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Abstract 

Objective. Estimation of finger kinematics is an important function of an intuitive human-

machine interface, such as gesture recognition. Here, we propose a novel deep learning 

method, named Long Exposure Convolutional Memory Network (LE-ConvMN), and use it to 

proportionally estimate finger joint angles through surface electromyographic (sEMG) 

signals. Approach. We use a convolution structure to replace the neuron structure of 

traditional Long Short-Term Memory (LSTM) networks, and use the long exposure data 

structure which retains the spatial and temporal information of the electrodes as input. The 

Ninapro database, which contains continuous finger gestures and corresponding sEMG 

signals was used to verify the efficiency of the proposed deep learning method. The proposed 

method was compared with LSTM and Sparse Pseudo-input Gaussian Process (SPGP) on this 

database to predict the 10 main joint angles on the hand based on sEMG. The correlation 

coefficient (CC) was evaluated using the three methods on eight healthy subjects, and all the 

methods adopted the root mean square (RMS) features. Main results. The experimental 

results showed that the average CC, RMSE, NRMSE of the proposed LE-ConvMN method 

(0.82±0.03,11.54±1.89,0.12±0.013) was significantly higher than SPGP (0.65±0.05, p＜
0.001; 15.51±2.82, p＜0.001; 0.16±0.01, p＜0.001) and LSTM (0.64±0.06, p＜0.001; 

14.77±3.21, p＜0.001; 0.15±0.02, p=＜0.001). Furthermore, the proposed real-time-

estimation method has a computation cost of only approximately 82 ms to output one state of 

ten joints (average value of 10 tests on TitanV GPU). Significance. The proposed LE-

ConvMN method could efficiently estimate the continuous movement of fingers with sEMG, 

and its performance is significantly superior to two established deep learning methods. 

Keywords: simultaneous, proportional, estimation, finger joint angle, surface electromyography, convolutional Long Short-

Term Memory network 

 Long Exposure Convolutional Memory Network 

for accurate estimation of finger kinematics from 

surface electromyographic signals 
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Introduction 

Currently, robots are extensively used in industrial, military, 

commercial, and medical applications for improving the 

quality of human life. As such, the interactions between 

individuals and robots have become increasingly frequent. 

Human-robot interaction has become an integral part of 

systems such as active prostheses, robot-assisted surgery, 

drone reconnaissance. Building a user-friendly, intuitive and 

accurate human-machine collaboration (HMC) or human-

computer interaction (HCI) has drawn much attention in 

recent years. One of the key challenges in HMC and HCI is 

the decoding of human movement intentions from biological 

signals. The surface electromyographic (sEMG) signal, 

electric manifestation of muscular contractions, is a direct 

source to extract effective information on movement intent 

and execution. This signal has been indeed used as a source 

for decoding human movement intentions for decades [1] [2].  

The human hand is extremely complex [3], embedding a 

large number of afferents and intrinsic muscles that 

articulates >20 degrees of freedom (DoFs) [4]. Using sEMG, 

estimating intent of fine movements of the hand, such as 

different hand gestures, is a challenging task [5][6].  

For decades, one of the most popular ideas in myoelectric 

analysis and control has been the use of manually selected 

features and machine learning algorithms to decode sEMG 

and recognize motions [7]. Recently, deep learning algorithms 

have been used that can automatically select the features, 

which is more effective for sEMG applications. Most of the 

related works on sEMG pattern recognition focus on the 

improvement of classification accuracy and the number of 

discriminated motions [3][8][9]. Phinyomark et al. [10] 

investigated fifty time-domain and frequency-domain features 

for classifying ten upper limb motions using sEMG. Krasoulis 

et al. [11] used the exp-kernel to solve the force regression and 

movement classification problems. Zanghieri et al.[8] 

proposed Temporal Convolutional Networks (TCNs) for 

robust gesture recognition. Although these classification 

algorithms are able to distinguish actions commonly used in 

daily life, they do not provide a natural and fine-grained 

control. More recent literature began to shift research focus 

from discrete movement classification to continuous 

movement regression. Although the estimation of continuous 

human motor intention from EMG signal and its application 

have been investigated [12][13][14][15][16], to the best of our 

knowledge, the current methods do not satisfy the criteria for 

accuracy, real-time performance and large number of 

estimated joint angles, to allow continuous hand gesture 

recognition. 

EMG-based continuous motion estimation approaches can 

be categorized as model-based and model-free approaches. 

Model-based approaches include kinematics models [17], 

musculoskeletal models [18][19], or dynamic models in 

general. However, the model-based approaches need to build 

a complex physical model and it is generally difficult to 

accurately estimate the relation between sEMG and joint 

angles. The model-based approaches are generally used to 

determine physical parameters such as position and 

acceleration. On the other hand, currently, researchers tend to 

use model-free approaches when facing practical control 

problem. For example, Lin et al. proposed a simultaneous and 

proportional multiple degree of freedom (DOF) myoelectric 

control method for active prostheses using sparse constraint 

non-negative matrix factorization. Zhang et al. [20] presented 

a simultaneous and continuous kinematics estimation method 

which used a single ANN for 4-DoFs across shoulder and 

elbow joints. Xiloyannis et al. [21] used the Gaussian process 

to estimate hand movements to achieve an accuracy of 0.79. 

Quivira et al. [22] proposed a hand pose estimation approach 

from low-cost sEMG systems using recurrent neural networks 

(RNN). However, the estimation accuracy and time delay of 

these methods are still below the needs for clinical translation. 

In order to meet the needs on precision and low-latency, we 

propose a novel and low-computational-cost approach, which 

we named Long Exposure Convolutional Memory network 

(LE-ConvMN). This approach builds the connection between 

sEMG recordings and hand kinematics. This method was 

validated on the currently widely used Ninapro dataset and 

compared with two classical methods, i.e. LSTM [23] and 

Sparse Pseudo-input Gaussian Process (SPGP) [21]. These 

two compared methods are those with current best 

performance for multiple joint angle estimation of finger 

movements [24]. The experimental results showed that LE-

ConvMN has the best estimation performance on both 

stability and accuracy.  
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Method 

Dataset 

Ninapro [25] is currently the repository with the largest 

number of intact and hand amputated subjects in the literature. 

In this study, we design experiments on 6 movements shown 

in Fig. 3 from 8 subjects. Because the training of the deep 

learning algorithm is time consuming (e.g., LSTM took 33.25 

hours), we choose 8 subjects out of the database. However, 

these 8 subjects are chosen to cover the all subjects’ 
information as much as possible, i.g. the range of the height 

weights, gender, age and dominant hand are 154cm-187cm, 

50kg-90kg, 5-male/3-female, 24-35, 6-right/2-left, 

respectively. Grasping movement is the most commonly used 

hand movement in daily life. We have selected these 6 types 

of grasping movement based on representative shapes and 

diameters. Hand kinematics was measured using a 22-sensor 

CyberGlove II data-glove and sEMG is collected by Delsys 

Trigno Wireless System, which comprises 12 wireless sEMG 

electrodes. These electrodes sample the raw sEMG signal at a 

rate of 2 kHz. As shown in Fig. 2, we choose Proximal 

Interphalangeal point (PIP) and Metacarpophalangeal point 

(MCP) as estimated joint because they are the main active 

joints in the grasping movement. 

The hand kinematics movement was collected at 20 Hz and 

resampled to 2000 Hz to synchronise with the sEMG signals. 

The sEMG signals and hand joint angle signals were divided 

into fragment sequences of 100-ms duration and sliding step-

length of 0.5 ms. To reduce noise and simplify the 

computation, the root mean square (RMS) value was chosen 

as feature. After the RMS processing, each movement 

(containing six trials) was segmented into training dataset 

(four trials) and testing dataset to perform the train-test 

experiment on the LE-ConvMN as well as the two contrast 

neural networks with respect to the hand joint angle 

movements. 

Parameters for evaluation 

Pearson correlation coefficient is the most commonly used 

linear correlation coefficient, which can reflect the linear 

 

Fig. 1. One-step RMS to build 3D inputs which contain more detail information on time and space. The minor processing window contains 12 

channels 100ms sEMG and the sliding step-length is 0.5 ms. sEMG is collected from 12 electrodes which 1–8 electrodes equally spaced around the 

forearm 9 and 10 spaced on the surface of flexor digitorum superficialis and digitorum superficial extenso, 11 and 12 measuring signals from Biceps 

Brachii and Triceps Brachii.   

 

Fig. 2. CyberGlove II data-glove. The red dot represents our 

estimate of 10 angles 
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correlation between two variables. Here, we use it to measure 

the correlation between the estimated joint angle and the 

actual joint angle. Its calculation formula is as follows: 𝑐𝑐 = ∑ (𝜃𝑒𝑠𝑡 − 𝜃𝑒𝑠𝑡̅̅ ̅̅ ̅)(𝜃𝑟𝑒𝑎𝑙 − 𝜃𝑟𝑒𝑎𝑙̅̅ ̅̅ ̅̅ )𝑁𝑖=1√∑ (𝜃𝑒𝑠𝑡 − 𝜃𝑒𝑠𝑡̅̅ ̅̅ ̅)2𝑁𝑖=1 √∑ (𝜃𝑟𝑒𝑎𝑙 − 𝜃𝑟𝑒𝑎𝑙̅̅ ̅̅ ̅̅ )2𝑁𝑖=1      (1) 

Where 𝜃𝑒𝑠𝑡 , 𝜃𝑒𝑠𝑡̅̅ ̅̅ ̅,𝜃𝑟𝑒𝑎𝑙 , 𝜃𝑟𝑒𝑎𝑙̅̅ ̅̅ ̅̅  presents the value of estimated 

joint angle, the mean value of estimated joint angles, the value 

of real joint angle and the mean value of real joint angles, 

respectively. The CC value is between - 1 and 1, which can be 

used to evaluate the performance of the algorithm. The closer 

CC value is to 1, the more similar the predicted finger 

trajectory is to that of the actual movement, and the higher 

accuracy of the estimation can reach. 

Root mean square error (RMSE) can reflect the deviation 

between two variables. Here, RMSE is used to evaluate the 

deviation between the estimated value and the measured value 

of each joint angle, in degrees(º). RMSE is calculated as 

follows: 

𝑅𝑀𝑆𝐸 = √∑ (𝜃𝑒𝑠𝑡 − 𝜃𝑟𝑒𝑎𝑙)2𝑁𝑁
𝑖                     (2) 

RMSE is the numerical deviation between the predicted 

angle and the actual angle, so it can reflect the performance of 

the algorithm from the angle amplitude of joint. For the same 

joint, the smaller RMSE is, the closer the predicted value is to 

the actual value, the higher accuracy of the estimation can 

reach. 

Due to the different range of motion of each joint, RMSE is 

unable to compare the performance of algorithms between 

different joints. So, we defined Normalized RMSE as a 

complement to evaluate different joints: 𝑁𝑅𝑀𝑆𝐸 = 𝑅𝑀𝑆𝐸𝜃𝑀𝐴𝑋 − 𝜃𝑀𝐼𝑁 ,                          (3) 

where, 𝜃𝑀𝐴𝑋  represents the maximum value of the actual 

measured angle of a joint, 𝜃𝑀𝐼𝑁 represents the minimum value 

of the actual measured angle of the joint. 

Statistical Analysis 

Due to the limited number of subjects, Friedman test was 

used to analyze significant differences among subjects with 

different evaluating methods, and Wilcoxon signed-rank test 

was used for post hoc comparisons. P value is corrected by 

Bonferroni correction. 

Sparse Pseudo-input Gaussian Process (SPGP) 

For non-linear non-parametric regression and classification, 

especially in high-dimensional space, the Gaussian process 

(GP) has shown to have an outstanding performance [21][26]. 

Assuming a dataset 𝒟 = {𝑋, 𝑌}, the input vector 𝑋 = {𝑥𝑛}𝑛=1𝑁  

and the target value 𝑌 = {𝑦𝑛}𝑛=1𝑁 , we aim to find a function 

relating X and Y [1]. According to the standard GP, the targets 

are assumed to obey a Gaussian distribution𝑌 ~ 𝒩(0, 𝐾𝑁 +𝜎𝑛2𝐼), where 𝜎𝑛2𝐼 present Gaussian noise with zero mean and 𝜎𝑛2  variance, and 𝐾𝑁  is the covariance matrix commonly 

calculated by a kernel function, such as the commonly used 

 

Fig. 3. One channel sEMG signal, RMS and joint angle after 6 types of action combinations 
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Radial Basis Function (RBF) kernel. When given a new point 

x, the distribution of the target value y is:  𝑝(𝑦|𝑥, 𝒟, 𝜃) = 𝑁 (𝑦| 𝑘𝑥𝑇(𝐾𝑁 + 𝜎𝑛2𝐼)−1𝑦, 𝐾𝑥𝑥 − 𝑘𝑥𝑇(𝐾𝑁 + 𝜎𝑛2𝐼)−1𝑘𝑥 + 𝜎2)  (4)                                                                        

where 𝑘𝑥 = 𝐾(𝑥𝑛 , 𝑥)  and 𝑘𝑥𝑥 = 𝐾(𝑥, 𝑥) , and 𝜃  and 𝜎2 

hyperparameters. Unfortunately, when the data set is large, the 

computational complexity and time of the standard GP would 

be too large for most practical applications. The complexity of 

training will be 𝒪(𝑁3) because the dimension of K is 𝑁2. As 

a result, the complexity of the testing will be at least 𝒪(𝑁2). 

In order to solve these computational problems, Snelson et al. 

proposed SPGP (Sparse Pseudo-input Gaussian Process) 

where the entire set N in standard GP is replaced by a small 

number of points M (𝑀 ≪ 𝑁) [2]. Given the pseudo-input �̅� ={�̅�𝑚}𝑚=1𝑀 , and the pseudo target �̅� = {𝑓�̅�}𝑚=1𝑀 , the distribution 

of a single point is: 

    𝑝{𝑦|𝑥, 𝑋,̅ �̅�} = 𝒩(𝑦|𝑘𝑥𝑇𝐾𝑀−1�̅�, 𝐾𝑥𝑥 − 𝑘𝑥𝑇𝐾𝑀−1𝑘𝑥 + 𝜎2)    (5) 

where 𝐾𝑀 = 𝐾(�̅�𝑚 , �̅�𝑚), and 𝑘𝑀 = 𝐾(�̅�𝑚 , 𝑥). 

As for the entire data, the complete likelihood is given as: 

          𝑝{𝑌|𝑋, 𝑋,̅ �̅�} = 𝒩(𝑌|𝐾𝑁𝑀𝐾𝑀−1�̅�，Λ + 𝜎2𝐼)           (6) 

where Λ = diag(λ), 𝜆𝑛 = 𝐾𝑛𝑛 − 𝑘𝑛𝑇𝐾𝑀−1𝑘𝑛, and 𝐾𝑁𝑀 =𝐾(𝑥𝑛, �̅�𝑚). Then the posterior distribution of �̅� can be 

found as: 

𝑝(�̅�|𝒟, �̅�)𝒩(�̅�|𝐾𝑀𝑄𝑀−1𝐾𝑀𝑁(Λ + 𝜎2)−1𝑌, 𝐾𝑀𝑄𝑀−1𝐾𝑀)       (7) 

where 𝑄𝑀 = 𝐾𝑀 + 𝐾𝑀𝑁(Λ + 𝜎2𝐼)−1𝐾𝑁𝑀 . Now given a new 

input 𝑥′, the distribution of the target 𝑦′ is: p(𝑦′|𝑥′, 𝒟, �̅�) = ∫ 𝑑�̅�𝑝(𝑦′|𝑥′, �̅�, �̅�)𝑝(�̅�|𝒟, �̅�)  = 𝒩(𝑦′|𝜇′, 𝜎′2)                                   (8)                      

where 𝜇′ = 𝑘′𝑇𝑄𝑀−1𝐾𝑀𝑁(Λ + 𝜎2𝐼)−1𝑌  and 𝜎′2 = 𝐾′′ −𝑘′𝑇(𝐾𝑀−1 − 𝑄𝑀−1)𝑘′ + 𝜎2. 

The complexity of 𝑄𝑀  is 𝒪(𝑀2N)  and therefore the 

complexity in the testing process is 𝒪(𝑀2) . Thus, the 

complexity and computation time have no association with the 

size of the data set. In the current work, we utilized the code 

from the Sheffield Machine Learning Group [2]. 

Long short-term memory (LSTM) 

Long short-term memory (LSTM) neural network is a type 

of recurrent neural network (RNN). The basic recurrent circle 

provides RNN the capacity to bring in the information from 

previous iterations. Therefore, RNN has been used widely in 

solving problems with temporal information [27]. With the 

growth of data complexity, the short recurrent circle could not 

meet the demand which led to the proposal of LSTM. The 

LSTM structure is built to implement long term dependencies. 

Being one type of RNN, LSTM has been proved more capable 

on the regression problem or continuous output fitting 

problem. It controls the information pass from time 𝑡 to time 𝑡 + 1 by a gate structure that contains a matrix weight. Hence, 

important information maintains a relatively long term to take 

effect. LSTM has been employed for natural language 

processing [28], intention recognition [29], continuous 

control[24], and many other applications. In previous studies 

[22][30], RNN can extract kinematics information efficiently 

from sEMG signals. In this study, we take advantages of 

LSTM to implement simultaneous and proportional control as 

a comparison to our proposed method. The procedure for the 

LSTM algorithm was implemented as follows. 

Assuming 𝑋 = [𝑥0, 𝑥1, ⋯ 𝑥𝑡 , ⋯ ]  is the one-dimensional 

input vector, the middle-hidden layer state vector 𝐻 =[ℎ0, ℎ1, ⋯ ℎ𝑡 , ⋯ ] can be written as: 

                𝐻 = 𝜕(𝑊𝑖𝑥𝑡 + 𝑊ℎℎ𝑡−1 + 𝑏ℎ)                  (9) 

where 𝑊𝑖 stands for the input weight matrix, 𝑊ℎ is the hidden 

weight matrix, 𝑏ℎ  presents the hidden bias matrix and 𝜕 

stands for the activation function. Then, the output sequence 𝑌 = [𝑦0, 𝑦1, ⋯ 𝑦𝑡 , ⋯ ] is obtained as:                                𝑌 =  𝜌(𝑊𝑜ℎ𝑡 + 𝑏𝑜)                            (10) 
 

Fig. 4. The structure of a LSTM cell. where 𝑖𝑡, 𝑜𝑡, 𝑓𝑡 , 𝑠𝑡 stand for 

input gate, output gate, forget gate and the LSTM cell state. 𝑠̅ stand 

for alternate cell state. 
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Similarly, 𝑊𝑜 presents the output weight matrix, 𝑏𝑜 is the 

output bias and  𝜌 stands for the activation function. Weights 

in the LSTM control the maintenance of information. LSTM 

includes input gate, forget gate, memory cell and output gate. 

The structure can be seen in Fig. 4. A single iteration is 

expressed as follows: 𝑖𝑡 = 𝜕(𝑊𝑥𝑖𝑥𝑡 + 𝑊𝑢𝑖ℎ𝑡−1 + 𝑏𝑖)             (11) 

 �̅� = tanh(𝑊𝑥𝑠𝑥𝑡 + 𝑊𝑢𝑠ℎ𝑡−1 + 𝑏𝑠)           (12) 𝑜𝑡 = 𝜕(𝑊𝑥𝑜𝑥𝑡 + 𝑊𝑢𝑜ℎ𝑡−1 + 𝑏𝑜)           (13) 𝑓𝑡 = 𝜕(𝑊𝑥𝑓𝑥𝑡 + 𝑊𝑢𝑓ℎ𝑡−1 + 𝑏𝑓)          (14)  𝑠𝑡 = 𝑓𝑡 · 𝑠𝑡−1 + 𝑖𝑡 · �̅�           (15) ℎ𝑡 = 𝑜𝑡 · 𝜌(𝑠𝑡)           (16) 

where 𝑖𝑡 , 𝑜𝑡 , 𝑓𝑡 , 𝑠𝑡  stand for input gate, output gate, forget gate 

and the LSTM cell state (which influences the output at the 

next iteration). The 𝑊 terms stand for the weight matrices and 

their subscripts denote their respective positions (e.g. 𝑊𝑥𝑖 
denotes the weight matrix from the input gate to the input), the 𝑏 terms stand for bias vectors (𝑏𝑖 is the input gate bias vector). 𝜕 and 𝜌 represent the activation functions of the hidden layer 

and the output layer, respectively. The symbol ‘·’ represents 
element-wise product of the vectors. The three gates are 

influenced by the last step hidden state and the cell state. 

Moreover, the cell state is controlled by the forget gate from 

the last step. 

Long Exposure-convolutional Memory Network (LE-ConvMN) 

Although LSTM has been proven to have powerful ability to 

process temporal data, it has suboptimal performance on 

spatial data and depends on many parameters. The major 

drawback of LSTM in handling spatiotemporal data is that it 

has to flatten the multi-dimensional inputs into a 1D vector 

before processing and, as a result, all the spatial information 

embedded in the original input data is lost. To address this 

problem, Shi et al. proposed a new network which has 

convolutional structures in both the input-to-state and state-to-

state transitions, called ConvLstm, and used it for 

precipitation nowcasting [31]. The key equations of 

ConvLstm are shown in below： 𝑖𝑡 = 𝜕(𝑊𝑥𝑖 ∗ 𝑥𝑡 + 𝑊𝑢𝑖 ∗ ℎ𝑡−1 + 𝑏𝑖)             (17) 

 �̅� = tanh(𝑊𝑥𝑠 ∗ 𝑥𝑡 + 𝑊𝑢𝑠 ∗ ℎ𝑡−1 + 𝑏𝑠)   (18) 𝑜𝑡 = 𝜕(𝑊𝑥𝑜 ∗ 𝑥𝑡 + 𝑊𝑢𝑜 ∗ ℎ𝑡−1 + 𝑏𝑜)           (19) 𝑓𝑡 = 𝜕(𝑊𝑥𝑓 ∗ 𝑥𝑡 + 𝑊𝑢𝑓 ∗ ℎ𝑡−1 + 𝑏𝑓)          (20)  𝑠𝑡 = 𝑓𝑡 · 𝑠𝑡−1 + 𝑖𝑡 · �̅�           (21) ℎ𝑡 = 𝑜𝑡 · 𝜌(𝑠𝑡)           (22) 

 

The advantage of ConvLstm is that the internal state can 

maintain the time and space dimension of the input data. 

ConvLstm has also good performance on temporal-spatial 

data. Thus, we propose an extension of ConvLstm, namely 

Long Exposure-convolutional Memory Network (LE-

ConvMN) which is more suitable for processing myoelectric 

data. The LE-ConvMN determines the future state of a certain 

cell in the grid by the inputs and past states of its local 

neighbours. This can be achieved by using a convolution 

operator in the state-to-state and input-to-state transitions. The 

differences between the adjacent inputs are not so large in this 

application, so the full-connection structure in LSTM is not 

necessary. Full connection will greatly increase the 

complexity of the model, reduce the training speed and 

generalization ability. The use of convolutional structures not 

 

Fig. 5. ConvLstm cell uses convolution to achieve the calculation of each gate and the number of convolution channels is equal to the number of 

hidden states. The Structure of ConvMN Block consists of three ConvLstm layers with hidden state 64, 32, 10 and one fully connected layer. Inside 

the ConvMN Block, the hidden state is delivered layer by layer and the dimensions are continuously reduced, and finally the fully connected layer does 

feature mapping. The inputs of ConvMN block at time t consists of the LE-sEMG at time t and the hidden state of the third layers of the ConvMN 

block at time t-1 (10 * 12 * 200). Hidden state is computed by forget gate, input gate and output gate. 
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only reduces redundancy but also extracts combined 

information from multiple channels more efficiently (two-

dimensional convolution is adopted). 

In previous work, researchers used to extract features in 

time and frequency domain within each channel. However, the 

interaction between channels was less explored. As shown in 

Fig. 1, we convert the raw sEMG into a multi-channel Long 

exposure EMG sample collection which contains 100 sub-

frames root mean square (RMS) features (1 sub-frame RMS 

feature is calculated from 100-ms EMG and the sliding step-

length is 0.5 ms) rather than using 200 ms EMG signal as one 

features input. Obviously, comparing to other methods which 

only takes 1 frame feature input, the long exposure structure 

can make better usage of the information of EMG in time and 

space dimensions. Considering the requirement of data 

sufficiency for deep learning, we aim at a fine balance 

between presenting information to the network and the real-

time performance of the pipeline. This operation is analogous 

to a photographer getting a richer photo by increasing the 

exposure times of the camera. Due to the enlargement of 

feature extraction area, we set the LE-ConvMN layer hidden 

sizes as 64, 32 ,10 to compress volume and extract features in 

higher dimension. All convolution operations use 3 * 3 

convolution kernels. The stride and padding are 1. Meanwhile, 

compressing the feature dimension can also effectively 

prevent overfitting. At the end of the network we added a fully 

connected layer to reorganize the mapping of features to the 

target space. The structure of LE-ConvMN is shown in Fig. 5.   

When Long exposure EMG collection (100 sub-frames) is 

provided as input to LE-ConvMN, features in time and space 

dimension of EMG sub-frame are extracted in each layer and 

kept in hidden states until 100 sub-frames of data are extracted. 

Then the hidden states of this layer will transfer to the next 

layer. According to our design, the dimension of the hidden 

state is reduced (64-32-10) layer by layer, which can complete 

the transition of data from low-dimensional features to high-

dimensional features. Finally, the fully connected layer will 

map the high-dimensional features to joint angles. Compared 

with traditional machine learning methods, LE-ConvMN can 

better perform the joint training of feature extraction and 

feature-to-target space mapping. In this study, we verify that 

adding a full connection layer at the end of the network can 

make the motion curve smoother.  

 

Result 

We built LSTM and LE-ConvMN on the Pytorch 

framework [32], and built SPGP on MATLAB, comparing 

their performance on continuous proportional estimation of  

finger movements.  

LSTM and LE-ConvMN were trained on the same GPUs 

(Titan V). Both models converged after training for around 

300 epochs and the average convergence time of LSTM and 

LE-ConvMN is 33.25 hours and 3.5 hours, respectively.  

Fig. 6 shows the performance of the three contrast models 

for the eight experimental subjects and ten channels. We 

firstly performed Friedman test on the performance (RMSE, 

NRMSE, CC) of the three methods on the subjects and the 

channels, and the p-values were all less than 0.05, indicating 

that the performance of the three methods is significantly 

different. Afterwards, we performed Wilcoxon signed-rank 

test on (LE-ConvMN, SPGP) and (LE-ConvMN, LSTM). The 

p-values on subject-to-subject and joint-to-joint were both less 

than 0.05, indicating that LE-ConvMN significantly 

outperformed the other two methods. The average CC, RMSE, 

NRMSE of the proposed method (0.82±0.03, 11.54±1.89, 

0.12±0.01) was significantly higher than SPGP (0.66±0.05, 

p=0.012; 15.51±2.81, p=0.025; 0.16±0.01, p=0.017 ) and 

LSTM (0.64±0.06, p=0.012; 14.77±3.21, p=0.025; 0.15±0.02, 

p=0.025). In our previous work [24], we proved that LSTM 

has high estimation accuracy in a single class of actions, which 

is consistent with the results of the current study. However, 

the accuracy of LSTM from our current results is greatly 

reduced because of the combination of multiple motions, 

while LE-ConvMN maintained high accuracy. This indicates 

that our proposed network has stronger generalization ability 

in intra-class continuous estimation of finger movements than 

LSTM. Almost all of the LE-ConvMN estimation accuracies 

among all subjects are greater than 0.8, which indicates that 

the proposed LE-ConvMN has the capability of generalizing 

for most subjects. It is evident from Fig. 6(a) that the 

performance of LSTM and SPGP was particularly worse than 

LE-ConvMN on subjects 2, 3, 5. As for the RMSE and 

NRMSE, LE-ConvMN presents superior performance, 

especially for subject 3. 

The estimation accuracy with each individual channel is 

shown in Fig. 6(b)(d)(f). LE-ConvMN always has the best 

performance for all ten channels. In Fig. 6(b), the LE-

ConvMN surpasses LSTM and SPGP significantly in 

accuracies by 10% among all joint angles. Fig. 6(d) shows that 

the RMSE of LE-ConvMN is lower than LSTM and SPGP on 

each joint angle. As shown in Fig. 6(f), NRMSE also shows 

superior performance when applying LE-ConvMN. LE-

ConvMN also shows high accuracy and stability for channels 

distinctly more difficult to predict (e.g. channel 6, 9, 13, 16, 

17). Especially on joint angle 9, LE-ConvMN provides high 

accuracies, small variance, low RMSE and low NRMSE while 

LSTM and SPGP perform distinctly worse for this joint angle 

than for the others. This suggests that LE-ConvMN has the 

capability, stability and versatility to be applied on various 

subjects and joint angles. 

In order to verify the effect of the noise may appear in 

practice, we add gaussian noise with SNR 10dB to the test data. 

Experimental results show that the noise lower the accuracy 

of the LE-ConvMN by 0.3% which proved that the method is 
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Fig. 6. Summary of the performance measures of 8 able-bodied subjects. From top to down, are the CC, RMSE, NRMSE, and overshoots 

indicates the variances.  
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robust to this kind of noise. 

The estimated joint angles with the three contrast models 

are plotted against the measured curves of participant 1 in Fig. 

7. As is shown in Fig. 7(a), the SPGP model provides 

accurate trend but the amplitude is incorrect, which leads to 

the worst performance among the three models. On the other 

hand, Fig. 7 (b) shows that the predicted curve from the 

LSTM model estimates the correct trend but presents large 

error at turning points. Fig. 7 (c) shows that the predicted 

curve by LE-ConvMN is the most similar to the measured 

curve without distortion. As for the processing delay, the 

average delay of LE-ConvMN is 82ms (input step 50ms + 

calculation time 32ms.) which is well below the need for 

real-time requirement in myocontrol (200 ms [33]) 

Discussion 

The finger motion detection and prediction would greatly 

influence the performance of an HCI involving hand 

movements, such as gestures. In this study, the proposed 

approach of LE-ConvMN was compared with traditional 

mathematical (SPGP) and machine learning methods 

(LSTM), when finger movements are estimated from sEMG. 

To accurately describe the estimation performance of each 

algorithm, correlation coefficients of each algorithm were 

measured between the actual and predicted finger joint angle. 

The results shown in Fig. 7 indicate that, among these 8 

individual participants, the proposed method not only has 

significantly higher estimation accuracy but also provides 

better stability than SPGP and LSTM. Assuming applied in 

real-world application scenario, it would be difficult for 

SPGP and LSTM to identify the joint angles because of the 

heterogeneity of participants (LSTM performs better than 

SPGP on some participants only). In comparison, the 

proposed method has the ability to generalize and was 

superior to both LSTM and SPGP in all participants. As 

shown in Fig. 7, LSTM with its unique recurrent structure 

performs better than SPGP on most joint angles, LE-

ConvMN performs the best on each angle due to the powerful 

structure pattern recognition ability of convolutional kernel, 

the extraordinary sequence data decoding capability of 

LSTM, and the specific long exposure data input method. 

The advantage of the proposed estimation approach is 

further reflected in Fig. 7. The predicted joint angle curves of 

SPGP have a relatively long lag in response, especially 

during intervals of sudden inflections. The LSTM is able to 

detect the trend of the actual finger motion clearly but there 

are discrepancies in amplitude, especially when the joint 

angle is constant. Comparatively, the LE-ConvMN provides 

more continuous, stable and accurate joint angle curves to 

match the actual curves.  

At present, the application of deep learning in the field of 

myoelectric control mostly relies on discrete estimation [8] 

 

(c) 
Fig. 7. (a) (b) (c) shows the predicted and actual values of SPGP, LSTM and LE-ConvMN respectively. 8 subjects, each subject execute 6 grasp 

movements. 
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[9] [34] [35]. Although TCN can achieve good results in 

discrete estimation [8], it cannot be effectively applied to 

continuous estimates.  

Researchers are trying to find effective methods to 

estimate the continuous movement of the hand. For example, 

Xiloyannis et al. proposed Gaussian Process Autoregression 

(GPA) for decoding neural information that enables a user to 

independently control 11 joints of the hand [36]. Ghaderi et 

al. applied Generalized Regression Neural Network (GRNN), 

a non-linear identification approach, to estimate finger 

kinematics (15 Degrees of Freedom) from sEMG signals [37]. 

Comparing with the two methods, LE-ConvMN can estimate 

more complex actions and provides higher accuracy. Li et al. 

proposed a time-delay recurrent neural network (TDRNN) 

method by using sEMG signals to predict the kinematics of 

hand and wrist but only applied it for estimates of 3 degrees 

of freedom. Compared with our previous work [24], LE-

ConvMN does not need to build different models for 

different actions and has a faster training speed.  

However, there are some limits in this work, such as the 

finger motions in this study mainly focused on the basic 

functional grasp motions. We have not tested the 

performance of LE-ConvMN on predicting other types of 

finger motions (e.g., “OK", "three", "V" , and pinching). 
Therefore, the compatibility of the method with other types 

of finger motions remains to be tested. It has been 

mathematically proved that multilayer neural network can fit 

arbitrary functions [38], so it is possible to develop a deep 

learning network to meet the more complexed finger motions, 

we are considering to integrate more complex finger motions 

in the future work. Meanwhile, the deviation between the 

predicted and actual joint angle might be reduced by 

integrating adaptive type algorithms. Although off-line 

analysis is the starting point of exploration, there are still 

some issues (i.e., shift in electrode position, condition, and 

arm posture) to be solved when apply the method in practice. 

We have tried to solve the problem of electrode shifting or 

noise. In our former work, we have used high density 

electrodes array to simulate electrode shifting, and our 

preliminary work has been published [39][40]. But in this 

paper, the Ninapro database uses sparse electrodes, the 

distance between two sparse electrodes is too far, which is 

not so easy to simulate the electrode shifting like the actual 

situation. We have simulated moving the electrode in a large 

range (equal to the interval width of two neighboring sparse 

electrodes). This will obviously reduce the accuracy of the 

LE-ConvMN (more than 10%). In the future work, we will 

collect the shifted electrode data by our own equipment, 

which may better evaluate the robustness of the algorithm 

when meeting electrode shifting.  

 

 

 

Conclusion 

In this paper, we propose a LE-ConvMN-based deep 

learning model to estimate finger motion simultaneously and 

proportionally. According to the temporal and spatial 

characteristics of sEMG data and the real-time requirements 

of practical use, we designed a multi-channel long exposure 

input and convolution structure to reproduce the gate 

operation of LSTM. Then we chose two representative 

algorithms (SPGP and LSTM) for the continuous estimation 

field to compare them with LE-ConvMN. The experimental 

results showed that LE-ConvMN achieves higher accuracy, 

stability and smaller delay than LSTM, and is expected to 

play an important role in human-computer interaction and 

human-computer cooperation. 
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