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Long-Endurance Sensing and Mapping using a

Hand-Launchable Solar-Powered UAV

Philipp Oettershagen, Thomas Stastny, Thomas Mantel, Amir Melzer, Konrad

Rudin, Pascal Gohl, Gabriel Agamennoni, Kostas Alexis, and Roland Siegwart

Abstract This paper investigates and demonstrates the potential for very long en-

durance autonomous aerial sensing and mapping applications with AtlantikSolar, a

small–sized, hand–launchable, solar–powered fixed–wing unmanned aerial vehicle.

The platform design as well as the on–board state estimation, control and path–

planning algorithms are overviewed. A versatile sensor payload integrating a multi–

camera sensing system, extended on–board processing and high–bandwidth com-

munication with the ground is developed. Extensive field experiments are provided

including publicly demonstrated field–trials for search–and–rescue applications and

long–term mapping applications. An endurance analysis shows that AtlantikSolar

can provide full-daylight operation and a minimum flight endurance of 8 hours

throughout the whole year with its full multi-camera mapping payload. An open

dataset with both raw and processed data is released and accompanies this paper

contribution.

1 Introduction

The field of aerial robotics has seen rapid growth in the last decade. Prerequisite

technologies have developed to the point that we are not far from the day when

utilization of aerial robots is prevalent in our society. With an application range

that includes infrastructure inspection [13], surveillance for security tasks [6], dis-

aster relief [25, 8], crop monitoring [7], mapping [1], and more, Unmanned Aerial

Vehicles (UAVs) already provide added value to several critical and financially sig-

nificant applications, and are widely acknowledged for their potential to achieve a

large impact in terms of development and growth. Examples of compelling existing

use–cases include the mapping of the Colorado flood area in 2003 [4], the 3D recon-

struction of the “Christ the Redeemer” statue in Brazil and the Matterhorn mountain
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reconstruction [20], and the live offshore flare inspection that took place in the North

Sea [3].

While these are impressive achievements, there are still major factors that limit

the applicability of UAVs. One such factor is their relatively low endurance. Indeed,

long-endurance flight capabilities are crucial for applications such as large-scale

Search–and–Rescue support, industrial pipeline monitoring, atmospheric research,

offshore inspection, precision agriculture and wildlife monitoring. This new class of

problems exposes a practical limitation in the majority of currently available aerial

robot configurations.

Solar–powered flight is a key enabling technology for long-endurance operations.

By harnessing the suns energy and storing solar power during the day, flight times

can be significantly prolonged. In cases of extreme designs, sustained flight can

even be achieved through night time and/or cloudy conditions. An existing example

of extreme endurance is the QinetiQ Zephyr UAV (22m wingspan), which broke

records, sustaining flight for two weeks [24]. However, scaling down from the high-

altitude ”pseudo satellite” class to more manageable, rapidly deployable and low-

altitude designs is not trivial.

Fig. 1 The AtlantikSolar UAV is capable of very long–endurance operation in missions including

mapping, surveillance, victim detection and infrastructure inspection.

Motivated by the increasing industrial, scientific and societal demand for per-

sistent automatic aerial sensing and surveillance, long–endurance, solar–powered

fixed–wing aircrafts have been a research priority in the Autonomous Systems Lab

(ASL) at ETH Zurich. With the most recent development being the AtlantikSolar

UAV, our aim is to extend the current technological state of the art with a robust
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and versatile platform capable of significantly longer term sensing and mapping

on the order of days or even weeks. Fig. 1 depicts the AtlantikSolar UAV and its

sensing capabilities. The detailed design of this UAV platform has been described

in [18]. This paper extends our previous design-oriented work by investigating and

characterizing possible application scenarios for our platform. More specifically, we

present a set of field trials that are enabled by a diverse sensor payload recently in-

tegrated into the UAV. This on–board sensor payload includes RGB and grayscale

camera systems and a thermal vision sensor in combination with a complete suite

of sensors that enable the vehicle to navigate autonomously.

The remainder of this paper is organized as follows: We present a description of

the AtlantikSolar vehicle in Section 2, its sensing and mapping capabilities in Sec-

tion 3, field experiment results in Section 4, and derived conclusions in Section 5.

We also provide a detailed discussion of our experiences from both search–and–

rescue as well as mapping missions, and release a dataset containing raw as well as

post–processed data.

2 AtlantikSolar Unmanned Aerial Vehicle

2.1 Platform Overview
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Fig. 2 AtlantikSolar system overview.

The AtlantikSolar UAV (Fig. 2, Table 1) is a small-sized, hand-launchable,

low-altitude long-endurance (LALE), solar-powered UAV optimized for large-scale

aerial mapping and inspection applications. A detailed overview of the conceptual

design of AtlantikSolar is given in [18]. The design methodology is based on the

work in [16, 10] with extensions on optimizing solar-powered UAVs for a range of

deteriorated meteorological conditions (e.g. cloud obstruction of sun radiation) as
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given in [18] . The platform owes much of its configuration to the optimization of

power consumption. Lightweight composite materials are used in the fabrication of

a torsionally resistant cylindrical carbon fibre spar, tapered carbon fibre tail boom,

and fibreglass fuselage body. The AtlantikSolar prototype UAV used for the flight

tests in this paper features 88 SunPower E60 cells with an efficiency of ηsm = 0.23.

Energy is stored in 2.9kg of cylindrical high energy density Li-Ion batteries (Pana-

sonic NCR18650b, 243Whkg−1, 700Wh total) that are integrated into the wing

spar for optimal weight distribution. The two ailerons, the elevator and the rudder

are driven by brushless Volz DA-15N actuators with contactless position feedback.

The propulsion system consists of a foldable custom-built carbon-fibre propeller, a

5:1 reduction gearbox and a 450W brushless DC motor.

Table 1 Summary of AtlantikSolar design and performance characteristics.

Specification Value/Unit

Wing span 5.65m

Mass 7.5kg

Nominal cruise speed 9.7ms−1

Max. flight speed 20ms−1

Min. endurance (no payload)a 13h

Design endurance (no payload) 10d

a on battery-power only

A Pixhawk PX4 Autopilot, an open source/open hardware project started at ETH

Zurich [21], is the centerpiece of the avionics system. It employs a Cortex M4F

microprocessor running at 168Mhz with 192kB RAM to perform autonomous flight

control and state estimation. Major hardware modifications include the integration

of the ADIS16448 IMU and the Sensirion SDP600 differential pressure as well as

re–writing of the estimation and control algorithms.

2.2 Operational Concept

AtlantikSolar is hand-launched to enable rapid deployment and operation in remote

or uneven terrain. It is operated by a two-person team consisting of the safety-pilot

and an operator for high-level mission management through the ground control sta-

tion (GCS) interface (QGroundControl [23]). The GCS allows automatic loitering

and autonomous waypoint following of user-defined or pre-computed paths. For

visual-line-of-sight operation, the primary (434MHz) telemetry link is sufficient,

but an Iridium satellite link is also integrated to act as a backup link in the event

of primary radio loss or beyond-visual-line-of-sight operation (Fig. 3). The UAV is

equipped with a wing-mounted sensor pod, but provides additional payload capacity

and versatility within its total payload budget of mpld,max ≈ 800g. AtlantikSolar also

integrates four high-power LEDs for night operations.
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Fig. 3 Communications and ground control.

2.3 Enabling Technologies for Autonomous Navigation

2.3.1 Robust Long-Term State Estimation

To provide reliable and drift-free long-term autonomous operation, a light-weight

EKF-based state estimator, as presented in [11], is implemented on the autopilot.

It fuses data from a 10-DoF Inertial Measurement Unit (IMU) with GPS-Position,

GPS-velocity and airspeed measurements in order to successively estimate position,

velocity, orientation (attitude and heading), QFF as well as accelerometer and gyro

biases. Robustness against temporal GPS losses is enhanced through the inclusion of

airspeed measurements from a differential barometer. To increase flight safety, the

algorithm estimates the local three-dimensional wind vector and employs an internal

aircraft aerodynamics model to estimate the current sideslip angle and Angle of

Attack (AoA), which can in turn be used by the flight controller to apply implicit

flight regime limits, as in the case of the authors’ previous work [17].

2.3.2 Flight Control

AtlantikSolar’s flight control system features automatic tracking of waypoints along

pre-defined paths, allows extended loitering around areas of interest and implements

safety-mechanisms such as automatic Return-To-Launch (RTL) in case of prolonged

remote control or telemetry signal losses. The baseline control is a set of cascaded

PID-controllers for inner-loop attitude control [2]. Output limiters are applied to re-

spect the aircraft flight envelope, dynamic pressure scaling of the control outputs

is used to adapt to the changing moment generation as a function of airspeed and a
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coordinated-turn controller allows precise turning. Altitude control is based on a To-

tal Energy Control System that also allows potential energy gains in thermal updraft

while it implements safety mechanisms such as automatic spoiler deployment dur-

ing violation of maximum altitude limits. Waypoint-following is performed using

an extended version of the L1-nonlinear guidance logic [19]. The detailed imple-

mentation and verification of our autopilot is described in [18].

2.3.3 Inspection Path–Planner

An inspection path–planning algorithm is integrated into the system in order to en-

able automated inspection and mapping of large scale 3D environments. The algo-

rithm is inherently tailored for structural inspection and computes full coverage and

collision–free paths subject to a model of the nonholonomic constraints of the ve-

hicle. The overall approach is illustrated in Fig. 4, while a detailed description is

available in the authors’ previous work [1]. It essentially corresponds to an explicit

algorithm that computes an inspection path based on a mesh–model representation

of the desired world. It iteratively tries to compute viewpoint configurations that

provide full coverage while at the same time employing the Lin-Kernighan heuris-

tic [12] in the search for the best route that visits all of them subject to the motion

constraints of the vehicle. Via a viewpoint resampling technique that employs ran-

domized sampling, the designed algorithm allows for an iterative improvement of

the path cost while always retaining complete coverage. Fast collision–free naviga-

tion is achieved via a combination of a Boundary Value Solver for the considered

vehicle model with the RRT⋆ [9] motion planner.

Surface Mesh Model Load Aerial Robot Dynamic Model & Constraints

Initial Viewpoints Sampling
Boundary Value Solver

 and RRT*-based TSP Cost Matrix

Solve TSP

Obtain first solution

Viewpoint Resampling
Solve TSP

Obtain bestsolution

LKH Heuristic

Boundary Value Solver

 and RRT*-based TSP Cost Matrix

Available

Time?

Fig. 4 Summary of the employed 3D inspection path–planning algorithm.
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3 Sensor Pod

The sensor pod (see Fig. 5) features a grayscale (Aptina MT9V034) camera with a

high dynamic range and a long-wavelength infrared (LWIR) camera (FLIR Tau 2)

for thermal imaging, both mounted with an oblique field of view (FOV), as well as

a nadir facing RGB camera (uEye XS 2). An IMU (Analaog Devices ADIS16448)

is also included, measuring linear accelerations, angular velocities, and the mag-

netic field in all three axes. All sensors are integrated with a Skybotix VI-sensor

[27], allowing tight hardware synchronization and timestamping of the acquired data

[15]. Furthermore, a state of the art embedded computer (Kontron COMe-mBT10),

with an Intel Atom CPU (4 cores, 1.91GHz) and a thermal design power (TDP)

of 10W, is interfaced with the VI-sensor and the PX4 autopilot board of the UAV.

The on–board Atom computer further communicates with the PX4 in order to re-

ceive all global pose estimates and raw sensor data and transmit waypoints. The

acquired data is processed on–board and communication with the ground control

station is achieved over Wi–Fi. As shown in Fig. 5, all components are mounted on

a lightweight aluminum construction ensuring a rigid connection between the cam-

eras and the IMU, thus guaranteeing high quality extrinsic calibration of the sensors,

a key element for accurate visual-inertial localization.

Fig. 5 The sensor pod as it is currently used on the AtlantikSolar without fairing for better visibility

of the components.

The on-board computer runs a standard Ubuntu Linux operating system, allow-

ing quick adaptation to different kinds of missions. Furthermore, it enables rapid

testing of new algorithms, e.g. for localization and mapping. It has been utilized

to evaluate monocular localization [10] while the original stereo version of the

VI–sensor is actively used for localization of rotary–wing UAVs in possibly GPS–

denied environments [14]. Within the framework of the research projects ICARUS

and SHERPA [8, 26], the described sensor pod is used for area mapping, victim

detection, and situational awareness tasks. The data of the visible light cameras is

combined with the pose estimates and fed to post–processing software [20] to de-

rive accurate 3D reconstructions of the environment. Active research is ongoing for

aerial victim detection at altitudes on the order of 100m.
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4 Flight Experiments

AtlantikSolar is a key component of several research projects and has actively partic-

ipated in multiple large–scale demonstration events. Within this paper, indicative re-

sults from the ICARUS project [8] public field–trials event at Marche–en–Famenne,

Belgium and a long–endurance mapping mission in Rothenthurm, Switzerland are

presented along with flight endurance related tests and evaluations. A dataset is also

released and documented to accompany this paper. It contains the vehicle state es-

timates, IMU and GPS raw data, the camera frames from all the on–board modules

as well as post–processed reconstructions of the environment for the field–trials de-

scribed in Section 4.2. This rich dataset is publicly available at [5].

4.1 Search–and–Rescue Application Demonstration

During the ICARUS project field–trials in Marche–en–Famenne [8], the AtlantikSo-

lar UAV was commanded to autonomously execute inspection paths that ensured the

complete coverage of a predefined area in order to assist the area monitoring, map-

ping, victim detection and situational awareness necessities of Search–and–Rescue

rapid response teams. Employing the path–planner overviewed in Section 2.3.3 and

based on the long–endurance capabilities of the UAV, the area was scanned repeat-

edly over multiple hours. An example inspection path is depicted in Fig. 6 and cor-

responds to an optimized solution for the case of the oblique–view mounted ther-

mal camera, FOV (56◦,60◦) for the horizontal and vertical axes, respectively. The

mounting orientations of the grayscale and the thermal camera are identical, but the

FOV of the grayscale camera is larger in all directions (70◦,100◦), thus the planned

path provides full coverage for both vision sensors.

During the execution of these inspection paths, the two camera–system and the

pose estimates of the aircraft were uniformly timestamped and recorded in a ROS

bag. Subsequently, post–processing of the grayscale images was conducted in order

to derive a dense point–cloud of the area using the Pix4D software [20]. An image

of the derived result is shown in Fig. 7, while additional results of autonomously

executed inspection paths may be found in our previous work [1].

4.2 Area Coverage Application Demonstration

In this specific field experiment, the AtlantikSolar UAV’s capabilities for long–term

area coverage, inspection and mapping were evaluated. Within 6 hours of flight,

the system performed multiple lawn–mowing and other paths like those presented

in Fig. 8. With a camera frame recording rate set at Fc = 1Hz, synchronization

with the vehicle pose estimates and properly designed waypoint distances to ensure

coverage and sufficient overlap for all cameras, a solid reconstruction result was
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Fig. 6 Inspection path full area coverage using the oblique–view mounted thermal vision and

grayscale cameras of the AtlantikSolar sensor pod. The colored mosaic was derived using an addi-

tional very large field of view nadir–facing camera (HDR-AS100VW).

Fig. 7 Reconstructed dense point cloud based on the combination of the oblique–view grayscale

camera images with the vehicle position estimates. The reconstruction was achieved using the

Pix4D mapping software.

achieved. Within this flight, all three cameras were employed and Fig. 9 depicts the

reconstructed point cloud using a combination of the geo–tagged nadir–facing RGB

camera of the sensor pod with the, likewise, geo–tagged oblique–view grayscale im-

ages, while Fig. 10 shows false–colored thermal images that our team is currently

aiming to employ for victim detection, extending previous work [22] at ASL. An

open dataset containing 1 hour of raw data and post–processed results is released to

accompany this paper and may be found at [5].



10 P. Oettershagen et al.

Fig. 8 The lawn–mowing path executed by the AtlantikSolar UAV overlayed on the reconstructed

mosaic of the environment, incorporated in Google maps.

Fig. 9 The reconstructed point–cloud of the Rothenthurm area based on the combination of the

RGB and grayscale camera data as well as the UAV pose estimates collected during the lawn–

mowing path and subsequently processed using the Pix4D software.

Fig. 10 False–colored thermal camera images recorded using the on–board sensor pod of the At-

lantikSolar UAV.
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4.3 Full-Payload Flight Endurance and Range

After having shown a flight endurance of more than 12 hours without payload in

Summer 2014 [18], the area coverage demonstration in Rothenthurm on Novem-

ber 21st was used to determine AtlantikSolar’s maximum flight endurance with the

full sensor pod payload of mpayload = 610g during winter conditions. Fig. 11 shows

the corresponding power income, output, and battery state. The average power con-

sumption during the flight is Paircra f t = 69.7W plus Ppayload = 15W for the sensor

pod. After take-off at 10:25am local time at 94% battery state-of-charge (SoC), the

heavily attitude-dependent solar power income increases but reaches only a maxi-

mum of 80W at noon due to the limited insolation in winter. Nevertheless, as in-

dicated by the SoC, the system power is mostly drawn from the solar panels for

more than 3 hours of the flight. Power income decreases towards the afternoon:

The solar panel maximum power point trackers (MPPTs) are still operating, but the

panel voltage has decreased significantly and the MPPTs deliver currents below the

measurement threshold. However, the remaining SoC during landing shortly before

sunset (4:28pm local time) is still 52%. Extrapolating using the total power con-

sumption of Ptot = Paircra f t +Ppayload = 69.7W +15W = 84.7W yields an additional

4.32 hours of remaining flight endurance assuming zero-radiation conditions and

thus a total flight endurance of ca. 10h with full payload for the installed 700Wh

battery during these winter conditions.
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Fig. 11 Power income, output and battery state-of-charge for the Rothenthurm mapping flight.

AtlantikSolar covered 243km ground-distance, was airborne for 6 hours 3 minutes and landed

shortly before sunset (4:28pm local time) with 52% battery capacity remaining.

The recorded power consumption of Ptot = 84.7W was taken as the input for the

flight endurance simulation in Fig. 12. Assuming launch of the airplane exactly at

sunrise, full-daylight flight endurance is provided throughout the full year including
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winter under most atmospheric conditions. More specifically, full-daylight flight ca-

pability is only lost when CLR = PSolar/PSolar,ClearSky is smaller than ca. 0.3 in sum-

mer and ca. 0.15 in winter, which corresponds to severe cloud coverage or fog that

may hinder flight operations independently of energy considerations. The maximum

endurance of AtlantikSolar with the full payload is 22.4 hours on June 21st, which

means that perpetual flight is not possible. Note that in all atmospheric conditions,

a minimum endurance of 8 hours can be guaranteed through battery-powered flight

alone. At the chosen airspeed of vair = 11.02m/s, AtlantikSolar can thus cover a

ground distance of 317km (min. endurance) to 888km (max. endurance). Note that

this airspeed provides the maximum range (optimal glide ratio), but is not the power-

optimal airspeed (lowest rate of sink). Flying strictly at the power-optimal airspeed

found in [18] would e.g.increase the endurance to 23.9 hours on June 21st, with bat-

tery energy depleting shortly before sunrise. This means that perpetual flight with

the full sensor payload can theoretically be achieved through minor aircraft opti-

mizations, e.g. through a slight increase of the available battery capacity. However,

note increasing endurance through power-optimal airspeed selection in the non-

perpetual flight endurance case comes at a cost of range, and should be considered

per application.
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(CLR) for φ = 47oN (Rothenthurm, CH) when assuming launch at sunrise with SoC=100%. Full

daylight flight is possible throughout the whole year (green area), and only severe cloud coverage

can reduce endurance below the daylight duration (red area). In all cases 8 hours of minimum

endurance are achieved.
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5 Conclusions

In this work, we have demonstrated a significant leap in long–endurance, low–

altitude aerial sensing and mapping. Utilizing optimized solar aircraft design method-

ologies, low power consumption electronics, a robust autonomous navigation frame-

work, and a versatile, modular, and self-contained sensor payload, the AtlantikSolar

system, as a whole, provides a baseline to address quickly approaching societal

needs related to long-term aerial robotic operations. Extensive field–trial experi-

ence indicates that solar power is a promising solution towards providing long en-

durance to small–sized, low–altitude UAVs, and integrated sensor suites, when used

in tandem with autonomous navigation and planning methods, can provide wealth

of valuable information to end users in an efficient manner. Still, there is great room

for improvement, especially in the directions of autonomous navigation close to ter-

rain, where a combination of advanced perception and planning algorithms have to

be employed. Also in terms of superior robustness, as required for multi–hour or

even multi–day flight.
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