spin-density operators are

Sx = 1
2 (ψ†

↑ψ↓ + H.c.) ∝ ei�kxei2φn + H.c.,

Sy = 1
2 (−iψ

†
↑ψ↓ + H.c.) ∝ −iei�kxei2φn + H.c., (B31)

Sz = 1
2 (ψ†

↑ψ↑ − ψ
†
↓ψ↓) ∝ ∂xφn,

where �k = 2kF,↑ − 2kF,↓. The eigenmodes are defined as

φ+ =
√

2 cosh θφρ + sinh θφn,

φ− =
√

2 sinh θφρ + cosh θφn, (B32)

where tanh 2θ =
√

2vρn

vρ+vn
. We have θ � 1. We find

Gx(x,t) ∝ cos(�kx)

[
1

x + v+t − iδ

]2c̃2
+[ 1

x − v−t + iδ

]2c̃2
−
,

Gy(x,t) ∝ cos(�kx)

[
1

x + v+t − iδ

]2c̃2
+[ 1

x − v−t + iδ

]2c̃2
−
,

Gz(x,t) ∝ c̃2
+

(x + v+t − iδ)2
+ c̃2

−
(x − v−t + iδ)2

, (B33)

where c̃+(θ ) = √
2 sinh θ and c̃−(θ ) = √

2 cosh θ . The param-
eters v+ and v− are the velocities of φ+ and φ−, respectively.
We have v+ � vρ , v− � vn, and v+ 	 v−.

The spin-polarized 113 state has two bosonic edge modes
φ1 and φ2, having the same spin polarization (assume they
are spin up). The Lagrangian density has the same form of
Eq. (B11), with

K =
(

1 2
2 −4

)
and V =

(
v1 u′
u′ v2

)
. (B34)

The charged and the neutral modes are φρ = φ1 and φn =
−φ1 + 2φ2, respectively, in terms of which the Lagrangian
density recovers the form in Eq. (B30), with vρ = 1

2v1 +
1
8v2 + 1

2u′, vn = 1
4v2, and vρn = 1

4v2 + 1
2u′. Assuming vρ 	

vn ∼ vρn, the most relevant electron operators are ψ1 ∝
e−i(kF,1+2kF,2)xe−i(φ1+2φ2) and ψ2 ∝ e−i(3kF,1−2kF,2)xe−i(3φ1−2φ2),
both with spin up, where kF,1 and kF,2 are constants. The
spin-density operators are Sx = Sy = 0 and Sz = Sz

f + Sz
b ,

where

Sz
f = 1

2 (ψ†
1ψ1 + ψ

†
2ψ2) ∝ ∂xφρ,

(B35)
Sz

b = 1
2 (ψ†

1ψ2 + H.c.) ∝ ei�kxei2φn + H.c.,

with �k = −2kF,1 + 4kF,2. Using the definition of eigen-
modes in Eq. (B32), we find Gx = Gy = 0 and Gz = Gz

f + Gz
b ,

where

Gz
f (x,t) ∝ c̃2

−
(x + v+t − iδ)2

+ c̃2
+

(x − v−t + iδ)2
,

Gz
b(x,t) ∝ cos(�kx)

[
1

x + v+t − iδ

]2c̃2
+[ 1

x − v−t + iδ

]2c̃2
−
.

(B36)

f. Pfaffian state at ν = 5
2

The Pfaffian state is spin polarized and has a chiral edge
state. The Lagrangian density for the edge is

L = 2

4π
[∂tφ1∂xφ1 − v1(∂xφ1)2] + iλ(∂t − vλ∂x)λ, (B37)

where φ1 is a bosonic charged mode and λ is a Majorana
fermion. We assume the edge state is left moving. The most
relevant electron operator is ψ ∝ λe−i2φ1 . The spin-density
operators are Sx = Sy = 0, and

Sz = 1
2ψ†ψ ∝ ∂xφ1, (B38)

where we have used λ2 = 1. We find Gx = Gy = 0, and

Gz(x,t) ∝ 1

(x + v1t − iδ)2
. (B39)

g. Anti-Pfaffian state at ν = 5
2

The anti-Pfaffian state is the particle-hole dual of the Pfaf-
fian state. The state is spin polarized. We consider the situation
of a clean sample where disorder effect can be neglected
and there is translation invariance on the edge. The edge
Lagrangian density then takes the form

L = 1

4π
[2∂tφρ∂xφρ − ∂tφn∂xφn − 2vρ(∂xφρ)2

− vn(∂xφn)2 − 2vρn∂xφρ∂xφn] + iλ(∂t + vλ∂x)λ,

(B40)

where φρ is a left-moving charged boson, φn is a right-moving
neutral boson, and λ is a right-moving Majorana fermion. The
edge state is nonchiral. Assuming charge-neutral separation in
the edge state, i.e., vρ 	 vn ∼ vρn ∼ vλ, we find three most
relevant electron operators: ψ1 ∝ λe−i2φρ , ψ2 ∝ e−iφne−i2φρ ,
and ψ3 ∝ eiφne−i2φρ . The spin-density operators are Sx =
Sy = 0 and Sz = Sz

f + Sz
b1 + Sz

b2, where

Sz
f = 1

2 (ψ†
1ψ1 + ψ

†
2ψ2 + ψ

†
3ψ3) ∝ ∂xφρ,

Sz
b1 = 1

2 (ψ†
1ψ2 + ψ

†
1ψ3 + H.c.) ∝ ei�kxλeiφn + H.c., (B41)

Sz
b2 = 1

2 (ψ†
2ψ3 + H.c.) ∝ ei�k′xei2φn + H.c.,

with �k,�k′ the momentum differences between the
edge modes. Upon diagonalizing the edge theory in
Eq. (B40), we find Gx = Gy = 0 and Gz = Gz

f + Gz
b1 + Gz

b2,

075301-10



LONG-DISTANCE ENTANGLEMENT OF SPIN QUBITS VIA . . . PHYSICAL REVIEW B 93, 075301 (2016)

where

Gz
f (x,t) ∝ c̃2

−
(x + v+t − iδ)2

+ c̃2
+

(x − v−t + iδ)2
,

Gz
b1(x,t) ∝ cos(�kx)

[
1

x + v+t − iδ

] 1
2 c̃2

+[ 1

x − v−t + iδ

] 1
2 c̃2

−

× 1

x − vλt + iδ
,

Gz
b2(x,t) ∝ cos(�k′x)

[
1

x + v+t − iδ

]2c̃2
+[ 1

x − v−t + iδ

]2c̃2
−
,

(B42)

where c̃+(θ ) = √
2 sinh θ and c̃−(θ ) = √

2 cosh θ . The param-
eters v+ � vρ , v− � vn, and v+ 	 v−. Notice that Gz

f ,Gz
b1

dominate over Gz
b2 at long distances.

h. SU(2)2 state at ν = 5
2

This is a spin-polarized state. The edge Lagrangian density
is

L = 1

4π
[2∂tφρ∂xφρ + ∂tφn∂xφn − 2vρ(∂xφρ)2

− vn(∂xφn)2] + iλ(∂t − vλ∂x)λ, (B43)

where φρ is a charged boson, φn is a neutral boson, and λ

is a Majorana fermion. The edge state is chiral. The most
relevant electron operators and the spin-density operators have
the same forms as those in the anti-Pfaffian state. However,
note that the fields φρ,φn here have different origins from those
in Eq. (B40). The correlators are found to be Gx = Gy = 0 and
Gz = Gz

f + Gz
b1 + Gz

b2, where

Gz
f (x,t) ∝ 1

(x + vρt − iδ)2
,

Gz
b1(x,t) ∝ cos(�kx)

1

(x + vnt − iδ)(x + vλt − iδ)
,

Gz
b2(x,t) ∝ cos(�k′x)

1

(x + vnt − iδ)4
, (B44)

with �k,�k′ the momentum differences between the edge
modes.

2. Time integral

The QH states we have discussed can be divided into three
types.

Type (i): The edge state is chiral and contains one bosonic
mode. Examples include Laughlin states at ν = 1/m and the
Pfaffian state at ν = 5

2 . The in-plane correlators vanish, while
the out-of-plane correlator has the form

G(i)(x,t) =
[

1

δ + i(t + x/v)

]n

, (B45)

neglecting the proportionality constant and assuming the edge
state is left moving, where n � 2 is an even integer and v > 0
is the speed of the edge mode.

Type (ii): The edge state is chiral and contains multiple
interacting bosonic modes. Examples include the QH state at

ν = 2 and the 331 state at ν = 5
2 . The correlators can have the

form of Eq. (B45), or

G(ii)(x,t) =
[

1

δ + i(t + x/v+)

]g+[ 1

δ + i(t + x/v−)

]g−

,

(B46)

neglecting the proportionality constant and the modulating
factor, and assuming the edge state is left moving, where g+
and g− are nonintegers but g+ + g− is an even integer. From
previous calculations, we have 0 < g+ � 1 and g− > 1. To
a good approximation, v+ and v− can be considered as the
speeds of the physical charged mode and neutral mode in
the edge state, respectively, so that v+ 	 v− > 0. We have
suppressed the spin-component index for simplicity.

Type (iii): The edge state is nonchiral. Examples include the
QH state at ν = 2

3 and the 113 state at ν = 5
2 . The correlators

can have the form of Eq. (B45), or

G(iii)(x,t) =
[

1

δ + i(t + x/v+)

]g+[ 1

δ + i(t − x/v−)

]g−

,

(B47)

neglecting the proportionality constant and the modulating
factor, where g+, g−, and g+ + g− are all nonintegers. We
have 0 < g+ � 1 and g− > 1. The parameters v+ and v− can
again be considered as the speeds of the physical charged mode
and neutral mode, respectively, so that v+ 	 v− > 0.

In writing Eqs. (B45)–(B47), we have assumed that there
are only two distinct velocities in the system: the charged-
mode velocity and the neutral-mode velocity. In particular,
for the anti-Pfaffian state we make the approximation that
the Majorana fermion and the neutral boson propagate at the
same speed. For the SU(2)2 state, there is no need for such
an approximation and the correlators take the forms of either
Eq. (B45) or (B46).

In the following, we evaluate I = ∫∞
0 dt e−ηt ImGa(x,t),

where η = 0+ and a = (i), (ii), (iii).

a. Type (i)

For type (i) edge states,

I = 1

2i

{∫ ∞

0
dt e−ηt

[
1

δ + i(t + x/v)

]n

− c.c.

}

≡ I1 − I2. (B48)

The integrand of I1 has an nth-order pole at t1 = −x/v + iδ,
while the integrand of I2 has an nth-order pole at t2 = −x/v −
iδ. By residue theorem,∫ ∞

0
dt

1

(t − tk)n
= −Res

(
ln t

(t − tk)n
; tk

)
, (B49)

where k = 1,2. This gives

I1 = I2 = 1

2i

(−1)n/2

n − 1

(
x

v

)1−n

, (B50)

so that I = 0. This suggests that the spin susceptibility in type
(i) edge states vanishes to the lowest order (i.e., considering
only the most relevant operators).
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b. Type (ii)

For type (ii) edge states,

I =
∫ ∞

0
dt e−ηt Im

[
1

δ + i(t + x/v+)

]g+

×
[

1

δ + i(t + x/v−)

]g−

. (B51)

The integrand has two branch points −x/v+ + iδ and
−x/v− + iδ. Choosing the branch cut appropriately,

Im

[
1

δ + i(t + x/v+)

]g+[ 1

δ + i(t + x/v−)

]g−

= Im{e−i π
2 g+sgn(t+ x

v+ )
e
−i π

2 g−sgn(t+ x
v− )}|G(ii)(x,t)|

= �

(
t + x

v+

)
�

(
−t − x

v−

)
sin

[
π

2
(g− − g+)

]
|G(ii)(x,t)|,

(B52)

where �(x) is the Heaviside step function, sgn(x) is the signum
function, and

|G(ii)(x,t)| =
∣∣∣∣t + x

v+

∣∣∣∣
−g+ ∣∣∣∣t + x

v−

∣∣∣∣
−g−

. (B53)

We have used the fact that g+ + g− is an even integer, so that
Im{e−i π

2 (g++g−)} = 0. Notice also that I = 0 if we set v+ = v−,
which is consistent with the previous result for type (i) edge
states. In our scenario, v+ 	 v− > 0. The integral is nonzero
only when x < 0. Explicitly,

I = �(−x) sin

[
π

2
(g− − g+)

] ∫ −x/v−

−x/v+
dt e−ηt |G(ii)(x,t)|

= �(−x) sin

[
π

2
(g− − g+)

](
1

v+
− 1

v−

)−g

× B(1 − g+,1 − g−)|x|−g, (B54)

where B(x,y) is the Euler beta function and we define g =
g+ + g− − 1.

The above calculation applies to left-moving edge states.
For right-moving edge states, one replaces �(−x) with �(x),
and sends v+,v− → −v+, − v− in Eq. (B54). The exponent g

determines the scaling of the spin susceptibility with distance,
and may take different values gα for different spin components
α = x,y,z. For type (ii) edge states, gα are integral invariants
depending on the topological order of the bulk QH liquid. For
instance, gx = gy = 1 for the QH state at ν = 2.

c. Type (iii)

For type (iii) edge states,

I =
∫ ∞

0
dt e−ηt Im

[
1

δ + i(t + x/v+)

]g+

×
[

1

δ + i(t − x/v−)

]g−

. (B55)

We have

Im

[
1

δ + i(t + x/v+)

]g+[ 1

δ + i(t − x/v−)

]g−

= Im{e−i π
2 g+sgn(t+ x

v+ )
e
−i π

2 g−sgn(t− x
v− )}|G(iii)(x,t)|

=
{[

�

(
−t − x

v+

)
− �

(
−t + x

v−

)]
sin

[
π

2
(g+ − g−)

]

− �

(
t + x

v+

)
�

(
t − x

v−

)
sin

[
π

2
(g + 1)

]}
|G(iii)(x,t)|,

(B56)

where

|G(iii)(x,t)| =
∣∣∣∣t + x

v+

∣∣∣∣
−g+ ∣∣∣∣t − x

v−

∣∣∣∣
−g−

. (B57)

The integral is nonzero for both x > 0 and x < 0. We find
I = �(x)I> + �(−x)I<, where

I> = sin

[
π

2
(g− − g+)

] ∫ x/v−

0
dt e−ηt |G(iii)(x,t)|

− sin

[
π

2
(g + 1)

] ∫ ∞

x/v−
dt e−ηt |G(iii)(x,t)|

=
{

sin

[
π

2
(g− − g+)

]
v

g+
+ v

g−−1
−

1 − g−
F

(
1,g+; 2 − g−; −v+

v−

)

− sin

[
π

2
(g + 1)

](
1

v+
+ 1

v−

)−g

B(g,1 − g−)

}
|x|−g,

(B58)

and

I< = sin

[
π

2
(g+ − g−)

] ∫ −x/v+

0
dt e−ηt |G(iii)(x,t)|

− sin

[
π

2
(g + 1)

] ∫ ∞

−x/v+
dt e−ηt |G(iii)(x,t)|

=
{

sin

[
π

2
(g+ − g−)

]
v

g+−1
+ v

g−
−

1 − g+
F

(
1,g−; 2 − g+; −v−

v+

)

− sin

[
π

2
(g + 1)

](
1

v+
+ 1

v−

)−g

B(g,1 − g+)

}
|x|−g,

(B59)

where F (a,b; c; x) is the hypergeometric function. Notice that
I> and I< are related by the exchange of parameters

g+ ↔ g− and v+ ↔ v−, (B60)

which technically reverts the chirality of all the edge modes,
as seen from Eq. (B47). For type (iii) edge states, g (i.e., gα ,
where α = x,y,z) takes noninteger values. Let us write gα =
gα

0 + δgα , where gα
0 is the integer part of gα . We find δgα � gα

0
for all the type (iii) edge states being discussed. For instance,
δgx = δgy = 4 sinh2 θ , where θ � 1, while gx

0 = g
y

0 = 1 in
the spin-unpolarized QH state at ν = 2

3 .
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3. Full expression of spin susceptibility

Substituting the above results in Eq. (B2), we obtain the
spin susceptibility in QH edge states

χαα(x) = cos(�kx)

4π2
l2agα−1v

−gα
+

+ v
−gα

−
− × I, (B61)

where we have restored the spin-component index and the pro-
portionality constant. The short-distance cutoff a can be taken
as the lattice constant of the host material of the QH system. For
left-moving type (ii) edge states, I is given by Eq. (B54). We

have χαα(x) = cos(�kx)|x|−gα

�(−x)Cα(gα,v), where gα =
(gα

+,gα
−), v = (v+,v−), and

Cα(gα,v) = l2agα−1

4π2
sin

[
π

2
(gα

− − gα
+)

]
v

gα
−−1

+ v
gα

+−1
−

(v− − v+)gα

× B(1 − gα
+,1 − gα

−). (B62)

For type (iii) edge states, I is given by Eqs. (B58) and
(B59). We have χαα(x) = cos(�kx)|x|−gα {�(x)Cα

>(gα,v) +
�(−x)Cα

<(gα,v)}, where

Cα
>(gα,v) = l2agα−1

4π2

{
sin

[
π

2
(gα

− − gα
+)

]
v−1

−
1 − gα−

F

(
1,gα

+; 2 − gα
−; −v+

v−

)
− sin

[
π

2
(gα + 1)

]
v

gα
−−1

+ v
gα

+−1
−

(v+ + v−)gα B(gα,1 − gα
−)

}
,

Cα
<(gα,v) = l2agα−1

4π2

{
sin

[
π

2
(gα

+ − gα
−)

]
v−1

+
1 − gα+

F

(
1,gα

−; 2 − gα
+; −v−

v+

)
− sin

[
π

2
(gα + 1)

]
v

gα
−−1

+ v
gα

+−1
−

(v+ + v−)gα B(gα,1 − gα
+)

}
.

(B63)

We see that Cα
>(gα,v) and Cα

<(gα,v) are related by the
exchange of arguments: gα

+ ↔ gα
− and v+ ↔ v−.

Equations (B62) and (B63) show that the RKKY interaction
is ferromagnetic at short distances. To estimate the strength
of the RKKY interaction, we extract the dimensional part
[χαα(x)] of the spin susceptibility. For type (ii) edge states,

[χαα(x)] = l2agα−1 v
gα

−−1
+ v

gα
+−1

−
(v+ − v−)gα |x|−gα

. (B64)

For type (iii) edge states, there are multiple terms in χαα(x),
with

[χαα(x)] = l2agα−1 v
gα

−−1
+ v

gα
+−1

−
(v+ + v−)gα |x|−gα

;

l2agα−1v−1
− |x|−gα

; l2agα−1v−1
+ |x|−gα

. (B65)

Using 0 < gα
+ � 1 and v+ 	 v−, we find

[χαα(x)] � l2agα−1v−1
− |x|−gα

(B66)

for both type (ii) and type (iii) edge states.

APPENDIX C: EXCHANGE

Here, we estimate the strength of the exchange interaction
between the QD electron and the electrons in the edge modes.
The textbook formula gives the exchange integral as

J = C

∫
dr1dr2 �∗

1 (r1)�∗
2 (r2)

1

|r1 − r2|�1(r2)�2(r1) (C1)

for two particles in single-particle orbitals �1, �2, interacting
through an unscreened Coulomb interaction parametrized by
C = e2

4πε0εr
, where e is the elementary charge, ε0 the vacuum

permittivity, and εr the relative permittivity of the medium.

Providing a microscopic theory of the exchange for our
case is well beyond the scope of this paper. Instead, we are
interested only in the interaction strength scale. To get a rough
estimate, let us assume that the exchange interaction is local

J = β

∫
dr1dr2�

∗
1 (r1)�∗

2 (r2)δ(r1 − r2)�1(r2)�2(r1),

(C2)

which transforms the equation into a density-density interac-
tion

J = β

∫
dr ρ1(r)ρ2(r). (C3)

One can explicitly evaluate Eq. (C1) for a tunnel-coupled
double dot modeled by a 2D harmonic confinement [54] and
then compare to the result given by Eq. (C3). The calculated
energies scale the same with the interdot distance, and the
overall prefactors are related by β = Cl, with l the confinement
length of the dot potential. We further guide ourselves by
experiments, which measured the exchange energy in few-
electron QDs made in 2DEG in GaAs. The maximal scale
C/l, which evaluates to �3 meV for typical GaAs parameters
εr = 12.9 and l = 30 nm, is indeed approached in a single
dot where the densities overlap in Eq. (C3) is of order 1
in dimensionless units (l−2). A suppression of the interdot
tunneling (by increasing the interdot distance) leads to a
decreasing exchange, which reaches JDD � 0.1–0.01 meV
in a tunnel-coupled double dot. Assuming that an analogous
suppression will result from the tunnel coupling of our dot
coupled to the edge finally gives JDD as an order of magnitude
estimate for �, which we used in the main text as the coupling
constant between an electron spin in a QD and a quasi-1D spin
density of the edge.
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