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Abstract. Long-distance dispersal (LDD) processes influence the founder effect on islands. We use genetic data for

25 Atlantic species and similarities among regional floras to analyse colonization, and test whether the genetic foun-

der effect on five islands is associated with dispersal distance, island size and species traits. Most species colonized

postglacially via multiple dispersal events from several source regions situated 280 to .3000 km away, and often not

from the closest ones. A strong founder effect was observed for insect-pollinated mixed maters, and it increased with

dispersal distance and decreased with island size in accordance with the theory of island biogeography. Only a minor

founder effect was observed for wind-pollinated outcrossing species. Colonization patterns were largely congruent,

indicating that despite the importance of stochasticity, LDD is mainly determined by common factors, probably dis-

persal vectors. Our findings caution against a priori assuming a single, close source region in biogeographic analyses.
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Introduction

Long-distance dispersal (LDD) of plants is a complex pro-

cess (Higgins et al. 2003). Direct observations of LDD are

rare (Ridley 1930); therefore, it is usually inferred from the

geographical distribution of species or genes (de Queiroz

2005). Effective LDD (also termed long-distance coloniza-

tion) involves seed release, dispersal by one or several

vectors, arrival in a favourable microhabitat, germination

and successful establishment of a new population

(Chambers and MacMahon 1994; Nathan 2006). Several

factorsmay influence each of these components. Dispersal

routes and frequencies may depend on historical factors

such as past climate shifts and geographical distributions

(Taberlet et al. 1998), as well as on dispersal vectors such

as birds, sea currents and wind (Gillespie et al. 2012).

Local establishment depends on the number of arriving

propagules, adaptation of the newcomer to local eco-

logical conditions, including abiotic factors and relation-

ship to pollinators or mycorrhiza partners (Chambers

and MacMahon 1994; Hegland et al. 2009). Because LDD

of plants is rarely directly observed, quantifying its relation-

ship to potential determining factors is challenging (Nathan

2006). The relative importance of deterministic versus

stochastic processes in shaping LDD patterns is not clear

(Higgins et al. 2003; Nathan 2006; Vargas et al. 2012).

Oceanic islands represent good models to study LDD,

as every species (or its ancestor) on such islands must

have arrived by LDD. According to the equilibrium theory

of island biogeography, the number of species on an

island increases with island size and decreases with dis-

tance to source regions (MacArthur and Wilson 1967),

although other factors such as species traits, sea cur-

rent, past and present climate, and habitat heterogeneity

may also play a role (Triantis et al. 2012; Weigelt and Kreft

2013). Similarly, the amount of genetic diversity in island

populations is expected to be positively correlatedwith is-

land size, but typically to be lower than in continental po-

pulations as only a limited number of genotypes from the

source populations are expected to disperse to the recipi-

ent region causing a genetic founder effects (Jaenike

1973; Frankham 1997). As the frequency of dispersal

events decreases with distance (Nathan 2006; Nathan

et al. 2008), the initial founder effect and restriction

of subsequent immigration, both leading to genetic de-

pauperation of island populations, may increase with dis-

tance to the source region (Bialozyt et al. 2006; Dlugosch

and Parker 2008; Pauls et al. 2013). Genetic diversity

in plant populations is not only a result of population

history but also related to species traits such as pollin-

ation mode, breeding system, growth form and morpho-

logical adaptations to dispersal (Hamrick and Godt 1996;

Thiel-Egenter et al. 2009), all factors that may affect

the intensity of founder effects. If species diversity and

genetic diversity on islands are shaped by the same

deterministic colonization processes, relative levels

of genetic diversity should be related to the levels of

species diversity. Moreover, floristic and genetic similar-

ities should point to the same source regions for island

colonization.

The role of LDD in shaping the current northern flora,

which contains species that typically are widely distribu-

ted across a naturally fragmented biome, is debated

(Löve and Löve 1963; Brochmann et al. 2013). In the Arc-

tic, efficient LDD may be frequent due to open land-

scapes, strong winds and numerous migrating birds, a

prediction supported by genetic data for the isolated

archipelago of Svalbard (Alsos et al. 2007). Sea ice may

also facilitate dispersal, as a ‘bridge’ or as a rafting vector

(Johansen and Hytteborn 2001). Nevertheless, floristic

analyses have indicated that most Arctic islands are not

saturated with species (Hoffmann 2012). Similarly, ana-

lyses of plant species diversity in the Arctic mainland

indicate that species distributions are limited by dispersal

and/or establishment conditions (Lenoir et al. 2012).

The potentially strongest barrier to plant dispersal in

the circumpolar region is the North Atlantic Ocean. For

more than 100 years it has been debated whether plants

were able to cross it via LDD after the last glaciation, or

whether they depended on surviving the last (or several)

glaciation(s) in local ice-free refugia in different Atlantic

regions (Löve and Löve 1963; Brochmann et al. 2003).

Molecular evidence clearly shows that trans-Atlantic

LDD has occurred recently in many species (Brochmann

et al. 2003). The Atlantic Ocean (and the Greenlandic

ice sheet) is nevertheless a stronger barrier against dis-

persal than continuous Arctic landmasses, as shown in

a recent circumpolar analysis of genetic variation in 17

vascular plant species (Eidesen et al. 2013). Even though

the current floras in various Atlantic regions mainly have

established following postglacial colonization, genetic

data for a few species indicate in situ glacial persistence

(Westergaard et al. 2011; see also Parducci et al. 2012).

To gain a better understanding of the factors determin-

ing LDD, we here analysed genetic structure in 25 plant

species in five islands and adjacent mainland regions in

the North Atlantic, as well as similarities in species com-

position among regional floras. We ask whether genetic

data (i) support the prevalent hypothesis of postglacial

long-distance colonization or, alternatively, local glacial

survival, (ii) determine the source areas for postglacial

island colonization in the North Atlantic region, (iii) quan-

tify the intensity of the genetic founder effect and inves-

tigate how it relates to distance, island size and plant

species traits and (iv) compare genetic and floristic rela-

tionships among regions.
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Methods

Geographical regions

We selected five recipient islands/archipelagos: East

Greenland (182 440 km2 as delimited by Elven et al.

2011), Iceland (103 000 km2), Svalbard (24 453 km2 of

non-glaciated area), the Faroe Islands (1396 km2) and

Jan Mayen (377 km2). Although East Greenland is only

part of an island, we treated it as an island because

only narrow strips of land disrupted by glaciers connect

it to North and South Greenland, and the Inland Ice

Sheet forms a firm dispersal barrier to West Greenland

(Eidesen et al. 2013). All surrounding land masses

in north-eastern North America and Europe were

selected as potential source regions. Minimum distances

between recipient island and source regions (coast

to coast) were estimated using Google Earth version

6.2.0.5905 (beta).

All recipient islands were mainly glaciated during the

last glacial maximum (LGM, ≏20 000 cal. BP, Ehlers and

Gibbard 2004) although minor ice-free areas existed

(reviewed in Brochmann et al. 2003). Pollen and macro-

fossil studies show that a flora including many of the

species we analysed for genetic variation existed on

East Greenland from 12 800 to 12 300 cal. BP (Bennike

1999; Bennike et al. 1999), on Iceland from 13 000 to 10

800 cal. BP (Rundgren 1998; Rundgren and Ingólfsson

1999; Caseldine et al. 2003), on Svalbard from 9000 cal.

BP (Birks 1991) and on the Faroe Islands from 13 100

cal. BP (Hannon et al. 2010). No late glacial or early Holo-

cene palaeobotanical studies exist from Jan Mayen.

Iceland, the Faroe Islands and Jan Mayen are true

oceanic islands, whereas Svalbard and Greenland are

continental islands. However, due to the previous heavy

glaciation also of the latter two, they may be viewed as

mainly oceanic islands in terms colonization processes.

Genetic data

We assembled amplified fragment length polymorphism

(AFLP) datasets for Arctic and north-boreal species of

vascular plants present in the five recipient islands. Most

data originate from published studies [see Supporting

Information—Table S1]. We included only AFLP datasets

of high quality, e.g. with error rates estimated from ran-

dom replicates, test of many primers before selection of

final primer set (see Alsos et al. 2007, 2012 for details)

and based on extensive sampling in the North Atlantic

area. Our final dataset comprised 25 species, 1110 local

populations, 8932 individual plant samples and 3653

polymorphic markers [see Supporting Information—

Table S1]. Details on the AFLP analyses of 24 of the

25 species have been published elsewhere [see Support-

ing Information—Table S1, for Sibbaldia procumbens].

Species traits

We expected four species traits to be most important

in determining the intensity of the genetic founder

effect: mode of pollination (insect or wind), breeding sys-

tem (outcrossing, selfing or mixed mating), growth form

(woody or herbaceous) and dispersal adaptation (long-

distance or short-distance). Dispersal adaptation was

defined as ‘long-distance-dispersed’ if morphologically

adapted to wind- or animal-dispersal, even though the

regular dispersal distance in such species may be moder-

ate rather than long (Higgins et al. 2003; Tamme et al.

2014); otherwise as ‘short-distance-dispersed’. Only 10

species in the North Atlantic region have adaptations

for dispersal by sea current (Löve 1963); as none of

themwere analysed here, this category was not included.

However, a large proportion of the species have seeds

that might float (Thiel and Gutow 2005). Higher levels

of genetic diversity are typically found in wind-pollinated,

outcrossing and woody species than in insect-pollinated,

selfing and herbaceous species (Hamrick and Godt 1996;

Thiel-Egenter et al. 2009). Information on these traits for

the 25 species in the genetic dataset was compiled from

the literature, following the criteria outlined in Alsos et al.

(2012); [see Supporting Information—Table S1]. The

founder effect has been shown to be related to adapta-

tion to local climate (Alsos et al. 2007), but the observed

reduction in genetic diversity might be explained by a

bottleneck due to cooler climate on Svalbard during the

last 2000 years causing a decrease in distribution of, for

example, Betula nana and Salix herbaceae (Birks 1991;

Alsos et al. 2002). However, as most species are not at

their climatic limit on most recipient islands at present

(except some on Svalbard, Elven et al. 2011), we did not

include that factor here.

Genetic data analyses

For each species, the sampled area was divided into

regions according to geographically consistent genetic

groups identified (cf. Alsos et al. 2007; Eidesen et al.

2013) [see Supporting Information]. The geographic dis-

tribution of the main genetic groups and subgroups for

each species are shown in Fig. 1.

The source region for the populations on each of the

five recipient islands was inferred by looking at shared

genetic groups among regions and by carrying out a

multilocus assignment test in AFLPOP (Duchesne and

Bernatchez 2002). We used a log-likelihood difference of

one as threshold for allocation (i.e. for a genotype to be

assigned to one particular source region it should

be 10 times as likely assigned to that source region

than to any other source regions; [see also Supporting

Information]). For each recipient island and each species,
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Figure 1. Maps showing the genetic structuring of the 25 species analysed for AFLPs. Colours identify the main genetic groups according to

Bayesian clustering analyses run with STRUCTURE and other methods (see text); symbol shapes identify subgroups within main groups. The

present distribution of the species is given according to Hultén and Fries (1986; dark grey area, dots and outline whereas stippled lines show

vicariant taxa). Arrows represent dispersal routes inferred from assignment tests to geographical regions. Numbers show the proportion (%) of

plants allocated to each source region. Due to lack of genetic variation, no assignment test was performed for Arabis alpina and Carex rufina. No

assignment test was performed for Dryas octopetala in East Greenland as our sampling from that region only comprises assumed hybrids with

D. integrifolia (Skrede et al. 2006). For Micranthes stellaris, Icelandic plants allocated to the combined regions Faroe Island, Scotland and Scan-

dinavia, whereas Faroe Island plants allocated to the Scandinavian-Scottish subgroups (red dots on the map).

4 AoB PLANTS www.aobplants.oxfordjournals.org & The Authors 2015
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we calculated the proportion of individuals allocated

to each source region according to the assignment test

(excluding individuals that were not assigned with a

log-likelihood difference of 1) resulting in 51 recipient

islands × species combinations. The source region with

the highest proportion of allocation was considered the

main source region. As we are addressing historical

colonization and not present day immigration, the results

of the assignment test should not be interpreted as

revealing individual immigrant individuals. Nevertheless,

as the number of generations since colonization is

small in evolutionary time for these mainly long-lived

plant species (Alsos et al. 2002; de Witte and Stöcklin

2010), we are confident that our analyses reveal the

Figure 1. (Continued).
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main colonization directions despite possible drift in the

founded population.

As in Alsos et al. (2007), we quantified the genetic foun-

der effect using six different measures: (i) a minimum

number of dispersed propagules that resulted in success-

ful colonization (propagules; estimated as the smallest

number of individual genotypes in themain source region

necessary to bring all observed markers to the recipient

island, [see Supporting Information]), (ii) proportion of

intrapopulation genetic diversity observed in the recipient

island relative to that in the main source region (popula-

tion diversity; estimated as the mean of the population

Figure 1. (Continued).
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averages of number of pair-wise differences among

individuals), (iii) proportion of regional (total) genetic

diversity in the recipient island relative to that in the

main source region (regional diversity; estimated across

all individuals in the region), (iv) proportion of AFLP mar-

kers observed in the recipient island relative to those in

the main source region (markers), (v) number of source

regions inferred in order to account for all markers

observed in the recipient island (sources markers) and

(vi) number of source regions estimated from the assign-

ment test (sources allocation). All six measures are

also influenced by potential effective dispersal events

occurring after initial colonization; in the following we

therefore use the term ‘founder effect’ to encompass

the overall reduction in genetic variability in a population

in a colonized area as compared with its source. Correla-

tions among the measures and differences in intensity of

the founder effect among species and recipient islands

were investigated using principle component analysis

(PCA) as implemented in the R-package ade4 (http://cran.

r-project.org/web/packages/ade4/) and R version 3.01

(R Core Team 2013).

We tested for correlations among the indepen-

dent variables (species traits, island size and dispersal

distance). As growth form and dispersal type were signifi-

cantly correlated, we chose to use dispersal type because

we assume it to be directly relevant to the founder effect

(Alsos et al. 2012). We also found a significant correlation

between pollinationmode and breeding system [see Sup-

porting Information—Tables S1 and S2], and chose the

predictor variable with fewest categories (pollination

mode). To determine to what extent distance between

source and recipient island, island size, dispersal and pol-

lination mode were correlated with the intensity of the

founder effect, we carried out a Principal Component

Analyses with Instrumental Variable (PCAIV; function

pcaiv in ade4, Thioulouse and Dray 2007). To further

test for significant associations, we carried out a linear

mixed model (LMM) analysis with regional diversity as a

response variable. We chose regional diversity as an

estimate of founder effect here because it was most cor-

related with the first axis in the PCA. Species was included

as a random effect in all models. The explanatory vari-

ables included as fixed effects were distance, area, pollin-

ation mode and dispersal type. These variables were

assembled into 17 candidate models comprising a con-

stant response as the simplest model, each explanatory

variable alone, as well as all possible combinations

of two variables with or without interactions between

them. Models were fitted using the function lmer in the

R package lme4 (Bates et al. 2014). Maximum likelihood

(ML) was used as an optimization criterion to fit models

for model selection, whereas restricted ML (REML) was

used to obtain parameter estimates (Pinheiro and Bates

2000). The best models were selected based on Akaike’s

Information Criterion corrected for small sample size

(AICc, Burnham and Anderson 2007) using AICcmodavg

(Mazerolle 2011) in R. Models with a difference in AICc

of ,2 were considered equally appropriate. The selected

models were checked graphically for constant variance of

the residuals, presence of outliers and approximate nor-

mality of the random effects.

The likelihood that a species immigrated to the recipi-

ent island postglacially (rather than survived the last gla-

ciation in situ) was evaluated based on the amount of

genetic diversity in the recipient island relative to that

in potential source regions, as well as on the number of

private markers (markers restricted to one geographical

region and thus likely represent local mutations) found

in the recipient island (Westergaard et al. 2011).

Floristic data

To compile data on species occurrences, we used the Pan

Arctic Flora checklist (Elven et al. 2011) for those of our

regions that are included there, otherwise Hultén and

Fries (1986), various regional sources and personal obser-

vations [see complete taxon list per region in Supporting

Information—Table S3]. Taxa closely associated with

human activity and agricultural lands, including pasture

lands, were assumed to have been introduced by humans

to a region (Elven et al. 2011; Wasowicz et al. 2013, Alsos

et al. 2015) and therefore omitted. Since the occurrence

of some taxa is uncertain [see Supporting Information—

Table S3], we calculated floristic similarities as the min-

imumandmaximum proportion of recipient island species

that also occurred in each potential source region, and

used the mean proportion in further analyses.

The number of years between each successful coloniza-

tion eventswas estimatedas the time since first postglacial

palaeorecord/(total number of species on the island× pro-

portion of species assumed to colonize postglacially ×

average number of propagules per species). Although

these numbers contain uncertainties, they provide a

Figure 1. (Continued).
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rough estimate useful for comparison with other islands.

For Jan Mayen, where no palaeobotanical records existed,

we assumed a time period of 12 800 years, similar to East

Greenland (12 700) and Iceland (13 000).

Results

Genetic data

In most cases, we observed less genetic diversity in the

recipient islands than in the source regions both at the

population and regional levels and in terms of number

of markers, reflecting a founder effect (Table 1). We ob-

served only few private markers in the recipient islands.

Sagina caespitosa had relatively high numbers of private

markers (5) in a recipient island, but this was not com-

bined with high levels of genetic diversity, and thus not

interpreted as indicating in situ glacial survival. Only Are-

naria humifusa and Saxifraga rivularis showed a genetic

pattern consistent with glacial survival on Svalbard [see

Supporting Information]. Thus, 92 % of the species ana-

lysed were assumed to have colonized postglacially.

Of the 12 species analysed from East Greenland, the

populations of five species belonged to amphi-Atlantic

genetic groups, three to West-Atlantic groups, three to

Greenlandic-Icelandic groups, Arctous alpina had unique

groups and Cassiope tetragona had both a western and

an eastern genetic group (Fig. 1). Overall, the highest

proportions of genetic groups were shared with West

Greenland (80 %, Fig. 2).

Among the 21 species analysed from Iceland, the po-

pulations of the majority of species belong to eastern

(11) or amphi-Atlantic/East-Atlantic (7) genetic groups.

Both eastern and western genetic groups were observed

in Betula nana and Chamerion angustifolium (Fig. 1). All

genetic groups were shared with Jan Mayen and Faroe

Islands, whereas 75 and 84 % also were found in Great

Britain and Norway, respectively (Fig. 2).

Among the 11 species analysed from Svalbard, the

populations of five species belonged to amphi-Atlantic

genetic groups (Saxifraga rivularis having a unique

group in addition), four to East-Atlantic groups, one to

West-Atlantic groups and Vaccinium uliginosum had

both a western and an eastern genetic group (Fig. 1).

The highest proportion of genetic groups was shared

with Ural (88 %) followed by Norway (50 %) and East

and West Greenland (42–43 %, Fig. 2).

In four of the five species analysed from the Faroe Is-

lands, the populations belong to main genetic groups

that were found both east and west of the archipelago al-

though sometimes with different subgroups. Only Sibbal-

dia procumbens belong to a strict western genetic group.

The high percentage of genetic groups shared among the

regions is an effect of this but should be interpreted with

caution due to the general low sample sizes.

All six species analysed from JanMayen fell into genetic

groups together with individuals from Iceland. The popu-

lations of two species belonged to amphi-Atlantic groups,

two to East-Atlantic groups and one to a West-Atlantic

group, whereas Salix herbacea grouped together with

Greenland and Iceland with separate subgroups in each

of the three regions (Fig. 1). The highest proportion of

genetic groups was shared with Iceland, whereas less

than five genetic groups were shared with most other

regions.

For 23 of the 25 species, populations from the recipient

islands were successfully assigned to one (n ¼ 22),

two (n ¼ 17) or more (n ¼ 7) source regions (Fig. 1 and

Table 1) [see also Supporting Information]. Assignment

of Arabis alpina and Carex rufinawas not possible because

of lack of genetic diversity, and five recipient island ×

species combinations had to be excluded because the

direction could not be determined [see Supporting

Information]. On average, two source regions had to be

inferred to account for all markers observed in the recipi-

ent island (Table 1). Only for the Faroe Islands, the most

important source region (Scandinavia/Great Britain,

285 km away) was the geographically closest one

(Fig. 2). Iceland is only 280 km away from East Greenland,

but populations were allocated mainly to Northwest

Europe, with Shetland (775 km) and Norway (965 km)

being closest. Jan Mayen is 100 km closer to East Green-

land than Iceland, where most populations allocated to.

Despite the large geographic distance, Northwest Russia

was the singlemost important source region for both East

Greenland and Svalbard, althoughwestern source regions

were also important (Table 1 and Fig. 2).

In the PCA of the six measures of the founder effect,

all measures were more or less correlated with axis 1

(horizontal axis), which explained 47.1 % of the variation

(Fig. 3A–D). The proportion of regional genetic diversity

was most strongly correlated with axis 1, whereas the

other five measures were also correlated with axis 2

(vertical axis, 19.9 % of the variation), positively or nega-

tively so. The five recipient islands were placed along

the first axis according to their size, althoughwith consid-

erable overlap (Fig. 3C). In the PCAIV, 30.5 % of the vari-

ation was explained by the four independent variables

(Fig. 3E and F). Island size was mainly related to the

first axis, showing the strongest founder effect in small

recipient islands. Pollination mode was strongly related

to both the first and second axes, with wind-pollinated

species being characterized in particular bya higher num-

ber of propagules and sources for markers. Dispersal dis-

tance was correlated with the second axis. It was

negatively correlated with the proportion of markers in

8 AoB PLANTS www.aobplants.oxfordjournals.org & The Authors 2015
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Table 1. Dispersal distance, number of privatemarkers and six measures of the genetic founder effect for each species in each target island. Themeasures of founder effect are (i) minimum

number of colonizing propagules (Propagules), (ii) proportion of intrapopulation genetic diversity in target relative to source (Population diversity), (iii) proportion of total genetic diversity in

target relative to source (Regional diversity), (iv) proportion of AFLP markers in target relative to source (Markers), (v) number of source regions inferred from AFLP markers (Sources markers)

and (vi) number of source regions inferred from assignment tests (Sources allocation). Target andmain source regions are the Faroe Islands (FAROE), Iceland (ICE), East Canada (ECAN), East

Greenland (EGRE), Jan Mayen (JM), North Canada (NCAN), mainland Norway (NOR), Northwest Europe (NWEUR), Russia (RUS), Southwest Greenland (SWGRE) and Svalbard (SVALB). Mean+

standard deviation values for each target island and overall mean are given.

Species Target

island

Main source

region

Distance

(km)

Number

of private

markers

Founder effect

Propagules Population

diversity

Regional

diversity

Markers Sources

markers

Sources

allocation

Angelica archangelica FAROE NWEUR 570 1 9 0.82 0.79 0.76 2 1

Angelica archangelica ICE NWEUR 775 1 8 0.82 0.78 0.81 2 2

Arctous alpinus EGRE NWEUR 1270 1 13 0.86 0.76 0.57 3 1

Arenaria humifusa EGRE SVALB 570 1 4 1.00 0.82 0.94 2 2

Avenella flexuosa ICE NWEUR 775 1 11 0.96 0.94 0.79 2 2

Betula nana EGRE ICE 280 0 13 0.73 0.94 0.82 3 1

Betula nana ICE NWEUR 775 1 14 1.11 1.00 0.81 3 4

Betula nana SVALB RUS 1000 1 7 0.68 0.70 0.59 2 3

Betula pubescens ICE NWEUR 775 2 12 1.10 1.06 0.77 2 2

Carex bigelowii EGRE ECAN 880 1 12 1.08 0.84 0.75 3 2

Carex bigelowii ICE NWEUR 775 3 16 1.58 1.16 0.76 3 2

Cassiope tetragona EGRE WGRE 360 1 14 1.00 1.06 1.04 4 2

Cassiope tetragona SVALB EGRE 570 1 11 0.94 0.97 0.91 3 3

Chamerion angustifolium ICE NWEUR 775 0 14 0.29 1.02 0.66 2 2

Dryas octopetala ICE NWEUR 775 0 5 0.63 0.54 0.55 2 1

Dryas octopetala SVALB RUS 1000 0 22 0.72 0.86 0.81 4 1

Empetrum nigrum FAROE NWEUR 285 0 3 0.72 0.58 0.53 1 2

Empetrum nigrum ICE NWEUR 775 0 6 0.75 0.65 0.63 1 3

Empetrum nigrum JM ICE 555 0 3 0.30 0.20 0.64 1 1

Juniperus communis ICE NWEUR 775 1 11 0.93 0.81 0.73 2 1

Loiseleuria procumbens ICE NWEUR 775 1 9 0.93 0.97 0.93 3 2

Micranthes stellaris FAROE NWEUR 285 0 1 1.38 1.05 0.71 1 1

Micranthes stellaris ICE NWEUR 775 3 2 1.12 0.79 0.71 1 1

Ranunculus glacialis ICE NWEUR 775 0 4 0.00 1.20 1.03 3 2
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Table 1. Continued

Species Target

island

Main source

region

Distance

(km)

Number

of private

markers

Founder effect

Propagules Population

diversity

Regional

diversity

Markers Sources

markers

Sources

allocation

Ranunculus glacialis JM ICE 555 0 1 1.00 0.14 0.86 1 1

Rubus chamaemorus SVALB RUS 1000 0 5 0.47 0.51 0.62 1 1

Sagina caespitosa ICE NWEUR 965 5 9 0.65 0.81 0.76 2 1

Sagina caespitosa JM SVALB 875 1 11 0.35 0.30 0.68 2 2

Sagina caespitosa SVALB NOR 640 1 3 0.26 0.22 0.64 2 1

Salix herbacea EGRE JM 450 0 14 0.73 0.85 1.03 3 2

Salix herbacea ICE NWEUR 775 1 16 0.74 0.67 0.64 5 3

Salix herbacea JM ICE 555 0 13 0.97 0.92 0.79 3 2

Salix herbacea SVALB NWEUR 1000 1 12 0.67 0.70 0.57 3 1

Saxifraga rivularis ICE NWEUR 775 0 7 1.09 0.83 0.81 2 3

Saxifraga rivularis JM SVALB 945 0 4 0.26 0.21 0.55 1 1

Sibbaldia procumbens EGRE ECAN 360 0 5 0.77 0.69 0.80 2 2

Sibbaldia procumbens FAROE ICE 425 0 3 0.91 0.75 0.82 2 1

Sibbaldia procumbens ICE EGRE 280 1 5 0.55 0.70 0.98 2 1

Sibbaldia procumbens JM ICE 555 0 2 0.55 0.46 0.77 1 1

Sibbaldia procumbens SVALB NWEUR 640 0 2 0.00 0.00 0.75 1 1

Thalictrum alpinum FAROE NWEUR 285 0 14 1.12 0.94 0.68 3 1

Thalictrum alpinum ICE NWEUR 775 0 12 1.18 0.99 0.68 2 1

Vaccinium uliginosum EGRE WGRE 360 0 10 1.15 1.12 1.10 3 4

Vaccinium uliginosum ICE NWEUR 775 0 11 1.05 0.90 0.75 2 3

Vaccinium uliginosum SVALB RUS 1000 0 9 0.33 0.84 0.67 2 2

Vaccinium vitis-idaea ICE NWEUR 775 0 6 1.07 0.89 0.73 2 3

East Greenland 566+342 0.5+0.5 11.0+4.0 0.92+0.16 0.89+0.15 0.88+0.18 2.9+0.6 2.0+0.9

Iceland 758+124 1.1+1.4 9.4+4.1 0.88+0.35 0.88+0.17 0.76+0.12 2.3+0.9 2.1+0.9

Svalbard 856+200 0.5+0.5 8.9+6.4 0.51+0.03 0.60+0.34 0.70+0.12 2.3+1.0 1.6+0.9

Faroe Islands 370+127 0.2+0.6 6.0+5.4 0.99+0.26 0.82+0.18 0.70+0.11 1.8+0.8 1.0+0.0

Jan Mayen 673+185 0.2+0.4 5.7+5.1 0.57+0.34 0.37+0.29 0.72+0.11 1.5+0.8 1.3+0.5

Overall mean 693+233 0.7+1.0 8.6+4.9 0.79+0.34 0.76+0.28 0.76+0.14 2.2+0.9 1.7+0.8
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Figure 2. Floristic and genetic relationships between the five recipient islands (East Greenland, Iceland, Svalbard, the Faroe Islands and Jan

Mayen), and potential source regions. Floristic relationships are expressed as the proportion (%) of all species occurring in each recipient island

that also occur in each potential source region. Genetic relationships are expressed in two ways. First, as the proportions of genetic main groups

that also are found in the source region (only counting source regions where populations have been analysed, stars denote regions where less

than five comparisons were possible across species). Second, as themean proportion (%) of plant individuals that were allocated to each source

region in assignment tests (excluding individuals that were not assigned). Source regions for floristic and genetic group comparisons are as

defined in Supporting Information—Table S3. Approximate delimitations of source regions of the assignment test are summarized across spe-

cies (Fig. 1) and encircled in green. Number of species found (floristic data), genetic groups found (upper range is total number of genetic groups,

lower range is number of genetic groups where observations for minimum five species are available) or species assigned (assignment data) in

each recipient island are given in parentheses.
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the recipient island, but positively with the number of

propagules. Dispersal type was also correlated to the

second axis, but in opposite direction, partly reflecting

that distancewas onaverage somewhat shorter for species

lacking adaptations to wind- or animal-dispersal (641 km,

SD ¼ 223) than those possessing such adaptations

Figure 3. Principal component analyses (PCAs) of six variables expressing the genetic founder effect (see Methods) in the five recipient islands

East Greenland (EGR), Iceland (ICE), Svalbard (SB), the Faroe Islands (FAR) and JanMayen (JM) relative to the source regions (n ¼ 38). The founder

effect is increasing from left to right in all panels. (A–D) Principal component analyses showing correlation among the variables (A) and differ-

ences in intensity of the founder effect among species (B, some names slightly moved for visibility), recipient islands (C) and pollination mode

(D). (E and F) Principal component analyses of instrumental variables (PCAIV), which show to what extent the distance between source and

recipient island, size of the recipient island, dispersal adaptation (long- or short-distance) and mode of pollination were correlated with the

intensity of the founder effect (ordination taking into account the effect of independent variables).
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(750 km, SD ¼ 253, difference not significant, see Support-

ing Information—Table S2). Lack of adaptations to disper-

sal was indeed associated with a higher proportion of

markers but fewer propagules (Fig. 3F).

Variation in the proportion of regional diversity in the

recipient island was equally well explained by (i) a

model including island size and pollination mode with

(best model) or without interaction (AICc difference to

the best model 1.05) or (ii) a model with island size, dis-

tance from source as well as their interaction (AICc differ-

ence 0.68, Supporting Information—Table S4) as fixed

effects. For insect-pollinated species, the proportion of re-

gional diversity decreased by 0.076 (SE ¼ 0.018, 95 %

CI ¼ 0.043–0.113) for reduction by one of the natural

logarithm of island size (for instance from 1096 to

403 km2 or from 162 755 to 59 874 km2), but this was

not the case for wind-pollinated species (marginally sig-

nificant interaction; Fig. 4A, Table 2). According to the

second model, the proportion of regional diversity in the

recipient island decreased with distance to source region

for smaller islands, but less so for the largest ones (slope:

20.072 per 100 km for an island of 1000 km2 versus

20.001 for an island of 150 000 km2; marginally signifi-

cant interaction, Fig. 4B and Table 2).

Floristic data

The number of species occurring in the five recipient

islands were 369–388 in East Greenland, 428–430 in Ice-

land, 180–181 in Svalbard, 282–293 in the Faroe Islands

and 65 in Jan Mayen [see Supporting Information—

Table S3]. There were 1, 7, 3, 2 and 0 endemic species

in the recipient islands, respectively. Thus, species

diversity showed the same overall pattern as the genetic

data, with highest species diversity and weakest founder

effect in larger islands, and lowest species diversity and

strongest founder effect in smaller islands (Fig. 3C,

Table 1).

Assuming that 92 % of the species colonized postgla-

cially, and using the average number of propagules per

species arriving to each recipient island from Table 1,

we estimated the following number of years between

each successful colonization event: East Greenland

3.3, Iceland 3.5, Svalbard 6.1, Faroe Islands 9.2 and

Jan Mayen 42.0. Similarly, using the number of species

per island (Fig. 2) and assuming that 92 % colonized

postglacially, the years between each successful spe-

cies establishment were: East Greenland 36.5, Iceland

32.9, Svalbard 54.2, Faroe Islands 49.5 and Jan Mayen

214.0.

All recipient islands showed high floristic similarity

with several potential source regions, but with a clear

east–west pattern (Fig. 2). For Iceland and the Faroe

Islands, the potential source regions showing highest

floristic similarities, Fennoscandia and Great Britain,

were also identified as source regions by the genetic

data. Svalbard had high floristic similarities with both

East Canada and Russia, whereas Russia was identified

as a major source region by the genetic data. For Jan

Mayen, highest floristic similarity waswith East Greenland

whereas the genetic data identified Iceland as the main

source region. For East Greenland, we found highest flor-

istic similarities to West Greenland, Canada and Scandi-

navia, highest proportion of shared genetic groups with

West Greenland, Svalbard and Iceland, whereas the

Figure 4. Proportion of regional genetic diversity found on islands relative to source region in relation to (A) size of the recipient island andmode

of pollination (open circles represent wind pollinated and black circles indicate insect pollinated) and (B) distance to source region and size of the

recipient island (increasing darkness reflects increasing island size).

AoB PLANTS www.aobplants.oxfordjournals.org & The Authors 2015 13

Alsos et al. — Long-distance plant dispersal

 at N
o
rsk

 In
stitu

tt fo
r N

atu
rfo

rsk
n
in

g
, L

ib
rary

 o
n
 M

ay
 2

9
, 2

0
1
5

h
ttp

://ao
b
p
la.o

x
fo

rd
jo

u
rn

als.o
rg

/
D

o
w

n
lo

ad
ed

 fro
m

 

http://aobpla.oxfordjournals.org/lookup/suppl/doi:10.1093/aobpla/plv036/-/DC1
http://aobpla.oxfordjournals.org/lookup/suppl/doi:10.1093/aobpla/plv036/-/DC1
http://aobpla.oxfordjournals.org/lookup/suppl/doi:10.1093/aobpla/plv036/-/DC1
http://aobpla.oxfordjournals.org/lookup/suppl/doi:10.1093/aobpla/plv036/-/DC1
http://aobpla.oxfordjournals.org/lookup/suppl/doi:10.1093/aobpla/plv036/-/DC1
http://aobpla.oxfordjournals.org/


assignment test suggest highest colonization rates from

the North Russia followed by West Greenland/Canada

(Fig. 2).

Discussion

We have presented the first comprehensive study of LDD

to oceanic islands based on combined population genetic

and floristic similarity analyses. We show that the relative

intensity of the founder effect is similar at the level of spe-

cies and genes, and broadly corresponds to the predic-

tions of the Island Equilibrium Theory (MacArthur and

Wilson 1967). This indicates that species and genetic di-

versity on islands are shaped by the same processes.

Compared with the floristic data, the genetic data give

more detailed information particularly as it allows identi-

fication of source regions and estimating the number of

colonization events. The genetic data also allowed us to

quantify the founder effect in relation to island size, dis-

tance to source region and species traits.

Source regions and colonization patterns

We were able to identify postglacial dispersal routes for

most species (Figs 1 and 2), [see also Supporting Infor-

mation], and only find indications of in situ glacial persist-

ence in 2 of the 48 combinations of species and recipient

islands we analysed here (Table 1; Supporting Informa-

tion, Westergaard et al. 2010, 2011). It is still possible

that glacial survivor populations did exist but remained

undetected in our analyses because they were swamped

by postglacial immigrants; however, this scenario would

also involve postglacial LDD. Also, our revision of the

flora confirmed earlier analyses that the number of

endemic species is low on these islands (Brochmann

et al. 2003), indicating a young age of the local floras.

The differences between our floristic and genetic ana-

lyses with respect to relative importance of source

regions (Fig. 2) may have been affected by the selection

of species for the genetic analyses, and in the case of

East Greenland, also by the delimitation of this region

as the proportion of eastern and western species varies

(Elven et al. 2011). The genetic data were nevertheless

most informative; in cases where the same species

occurred in many regions, we could identify with reason-

able certainty which and how many of them actually

served as sources. We therefore give priority to the infer-

ences based on the genetic data in our summary of dis-

persal routes in the amphi-Atlantic region (Fig. 5).

If LDD is a mainly stochastic process, we would expect

that the closest potential source region served as the

most important one, as the probability of a dispersal

event decreases with distance (Nathan 2006; Nathan

et al. 2008). On the contrary, with a single exception

(the Faroe Islands) we found that the closest potential

source region was not the most important one in the

North Atlantic. The most extreme case was Iceland,

where the main source regions Scandinavia/Great Britain

are situated 2.8–4.5 times further away than East Green-

land. In addition, gene-based inference of the samemain

source regionwasmade for 18 of the 19 species analysed,

consistent with the floristic similarities (Fig. 2). Thus,

although the distance to source region has been found

previously to be the second most important factor in

determining species diversity on oceanic islands based

on stochasticity (after island size, Weigelt and Kreft

2013), our results suggest that other, deterministic

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2. Parameter estimates for the two most suitable LMMs with REML explaining the proportion of regional genetic diversity in the target

island compared with that in the source region (n ¼ 46) in function of mode of pollination (insect or wind; reference level is insect), the natural

logarithm of island size in square kilometres and distance tomain source region (parameter estimates per 100 km increase in distance). Species

was included as random effect and variance+ standard deviation is given.

Fixed effect Estimate CI SE

(1)

Regional diversity ≏ pollination × island size Intercept 20.052 0.185

Species 0 Log(size) 0.076 0.039 to 0.112 0.018

Pollination wind 0.912 0.050 to 1.754 0.416

Pollination wind × log(size) 20.073 20.157 to 0.005 0.039

(2)

Regional diversity ≏ island size × distance Intercept 1.129 0.459

Species 0.004+0.062 Log(size) 20.020 21.049 to 0.077 0.045

Distance (100 km) 20.170 20.318 to 20.018 0.072

Distance × size 0.014 20.0004 to 0.028 0.007
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factors also are important in determining source and dir-

ection of LDD events.

Dispersal vectors are an important deterministic factor

affecting LDD patterns (Nathan et al. 2008). Although it

has been claimed that North Atlantic floras are poorly

adapted for LDD based on analyses of propagule morph-

ology (Löve and Löve 1963), dispersal vectors such as

wind, sea water or birds may still lead to dispersal over

long distances, regardless of morphological dispersal

adaptations (Higgins et al. 2003; Nathan 2006). The

North Atlantic Current connects the Faroe Islands,

Iceland and Jan Mayen eastwards to Northwest Europe,

whereas the East Greenland Current connects East

Greenland, Iceland and Jan Mayen to North Greenland,

Svalbard and North Russia (Fig. 5). The similarity between

the main current pattern and the inferred dispersal

routes is intriguing (compare Fig. 5A and B), and

observations of driftwood also suggest dispersal along

these routes (Johansen and Hytteborn 2001). Analyses

of global patterns of species diversity on islands also indi-

cate that ocean currents can be important (Weigelt and

Kreft 2013). The dominant wind directions in the Atlantic

region largely follow the ocean currents (http://

go.grolier.com/atlas?id=mtlr089), making it hard to dis-

tinguish dispersal by wind from dispersal by ocean cur-

rents. The main bird migration routes connect Iceland

and the Faroe Islands to Great Britain (Löve and Löve

1963; Johansen and Hytteborn 2001). In contrast to the

sea currents, the bird migration routes connect East

Greenland to Northwest Europe (Lyngs 2003). Many dif-

ferent bird species may carry seeds (Ridley 1930; Nogales

et al. 2012). Especially Arctic geese migrate in huge num-

bers along these routes (Fig. 5C). Colonization of East

Greenland from Svalbard and North Russia may have

been caused by the only Arctic passerine bird, the snow

bunting (Fig. 5C), as it is more likely to carry seeds than

other birds in northern areas (Fridriksson 1970). Thus,

we consider it likely that several dispersal vectors have

contributed to colonization of the recipient islands ana-

lysed here. In addition, historical factors may have been

important. More speciesmight have been available to col-

onize from Europe during the last glaciation, where nu-

merous fossils indicate presence of a widespread and

well-developed Arctic flora during the LGM (Hultén and

Fries 1986). In contrast, no LGM fossils have been found

in South and East Greenland, where the possibility of gla-

cial survival is still disputed (Cremer et al. 2008; Böcher

2012). However, as the patterns of colonization we in-

ferred fit well with the main dispersal vectors, and as his-

torical factors cannot explain the inferred colonization of

East Greenland, our data support in the first place the im-

portance of dispersal vectors.

Factors determining the founder effect

As expected, we found fairly strong correlations among

the six measures of the founder effect (Fig. 3). Species

that traced back to several source regions, or for which

a high minimum number of propagules was inferred,

Figure 5. (A) Main (thick arrows) and additional (thin arrows) LDD routes of plants in the North Atlantic area inferred from genetic and floristic

data (cf. Fig. 1). (B) Sea surface circulation patterns in the North Atlantic area (blue: cold water, red: warm water). (C) Main migration routes for

geese species (thick blue arrows) and the supposedly efficient seed disperser Plectrophenax nivalis (snow bunting, thin red arrows) in the North

Atlantic area (based on Madsen et al. 1999; Lyngs 2003).
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experienced the least reduction in genetic diversity

following colonization. A similar pattern has been ob-

served for invasive species (Dlugosch and Parker 2008).

We also found a stronger genetic founder effect in smaller

islands, congruent with the patterns of species diversity

(Figs 2 and 3), in agreement with the species-area effect

as predicted by island theory (MacArthur and Wilson

1967; Triantis et al. 2012). This effect may be explained

by stochastic processes acting on small populations

(Frankham 2005) and/or a lower probability of small

islands to receive diaspores (Patiño et al. 2013). On Jan

Mayen, the active volcano may have amplified the initial

founder effect by exterminating plant populations. For

the small islands, the founder effect also increased with

distance to source region (Fig. 4 and Table 2). Similarly,

a stronger bottleneck has been observed on remote

Pacific Islands than on the Canary Islands (Whittaker

and Fernández-Palacios 2007). An increase in founder

effect with distance is expected from island theory, and

this effect is also expected to be stronger for small than

for large islands (Jaenike 1973).

In our analyses, the founder effect was somewhat

unexpectedly determined more by mode of pollination

than by adaptation to seed dispersal, whereas dispersal

distance was poorly related to adaptation to seed disper-

sal (Fig. 3) [see Supporting Information—Table S2].

In our previous study of Svalbard, we also found that

the intensity of the founder effect was only weakly

related to adaptation to dispersal (Alsos et al. 2007).

Thus, at dispersal distances of more than 280 km,

morphological adaptations to dispersal seem to be of

minor importance although they are important for overall

gene flow within species (Thiel-Egenter et al. 2009; Alsos

et al. 2012). At larger distances, other factors such as sto-

chasticity and dispersal vectors may be more important

for long-distant colonization (Higgins et al. 2003; Nathan

2006; Vargas et al. 2012).

Long-distance dispersal of pollen in wind-pollinated

speciesmay have caused a less severe founder effect com-

pared with insect-pollinated species (Figs 3 and 4). How-

ever, this appears unlikely since long-distance pollination

typically has been documented only over a few hundred

metres, rarely up to 160 km (Ashley 2010). The average

dispersal distance of 370–856 km to our five recipient

islands thus seems to make successful long-distance

pollination unlikely. Rather, since most insect-pollinated

species in our study are mixedmaters, and as lack of polli-

nators can shift mating towards self-pollination (Kevan

1972; Tikhmenev 1985), we suggest that the more severe

founder effect we found in insect-pollinated species may

have been caused by increased inbreeding during the

establishment phase. Whether the founder effect in gen-

eral is stronger affected by pollination mode than by

dispersal distance could be investigated by, for example,

comparing pollination ecology and inbreeding rates in

pioneer populations on islands or glacier forelands with

those of well-established sites at different distances.

The overall low founder effect and high species diver-

sity we observed in East Greenland and Iceland support

the hypothesis that LDD is frequent in Arctic plants

(Alsos et al. 2007), contrary to the suggestion that most

Arctic islands are unsaturated with species due to disper-

sal limitations (Hoffmann 2012). Also, rate of successful

species colonization found for these islands (one per

every 33–214 years) is high compared with, for example,

Azores (1 per 40 000 years, Schaefer 2003) and Hawaii

(1 per 20 000–250 000 years, Sohmer and Gustafson

1987). However, we also identified both island size and

colonization distance as limiting factors for LDD. Inde-

pendent of island size and distance (Figs 3 and 4), pollin-

ation mode was important for the extent of gene flow.

A better knowledge of how these factors affect the foun-

der effect can lead to more precise predictions about

range shifts in species with different traits as well as to

island (or fragmented habitats) of different sizes and

distances to source regions.

Conclusions

Our analyses of floristic and genetic patterns in the North

Atlantic area suggest that species diversity and genetic di-

versity may have been shaped to a large degree by similar

processes. The large-scale patterns we inferred from both

floristic and genetic data were congruent among many

species and consistent with likely dispersal vectors, indicat-

ing that deterministic factors are important in determining

LDD in addition to purely stochastic ones. This is supported

by the clear effect of island size on the intensity of the gen-

etic founder effect, mirrored by species diversity. As past

colonization typically occurred from more than one source

region, wemayexpect future colonization to be complex as

well, but to be governed to some extent by deterministic

processes. Assuming that dispersal vectors are constant,

the same main dispersal routes may be expected in the

future as in the past. However, the current reduction of

the extent of sea icemay limit dispersal, whereas anthropo-

genic dispersal may increase it. By taking into account the

main determinants of the genetic founder effect and the

complexity of dispersal routes whenmodelling future distri-

bution of species and genes, we may improve our ability to

forecast effects of the ongoing climate change.
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