
J Autom Reasoning (2019) 63:127–155
https://doi.org/10.1007/s10817-018-9467-3

Long-Distance Q-Resolution with Dependency Schemes

Tomáš Peitl1 · Friedrich Slivovsky1 · Stefan Szeider1

Received: 20 January 2017 / Accepted: 28 May 2018 / Published online: 9 June 2018
© The Author(s) 2018

Abstract Resolution proof systems for quantified Boolean formulas (QBFs) provide a for-
mal model for studying the limitations of state-of-the-art search-based QBF solvers that
use these systems to generate proofs. We study a combination of two proof systems sup-
ported by the solver DepQBF: Q-resolution with generalized universal reduction according
to a dependency scheme and long distance Q-resolution. We show that the resulting proof
system—which we call long-distance Q(D)-resolution—is sound for the reflexive resolution-
path dependency scheme. In fact, we prove that it admits strategy extraction in polynomial
time. This comes as an application of a general result, by which we identify a whole class
of dependency schemes for which long-distance Q(D)-resolution admits polynomial-time
strategy extraction. As a special case, we obtain soundness and polynomial-time strategy
extraction for long distance Q(D)-resolution with the standard dependency scheme. We fur-
ther show that search-based QBF solvers using a dependency scheme D and learning with
long-distance Q-resolution generate long-distance Q(D)-resolution proofs. The above sound-
ness results thus translate to partial soundness results for such solvers: they declare an input
QBF to be false only if it is indeed false. Finally,we report on experimentswith a configuration
of DepQBF that uses the standard dependency scheme and learning based on long-distance
Q-resolution.

Keywords QBF · Q-resolution · Dependency schemes · Strategy extraction

B Friedrich Slivovsky
fslivovsky@ac.tuwien.ac.at

Tomáš Peitl
tomas.peitl@ac.tuwien.ac.at

Stefan Szeider
stefan@ac.tuwien.ac.at

1 Algorithms and Complexity Group, TU Wien, 1040 Vienna, Austria

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10817-018-9467-3&domain=pdf

128 T. Peitl et al.

1 Introduction

Quantified Boolean formulas (QBFs) offer succinct encodings for problems from domains
such as formal verification, synthesis, and planning [5,13,16,30,38,43]. Although the combi-
nation of (more verbose) propositional encodings with SAT solvers is still the state-of-the-art
approach to many of these problems, QBF solvers are gaining ground. An arsenal of new
techniques has been introduced over the past fewyears [10,11,14,22,23,25,26,29,32,33,35],
and these advances in solver technology have been accompanied by the development of
a better understanding of the underlying QBF proof systems and their limitations [4,7–
9,12,18,27,42].

Search-based solvers implementing the QCDCL algorithm [15,46] represent one of the
principal state-of-the-art approaches in QBF solving. Akin to modern SAT solvers, these
solvers rely on successive variable assignments in combination with fast constraint propaga-
tion and learning. Unlike SAT solvers, however, search-based QBF solvers are constrained
by the variable dependencies induced by the quantifier prefix:1 while SAT solvers can assign
variables in any order, search-based QBF solvers can only assign variables from the leftmost
quantifier block that contains unassigned variables, since the assignment of a variable further
to the right might depend on the variable assignment to this block. In the most extreme case,
this forces solvers into a fixed order of variable assignments, rendering decision variable
heuristics ineffective.

The search-based solverDepQBFuses dependency schemes to partially bypass this restric-
tion [10,31]. Dependency schemes can sometimes identify pairs of variables as independent,
allowing the solver to assign them in any order. This gives decision heuristics more freedom
and results in increased performance [10].

While this provides a strong motivation to use dependency schemes, their integration with
QCDCLposes challenges of its own. Soundness of the proof system underlyingQCDCLwith
the standard dependency scheme as implemented in DepQBF was shown only recently [42],
and combining other state-of-the-art techniques with dependency schemes is often highly
nontrivial. In this paper, we focus on two such issues:

(a) Long-distance Q-resolution permits the derivation of tautological clauses in certain
cases [2,45,47]. This system can be used in constraint learning as an alternative
to Q-resolution, leading to fewer backtracks during search and, sometimes, reduced
runtime [19]. In addition, clause learning based on long-distanceQ-resolution is substan-
tially easier to implement. However, it is open whether QCDCL with learning based on
long-distance Q-resolution is sound when combined with known dependency schemes.

(b) For applications in verification and synthesis, it is not enough for solvers to decide
whether an input QBF is true or false—they also have to generate a certificate. Such
certificates can be efficiently constructed from Q-resolution [2] and even long-distance
Q-resolution proofs [3]. However, it is not clear whether this is possible for proofs
generated by QCDCL with the standard dependency scheme.

We define LDQ(D)-resolution as consisting of long-distance Q-resolution with a dependency
schemeD, and show that a search-basedQBF solver using dependency schemeDand learning
based on long-distance Q-resolution generates an LDQ(D)-resolution refutation whenever it
declares an input QBF to be false. This allows us to partially address (a) by showing that long-
distance Q-resolution combined with the reflexive resolution-path dependency scheme [42]
is sound. In fact, we prove that this proof system allows for certificate extraction in polyno-
mial time, thus resolving (b) as well. These results also hold for long-distance Q-resolution

1 We consider QBFs in prenex normal form.

123

Long-Distance Q-Resolution with Dependency Schemes 129

combined with the weaker standard dependency scheme.We thus provide a partial soundness
argument for QCDCL with these dependency schemes and learning based on long-distance
Q-resolution to the effect that “false” answers can be trusted.

Our proof relies on a familiar interpretation of Q-resolution refutations as winning strate-
gies for the universal player in the evaluation game [24]. We identify a natural property of
dependency schemes D that not only allows for the interpretation of an LDQ(D)-refutation
as a winning strategy for the universal player, but even implies polynomial-time certifi-
cate extraction from an LDQ(D)-refutation. We then show that the reflexive resolution path
dependency scheme in fact has this property.

One of our motivations for studying the combination of long-distance Q-resolution and
dependency schemes is that it is already supported by DepQBF. To complement our theoreti-
cal results, and to provide further motivation for resolving the question of soundness of “true”
answers, we performed experiments using a configuration ofDepQBFwith both features acti-
vated. These experiments show that performance with learning based on LDQ(D)-resolution
is on par with and—in some cases—even slightly better than the performance of DepQBF
with other configurations of constraint learning.

1.1 Organization

Section 2 establishes basic notions used throughout this paper. In Sect. 3, we review depen-
dency schemes and introduce the LDQ(D) proof system. In Sect. 4, we present a version
of QCDCL which combines dependency schemes with learning based on long-distance Q-
resolution and argue that this algorithm generates LDQ(D) proofs. Section 5 is split into two
parts: in the first part, we define a property of dependency schemes D and prove that it is suffi-
cient for soundness of LDQ(D); in the second part, we show that the reflexive resolution-path
dependency scheme has this property. In Sect. 6, we report on experiments with a version of
DepQBF that generates LDQ(Dstd)-proofs. In Sect. 7, we briefly discuss recently published
related work. We conclude in Sect. 8 with some open questions.

2 Preliminaries

2.1 Formulas and Assignments

A literal is a negated or unnegated variable. If x is a variable, we write x = ¬x and ¬x = x ,
and let var(x) = var(¬x) = x . We sometimes call literals x and¬x the positive and negative
polarity of variable x . If X is a set of literals, we write X for the set { x : x ∈ X }. A clause
is a finite disjunction of literals, and a term is a finite conjunction of literals. We call a
clause tautological if it contains the same variable negated as well as unnegated. A CNF
formula is a finite conjunction of non-tautological clauses. Whenever convenient, we treat
clauses and terms as sets of literals, and CNF formulas as sets of sets of literals. We write
var(S) for the set of variables occurring (negated or unnegated) in a clause or term S, that
is, var(S) = { var(�) : � ∈ S }. Moreover, we let var(ϕ) = ⋃

C∈ϕ var(C) denote the set of
variables occurring in a CNF formula ϕ.

A truth assignment (or simply assignment) to a set X of variables is a mapping τ : X →
{0, 1}. We write [X] for the set of truth assignments to X , and extend τ : X → {0, 1} to
literals by letting τ(¬x) = 1 − τ(x) for x ∈ X . Let τ : X → {0, 1} be a truth assignment.
The restriction C[τ] of a clause (term) S by τ is defined as follows: if there is a literal
� ∈ S ∩ (X ∪ X) such that τ(�) = 1 (τ(�) = 0) then S[τ] = 1 (S[τ] = 0). Otherwise,

123

130 T. Peitl et al.

S[τ] = S\(X ∪ X). The restriction ϕ[τ] of a CNF formula ϕ by the assignment τ is defined
ϕ[τ] = {C[τ] : C ∈ ϕ,C[τ] �= 1 }.
2.2 PCNF Formulas

A PCNF formula is denoted by Φ = Q.ϕ, where ϕ is a CNF formula and Q =
Q1X1 . . . QnXn is a sequence such that Qi ∈ {∀, ∃}, Qi �= Qi+1 for 1 ≤ i < n,
and the Xi are pairwise disjoint sets of variables. We call ϕ the matrix of Φ and Q
the (quantifier) prefix of Φ, and refer to the Xi as quantifier blocks. We require that
var(ϕ) = X1 ∪ · · · ∪ Xn and write var(Φ) = var(ϕ). We define a partial order <Φ on
var(ϕ) as x <Φ y ⇔ x ∈ Xi , y ∈ X j , i < j . We extend <Φ to a relation on literals in
the obvious way and drop the subscript whenever Φ is understood. For x ∈ var(Φ) we let
RΦ(x) = { y ∈ var(Φ) : x <Φ y } and LΦ(x) = { y ∈ var(Φ) : y <Φ x } denote the
sets of variables to the right and to the left of x in Φ, respectively. Relative to the PCNF
formula Φ, variable x is called existential (universal) if x ∈ Xi and Qi = ∃ (Qi = ∀). The
set of existential (universal) variables occurring in Φ is denoted var∃(Φ) (var∀(Φ)). The
size of a PCNF formula Φ = Q.ϕ is defined as |Φ| = ∑

C∈ϕ |C |. If τ is an assignment, then
Φ[τ] denotes the PCNF formula Q′.ϕ[τ], where Q′ is the quantifier prefix obtained from Q
by deleting variables that do not occur in ϕ[τ]. True and false PCNF formulas are defined in
the usual way.

2.3 Countermodels

LetΦ = Q.ϕ be a PCNF formula. A countermodel ofΦ is an indexed family { fu}u∈var∀(Φ) of
functions fu : [LΦ(u)] → {0, 1} such that ϕ[τ] = {∅} for every assignment τ : var(Φ) →
{0, 1} satisfying τ(u) = fu(τ |LΦ(u)) for u ∈ var∀(Φ).

Proposition 1 (Folklore) A PCNF formula is false if, and only if, it has a countermodel.

3 Dependency Schemes and LDQ(D)-Resolution

In this section, we introduce the proof systemLDQ(D), which combinesQ(D)-resolution [42]
with long-distance Q-resolution [2]. Q-resolution is a generalization of propositional reso-
lution to PCNF formulas [28]. Q-resolution is of practical interest due to its relation to
search based QBF solvers that implement Quantified Conflict Driven Constraint Learning
(QCDCL) [15,46]: the traces of QCDCL solvers correspond to Q-resolution proofs [19,21].
QCDCL—which will be described in more detail in Sect. 4—generalizes the well-known
DPLL procedure [17] from SAT to QSAT. In a nutshell, DPLL searches for a satisfying
assignment of an input formula by propagating unit clauses and assigning pure literals until
the formula cannot be simplified any further, at which point it picks an unassigned variable
and branches on the assignment of this variable. Any of the remaining variables can be chosen
for assignment, but the order of assignment can have significant effects on the runtime. Mod-
ern conflict driven clause learning (CDCL) SAT solvers derived from the DPLL algorithm
use sophisticated heuristics to determine what variable to assign next [34].

In QCDCL, the quantifier prefix imposes constraints on the order of variable assignments:
a variable may be assigned only if it occurs in the leftmost quantifier block with unas-
signed variables. Often, this is more restrictive than necessary. For instance, variables from
disjoint subformulas may be assigned in any order. Intuitively, a variable can be assigned

123

Long-Distance Q-Resolution with Dependency Schemes 131

as long as it does not depend on any unassigned variable. This is the intuition underlying
a generalization of QCDCL implemented in the solver DepQBF [10,31]. DepQBF uses a
dependency scheme [39] to compute an overapproximation of variable dependencies. Depen-
dency schemes are mappings that associate every PCNF formula with a binary relation on
its variables that refines the order of variables in the quantifier prefix.2

Definition 1 (Dependency Scheme) A dependency scheme is a mapping D that associates
each PCNF formula Φ with a relation DΦ ⊆ { (x, y) : x <Φ y } called the dependency
relation of Φ with respect to D.

The mapping which simply returns the prefix ordering of an input formula can be thought of
as a baseline dependency scheme:

Definition 2 (Trivial Dependency Scheme) The trivial dependency scheme Dtrv associates
each PCNF formula Φ with the relation Dtrv

Φ = { (x, y) : x <Φ y }.
DepQBFuses a dependency relation to determine the order inwhichvariables canbe assigned:
if y is a variable and there is no unassigned variable x such that (x, y) is in the dependency
relation, then y is considered ready for assignment. DepQBF also uses the dependency
relation to generalize the ∀-reduction rule used in clause learning [10]. As a result of its use
of dependency schemes, DepQBF generates proofs in a generalization of Q-resolution called
Q(D)-resolution [42], a proof system that takes a dependency scheme D as a parameter.

Dependency schemes can be partially ordered based on their dependency relations: if the
dependency relation computed by a dependency scheme D1 is a subset of the dependency
relation computed by a dependency scheme D2 for each PCNF formula, then D1 is more
general than D2. The more general a dependency scheme, the more freedom DepQBF has in
choosing decision variables. Currently, (aside from the trivial dependency scheme) DepQBF
supports the so-called standard dependency scheme [39].3 We will work with the more
general reflexive resolution-path dependency scheme [42], a variant of the resolution-path
dependency scheme [41,44]. This dependency scheme computes an overapproximation of
variable dependencies based on whether two variables are connected by a (pair of) resolution
path(s).

Definition 3 (Resolution Path) Let Φ = Q.ϕ be a PCNF formula and let X be a set of
variables. A resolution path (from �1 to �2k) via X (inΦ) is a sequence �1, . . . , �2k of literals
satisfying the following properties:

1. For all i ∈ [k], there is a Ci ∈ ϕ such that �2i−1, �2i ∈ Ci .
2. For all i ∈ [k], var(�2i−1) �= var(�2i).
3. For all i ∈ [k − 1], {�2i , �2i+1} ⊆ X ∪ X .
4. For all i ∈ [k − 1], �2i = �2i+1.

If π = �1, . . . , �2k is a resolution path in Φ via X , we say that �1 and �2k are connected in
Φ (with respect to X). For every i ∈ {1, . . . , k − 1} we say that π goes through var(�2i).

One can think of a resolution path as a potential chain of implications: if each clause Ci

contains exactly two literals, then assigning �1 to 0 requires setting �2k to 1. If, in addition,
there is such a path from �1 to �2k , then �1 and �2k have to be assigned opposite values.
Accordingly, the resolution path dependency scheme identifies variables connected by a pair
of resolution paths as potentially dependent on each other.

2 The original definition of dependency schemes [39] is more restrictive than the one given here, but the
additional requirements are irrelevant for the purposes of this paper.
3 Strictly speaking, it uses a refined version of the standard dependency scheme [31, p. 49].

123

132 T. Peitl et al.

Fig. 1 Derivation rules of LDQ(D)-resolution for a PCNF formula Φ = Q.ϕ

Definition 4 (Dependency Pair) Let Φ be a PCNF formula and x, y ∈ var(Φ). We say
{x, y} is a resolution-path dependency pair of Φ with respect to X ⊆ var∃(Φ) if at least one
of the following conditions holds:

– x and y, as well as ¬x and ¬y, are connected in Φ with respect to X .
– x and ¬y, as well as ¬x and y, are connected in Φ with respect to X .

Definition 5 The reflexive resolution-path dependency scheme is the mapping Drrs that
assigns to each PCNF formula Φ = Q.ϕ the relation Drrs

Φ = { x <Φ y : {x, y} is a
resolution-path dependency pair in Φ with respect to RΦ(x)\var∀(Φ) }.
Both Q-resolution and Q(D)-resolution only allow for the derivation of non-tautological
clauses, that is, clauses that do not contain a literal negated as well as unnegated. Long-
distance Q-resolution is a variant of Q-resolution that admits tautological clauses in certain
cases [2]. Variants of QCDCL that allow for learned clauses to be tautological [45,47] have
been shown to generate proofs in long-distance Q-resolution [19].

In long-distance Q-resolution, when a tautological clause is created by resolution, a vari-
able that appears in both polaritiesmust be to the right of the pivot variable.We generalize this
by requiring that the pivot be independent of a tautological variable to obtain long-distance
Q(D)-resolution (LDQ(D)-resolution). The derivation rules of LDQ(D)-resolution are shown
in Fig. 1.4 Here, as in the rest of the paper, D denotes an arbitrary dependency scheme.

A derivation in a proof system consists of repeated applications of the derivation rules to
derive a clause from the clauses of an input formula. Here, derivations will be represented
by node-labeled directed acyclic graphs (DAGs). More specifically, we require these DAGs
to have a unique sink (that is, a node without outgoing edges) and each of their nodes to have
at most two incoming edges. We further assume an ordering on the in-neighbors (or parents)
of every node with two incoming edges—that is, each node has a “first” and a “second”
in-neighbor. Referring to such DAGs as proof DAGs, we define the following two operations
to represent resolution and ∀-reduction:
1. If � is a literal andP1 andP2 are proof DAGs with distinct sinks v1 and v2, thenP1��P2

is the proof DAG consisting of the union of P1 and P2 along with a new sink v that has

4 The resolution rule as defined here is more general than the one considered in an earlier version of this
paper [36], in that we admit complementary universal literals to be “merged” as long as the pivot is independent
according toD (rather thanDtrv). This definition—whichwe is required to capture proofs generatedbyDepQBF
(see Example 1 in Sect. 4)—was proposed in (independent) work by Beyersdorff and Blinkhorn [6].

123

Long-Distance Q-Resolution with Dependency Schemes 133

two incoming edges, the first one from v1 and the second one from v2. Moreover, if C1

is the label of v1 in P1 and C2 is the label of v2 in P2, then v is labeled with the clause
(C1\{�}) ∪ (C2\{�}).

2. If u is a variable and P is a proof DAG with a sink w labeled with C , then P − u denotes
the proof DAG obtained from P by adding an edge from w to a new node v such that v
is labeled with C\{u,¬u}.

Definition 6 (Derivation) An LDQ(D)-resolution derivation (LDQ(D)-derivation for short)
of a clause C from a PCNF formula Φ = Q.ϕ is a proof DAG P satisfying the following
properties.

– Source nodes are labeled with input clauses from ϕ.
– If a node with label C has parents labeled C1 and C2 then C can be derived from C1 and

C2 by (long-distance) resolution.
– If a node labeled with a clause C has a single parent with label C ′ then C can be derived

from C ′ by ∀-reduction with respect to the dependency scheme D.

We refer to these nodes as input nodes, resolution nodes, and ∀-reduction nodes, respectively.
Let P be an LDQ(D)-derivation from a PCNF formulaΦ. The (clause) label of the sink node
is called the conclusion of P , denoted Cl(P). If the conclusion of P is the empty clause then
we refer to P as an LDQ(D)-refutation of Φ. For a node v of P , the subderivation (of P)
rooted at v is the proof DAG induced by v and its ancestors in P . It is straightforward to
verify that the resulting proof DAG is again an LDQ(D)-derivation fromΦ. For convenience,
we will identify (sub)derivations with their sinks. The size of P , denoted |P|, is the total
number of literal occurrences in clause labels of P .

4 QCDCL with Dependency Schemes Generates LDQ(D)-Proofs

In this section, we present a version of the QCDCL algorithm that uses dependency
schemes [10,31] and performs constraint learning based on long-distance Q-resolution
[19,46].5 Generalizing an argument by Egly et al. [19], we will show that this algorithm
produces LDQ(D)-proofs when using a dependency scheme D.

Starting from an input PCNF formula Φ, QCDCL generates (“learns”) constraints—
clauses and terms—until it produces an empty constraint, at which point it returns true (if
the empty term is learned) or false (if the empty clause is learned).

One can think of QCDCL solving as proceeding in rounds. Along with a set of clauses and
terms, the solver maintains an assignment σ (the trail, which we will represent by a sequence
of literals in the order of their assignment). During each round, this assignment is extended
by quantified Boolean constraint propagation (QBCP) and—possibly—branching.

Quantified Boolean constraint propagation (with dependency scheme D) consists in the
exhaustive application of universal and existential reduction (relative to DΦ) in combination
with unit assignments.6 More specifically, QBCP reports a clause C as falsified if C[σ] �= 1
and universal reduction can be applied toC[σ] to obtain the empty clause. Dually, a term T is
considered satisfied if T [σ] �= 0 and T [σ] can be reduced to the empty term.A clauseC is unit
under σ if C[σ] �= 1 and universal reduction yields a clause C ′ = (�), for some existential
literal � such that var(�) is unassigned. Dually, a term T is unit under σ if T [σ] �= 0 and

5 The presentation is adapted from a recent paper on QCDCL with dependency learning [37].
6 For simplicity, we do not consider the pure literal rule as part of QBCP.

123

134 T. Peitl et al.

existential reduction can be applied to obtain a term T ′ = (�) containing a single universal
literal �. If C = (�) is a unit clause, then the assignment σ has to be extended by � in order
not to falsify C , and if T = (�) is a unit term, then σ has to be extended by � in order not
to satisfy T . If several clauses or terms are unit under σ , QBCP nondeterministically picks
one and extends the assignment accordingly. This is repeated until a constraint is empty or
no unit constraints remain.

If QBCP does not lead to an empty constraint, the assignment σ is extended by branching.
That is, the solver chooses an unassigned variable y such that every variable x with (x, y) ∈
DΦ is assigned, and extends the assignment σ by y or ¬y.

The resulting assignment can be partitioned into so-called decision levels. The decision
level of an assignment σ is the number of literals in σ that were assigned by branching. The
decision level of a literal � in σ is the decision level of the prefix of σ that ends with �. Note
that each decision level greater than 0 can be associated with a unique variable assigned by
branching.

Eventually, the assignment maintained by QCDCL must falsify a clause or satisfy a term.
When this happens (we call this a conflict), the solver proceeds to conflict analysis to derive
a learned constraint C . Initially, C is the falsified clause (satisfied term), called the conflict
clause (term). The solver finds the existential (universal) literal inC that was assigned last by
QBCP, and the antecedent clause (term) R responsible for this assignment. A new constraint
is derived by resolvingC and R and applying universal (existential) reduction (again, relative
to DΦ). This is done repeatedly until the resulting constraintC is asserting. A clause (term) S
is asserting if there is a unique existential (universal) literal � ∈ S with maximum decision
level (greater than zero) among literals in S, the corresponding decision variable is existential
(universal), and every universal (existential) variable y ∈ var(S) such that (y, var(�)) ∈ DΦ

is assigned at a lower decision level (an asserting constraint becomes unit after backtracking).
Once an asserting constraint has been found, it is added to the solver’s set of constraints.
Finally, QCDCL backtracks, undoing variable assignments until reaching a decision level
computed from the learned constraint.

Pseudocode for the main QCDCL loop is shown as Algorithm 1, and pseudocode for
conflict analysis is shown as Algorithm 2.We now formally state and prove a correspondence
between clauses learned by QCDCL and LDQ(D)-resolution.

Proposition 2 Every clause learned by Algorithm 1 given an input PCNF Φ can be derived
from Φ by LDQ(D)-resolution.

Proof We will show that each learned clause constructed during conflict analysis can be
derived by LDQ(D)-resolution from input clauses or previously learned clauses. In addition,
we prove an invariant saying that each such clauseC can be reduced to the empty clause under
the trail assignment restricted to variables up to and including the existential variable assigned
last among those inC . Formally, if �1 . . . �k is the trail and i = max{ j : � j ∈ C, 1 ≤ j ≤ k },
then the restricted trail is �1 . . . �i . If such an i does not exist—which can happen only if C
contains no existential variable—the restricted trail is empty. Let τ denotes the assignment
corresponding to the restricted trail. Wewant to show thatC[τ] simplifies to the empty clause
by ∀-reduction. The proof is by induction on the number of resolution operations performed
by Algorithm 2.

The base case with C being the conflict clause is trivial. For the inductive step, suppose
that C can be reduced to the empty clause under the restricted trail assignment τ = �1 . . . �i .
Thus �i ∈ C is the existential literal falsified last among literals in C and conflict analysis
would resolve C with the antecedent R of �i next. We have to show the resolvent satisfies
the above invariant and that this resolution operation is permissible in LDQ(D)-resolution.

123

Long-Distance Q-Resolution with Dependency Schemes 135

Algorithm 1 QCDCL with Dependency Scheme D

1: procedure solve(Φ)
2: compute DΦ

3: while true do
4: conflict = QBCP()

5: if conflict == none then
6: decide()

7: else
8: constraint, btlevel = analyzeConflict(conflict)
9: if isEmpty(constraint) then
10: if isTerm(constraint) then
11: return true

12: else
13: return false

14: end if
15: else
16: addLearnedConstraint(constraint)
17: backtrack(btlevel)
18: end if
19: end if
20: end while
21: end procedure

Algorithm 2 Conflict Analysis with Long-Distance Q-resolution
1: procedure analyzeConflict(conflict)
2: constraint = getConflictConstraint(conflict)
3: while not asserting(constraint) do
4: pivot = getPivot(constraint)
5: reason = getAntecedent(pivot)
6: constraint = resolve(constraint, reason, pivot)
7: constraint = reduce(constraint)
8: end while
9: btlevel = getBacktrackLevel(constraint)
10: return constraint, btlevel
11: end procedure

Let τ ′ = �1 . . . �i−1 denote the trail at the time when �i was propagated. Clause R is unit
under τ ′, that is, R[τ ′] reduces to (�i). In particular, we have τ ′(�) = 0 for every existential
literal � ∈ R\{�i } and every universal literal � ∈ R assigned by τ ′. Since C[τ] reduces to the
empty clause by assumption, we further must have τ(�) = 0 for every existential literal and
every assigned universal literal of C . We conclude that τ ′(�) = 0 for every existential literal
and every assigned universal literal in the resolvent C ′ = (C ∪ R)\{�i , �i }. This property is
clearly not affected by unassigning universal variables or unassigning existential variables
not occurring in C ′, so C ′ reduces to the empty clause under its corresponding restricted trail
assignment, proving that the invariant is preserved. Furthermore, it entails that any literal
� ∈ R such that � ∈ C must be universal and unassigned by τ ′. Since R[τ ′] can be reduced
to (�i) by ∀-reduction, we must have (var(�), var(�i)) /∈ DΦ for each such literal �, so C ′
can be derived from C and R in LDQ(D)-resolution. ��

As in the case of QCDCL without dependency schemes [19,21] an analogue of this result
can be proved for learned terms and a dual proof system (“Q-consensus”) that operates on
terms instead of clauses.

123

136 T. Peitl et al.

The proof of Proposition 2 uses the fact that two clauses C1 ∨ u ∨ e and C2 ∨ ¬u ∨ ¬e
can be resolved on variable e even if u < e as long as (u, e) /∈ DΦ . The following example
illustrates that this generalization of the resolution rule is necessary for LDQ(D)-resolution
to trace QCDCL with dependency schemes and long-distance Q-resolution.

Example 1 Consider the formula Φ = ∃z0∃z1∀x∃y∃z2∃z3∃a∃b.ϕ ∧ ψ , where

ϕ = (z1 ∨ x ∨ z2 ∨ a)
︸ ︷︷ ︸

C1

∧ (z1 ∨ y ∨ z2)︸ ︷︷ ︸
C2

∧ (x ∨ y ∨ z3 ∨ b)
︸ ︷︷ ︸

C3

∧ (z2 ∨ z0)︸ ︷︷ ︸
C4

∧ (z2 ∨ z0)︸ ︷︷ ︸
C5

∧ (y ∨ z3)︸ ︷︷ ︸
C6

,

and ψ consists of auxiliary clauses

ψ = (a) ∧ (b) ∧ (x ∨ a) ∧ (x ∨ b).

The clauses in ψ are there simply to enforce that a and b are set to true and (in conjunction
with ϕ) that (x, a), (x, b) ∈ Drrs

Φ . It is straightforward to check that the set of dependencies
computed by the reflexive resolution-path dependency scheme is

Drrs
Φ = {(z0, x), (z1, x), (x, a), (x, b)}.

That is, the dependency scheme identifies the syntactic dependencies (x, y), (x, z2), and
(x, z3) as spurious.

We now construct a possible trace of QCDCL on Φ with Drrs and learning based on
long-distance Q-resolution. At decision level 0 the unit clauses in ψ are propagated, setting
a = 1 and b = 1. This does not lead to further propagation and QCDCL proceeds with the

decision y
d= 0. Note that y can be assigned before x because (x, y) /∈ Drrs

Φ . This assignment
does not lead to any literals being propagated, so the algorithm makes another decision

z2
d= 0. Now clause C2 simplifies to the unit clause (z1) and z1 = 1 is propagated. Clause C1

only contains x under the resulting assignment and we have a conflict. Conflict analysis first
resolves clauses C1 and C2 to obtain the clause C12 = (x ∨ y∨ z2 ∨¬a). Variable a depends
on x , so ∀-reduction cannot be applied. Since z2 is the only variable from the second decision
level in clause C12 and z2 does not depend on x , C12 is asserting and the clause is learned
by QCDCL. Backtracking undoes the decision involving z2 and propagates z2 = 1 instead.
As a result, C4 simplifies to (z0), unit propagation assigns z0 = 1, and clause C5 is falsified.
Conflict analysis resolves C4 and C5 to derive the learned (unit) clause C45 = (z2), which
causes QCDCL to backtrack to decision level 0 and propagate z2 = 0. Now clause C12

simplifies to (x ∨ y). Since y is independent of x we can apply ∀-reduction to obtain the
unit clause (y) which propagates the assignment y = 1. Clause C6 in turn becomes unit and
propagates z3 = 0. As a result, clause C3 simplifies to (x) and reduces to the empty clause
by ∀-reduction. Conflict analysis resolves C3 and C6 so as to obtain the clause (x ∨ y ∨ b).
Variable b depends on x , so ∀-reduction cannot be applied. Next, clause (x∨ y∨b) is resolved
with C12 to derive (x ∨ x ∨ z2 ∨ a ∨ b). Note that this resolution step is permissible since
(x, y) /∈ Drrs

Φ . Further resolution steps involving unit clauses yield the clause (x ∨ x), which
can be reduced to the empty clause, so that QCDCL terminates with return value FALSE.

5 Soundness of and Strategy Extraction for LDQ(Drrs)

5.1 Polynomial-Time Strategy Extraction from LDQ(D)-Refutations

A PCNF formula can be associated with an evaluation game played between an existential
and a universal player. These players take turns assigning quantifier blocks in the order of

123

Long-Distance Q-Resolution with Dependency Schemes 137

the prefix. The existential player wins if the matrix evaluates to 1 under the resulting variable
assignment, while the universal player wins if thematrix evaluates to 0. One can show that the
formula is true (false) if and only if the existential (universal) player has a winning strategy
in this game, and this winning strategy is a (counter)model.

Goultiaeva et al. [24] proved that aQ-resolution refutation can be used to computewinning
moves for the universal player in the evaluation game. The idea is that universal maintains a
“restriction” of the refutation by the assignment constructed in the evaluation game, which
is a refutation of the restricted formula.

For assignments made by the existential player, the universal player only needs to consider
each instance of resolutionwhose pivot variable is assigned: one of the premises is not satisfied
and can be used to (re)construct a refutation.

When it is universal’s turn, the quantifier block for which she needs to pick an assignment
is leftmost in the restricted formula. This means that ∀-reduction of these variables is blocked
by any of the remaining existential variables and can only be applied to a purely universal
clause. In a Q-resolution refutation, these variables must therefore be reduced at the very
end, and because Q-resolution does not permit tautological clauses, only one polarity of each
universal variable from the leftmost block can appear in a refutation. It follows that universal
can maintain a Q-resolution refutation by assigning variables from the leftmost block in such
a way as to map the associated literals to 0, effectively deleting them from the remaining
Q-resolution refutation.

In this manner, the universal player can maintain a refutation until the end of the game,
when all variables have been assigned. At that point, a refutation consists only of the empty
clause, which means that the assignment chosen by the two players falsifies a clause of the
original matrix and universal has won the game.

Egly et al. [19] observed that this argument goes through even in the case of long-distance
Q-resolution, since a clause containing both u and ¬u for a universal variable u can only be
derived by resolving on an existential variable to the left of u, but no such existential variable
exists if u is from the leftmost block.

In this section, we will prove that this argument can be generalized to LDQ(Drrs)-
refutations. We illustrate this correspondence with an example:

Example 2 Consider the PCNF formula

Φ = ∃x ∀u ∃e, y (x ∨ u ∨ y) ∧ (x ∨ u ∨ y) ∧ (x ∨ y) ∧ (x ∨ e) ∧ (u ∨ y) ∧ (y ∨ e)

Figure 2 shows anLDQ(Drrs)-refutation ofΦ. The only universal variable isu, so a strategy for
the universal player in the evaluation game associated withΦ has to determine an assignment
to u given an assignment to x , the only (existential) variable preceding u. The figure illustrates
how to compute the assignment to u for the two possible assignments τ : {x} → {0, 1}
from the restriction of the refutation by τ . In both cases, only one polarity of u occurs
in the restricted refutation and therefore it is easy for universal to determine the correct
assignment. Notice that in one of the cases, a generalized ∀-reduction node remains present
in the restriction—this shows that we cannot limit ourselves to looking at the final reduction
step in the proof when looking for the variables to assign (as is the case with ordinary
Q-resolution refutations, cf. [24]).

The key property that allows universal to maintain a refutation in the above example is that
universal variables from the leftmost quantifier block may appear in at most one polarity. We
now show that this property is in fact sufficient for soundness of LDQ(D) when combined
with a natural monotonicity property of dependency schemes.

123

138 T. Peitl et al.

Fig. 2 An LDQ(Drrs)-refutation of the formula Φ from Example 2 (above) and two restrictions (below)

Definition 7 A dependency scheme D ismonotone if DΦ[τ] ⊆ DΦ for every PCNF formula
Φ and every assignment τ to a subset of var(Φ). We say that D is simple if, for every PCNF
formula Φ = ∀XQ.ϕ, every LDQ(D)-derivation P from Φ, and every universal variable
u ∈ X , u or u does not appear inP . A dependency scheme D is normal if it is both monotone
and simple.

As in the case of Q-resolution, universal’s move for a particular quantifier block can be
computed from the assignment corresponding to the previous moves and the refutation in
polynomial time. Since every polynomial-time algorithm can be implemented by a family of
polynomially-sized circuits, and because these circuits can even be computed in polynomial
time [1, p. 109], it follows that LDQ(D) admits polynomial-time strategy extraction when D
is normal (in “Appendix Appendix:”, we present an explicit construction with a more specific
bound on the runtime).

Theorem 1 Let D be a normal dependency scheme. There is a polynomial-time algorithm
that, given a PCNF formula Φ and an LDQ(D)-refutation of Φ, computes a countermodel
of Φ.

As an application of this general result, we will prove that the reflexive resolution-path
dependency scheme is normal in Sect. 5.2 below.

Theorem 2 Drrs is normal.

Corollary 1 There is a polynomial-time algorithm that, given a PCNF formula Φ and an
LDQ(Drrs)-refutation of Φ, computes a countermodel of Φ.

This result immediately carries over to the less general standard dependency scheme.

Corollary 2 There is a polynomial-time algorithm that, given a PCNF formula Φ and an
LDQ(Dstd)-refutation of Φ, computes a countermodel of Φ.

In combination with Proposition 1, these results imply soundness of both proof systems.

Corollary 3 The systems LDQ(Dstd) and LDQ(Drrs) are sound.

123

Long-Distance Q-Resolution with Dependency Schemes 139

5.2 The Reflexive Resolution-Path Dependency Scheme is Normal

In order to prove Theorem 2 and show that Drrs is normal, we will need some insight into
the relationship between resolution paths and LDQ(Drrs)-derivations. For a formula Φ and
a universal literal u, we will denote by Tu(Φ) the set of existential literals e such that u < e
and such that e is reachable from u by a resolution path via existential variables to the right
of u in Φ.

Lemma 1 LetΦ = ∀XQ.ϕ be a PCNF formula and let u be a universal literal with var(u) ∈
X. Let C1,C2 ∈ ϕ be clauses such that for some existential literal x, x ∈ C1 and x ∈ C2,
and let C = C1 ∪ C2\{x, x}. Then Tu(Φ) = Tu(Q.ϕ ∪ {C}).
Proof Let Φ ′ = Q.ϕ ∪ {C}. Of course, by adding clauses to a formula, we preserve all
existing resolution paths, so Tu(Φ) ⊆ Tu(Φ ′). We will prove that the opposite inclusion
holds as well. Let e ∈ Tu(Φ ′) and let π be a resolution path in Φ ′ certifying this. If π is also
a resolution path in Φ, we are done. If it is not, it must be because it performs a C-transition,
namely it contains two consecutive literals l1, l2 such that var(l1) �= var(l2), l1, l2 ∈ C , but
{l1, l2} � C1 and {l1, l2} � C2. In this case, without loss of generality, we have l1 ∈ C1 and
l2 ∈ C2. Let π1 be the prefix of π up to and including l1 and π2 be the suffix of π starting with
l2. Let π ′ be the concatenation of π1, x , x , and π2. It is clearly a valid resolution path and it
uses one fewer C-transitions than π . Iterating this process, we can remove all C-transitions
from π to obtain a resolution path inΦ. The resulting resolution path has the same endpoints
and therefore certifies that e ∈ Tu(Φ). ��

The previous lemma implies that when considering reachability from an outermost uni-
versal literal in a formula Φ, we can use clauses derived from Φ by LDQ(Drrs)-resolution
as well. Indeed, adding clauses produced by the resolution rule does not change the set of
reachable literals by Lemma 1, and adding clauses produced by universal reduction clearly
does not even create new resolution paths. Particularly, if two literals ever appear together in a
derived clause, there is a resolution path between them. This is summarized by the following
corollary.

Corollary 4 Let P be an LDQ(Drrs)-derivation from a PCNF formula Φ = ∀XQ.ϕ and let
u ∈ X, u ∈ Cl(P). Then for all existential literals e ∈ Cl(P), there is a resolution path from
u to e in Φ.

Asafirst step towards provingTheorem2,wewill prove that both polarities of anoutermost
universal literal cannot appear together in a single clause of a derivation.

Lemma 2 Let P be an LDQ(Drrs)-derivation from a PCNF formula Φ = ∀XQ.ϕ and let
u ∈ X. Then u /∈ Cl(P) or ¬u /∈ Cl(P).

Proof Towards a contradiction, suppose u,¬u ∈ Cl(P). Since input clauses do not contain
both polarities of any literal, there must be a resolution step inside the derivation, which
merges u and ¬u into one clause. Let P ′ = P1 �x P2 be such a step. Then, without loss of
generality, x, u ∈ Cl(P1) and ¬x,¬u ∈ Cl(P2) and by Corollary 4, there is a resolution
path from u to x and from ¬u to ¬x , i.e. (u, x) ∈ Drrs

Φ . However, if x depends on u, opposite
polarities of u cannot be merged in a resolution step with the pivot x , a contradiction. ��
We will further assume that the derivation considered in the proof of Theorem 2 is in the
normal form given by the following lemma.

123

140 T. Peitl et al.

Fig. 3 Shape of the derivation
constructed in the proof of
Theorem 2

Lemma 3 LetP be an LDQ(Drrs)-derivation from a PCNF formulaΦ = ∀XQ.ϕ, let u ∈ X
be a universal variable such that both u and ¬u appear in P , and let Y = var∃(Φ). There
exists anLDQ(Drrs)-derivationP ′ from aPCNF formulaΦ ′ = ∀u∃Y.ϕ′ such thatP ′ contains
both u and ¬u but only ∀-reduction steps with respect to one polarity of u.

Proof Let ϕ′ be the result of removing all universal variables except u from ϕ. Removing
universal variables does not introduce new resolution paths, so Drrs

Φ ′ ⊆ Drrs
Φ . The derivationP ′

can be obtained from P in the following way. We first delete all occurrences of universal
variables other than u from P , along with ∀-reduction steps involving such variables. The
result is an LDQ(Drrs)-derivation from Φ ′, and it still contains both u and ¬u. Next, we
choose a subderivation containing both u and ¬u such that none of its proper subderivations
contains both literals. By Lemma 2, the conclusion C of this derivation can contain at most
one of u and ¬u. If u ∈ C we omit all ∀-reduction steps involving u. Otherwise, we omit all
∀-reduction steps involving ¬u. This yields the desired LDQ(Drrs)-derivation P ′ from Φ ′. ��

Using Lemmas 2 and 3, we can proceed to finish the proof of Theorem 2.

Proof of Theorem 2 Towards a contradiction, consider an LDQ(Drrs)-derivation from a for-
mulaΦ = ∀XQ.ϕ and let u ∈ X be such that both polarities of u occur in this derivation. Let
Y = var∃(Φ) and let P denote the simplified derivation given by Lemma 3. Assume without
loss of generality that P is a tree (any derivation can be turned into a tree-like derivation by
copying proof nodes), and that P does not contain ∀-reduction steps involving ¬u. Since ¬u
occurs in P but is not reduced,¬u must occur in the conclusion of P . Thus u cannot occur in
the conclusion by Lemma 2. Since u is present in the derivation P , this means there must be
a reduction step on u somewhere in P . As u is the only universal variable and we omitted all
reduction steps on ¬u, all reduction steps in P are on u and P must have the form depicted
in Fig. 3, where Pn = Pn+1 − u is a lowermost reduction step on u and the subsequent
resolutions are on pivots xn, . . . , x1. Let C0 = Cl(P),Ci = Cl(Pi),C ′

i = Cl(P ′
i). The

clauses C ′
1, . . . ,C

′
n,Cn+1 are derived by LDQ(Drrs)-resolution and by Lemma 1 we know

that we can use them to show resolution-path connections as if theywere input clauses. By the
transformations we considered we know that starting from an arbitrary LDQ(Drrs)-derivation
we can obtain a valid LDQ(Drrs)-derivation in this form, so any contradiction we derive from
here means a contradiction with the assumption that an LDQ(Drrs)-derivation contains both
polarities of a universal variable from the outermost block, thus proving Theorem 2. With
that, we are ready to finish the proof.

We will prove that there is a resolution path from ¬u to u going through an existential
literal inCn+1, which is in contradiction with the soundness of reduction of u fromCn+1. Let
us consider open resolution paths, i.e. resolution paths without their final literal. If an open
resolution path ends in a literal � of clause C , we say that the path leads to the clause C . By

123

Long-Distance Q-Resolution with Dependency Schemes 141

induction on n, we will prove that there is an open resolution path from¬u which leads to the
clause Cn . If n = 1, we have the path ¬u,¬x1, x1. For n > 1, let π be the open path leading
to Cn−1 and let � be its last literal. Then either � ∈ Cn , in which case we have an open path
leading to Cn , or � ∈ C ′

n , in which case we have the open path π,¬xn, xn leading to Cn . An
open path that leads to Cn also leads to Cn+1, because those two clauses only differ in the
presence of u and therefore can be closed by the literal u to obtain the required resolution
path. ��

6 Experiments

To gauge the potential of clause learning based on LDQ(Dstd), we ran experiments with
the search-based solver DepQBF7 in version 5.0. By default, DepQBF supports proof gen-
eration only in combination with the trivial dependency scheme—in that case, it generates
Q-resolution or long-distanceQ-resolution proofs (depending onwhether long-distance reso-
lution is enabled).However, by uncommenting a few lines in the source code, proof generation
can also be enabled with the standard dependency scheme, and this option can even be com-
bined with long-distance resolution. This leads to the solver generating Q(Dstd)-resolution
or LDQ(Dstd)-resolution proofs (see Sect. 4).

We compared the performance of DepQBF in four configurations,8 each using a different
proof system for constraint learning:

1. Long-distance Q-resolution with ∀/∃-reduction according to Dstd (LDQD).
2. Long-distance Q-resolution with ordinary ∀/∃-reduction (LDQ).
3. Q-resolution with ∀/∃-reduction according to Dstd (QD).
4. Ordinary Q-resolution (Q).

These experimentswere performed on a clusterwith IntelXeonE5649 processors at 2.53GHz
running 64-bit Linux. We set time and memory limits of 900s and 4 GB, respectively.
Instances were taken from two tracks of the QBF Gallery 2014: the applications track con-
sisting of 6 instance families and a total of 735 formulas, and the QBFLib track consisting
of 276 formulas.

For our first set of experiments, we disabled dynamic QBCE (Quantified Blocked Clause
Elimination), a technique introduced with version 5.0 of DepQBF [32]. We further used
bloqqer9 (version 037) with default settings as a preprocessor. Since LDQ(Dstd) generalizes
both long-distance Q-resolution and Q(Dstd)-resolution, we were expecting a performance
increase with LDQ(Dstd)-learning compared to learning based on the other proof systems.
However, all four configurations showed virtually identical performance on both the appli-
cation and QBFlib benchmark sets in terms of total runtime and instances solved within the
time limit (see Table 1).

To get a more detailed picture, we broke down the results for the application track by
instance family, limiting ourselves to instances that were solved by at least one configuration.
The barplot in Fig. 4 shows that there are considerable differences in performance between
solver configurations for individual instances families, with each solver configuration being
outperformed by another configuration on at least one family.

7 http://lonsing.github.io/depqbf/.
8 As a sanity check, we verified that all configurations that were able to solve a particular instance returned
the same result.
9 http://fmv.jku.at/bloqqer/.

123

http://lonsing.github.io/depqbf/
http://fmv.jku.at/bloqqer/

142 T. Peitl et al.

Table 1 Solved instances,
solved true instances, solved false
instances, and total runtime in
seconds (including timeouts)
with preprocessing (but without
QBCE)

Configuration Solved True False Time

Application track

LDQD 377 186 191 343,455

LDQ 377 186 191 345,459

QD 377 183 194 343,928

Q 376 182 194 345,914

QBFLib track

LDQD 130 69 61 140,743

LDQ 131 69 62 141,646

QD 129 67 62 140,975

Q 127 65 62 142,679

0

50

100

150

bomb complexity dungeon hardness planning testing

Configuration

LDQ

LDQD

Q

QD

Fig. 4 Average runtime in seconds (y-axis) for instances from the application track for each instance family
(x-axis), by solver configuration (with preprocessing, but without dynamic QBCE). Here, we only considered
instances that were solved by at least one configuration

For our second set of experiments, we turned on dynamic QBCE. This led to a significant
performance increase both in terms of number of instances solved within the time limit and
total runtime for both benchmark sets, a result that is consistent with the findings in [32].
However, as far as the performance of LDQ(Dstd)-learning is concerned, the application and
QBFlib tracks differed significantly for this experiment. While LDQ(Dstd)-learning fared
worst among the configurations both with respect to instances solved and total runtime on
the application track, it was the best configuration for the QBFlib track in both respects (see
Table 2). Figure 5 shows that using the standard dependency scheme was beneficial both with
and without long-distance resolution for the QBFlib instances.

For our final set of experiments, we left dynamic QBCE enabled but disabled preprocess-
ing for the application track, as this was shown to lead to a performance increase in the case
of learning with ordinary Q-resolution [32]. Indeed, this resulted in a performance increase

123

Long-Distance Q-Resolution with Dependency Schemes 143

Table 2 Results with
preprocessing and dynamic
QBCE

Configuration Solved True False Time

Application track

LDQD 385 195 190 339,143

LDQ 388 201 187 336,739

QD 392 201 191 334,965

Q 389 198 191 337,141

QBFLib track

LDQD 145 75 70 132,567

LDQ 133 64 69 141,682

QD 137 70 67 134,150

Q 129 62 67 142,399

0

250

500

750

051001050

Configuration

LDQ

LDQD

Q

QD

Fig. 5 Solved instances from the QBFLib track (x-axis) sorted by runtime (y-axis), by solver configuration
(with preprocessing and dynamic QBCE)

Table 3 Results for the
application track with QBCE (but
without preprocessing)

Configuration Solved True False Time

LDQD 440 223 217 287,012

LDQ 435 223 212 291,574

QD 440 225 215 291,661

Q 437 221 216 337,141

across the board (see Table 3). Moreover, LDQ(Dstd)-learning was the best configuration in
terms of instances solved (on par with Q(Dstd)-resolution) as well as in terms of overall run-
time. Moreover, LDQ(Dstd)-learning was the best configuration in terms of instances solved
(on par with Q(Dstd)-resolution) as well as in terms of overall runtime.

123

144 T. Peitl et al.

7 Related Work

QCDCL with learning based on long-distance Q-resolution was first described by Zhang
and Malik [45]. They presented an argument for the soundness of using tautological clauses
(respectively, contradictory terms) within their algorithm but did not study long-distance Q-
resolution as a proof system. Lacking a sound theoretical foundation, the use of tautological
clauses in QCDCL was abandoned in favour of more complicated methods for constraint
learning that avoid their generation [20,21,33].

Interest in long-distance Q-resolution was renewed when Balabanov and Jiang [2] intro-
duced the proof system we presented in Sect. 3 (restricted to the trivial dependency scheme)
and proved its soundness. Egly et al. [19] showed that a family of formulas known to be
hard for Q-resolution [28] admits short long-distance Q-resolution proofs. They also demon-
strated that QCDCL with learning based on long-distance resolution generates long-distance
Q-resolution proofs and presented a new version of DepQBF that implements this algo-
rithm. Finally, they showed that a long-distance Q-resolution proof can be interpreted as
a winning strategy in the evaluation game associated with a QBF, generalizing a result by
Goultiaeva et al. [24]. While these results established a solid theoretical framework for the
use of long-distance Q-resolution within QCDCL they did not provide an intuitive account of
the semantics of individual tautological clauses. Such an account was subsequently presented
by Balabanov et al. [3], who showed that tautological literals u,¬u ∈ C can be interpreted as
proxies for “phase functions” that determine whether a variable or its negation is present in
clauseC based on the values assigned to pivot variables appearing in the derivation ofC . The
authors used this interpretation to generalize the linear-time strategy extraction algorithm of
Balabanov and Jiang [2] to long-distance Q-resolution proofs.

Recently and independently of this work, Beyersdorff and Blinkhorn investigated the
soundness of Q-resolution proof systems parameterized by dependency schemes [6]. They
define a property of dependency schemes D—full exhibition—which ensures that a certain
version of long-distanceQ(D)-resolution is sound, and show that the reflexive resolution-path
dependency scheme has that property.

In a nutshell, a dependency scheme D is fully exhibited if every true QBF Φ has a
model { fe}e∈var∃(Φ) such that fe may only depend on a universal variable u if (u, e) ∈ DΦ

(suchmodels have elsewhere been referred to as D-models [40]). It is fairly straightforward to
show that Q(D)-resolution is sound if D has this property, but generalizing this result to proof
systems with long-distance resolution presents a challenge. Beyersdorff and Blinkhorn show
that full exhibition is sufficient for soundness of a restricted version of LDQ(D)-resolution,
where complementary universal literals that are “merged” by resolution must be annotated
with the (existential) pivot variable, and universal reduction can be applied only if every
existential variable occurring in the premise or the annotation of a universal variable is
independent of the universal variable to be reduced. However, it is uncertain whether proofs
generated by DepQBF with LDQ(D)-learning satisfy this additional restriction.

How full exhibition relates to our normality property is not entirely clear. Beyersdorff and
Blinkhorn prove that full exhibition is not sufficient for soundness of LDQ(D)-resolution as
defined here. In combination with Theorem 1, this shows that dependency schemes that are
fully exhibited need not be normal. Whether there are normal dependency schemes that are
not fully exhibited, on the other hand, remains open. Indeed, there is some evidence to the
effect that normality entails full exhibition: consider a dependency scheme D that is not fully
exhibited, and let Φ = ∀uQ.ϕ be a true QBF that does not have a D-model. Suppose u is
the only universal variable of Φ. In this restricted case, the (non-)existence of a D-model

123

Long-Distance Q-Resolution with Dependency Schemes 145

can be expressed as a QBF Ψ by simply shifting existentials independent of u to the left.
Because Φ does not have a D-model, Ψ must be false and admit a Q-resolution refutation P ,
which is also an LDQ(D)-refutation of Φ. Because Φ is true, LDQ(D)-resolution must be
unsound and so D cannot be normal by Theorem 1. Obviously, the assumption that u is the
only universal variable of Φ is very restrictive, but since we can suppose that D is monotone
(recall that a dependency scheme is normal if it is both simple and monotone), there is hope
that the argument for an arbitrary QBF can be reduced to this case by instantiating with a
suitable variable assignment.

8 Discussion

The results of Sects. 4 and 5 establish a partial soundness proof of QCDCL with learning
based on LDQ(Dstd): we now know that we can trust such a solver when it outputs “false”.
To prove that “true” answers can be trusted as well, one has to show soundness of quantified
term resolution (Q-consensus) when combined with the standard dependency scheme and
long-distance resolution. The reason this does not follow from the results proved here is
that they rely on a correspondence of Q-resolution derivations with dependency-inducing
resolution paths that is not immediate for terms generated from an input PCNF: there is a
correspondence of Q-consensus derivations with dual “resolution paths” that connect such
terms, but these “resolution paths” do not induce resolution-path dependencies in the input
PCNF.

The experiments in Sect. 6 indicate that we should not expect significant performance
gains when switching from learning with Q(Dstd)-resolution to LDQ(Dstd). This is in spite
of the fact that, from a purely theoretical perspective, LDQ(Dstd) is a stronger proof system:
a well-studied class of QBFs introduced by Kleine Büning, Karpinski, and Flögel requires
exponentially-sized Q-resolution proofs [28] but admits short long-distance Q-resolution
refutations [19], and since the standard dependency scheme does not offer any improvement
over trivial dependencies on these formulas (see [12]) we obtain an exponential separation
of LDQ(Dstd)-resolution from Q(Dstd)-resolution. From a practical point of view, the main
benefit of using LDQ(Dstd)-resolution over Q(Dstd)-resolution is that conflict analysis is
much simpler (cf. [19]). A learned constraint can be obtained from a conflict simply by
resolving variables in the reverse order of their propagation (see Sect. 4). Methods that avoid
the generation of tautological clauses (contradictory terms) during learning are significantly
more involved [20,21,33].

We have shown that LDQ(Drrs)-refutations allow for polynomial-time strategy extraction.
In practice, the corresponding algorithm generates circuits that are frequently larger by an
order ofmagnitude than the refutations provided as input. It is unclear whether this increase in
size can be avoided by careful engineering alone or only by using a different approach. Faster
(linear time) strategy extraction algorithms are known for “ordinary” Q-resolution and long-
distanceQ-resolution [2,3]. Unfortunately, their underlying idea of setting universal variables
so as to falsify the premise of some ∀-reduction step no longer works when dependency
schemes enter the mix: generalized ∀-reduction may remove a universal variable u even in
the presence (in the premise) of an existential variable e such that u < e and the universal
player can only be sure to falsify the premise if the e-literal is false, but she does not know
the value of e at the time of assigning u. We believe that developing linear-time strategy
extraction algorithms for Q(D)-resolution or LDQ(D)-resolution is going to require a better

123

146 T. Peitl et al.

understanding of the power of these proof systems vis-à-vis Q-resolution and long-distance
Q-resolution [12].

Acknowledgements Open access funding provided byAustrian Science Fund (FWF).Wewould like to thank
Florian Lonsing for helpful discussions and for pointing out how to configure DepQBF so that it generates
LDQ(Dstd) proofs. This research was partially supported by Austrian Science Fund (FWF) Grants P27721
and W1255-N23.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

Appendix: Proof of Theorem 1

We begin by formally defining the “restriction” of an LDQ(D)-derivation by an assignment,
which is a straightforward generalization of this operation forQ-resolution derivations [24].10

The result of restricting a derivation is either a derivation or the object �, which can be
interpreted as representing the tautological clause containing every literal. Accordingly, we
stipulate that � ∈ � for every literal �.

Definition 8 (Restriction) Let Φ be a PCNF formula and let P be an LDQ(D)-derivation
fromΦ. Further, let X ⊆ var(Φ) and let τ : X → {0, 1} be a truth assignment. The restriction
of P by τ , in symbols P[τ], is defined as follows.
1. If P is an input node there are two cases. If Cl(P)[τ] = 1 then P[τ] = �. Otherwise,

P[τ] is the proof DAG consisting of a single node labeled with Cl(P)[τ].
2. If P = P1 �� P2, that is, if P is a resolution node, we distinguish four cases:

(a) If � /∈ Cl(P1[τ]) then P[τ] = P1[τ].
(b) If � ∈ Cl(P1[τ]) and � /∈ Cl(P2[τ]) then P[τ] = P2[τ].
(c) If � ∈ Cl(P1[τ]), � ∈ Cl(P2[τ]), and P1[τ] = � or P2[τ] = �, we let P[τ] = �.
(d) If � ∈ Cl(P1[τ]), � ∈ Cl(P2[τ]), P1[τ] �= �, and P2[τ] �= �, we define P[τ] =

P1[τ] �� P2[τ].
3. If P = P ′ − u, that is, if P is a ∀-reduction node, we distinguish three cases:

(a) If P ′[τ] = � then P[τ] = �.
(b) If P ′[τ] �= � and u /∈ var(Cl(P ′[τ])) then P[τ] = P ′[τ].
(c) If P ′[τ] �= � and u ∈ var(Cl(P ′[τ])) then P[τ] = P ′[τ] − u.

If D is a monotone dependency scheme, LDQ(D)-refutations are preserved under restriction
by an existential assignment (cf. [24, Lemma 4]). This is stated in the following lemma,which
can by proved by a straightforward induction on the structure of the LDQ(D)-derivation.

Lemma 4 Let D be a monotone dependency scheme, let P be an LDQ(D)-derivation from
a PCNF formula Φ, let E ⊆ var∃(Φ), and let τ : E → {0, 1} be an assignment. If P[τ] =
� then Cl(P)[τ] = 1. Otherwise, P[τ] is an LDQ(D)-derivation from Φ[τ] such that
Cl(P[τ]) ⊆ Cl(P)[τ].
10 Our definition slightly differs from the original for the resolution rule: if restriction removes the pivot
variable from both premises, we simply pick the (restriction of the) first premise as the result (rather than the
clause containing fewer literals). This simplifies the certificate extraction argument given below.

123

http://creativecommons.org/licenses/by/4.0/

Long-Distance Q-Resolution with Dependency Schemes 147

Proof The proof is by induction on the structure of P .

1. If P is an input node then P[τ] = � iff Cl(P)[τ] = 1 and Cl(P[τ]) = Cl(P)[τ]
otherwise, so the statement holds trivially.

2. If P = P1 �� P2 is a resolution node we distinguish four cases:

(a) If � /∈ Cl(P1[τ]), then P[τ] = P1[τ] and
Cl(P1[τ]) = Cl(P1[τ])\{�} ⊆ Cl(P1)[τ]\{�} ⊆ Cl(P)[τ],

where the first inclusion holds by induction hypothesis and the second inclusion
follows from the definition of the resolution rule.

(b) If � ∈ Cl(P1[τ]) and � /∈ Cl(P2[τ]) then P[τ] = P2[τ] and the statement follows
via a symmetric argument.

(c) If � ∈ Cl(P1[τ]), � ∈ Cl(P2[τ]), and P1[τ] = � or P2[τ] = � then we have
P[τ] = �. Assume without loss of generality that P1[τ] = �. Then Cl(P1)[τ] = 1
by induction hypothesis. Let �′ ∈ Cl(P1) be a literal such that τ(�′) = 1. We
distinguish two cases. If � �= �′ then �′ ∈ Cl(P) and Cl(P)[τ] = 1. Otherwise,
τ(�′) = τ(�) = 0, and we must have P2[τ] = � since � ∈ Cl(P2[τ]). By induction
hypothesis, there has to be another literal �′′ �= � such that �′′ ∈ Cl(P2) and τ(�′′) =
1. The literal �′′ is contained in Cl(P) as well, so Cl(P)[τ] = 1.

(d) If � ∈ Cl(P1[τ]), � ∈ Cl(P2[τ]),P1[τ] �= �, andP2[τ] �= �, thenP[τ] = P1[τ]��

P2[τ] and P[τ] �= �. By induction hypothesis, P1[τ] is an LDQ(D)-derivation
from Φ[τ] such that Cl(P1[τ]) ⊆ Cl(P1)[τ], and P2[τ] is an LDQ(D)-derivation
from Φ[τ] such that Cl(P2[τ]) ⊆ Cl(P2)[τ]. Monotonicity of D ensures that after
restriction, the resolution step is still sound and thus P[τ] is an LDQ(D)-derivation
from Φ[τ] as well and

Cl(P[τ]) = Cl(P1[τ] �� P2[τ])
= Cl(P1[τ]) ∪ Cl(P2[τ])\{�, �}
⊆ Cl(P1)[τ] ∪ Cl(P2)[τ]\{�, �} = Cl(P)[τ].

3. If P = P ′ − u is a reduction node, we have to distinguish two cases:

(a) If P ′[τ] = � then P[τ] = � by definition. By induction hypothesis Cl(P ′)[τ] = 1
and since τ does not assign u, we get Cl(P)[τ] = 1 as well.

(b) If P[τ] �= � then P ′[τ] �= � by definition of the restriction operation. By induc-
tion hypothesis, P ′[τ] is an LDQ(D)-derivation from Φ[τ] such that Cl(P ′[τ]) ⊆
Cl(P ′)[τ]. If u /∈ var(Cl(P ′[τ])) then P[τ] = P ′[τ] and the statement holds. Oth-
erwise, if u ∈ var(Cl(P ′[τ])) then P[τ] = P ′[τ] − u and thus

Cl(P[τ]) = Cl(P ′[τ])\{u,¬u}
⊆ Cl(P ′)[τ]\{u,¬u} = (Cl(P ′)\{u,¬u})[τ] = Cl(P)[τ],

where the last but one equality holds because τ does not assign u. To see thatP[τ] =
P ′[τ] − u is a valid ∀-reduction node, note that Cl(P ′[τ]) ⊆ Cl(P ′) by induction
hypothesis and observe that DΦ[τ] ⊆ DΦ . ��

Above, we argued that the universal player can use an LDQ(D)-refutation for a normal
dependency scheme D in order to compute winning moves in the evaluation game associated
with a PCNF formula and that this can be used to compute a countermodel of the formula
in polynomial time. We now prove this directly, by showing how to construct a circuit
implementing a countermodel from an LDQ(D)-refutation.

123

148 T. Peitl et al.

We begin by describing auxiliary circuits simulating the restriction operation. Let Φ =
Q1X1 . . . Qk Xk .ϕ be a PCNF formula and let P be a refutation of Φ. For each quantifier
block Xi , each subderivation S of P , and each literal �, we will construct circuits topiS and
contains

i
S,� with inputs from X = ⋃

j<i X j such that, for every assignmentσ : X → {0, 1},
top

i
S [σ] = 1 ⇐⇒ S[σ] = � (1)

contains
i
S,�[σ] = 1 ⇐⇒ � ∈ Cl(S[σ]) (2)

We first describe our construction and then prove that it satisfies the above properties in
Lemma 5. Let S be an input node. We let

top
1
S :=

∨(
Cl(S) ∩ (X1 ∪ X1)

)
,

and define topiS for 1 < i ≤ k as

top
i
S := top

i−1
S ∨

∨(
Cl(S) ∩ (Xi ∪ Xi)

)
.

Moreover, for 1 ≤ i ≤ k we define containsiS,� as

contains
i
S,� =

{
1 if � ∈ Cl(S)\(X ∪ X),

top
i
S otherwise.

For non-input nodes, we proceed as follows. If S = S1 �q S2, we define topiS as

top
i
S = (contains

i
S1,q ∧ top

i
S2

) ∨ (contains
i
S2,q ∧ top

i
S1

),

and if S = S ′ − u, we let

top
i
S := top

i
S ′ .

For the containsiS,� circuit, we distinguish two cases. Let � be a literal and S a derivation.
If � /∈ Cl(S) we simply let

contains
i
S,� := top

i
S .

Otherwise, if � ∈ Cl(S), we have to consider two cases. First, if S = S1 �q S2, we let

contains
i
S,� =top

i
S ∨

(¬contains
i
S1,q ∧ contains

i
S1,�

) ∨
(contains

i
S1,q ∧ ¬contains

i
S2,q ∧ contains

i
S2,�

) ∨
(contains

i
S1,q ∧ contains

i
S2,q ∧ (contains

i
S1,�

∨ contains
i
S2,�

)).

Second, if S = S ′ − u, then

contains
i
S,� := contains

i
S ′,�.

To implement the winning strategy for universal sketched above, we further construct circuits
polarityS,u for each node S of P and each universal variable u ∈ var∀(Φ), such that, for
each assignment τ : LΦ(u) → {0, 1},

polarityS,u[τ] = 1 ⇐⇒ u occurs in S[τ]. (3)

123

Long-Distance Q-Resolution with Dependency Schemes 149

Let u ∈ Xi be a universal variable from the i th quantifier block. If S is an input node, we
simply define

polarityS,u := contains
i
S,u,

and if S = S ′ − u is a ∀-reduction node, we let

polarityS,u := polarityS ′,u .

If S = S1 �q S2, then

polarityS,u :=(¬contains
i
S1,q ∧ polarityS1,u) ∨

(contains
i
S1,q ∧ ¬contains

i
S2,q ∧ polarityS2,u) ∨

(contains
i
S1,q ∧ contains

i
S2,q ∧ (polarityS1,u ∨ polarityS2,u)).

Lemma 5 Let Φ = Q1X1 . . . Qk Xk .ϕ be a PCNF formula and let P be an LDQ(D)-
derivation from Φ. For each 1 ≤ i ≤ k, each literal �, every u ∈ var∀(Φ) ∩ Xi , and every
truth assignment σ : ⋃i−1

j=1 X j → {0, 1}, topiP satisfies (1), containsiP,� satisfies (2), and
polarityP,u satisfies (3).

Proof Let X = X1 ∪ · · · ∪ Xi−1. As (1) and (2) are related, we will prove them first. We will
use induction on the structure of P , with the induction hypothesis that (1) and (2) hold. The
inductive step will be carried out in two phases. In the first phase, we prove that (1) holds
and in the second phase we use this additional information to prove that (2) holds as well.

1. LetP be an input node. ByDefinition 8we haveP[σ] = � if, and only if,Cl(P)[σ] = 1.
Since σ only assigns variables in X , this is the case if, and only if, topiP [σ] = 1, so (1)
holds.

2. LetP = P1�q P2 such that (1) and (2) hold forP1 andP2. We distinguish several cases.

(a) q /∈ Cl(P1[τ]). Then P[τ] = P1[τ]. Since q /∈ Cl(P1[τ]), it cannot be the case
that P1[τ] = � and so P[τ] �= � as well. By the induction hypothesis, we have
contains

i
P1,q [τ] = 0 and also topiP1

[τ] = 0whichmeans topiP [τ] = 0 as required.
(b) q ∈ Cl(P1[τ]) and q /∈ Cl(P2[τ]). Then P[τ] = P2[τ]. Since q /∈ Cl(P2[τ]), we

cannot have P2[τ] = � and thus P[τ] �= � as well. By the induction hypothesis,
we have containsiP2,q [τ] = 0 and also top

i
P2

[τ] = 0 which means topiP [τ] = 0
as required.

(c) q ∈ Cl(P1[τ]) and q ∈ Cl(P2[τ]) and P1[τ] = � or P2[τ] = �. Then
P[τ] = � and by induction hypothesis, we have contains

i
P1,q [τ] = 1 as well

as contains
i
P2,q [τ] = 1, and top

i
P1

[τ] = 1 or top
i
P2

[τ] = 1. In any case,

top
i
P [τ] = 1.

(d) q ∈ Cl(P1[τ]) and q ∈ Cl(P2[τ]) and P1[τ] �= � and P2[τ] �= �. Then
P[τ] = P1[τ] �q P2[τ] �= �. By induction hypothesis, we have top

i
P1

[τ] = 0

and topiP2
[τ] = 0, which ensures topiP [τ] = 0.

3. Let P = P ′ − u. From the definitions, we can immediately see that P ′[τ] = � ⇐⇒
P[τ] = � and top

i
P ′ = top

i
P which proves (1).

We have proved that P[τ] = � ⇐⇒ top
i
P [τ] = 1, and it can be easily checked that, by

definition, topiP ⇒ contains
i
P,� for every literal �. Therefore, if P[τ] = �, (2) holds and

in the following, we can restrict ourselves to the cases when P[τ] �= �. Also, we can restrict

123

150 T. Peitl et al.

ourselves to the cases when � (the literal in question) actually belongs to Cl(P), because
otherwise containsiP,� = top

i
P and in that case (2) clearly holds.

1. Let P be an input node. We may assume P[τ] �= � and � ∈ Cl(P) by the above. By
definition, we can easily see that containsiP,�[τ] = 1 if, and only if, � ∈ Cl(P[τ]).

2. LetP = P1�q P2 such that (1) and (2) hold forP1 andP2. We distinguish several cases.

(a) q /∈ Cl(P1[τ]). By the induction hypothesis, we have containsiP1,q [τ] = 0. Also
P[τ] = P1[τ] and

� ∈ Cl(P[τ]) ⇐⇒ � ∈ Cl(P1[τ]) ⇐⇒ contains
i
P1,�

[τ],
where the second equivalence holds by induction hypothesis. Since we have
contains

i
P1,q [τ] = 0, we can write

contains
i
P1,�

[τ] ⇐⇒ ¬contains
i
P1,q [τ] ∧ contains

i
P1,�

[τ].
Because containsiP1,q [τ] = 0 and top

i
P [τ] = 0, the only disjunct in the definition

of containsiP,�[τ] that can possibly be satisfied is the second one, so that

contains
i
P,�[τ] ⇐⇒ ¬contains

i
P1,q [τ] ∧ contains

i
P1,�

[τ],
which establishes (2).

(b) q ∈ Cl(P1[τ]) and q /∈ Cl(P2[τ]). By the induction hypothesis, we have
contains

i
P1,q [τ] = 1 and contains

i
P2,q [τ] = 0. An argument symmetric to the

one for the preceding case can be used to show (2).
(c) q ∈ Cl(P1[τ]) and q ∈ Cl(P2[τ]) and P1[τ] = � or P2[τ] = �. In this case

P[τ] = � which has already been taken care of (see above).
(d) q ∈ Cl(P1[τ]) and q ∈ Cl(P2[τ]) and P1[τ] �= � and P2[τ] �= �. Then P[τ] =

P1[τ] �q P2[τ] and since we have restricted ourselves to the case when � ∈ Cl(P)

(see above), we have

� ∈ Cl(P[τ]) ⇐⇒ � ∈ Cl(P1[τ]) ∨ � ∈ Cl(P2[τ])
⇐⇒ contains

i
P1,�

[τ] ∨ contains
i
P2,�

[τ],
where the final equivalence follows from the induction hypothesis. It is straightfor-
ward to verify that the last expression in turn is equivalent to the fourth disjunct in
the definition of containsiP,� being satisfied, and since this is the only disjunct that
can be satisfied in this case, we conclude that (2) holds.

By Definition 8, P[σ] = � if, and only if, P ′[σ] = �, and � ∈ Cl(P[σ]) if, and only
if, � ∈ Cl(P ′[σ]), for each literal � ∈ Cl(P). Since (1) and (2) hold for P ′ by induction
hypothesis, these properties must hold for P as well.

Let us now turn to the proof of (3).

1. If P is an input node we have

u ∈ P[τ] ⇐⇒ u ∈ Cl(P[τ]) ⇐⇒ contains
i
P,u[τ] = polarityP,u[τ]

by what we proved previously and the definition of polarityP,u for input nodes (and the
fact that a literal appears in a derivation that consists of a single input node iff it occurs
in the clause of associated with that node).

2. Let P = P1 �q P2.

123

Long-Distance Q-Resolution with Dependency Schemes 151

(a) q /∈ Cl(P1[τ]). Then P[τ] = P1[τ] and by the induction hypothesis, we have

u appears in P[τ] ⇐⇒ u appears in P1[τ] ⇐⇒ polarityP1,u[τ] = 1.

Using (2), it is readily verified that polarityP,u[τ] = polarityP1,u[τ].
(b) q ∈ Cl(P1[τ]) and q /∈ Cl(P2[τ]). Here, (3) can be proved using an argument

symmetric to one for the previous case.
(c) q ∈ Cl(P1[τ]) and q ∈ Cl(P2[τ]) and P1[τ] = � or P2[τ] = �. Then P[τ] = �,

so u appears in P[τ]. Without loss of generality, let P1[τ] = �. By the induction
hypothesis we have polarityP1,u[τ] = 1, which, along with the assumptions for
this case and (2), implies that polarityP,u is satisfied by the last disjunct.

(d) q ∈ Cl(P1[τ]) and q ∈ Cl(P2[τ]) and P1[τ] �= � and P2[τ] �= �. In this
case u appears in P[τ] if, and only if, it appears in P1[τ] or in P2[τ]. Using the
induction hypothesis and (2), one can verify that this is the case if, and only if,
polarityP,u[τ] = 1. ��

These auxiliary circuits can be efficiently constructed in a top-down manner, from the input
nodes to the conclusion. By a careful analysis, we obtain the following:

Lemma 6 There is an algorithm that, given a PCNF formula Φ and an LDQ(D)-derivation
P fromΦ, computes the circuits polarityP,u for every universal variable u in time O(|P|·n),
where n = |var(Φ)|.
Proof The algorithm first sorts clauses according to a fixed order of literals. Let k be the
number of quantifier blocks in the prefix of Φ. There is at most one circuit topiP for each
node S of P and each 1 ≤ i ≤ k. Similarly, there is at most one circuit containsiS,� for each
node S of P , each 1 ≤ i ≤ k, and each literal � ∈ Cl(S).

Once topiS has been computed for each 1 ≤ i ≤ k, the circuits containsiS,� can easily
be constructed for each 1 ≤ i ≤ k and every literal � ∈ Cl(S). Overall, this can be done in
time

O(|Cl(S)| · k) ≤ O(|Cl(S)| · n).

Assume that the circuits containsiS,� are stored in lists following the order of literals in

Cl(S). Then for each node S, the circuits topiS and containsiS,� associated with S can again
be computed in time O(|Cl(S)| · n), so that overall, these circuits can be computed in time
O(|P| · n) for all nodes of P . Having computed the circuits contains and top, the circuits
polarityS,u can be computed for each node S and each universal variable u ∈ var∀(Φ) in
time O(|P| · n). ��
Using Lemma 4, we can spell out the argument sketched at the beginning of this sec-
tion and prove that for normal dependency schemes D, the universal player can maintain
an LDQ(D)-refutation throughout the evaluation game by successively restricting an ini-
tial LDQ(D)-refutation by both players’ moves and assigning universal variables from the
leftmost remaining block X so as to falsify the (unique) literals from X remaining in the
refutation. Lemma 5 tells us that the polarity circuits can be used to implement this strat-
egy. In order to put things together, we will need the following two lemmas, which tell us
that successive restriction and bulk restriction in fact yield the same result.

Lemma 7 Let P be an LDQ(D)-derivation from a PCNF formula Φ, let τ1, τ2 be two
assignments to disjoint sets of variables. Then P[τ1][τ2] = P[τ1 ∪ τ2].

123

152 T. Peitl et al.

Proof By induction on the structure of the derivation. If P is an input node, we have
Cl(P[τ]) = Cl(P)[τ] = Cl(P)[τ1][τ2] = Cl(P[τ1][τ2]) and since both derivations consist
of a single node with the same label, they are in fact equal. For derivations created by the
operations, the equality is trivially preserved. ��
Lemma 8 Let D be a normal dependency scheme, let Φ = Q1X1 . . . Qk Xk .ϕ be a PCNF
formula, let P be an LDQ(D)-refutation of Φ. Let Xi be a universal quantifier block and let
τ : ⋃i−1

j=1 X j → {0, 1} be an assignment. If P[τ] is an LDQ(D)-refutation of Φ[τ], then
P[τ ∪ σ] is an LDQ(D)-refutation of Φ[τ ∪ σ], where σ : Xi → {0, 1} is the assignment
such that σ(u) = ¬polarityP,u[τ] for each u ∈ Xi .

Proof Assume P[τ] is an LDQ(D)-refutation of Φ[τ]. Let u ∈ Xi . Because D is simple,
variable u appears in P[τ] in at most one polarity. If u does not appear in P[τ] at all, the
restriction P[τ][σ] does not depend on σ(u). Otherwise, there is a unique literal � with
var(�) = u that appears in P[τ]. By Lemma 5, polarityP,u[τ] = 1 iff u appears in P[τ],
so σ(u) = ¬polarityP,u[τ] = 0 if � = u and σ(u) = 1 if � = ¬u. It is a straightforward
consequence that P[τ][σ] can be obtained from P[τ] by deleting every occurrence of a
variable u ∈ Xi and omitting instances of ∀-reduction that become redundant as a result.
Because D is monotone, the restriction P[τ][σ] is an LDQ(D)-refutation of Φ[τ ∪ σ], and
P[τ][σ] = P[τ ∪ σ] by Lemma 7. ��

With that, we are ready to prove the final statement.

Lemma 9 Let D be a normal dependency scheme, letP be an LDQ(D)-refutation of a PCNF
formulaΦ. Then the family { fu}u∈var∀(Φ) of functions fu = ¬polarityP,u is a countermodel
of Φ.

Proof Let Φ = Q1X1 . . . Qk Xk .ϕ and let τ : var(Φ) → {0, 1} be a truth assignment
such that τ(u) = fu

(
τ |LΦ(u)

)
for each universal variable u. Let X<i = ⋃i−1

j=1 X j , and let
τi = τ |X<i for each 1 ≤ i ≤ k+1. We claim that P[τi] is an LDQ(D)-refutation ofΦ[τi] for
1 ≤ i ≤ k + 1. The assignment τ1 is empty so P[τ1] = P and Φ[τ1] = Φ so the statement
holds in that case. Suppose the claim holds for i such that 1 ≤ i ≤ k. If Qi = ∃, then
P[τi][τ |Xi] is an LDQ(D)-refutation ofΦ[τi+1] by Lemma 4, and P[τi][τ |Xi] = P[τi+1] by
Lemma 7. Otherwise, Qi = ∀ andP[τi+1] is an LDQ(D)-refutation ofΦ[τi+1] by Lemma 8.
This completes the proof of the claim. In particular, we now have that P[τk+1] = P[τ] is
an LDQ(D)-refutation of Φ[τk+1] = Φ[τ]. Because Φ[τ] does not contain any variables,
the only way Φ[τ] can have a refutation is that its matrix contains the empty clause, which
means that ϕ[τ] = {∅}. ��

Theorem 1 follows immediately from Lemmas 6 and 9. In fact, we obtain the following
result.

Theorem 3 Let D be a normal dependency scheme. There is an algorithm that computes a
countermodel of a PCNF formula Φ with n variables from an LDQ(D)-refutation P of Φ in
time O(|P| · n).

References

1. Arora, S., Barak, B.: Computational Complexity–A Modern Approach. Cambridge University Press,
Cambridge (2009)

123

Long-Distance Q-Resolution with Dependency Schemes 153

2. Balabanov, V., Jiang, J.R.: Unified QBF certification and its applications. Formal Methods Syst. Des.
41(1), 45–65 (2012)

3. Balabanov, V., Jiang, J.R., Janota, M., Widl, M.: Efficient extraction of QBF (counter) models from
long-distance resolution proofs. In: Bonet, B., Koenig, S. (eds.) Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence, AAAI 2015, pp. 3694–3701. AAAI Press (2015)

4. Balabanov, V., Widl, M., Jiang, J.R.: QBF resolution systems and their proof complexities. In: Sinz, C.,
Egly, U. (eds.) Theory and Applications of Satisfiability Testing–SAT 2014, Lecture Notes in Computer
Science, vol. 8561, pp. 154–169. Springer, Berlin (2014)

5. Benedetti, M., Mangassarian, H.: QBF-based formal verification: experience and perspectives. J. Satisf.
Boolean Model. Comput. 5(1–4), 133–191 (2008)

6. Beyersdorff, O., Blinkhorn, J.: Dependency schemes inQBF calculi: semantics and soundness. In: Rueher,
M. (ed.) Principles and Practice of Constraint Programming-22nd International Conference, CP 2016,
Lecture Notes in Computer Science, vol. 9892, pp. 96–112. Springer, Berlin (2016)

7. Beyersdorff, O., Chew, L., Janota, M.: On unification of QBF resolution-based calculi. In: Csuhaj-Varjú,
E., Dietzfelbinger, M. Ésik, Z. (eds.) Mathematical Foundations of Computer Science 2014–39th Inter-
national Symposium, MFCS 2014, Lecture Notes in Computer Science, vol. 8635, pp. 81–93. Springer,
Berlin (2014)

8. Beyersdorff, O., Chew, L., Janota, M.: Proof complexity of resolution-based QBF calculi. In: Mayr, E.W.,
Ollinger, N. (eds.) 32nd International Symposium on Theoretical Aspects of Computer Science, STACS
2015, LIPIcs, vol. 30, pp. 76–89. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2015)

9. Beyersdorff, O., Chew, L., Mahajan, M., Shukla, A.: Feasible interpolation for QBF resolution calculi.
In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) Automata, Languages, and
Programming–42nd International Colloquium, ICALP 2015, Lecture Notes in Computer Science, vol.
9134, pp. 180–192. Springer, Berlin (2015)

10. Biere, A., Lonsing, F.: Integrating dependency schemes in search-based QBF solvers. In: Strichman, O.,
Szeider, S. (eds.) Theory andApplications of Satisfiability Testing–SAT 2010, Lecture Notes in Computer
Science, vol. 6175, pp. 158–171. Springer, Berlin (2010)

11. Biere, A., Lonsing, F., Seidl, M.: Blocked clause elimination for QBF. In: Bjørner, N., Sofronie-
Stokkermans, V. (eds.) International Conference on Automated Deduction–CADE 23, Lecture Notes
in Computer Science, vol. 6803, pp. 101–115. Springer, Berlin (2011)

12. Blinkhorn, J., Beyersdorff, O.: Shortening QBF proofs with dependency schemes. In: Theory and Appli-
cations of Satisfiability Testing–SAT 2017, Lecture Notes in Computer Science, vol. 10491, pp. 263–280.
Springer, Berlin (2017)

13. Bloem, R., Könighofer, R., Seidl, M.: SAT-based synthesis methods for safety specs. In: McMillan, K.L.,
Rival, X. (eds.) Verification, Model Checking, and Abstract Interpretation–VMCAI 2014, Lecture Notes
in Computer Science, vol. 8318, pp. 1–20. Springer, Berlin (2014)

14. Bubeck, U.: Model-based transformations for quantified Boolean formulas. Ph.D. thesis, University of
Paderborn (2010)

15. Cadoli, M., Schaerf, M., Giovanardi, A., Giovanardi, M.: An algorithm to evaluate Quantified Boolean
Formulae and its experimental evaluation. J. Autom. Reason. 28(2), 101–142 (2002)

16. Cashmore, M., Fox, M., Giunchiglia, E.: Partially grounded planning as Quantified Boolean Formula. In:
Borrajo, D., Kambhampati, S., Oddi, A., Fratini, S. (eds.) 23rd International Conference on Automated
Planning and Scheduling, ICAPS 2013. AAAI (2013)

17. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commun. ACM 5,
394–397 (1962)

18. Egly, U.: On sequent systems and resolution for QBFs. In: Cimatti, A., Sebastiani, R. (eds.) Theory
and Applications of Satisfiability Testing–SAT 2012, Lecture Notes in Computer Science, vol. 7317, pp.
100–113. Springer, Berlin (2012)

19. Egly, U., Lonsing, F., Widl, M.: Long-distance resolution: proof generation and strategy extraction in
search-based QBF solving. In: McMillan, K.L., Middeldorp, A., Voronkov, A. (eds.) Logic for Program-
ming, Artificial Intelligence, and Reasoning–LPAR 2013, Lecture Notes in Computer Science, vol. 8312,
pp. 291–308. Springer, Berlin (2013)

20. Gelder, A.V.: Contributions to the theory of practical quantified boolean formula solving. In: Milano,
M. (ed.) Principles and Practice of Constraint Programming–18th International Conference, CP 2012,
Lecture Notes in Computer Science, vol. 7514, pp. 647–663. Springer, Berlin (2012)

21. Giunchiglia, E., Narizzano, M., Tacchella, A.: Clause/term resolution and learning in the evaluation of
quantified Boolean formulas. J. Artif. Intell. Res. 26, 371–416 (2006)

22. Goultiaeva, A., Bacchus, F.: Exploiting QBF duality on a circuit representation. In: Fox, M., Poole, D.
(eds.) Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2010. AAAI
Press (2010)

123

154 T. Peitl et al.

23. Goultiaeva,A., Seidl,M., Biere,A.: Bridging the gap between dual propagation andCNF-basedQBF solv-
ing. In: Macii, E. (ed.) Design, Automation and Test in Europe, DATE 13, pp. 811–814. EDA Consortium
San Jose, CA, USA/ACM DL (2013)

24. Goultiaeva, A., Van Gelder, A., Bacchus, F.: A uniform approach for generating proofs and strategies
for both true and false QBF formulas. In: Walsh, T. (ed.) Proceedings of IJCAI 2011, pp. 546–553.
IJCAI/AAAI (2011)

25. Heule, M., Seidl, M., Biere, A.: A unified proof system for QBF preprocessing. In: Demri, S., Kapur, D.,
Weidenbach, C. (eds.) Automated Reasoning–7th International Joint Conference, IJCAR 2014, Lecture
Notes in Computer Science, vol. 8562, pp. 91–106. Springer, Berlin (2014)

26. Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.M.: Solving QBF with counterexample guided
refinement. In: Cimatti, A., Sebastiani, R. (eds.) Theory and Applications of Satisfiability Testing–SAT
2012, Lecture Notes in Computer Science, vol. 7317, pp. 114–128. Springer, Berlin (2012)

27. Janota, M., Marques-Silva, J.: On propositional QBF expansions and Q-resolution. In: Järvisalo, M.,
Van Gelder, A. (eds.) Theory and Applications of Satisfiability Testing–SAT 2013, Lecture Notes in
Computer Science, vol. 7962, pp. 67–82. Springer, Berlin (2013)

28. Kleine Büning, H., Karpinski, M., Flögel, A.: Resolution for quantified Boolean formulas. Inf. Comput.
117(1), 12–18 (1995)

29. Klieber, W., Sapra, S., Gao, S., Clarke, E.M.: A non-prenex, non-clausal QBF solver with game-state
learning. In: Strichman, O., Szeider, S. (eds.) Theory and Applications of Satisfiability Testing–SAT
2010, Lecture Notes in Computer Science, vol. 6175, pp. 128–142. Springer, Berlin (2010)

30. Kronegger, M., Pfandler, A., Pichler, R.: Conformant planning as benchmark for QBF-solvers. In: Inter-
national Workshop on Quantified Boolean Formulas–QBF 2013 (2013). http://fmv.jku.at/qbf2013/

31. Lonsing, F.: Dependency schemes and search-based QBF solving: theory and practice. Ph.D. thesis,
Johannes Kepler University, Linz, Austria (2012)

32. Lonsing, F., Bacchus, F., Biere, A., Egly, U., Seidl, M.: Enhancing search-based QBF solving by dynamic
blocked clause elimination. In: Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds.) Logic for Pro-
gramming, Artificial Intelligence, and Reasoning-20th International Conference, LPAR-20 2015. Lecture
Notes in Computer Science, vol. 9450, pp. 418–433. Springer, Berlin (2015)

33. Lonsing, F., Egly, U., Van Gelder, A.: Efficient clause learning for quantified Boolean formulas via QBF
pseudo unit propagation. In: Järvisalo, M., Van Gelder, A. (eds.) Theory and Applications of Satisfiability
Testing–SAT 2013, Lecture Notes in Computer Science, vol. 7962, pp. 100–115. Springer, Berlin (2013)

34. Marques-Silva, J.P.: The impact of branching heuristics in propositional satisfiability algorithms. In:
Barahona, P., Alferes, J.J. (eds.) Progress inArtificial Intelligence, 9th PortugueseConference onArtificial
Intelligence, EPIA ’99, Lecture Notes in Computer Science, vol. 1695, pp. 62–74. Springer, Berlin (1999)

35. Niemetz, A., Preiner, M., Lonsing, F., Seidl, M., Biere, A.: Resolution-based certificate extraction for
QBF. In: Cimatti, A., Sebastiani, R. (eds.) Theory and Applications of Satisfiability Testing–SAT 2012,
Lecture Notes in Computer Science, vol. 7317, pp. 430–435. Springer, Berlin (2012)

36. Peitl, T., Slivovsky, F., Szeider, S.: Long distance Q-resolution with dependency schemes. In: Creignou,
N., Berre, D.L. (eds.) Theory and Applications of Satisfiability Testing–SAT 2016, Lecture Notes in
Computer Science, vol. 9710, pp. 500–518. Springer, Berlin (2016)

37. Peitl, T., Slivovsky, F., Szeider, S.: Dependency learning for QBF. In: Gaspers, S., Walsh, T. (eds.) Theory
and Applications of Satisfiability Testing–SAT 2017, Lecture Notes in Computer Science, vol. 10491,
pp. 298–313. Springer, Berlin(2017)

38. Rintanen, J.: Asymptotically optimal encodings of conformant planning in QBF. In: 22nd AAAI Confer-
ence on Artificial Intelligence, AAAI 2007, pp. 1045–1050. AAAI (2007)

39. Samer, M., Szeider, S.: Backdoor sets of quantified Boolean formulas. J. Autom. Reason. 42(1), 77–97
(2009)

40. Slivovsky, F.: Structure in #SAT and QBF. Ph.D. thesis, TU Wien (2015)
41. Slivovsky, F., Szeider, S.: Computing resolution-path dependencies in linear time. In: Cimatti, A., Sebas-

tiani, R. (eds.) Theory and Applications of Satisfiability Testing–SAT 2012, Lecture Notes in Computer
Science, vol. 7317, pp. 58–71. Springer, Berlin (2012)

42. Slivovsky, F., Szeider, S.: Soundness of Q-resolution with dependency schemes. Theoret. Comput. Sci.
612, 83–101 (2016)

43. Staber, S., Bloem, R.: Fault localization and correction with QBF. In: Marques-Silva, J., Sakallah, K.A.
(eds.) Theory and Applications of Satisfiability Testing–SAT 2007, Lecture Notes in Computer Science,
vol. 4501, pp. 355–368. Springer, Berlin(2007)

44. Van Gelder, A.: Variable independence and resolution paths for quantified Boolean formulas. In: Lee, J.
(ed.) Principles and Practice of Constraint Programming–CP 2011, Lecture Notes in Computer Science,
vol. 6876, pp. 789–803. Springer, Berlin (2011)

123

http://fmv.jku.at/qbf2013/

Long-Distance Q-Resolution with Dependency Schemes 155

45. Zhang, L., Malik, S.: Conflict driven learning in a quantified Boolean satisfiability solver. In: Pileggi, L.T.
Kuehlmann, A. (eds.) Proceedings of the 2002 IEEE/ACM International Conference on Computer-aided
Design, ICCAD 2002, pp. 442–449. ACM/IEEE Computer Society (2002)

46. Zhang, L., Malik, S.: The quest for efficient boolean satisfiability solvers. In: Brinksma, D., Larsen,
K.G. (eds.) Computer Aided Verification: 14th International Conference (CAV 2002), Lecture Notes in
Computer Science, vol. 2404, pp. 17–36 (2002)

47. Zhang, L., Malik, S.: Towards a symmetric treatment of satisfaction and conflicts in quantified Boolean
formula evaluation. In: Hentenryck, P.V. (ed.) Principles and Practice of Constraint Programming–8th
International Conference, CP 2002, LectureNotes in Computer Science, vol. 2470, pp. 200–215. Springer,
Berlin (2002)

123

	Long-Distance Q-Resolution with Dependency Schemes
	Abstract
	1 Introduction
	1.1 Organization

	2 Preliminaries
	2.1 Formulas and Assignments
	2.2 PCNF Formulas
	2.3 Countermodels

	3 Dependency Schemes and LDQ(D)-Resolution
	4 QCDCL with Dependency Schemes Generates LDQ(D)-Proofs
	5 Soundness of and Strategy Extraction for LDQ(Drrs)
	5.1 Polynomial-Time Strategy Extraction from LDQ(D)-Refutations
	5.2 The Reflexive Resolution-Path Dependency Scheme is Normal

	6 Experiments
	7 Related Work
	8 Discussion
	Acknowledgements
	Appendix: Proof of Theorem 1
	References

