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Excessive neuronal synchrony is a hallmark of neurological disorders such as epilepsy

and Parkinson’s disease. An established treatment for medically refractory Parkinson’s

disease is high-frequency (HF) deep brain stimulation (DBS). However, symptoms

return shortly after cessation of HF-DBS. Recently developed decoupling stimulation

approaches, such as Random Reset (RR) stimulation, specifically target pathological

connections to achieve long-lasting desynchronization. During RR stimulation, a

temporally and spatially randomized stimulus pattern is administered. However, spatial

randomization, as presented so far, may be difficult to realize in a DBS-like setup

due to insufficient spatial resolution. Motivated by recently developed segmented DBS

electrodes with multiple stimulation sites, we present a RR stimulation protocol that

copes with the limited spatial resolution of currently available depth electrodes for

DBS. Specifically, spatial randomization is realized by delivering stimuli simultaneously

to L randomly selected stimulation sites out of a total of M stimulation sites, which

will be called L/M-RR stimulation. We study decoupling by L/M-RR stimulation in

networks of excitatory integrate-and-fire neurons with spike-timing dependent plasticity

by means of theoretical and computational analysis. We find that L/M-RR stimulation

yields parameter-robust decoupling and long-lasting desynchronization. Furthermore,

our theory reveals that strong high-frequency stimulation is not suitable for inducing

long-lasting desynchronization effects. As a consequence, low and high frequency L/M-

RR stimulation affect synaptic weights in qualitatively different ways. Our simulations

confirm these predictions and show that qualitative differences between low and high

frequency L/M-RR stimulation are present across a wide range of stimulation parameters,

rendering stimulation with intermediate frequencies most efficient. Remarkably, we find

that L/M-RR stimulation does not rely on a high spatial resolution, characterized by the

density of stimulation sites in a target area, corresponding to a large M. In fact, L/M-RR

stimulation with low resolution performs even better at low stimulation amplitudes. Our

results provide computational evidence that L/M-RR stimulation may present a way to

exploit modern segmented lead electrodes for long-lasting therapeutic effects.

Keywords: random reset stimulation, spike-timing dependent plasticity (STDP), desynchronization, segmented

electrodes, long-lasting effects
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1. INTRODUCTION

Synchronization of coupled oscillators is observed in various
fields of the natural sciences, for instance, in neurosciences
(Steriade et al., 1990; Haken, 2006), medicine (Tass, 1999),
physics (Pikovsky et al., 2001; Haken, 2012), biology (Winfree,
2001), and chemistry (Kuramoto, 2003). In the nervous system,
synchronization of neuronal activity is critical for successful
motor control (Andres and Gerloff, 1999) and information
processing (Singer, 1990). However, excessive synchronization
is associated with several neurological disorders, e.g., essential
tremor, Parkinson’s disease (PD) (Alberts et al., 1969; Nini et al.,
1995), epilepsy (Mormann et al., 2000), and chronic subjective
tinnitus (Eggermont and Tass, 2015).

High-frequency deep brain stimulation (HF DBS) is the
standard of care for patients with advanced PD. HF DBS is
delivered to target brain regions, such as the subthalamic nucleus
(STN), through implanted lead electrodes. The mechanism of
action of DBS is still a matter of debate (Ashkan et al., 2017;
Jakobs et al., 2019; Lozano et al., 2019). As PD symptoms return
shortly after cessation of stimulation, permanent delivery of HF
DBS is required for persistent symptom suppression (Temperli
et al., 2003). On the other hand, permanent stimulation increases
the risk of side effects such as depression, cognitive decline,
speech difficulty, instability, dyskinesia, and gait disorders
(Rodriguez-Oroz et al., 2005; Temel et al., 2006). The risk of
unwanted side effects may be reduced by a substantial reduction
of the delivered stimulation current.

Early studies on desynchronization focused on single pulses
delivered to a vulnerable phase of a collective oscillation

(Mines, 1914; Winfree, 1977, 1980; Warman and Durand,
1989; Tass, 1999), followed by the development of composite

single-channel (Tass, 2001, 2002; Zhai et al., 2005) and multi-
channel stimuli (Tass, 2003) to further improve the robustness
of the desynchronizing effects. In addition, linear or non-linear
delayed feedback was used to desynchronize model networks
(Rosenblum and Pikovsky, 2004a,b; Hauptmann et al., 2005a,b,c;
Popovych et al., 2005, 2006a,b; Pyragas et al., 2007; Popovych
and Tass, 2010). The latter approaches might clinically be
applied by using the linear or non-linear delayed feedback as an
envelope of pulse trains (Popovych et al., 2017a,b). By estimating
phase response curves, researchers also identified well-tuned
periodic stimulation (Wilson et al., 2011), and the delivery
of well-timed stimulation bursts as possible desynchronizing
stimulation approaches (Holt et al., 2016). A desynchronization
approach that does not rely on well-timed stimuli is coordinated
reset (CR) stimulation (Tass, 2003). During CR stimulation,
desynchronization is achieved by delivering phase-shifted stimuli
to multiple subpopulations of oscillators.

Originally, the mentioned desynchronization techniques have

been developed for networks of oscillators with fixed connection
strengths. In the brain, however, neuronal networks are subject

to synaptic plasticity that alters synaptic weights according to
neuronal activity. A prominent mechanism leading to adaptive
connectivity is spike-timing dependent plasticity (STDP), which
modifies the coupling strengths based on the relative timing
of post- and presynaptic spikes (Markram et al., 1997; Abbott

and Nelson, 2000; Caporale and Dan, 2008). In several brain
areas, STDP strengthens synapses if the postsynaptic neuron
fires shortly after the presynaptic one, otherwise the connections
become weaker (Markram et al., 1997; Bi and Poo, 1998).
Plasticity mechanisms can stabilize certain activity patterns,
such as synchronized activity (Karbowski and Ermentrout, 2002)
and may lead to the formation of strongly connected neuronal
assemblies (Litwin-Kumar and Doiron, 2014). A recent study
showed that in presence of STDP, self-organized clusters could
emerge, whereby the clusters divide the networks into groups that
are synchronized at different firing frequencies (Röhr et al., 2019).
Furthermore, the interplay of network adaptation and collective
spiking activity can lead to the coexistence of distinct stable states,
such as synchronized, desynchronized, and cluster states (Seliger
et al., 2002; Zanette and Mikhailov, 2004; Tass and Majtanik,
2006; Maistrenko et al., 2007; Masuda and Kori, 2007; Aoki and
Aoyagi, 2009; Röhr et al., 2019; Berner et al., 2020; Yanchuk et al.,
2020).

Stimulation-induced changes of synaptic connectivity may
drive the network into an attractor of a stable desynchronized
state and cause long-lasting desynchronization (Tass and
Majtanik, 2006). Such long-lasting desynchronizationmay follow
after coordinated reset stimulation as shown by extensive
theoretical (Tass and Majtanik, 2006; Kromer and Tass, 2020;
Kromer et al., 2020) and computational studies (Tass and
Majtanik, 2006; Hauptmann and Tass, 2009; Popovych and Tass,
2012; Lourens et al., 2015; Manos et al., 2018). Corresponding
long-lasting desynchronization and therapeutic effects have been
confirmed experimentally (Tass et al., 2009), as well as in
preclinical (Adamchic et al., 2014; Wang et al., 2016) and clinical
studies (Adamchic et al., 2014).

In preclinical and clinical studies, the frequency of CR
stimulation has been adjusted to the frequency of the
synchronous rhythm as measured by the dominant peak in
the power spectrum of the local field potential (Tass et al., 2012;
Adamchic et al., 2014; Wang et al., 2016). This parameter choice
is motivated by the original idea of CR stimulation; to excite
higher-order modes of the Kuramoto order parameter (Tass,
2003). Additionally, recent computational studies indicate that
long-lasting desynchronization effects of CR stimulation are
more pronounced for well-adjusted CR frequencies (Manos
et al., 2018; Kromer and Tass, 2020; Kromer et al., 2020), this
includes adjusting the stimulation frequency to the dominant
neuronal rhythm (Tass, 2003; Adamchic et al., 2014; Manos et al.,
2018) or the STDP time scale (Kromer et al., 2020). This may
limit the clinical applicability of CR stimulation as a treatment
for PD as different symptoms are associated with pathological
synchrony in different frequency bands. In more detail, excessive
synchronization of basal ganglia activity in the theta band (3−10
Hz) is associated with symptoms such as dyskinesia and tremor
(Brown, 2003; Steigerwald et al., 2008; Tass et al., 2010; Contarino
et al., 2012), while synchronized activity in the beta band (13−30
Hz) is associated with rigidity and bradykinesia (Kühn et al.,
2006; Weinberger et al., 2006).

In order to increase the robustness of long-lasting effects
with respect to stimulation parameters, such as the stimulation
frequency, Kromer and Tass (2020) suggested a Random Reset
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(RR) stimulation protocol. RR refers to the delivery of stimuli in a
temporally and spatially randomized manner. In their theoretical
work, temporal randomization was realized by delivering stimuli
at random times, with exponentially distributed interstimulus
intervals. Thus, stimulation times followed a Poisson spike train.
Spatial randomization was realized by randomly selecting 50%
of the neurons for stimulus application at each stimulation
time—irrespective of the neurons’ locations relative to realistic
spatial stimulation profiles. This implicitly assumed “microscopic
control,” i.e., that even nearby neurons can be stimulated
independently, which is not possible in DBS-like setups.
Remarkably, the suggested RR stimulation method led to robust,
long-lasting desynchronization effects after stimulation ceases
even though the neurons remained partially synchronized during
the entire stimulation period. This was achieved by a pronounced
stimulation-induced decoupling of the neurons. Therefore,
decoupling stimulation was suggested as the primary goal in
order to weaken synaptic connections rather than counteracting
synchronization as in previous approaches (Kromer and Tass,
2020).

Segmented depth electrodes for DBS enable spatially selective
steering of stimulation current (Krack et al., 2003; Buhlmann
et al., 2011; Steigerwald et al., 2019; Krauss et al., 2020). However,
so far, a pressing question regarding a possible implementation
of RR stimulation using available DBS electrodes is that to
which extent the observed decoupling effects rely on the spatial
randomization. In particular, whether it is really necessary to
deliver randomly timed stimuli to individual neurons or whether
delivery to macroscopic neuronal subpopulations is sufficient.
Experimentally using segmented DBS electrodes that allow for
independent activation of multiple stimulation contacts, one
can deliver stimuli to neuronal subpopulations. Traditionally
DBS is delivered through a flexible cylinder with 4 stimulation
contacts (Gielen, 2001; Butson and McIntyre, 2005). In order to
deliver stimuli to individual neuronal subpopulations, modern
electrodes are capable of directional current steering (Buhlmann
et al., 2011; Steigerwald et al., 2019; Krauss et al., 2020)

Directional steering allows for realizing spatiotemporal
current profiles by superposition of stimuli delivered to
individual stimulation contacts (Buhlmann et al., 2011;
Steigerwald et al., 2019). To improve spatial selectivity, recent
research in electrode design is devoted to segmented multisite
electrodes with increasing numbers of stimulation contacts
(Buhlmann et al., 2011; Steigerwald et al., 2019; Krauss et al.,
2020). For instance, certain designs allow for selective activation
of up to 32 stimulation contacts (Contarino et al., 2014;
Steigerwald et al., 2019).

In the present paper, we study a new implementation of RR
stimulation using available DBS electrodes, where we introduce
a version of RR stimulation in which individual stimuli are
simultaneously delivered to L out of M randomly selected
spatially coherent neuronal subpopulations, here called L/M-RR
stimulation. This approach only requires “mesoscopic control,”
i.e., independent stimulation of neuronal subpopulations, and
not “microscopic control,” i.e., independent stimulation of
single neurons, as in the approach of Kromer and Tass
(2020). For our analysis, we use a combination of theoretical

predictions and simulations of networks of leaky integrate-
and-fire (LIF) neurons with STDP. While our theory predicts
efficient decoupling for a wide range of stimulation parameters,
it reveals qualitative differences between low and high-frequency
L/M-RR stimulation, section 3.1. While low-frequency L/M-
RR stimulation yields parameter robust decoupling and related
long-lasting effects, the performance of high-frequency L/M-
RR stimulation is limited to small numbers of simultaneously
stimulated subpopulations. These qualitative differences are
present for a wide range of stimulation amplitudes and render
strong high-frequency L/M-RR stimulation ineffective in terms
of long-lasting after-effects, see section 3.2. Finally, in section
3.3, we analyze how the size of individual subpopulations
influence the long-lasting effects. Remarkably, we find that
stimulation of large subpopulations yields better results for weak
stimulation, see section 3.3. Simultaneous stimulation of large
neuronal subpopulationsmay hence be advantageous for possible
realizations of L/M-RR for DBS.

2. MODELS AND METHODS

2.1. Neuronal Network Model
We consider a network of N conductance-based LIF neurons
with STDP previously presented in Kromer et al. (2020).
Throughout the paper, we fix the network size to N = 1, 000.
Neurons are organized along the x-axis. Individual neurons’
center locations xi are uniformly distributed in the interval
xi ∈ [−2.5, 2.5] mm, which is motivated by the width used
in an ellipsoidal volume approximation of the STN in detailed
computational studies of STN DBS (Ebert et al., 2014). Random
excitatory synaptic connections are added such that the total
connectivity is 7%. The probability for two neurons to form
a synaptic connection depends on the distance between the
neurons as p ∝ exp((|xj − xi|)/0.5mm) (Ebert et al., 2014).

The subthreshold dynamics of the membrane potential vi of
neuron i obeys

Ci
dvi

dt
= gleak(vrest − vi)+ I

syn
i (t)+ Si(t)+ Inoisei (t). (1)

Ci is the membrane capacitance, vrest the resting potential, gleak =
0.02 mS/cm2 the leakage conductance, I

syn
i (t) the synaptic input

current, Si(t) the stimulation current, and Inoisei (t) the noisy
input current.

Spiking occurs when vi crosses a dynamic threshold potential
vthi given by

τth
dvthi
dt

= (vthrest − vthi ). (2)

Here, τth is the threshold time constant and vthrest the stationary
threshold potential. Artificial spikes are realized by setting the
membrane potential vi → vspike for a time period of tspike after
a threshold crossing. Afterwards, a reset is performed by setting
vi → vreset and vthi → vth

spike
.

Throughout the paper, we use the same parameters as in
Kromer et al. (2020): vrest = −38 mV, vthrest = −40 mV, tspike = 1
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ms, τth = 5ms, vspike = 20mV,Vreset = −67mV. TheCi’s follow

a normal distribution with a mean value of 〈Ci〉 = 3 µF/cm2 and
a standard deviation of 0.05〈Ci〉.

Excitatory synaptic input I
syn
i (t) to neuron i, is given by

I
syn
i = g

syn
i (vsyn − vi), (3)

τsyn
dg

syn
i

dt
= −g

syn
i +

κ

N

∑

j∈Gi

wji

∑

lj

δ(t − t
j

lj
− td),

where g
syn
i is the synaptic conductance, κ = 8 mS/cm2 is the

coupling strength, vsyn = 0 mV is the synaptic reversal potential,
τsyn = 1 ms the synaptic time scale, wji ∈ [0, 1] is the synaptic
weight between presynaptic neuron j and postsynaptic neuron i.
The first sum runs over all presynaptic neurons, and the second
sum runs over the spikes of the presynaptic neuron j. Gi is the set

of indices of all presynaptic neurons to neuron i. t
j

lj
is the ljth spike

time of neuron j. We consider homogeneous synaptic delays of
td = 3 ms.

In addition to presynaptic input from other neurons in the
network, each neuron i receives noisy input, e.g., from other
brain regions. The resulting input current Inoisei is obtained by
feeding independent presynaptic Poisson spike trains with firing
rate fnoise = 20 Hz into excitatory synapses on each neuron i
(Ebert et al., 2014)

Inoisei = gnoisei (vsyn − vi), (4)

τsyn
dgnoisei

dt
= −gnoisei + Dτsyn

∑

ki

δ(tiki − t).

Where gnoisei (t) is the synaptic conductance, τsyn = 1 ms, and
vsyn = 0 mV . The noise intensity is controlled by the parameter
D = 0.026mS/cm2 scaling the strength of the Poisson input.

2.2. Spike-Timing Dependent Plasticity
(STDP)
During ongoing spiking, synaptic weights wij evolve according to
a nearest-neighbor STDP scheme (Burkitt et al., 2004). Following
previous studies on CR stimulation (Popovych and Tass, 2012),
we consider a scheme where each arrival of a presynaptic spike at
a postsynaptic neuron j (at time t = ti+td) and each postsynaptic
spike (at time t = tj) cause an update of the synaptic weight, i.e.,
wij → wij +W(tj − (ti + td)). Here, ti denotes the spike time of
the presynaptic spike.W(t) is the STDP function and is given by
two exponentials (Song et al., 2000; Kromer and Tass, 2020)

W(1t) = η











e−|1t|/τ+ , 1t > 0

0, 1t = 0

−
β
τR

e−|1t|/τ− , 1t < 0.

(5)

1t = tj − (ti + td) is the time lag between postsynaptic spike
times and presynaptic spike arrival times. η = 0.02 scales the
weight update per spike, τ+ = 10 ms and τ− = τ+τR are the

STDP decay times for long-term potentiation (LTP) and long-
term depression (LTD), respectively, τR = 4 yields asymmetry
in STDP decay times, and β = 1.4 scales the ratio of overall
LTD to LTP. These STDP parameters lead to bistability between a
strongly connected state with synchronized neuronal activity and
a weakly connected state with asynchronous neuronal activity
(Kromer and Tass, 2020; Kromer et al., 2020).

2.3. Quantification of Synchronization
In order to quantify the degree of in-phase synchronization,
we calculate the time-averaged Kuramoto order parameter
(Kuramoto, 1984)

ρ1(t) =
1

1

t+1
2

∫

t−1
2

dt′
∣

∣

∣

1

N

N−1
∑

k=0

e−iψk(t
′)
∣

∣

∣
. (6)

Here, ψk(t) is a phase function that increases linearly in time
during individual interspike intervals of neuron k, i.e., ψk(t) =

2π((t − tk
l
)/(tk

l+1
− tk

l
) + l) for t ∈ [tk

l
, tk
l+1

) (Rosenblum
et al., 2001). ρ1 quantifies the degree of synchronization of
a population of N neurons during the time interval 1 =

10 s. Perfect in-phase synchronization results in ρ1 = 1
whereas ρ1 ≈ 0 refers to absence of in-phase synchronized
neuronal activity.

2.4. L/M-Random Reset Stimulation
Throughout the paper, we deliver RR stimulation to a randomly
selected group of neuronal subpopulations. RR stimulation
is characterized by the delivery of temporally and spatially
randomized stimulus patterns. Temporal randomization is
realized by delivering stimuli at random times sk. Interstimulus
intervals Sk = sk+1 − sk are distributed according to an
exponential distribution with minimum interstimulus interval
τ3 (Kromer and Tass, 2020)

P(Sk) ∝ exp
(

−
Sk − τ3

τRR

)

2(Sk − τ3). (7)

Where τ3 = 1/130 s is the minimum interstimulus interval
which corresponds to a maximal stimulation frequency of 130
Hz. This frequency is often used in clinical DBS studies (Krauss
et al., 2020).
2(t) is theHeaviside step function, τRR determines the average

stimulation frequency fRR by fRR : = 1/(τ3 + τRR). Figure 1A
shows the distribution of interstimulus intervals for fRR = 30 Hz.

In the present study, spatial randomization is realized by
delivering each stimulus (at time sk) to a randomly selected
group of L out of M neuronal subpopulations. Neurons are
assigned to subpopulations according to their centers’ locations.
In particular, neuron i is considered to be part of subpopulation

l if xi ∈ [−2.5 +
5(l−1)
M ,−2.5 + 5l

M ) mm, l = 1, 2, ...,M. Hence,
M scales the required spatial resolution. This setup is motivated
by the shape of commonly used cylindrical DBS electrodes with
equidistantly placed stimulation contacts (Gielen, 2001; Krauss
et al., 2020). Figure 2 illustrates the division into subpopulations
for M = 4 sites. At each stimulation time sk, a stimulus
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FIGURE 1 | RR stimulation: (A) the probability distribution of interstimulus intervals for fRR = 30 Hz. The dashed line shows the minimum interstimulus interval,

τ3 = (130 Hz)−1. (B) The schematic of RR stimulation for M = 4 total sites where 2 sites are activated simultaneously at random times. The excitatory pulse has a

duration of νe = 0.5 ms and an amplitude of Ae = Astimµ/νe; separated by a gap of 0.2 ms, the inhibitory pulse has a duration of νi = 1.5 ms and an amplitude of

Ai = Astimµ/νi.

is delivered to L out of M randomly selected subpopulations
without replacement. Thus, at each stimulation time the first
electrode is selected uniformly at randomwith a probability of 1

M ,
and for the second one we select one of the remaining electrodes
with the probability of 1

M−1 and so on. If not stated otherwise,
we use M = 32 throughout the paper. This mimics a recently
developed DBS lead electrode with up to 32 stimulation contacts
that can be activated independently (Steigerwald et al., 2016).

Individual stimuli are charge-balanced and consist of an
excitatory and an inhibitory rectangular pulse. The excitatory
pulse has a duration of νe = 0.5 ms and an amplitude of
Ae = Astimµ/νe; separated by a gap of 0.2 ms, the inhibitory
pulse has a duration of νi = 1.5 ms and an amplitude of
Ai = −Astimµ/νi where µ = (Vth,spike − Vreset)/〈Ci〉. Thus,
a stimulus of stimulation strength Astim = 1 will elevate
the membrane potential above the spiking threshold no matter
when the last spike of the neuron occurred. Figure 1B shows
a schematic of our L/M-RR stimulation protocol for the case
where each stimulus is delivered to L = 2 (out of M = 4)
stimulation sites.

2.5. Calculation of Mean Rate of Weight
Change
The development of RR stimulation was originally based on
theoretical predictions of the stimulation-induced synaptic
weight dynamics during randomized stimulation. The
corresponding theoretical study can be found in Kromer
and Tass (2020). In the following, we briefly state the main steps
and expand their results to our L/M-RR stimulation protocol.

The approach of Kromer and Tass (2020) and others (Kempter
et al., 1999; Burkitt et al., 2004) is based on the mean rate of
weight changeJij for a single synaptic weightwij with presynaptic
neuron i and postsynaptic neuron j. Averaging over a long time
interval and a large number of realizations of the spike train, and
assuming that post- and presynaptic neurons have the samemean
firing rate r, the mean rate of weight change can be written as

〈Jij〉 ≈ r

∞
∫

−∞

dt′ Gij(t
′)W(t′ − td). (8)
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FIGURE 2 | Schematic of intrapopulation and interpopulation synapses for a total of M = 4 subpopulations. The blue arrows represent the intrapopulation synapses

where both pre- and postsynaptic neurons are within the same group. The red arrows show the interpopulation synapses where the pre- and postsynaptic neurons

are in different subpopulations. Note that neurons are distributed along the x-axis and the vertical axis is merely symbolic.

For the case of different firing rates of neurons i and j, we refer
to Kromer and Tass (2020). Here Gij(t) is the average number of
time lags t per spike in the infinitesimal interval t ∈ [t, t+dt) that
contribute to weight updates for the chosen STDP scheme. Note
that Gij(t) is in general not normalized to one, but to the mean
number of time lags per spike that contribute to weight updates.

Kromer and Tass (2020) derived results for Gij(t) in the limit
of strong and fast stimulation, where each stimulus triggers a
spike, and all spikes are triggered by stimuli. Here strong refers
to large stimulation amplitudes Astim ≈ 1 and fast to stimulation
frequencies that are large compared to the firing rate in the
synchronous state.

In the limit of strong and fast stimulation, the neurons’
firing rates equal the frequency of stimulus administration ri =
rj = fRRL/M, and the distribution of time lags that lead to
weight updates due to STDP results from the distribution of
interstimulus intervals between stimuli delivered to the post- and
presynaptic neurons, respectively (Kromer and Tass, 2020). We
distinguish between two contributions to these time lags t by
setting t = S + ξ . Here, S is the difference between post- and
presynaptic stimulation times and ξ characterizes the difference
in delayed spiking responses to stimuli. Note that only time lags
that lead to weight updates are considered. Therefore, S does not
denote any interstimulus interval between stimuli delivered to the
post- and presynaptic neurons, but only those for which the time

lag between the triggered post- and presynaptic spike results in
a weight update. Then, Gij(t) results from the distributions of
ξ and S. First, we consider the distribution of ξ . In the limit of
strong and fast stimulation, each stimulus triggers a spike of a
stimulated neuron and each spike is triggered by a stimulus. We
assume that the time lag t′ between stimulus delivery and spiking
response of the stimulated neuron is distributed according to a
distribution λ(t′). Further, assuming that spiking responses of the
pre- and postsynaptic neuron follow this distribution, we find
that ξ is distributed according to Z(ξ ) =

∫ ∞

−∞
dt′ λ(t′)λ(t′ +

ξ ). Second, we denote the distribution of S as pij(S, ξ ). Note
that, in general, pij(S, ξ ) depends on the realization of ξ . This is
because certain realizations of ξ may change the order of spike
and spike arrival times of the pre- and postsynaptic neurons’
spikes. The latter may affect which time lags contribute to weight
updates, and therefore, which interstimulus intervals S need to
be considered.

In order to calculate pij(S, ξ ), we follow the approach of
Kromer and Tass (2020) and consider possible pairings of a
presynaptic (postsynaptic) spike that is triggered by the nth
stimulus with postsynaptic (presynaptic) spikes. We distinguish
between two scenarios. In the first scenario, both post- and
presynaptic neuron are stimulated simultaneously, while in the
second one either the postsynaptic or the presynaptic neuron
receives the nth stimulus.
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In Kromer and Tass (2020) results for pij(S, ξ ) for either case
were derived. In the first case, the distribution of interstimulus
intervals is given by

pIij(S|ξ ≶ td) = δ(S)+ F(±S) (9)

with

F(S) =

∞
∑

k=1

L

M

(

1−
L

M

)k−1

P ∗ .... ∗ P(S). (10)

Here the kth summand contains the (k − 1)th convolution with
the zeroth convolution referring to P(S) itself. The latter is given
in Equation (7). δ(x) denotes the Dirac delta distribution.

As can be seen in Equation (9), the realization of ξ determines
which interstimulus intervals S are considered for weight updates
resulting from the current presynaptic spiking event. If ξ is
larger than the synaptic delay td the presynaptic spike arrives
before the postsynaptic spike and the arrival time is paired with
the current postsynaptic spike (positive update) and the latest
postsynaptic spike, triggered by an earlier stimulus delivered
to the postsynaptic neuron (negative update). F(−S) denotes
the probability that the latest stimulus was delivered to the
postsynaptic neuron with an interstimulus interval S relative to
the current stimulus. In contrast, if ξ is smaller than the delay
time, the presynaptic spike arrives after the postsynaptic one
and its arrival time is paired with the current postsynaptic spike
(negative update) and the next postsynaptic spike that results
from the next stimulus delivered to the postsynaptic neuron
(positive update).

In the second case, pij(S, ξ ) does not depend on ξ , if synaptic
delays are short compared to interstimulus intervals and λ(t) is
narrow compared to interstimulus intervals. pij(S, ξ ) given by

pIIij (S, ξ ) = pIIij (S) = F(S)+ F(−S). (11)

Here, the current presynaptic spike arrival time is paired with
postsynaptic spikes triggered by the latest (negative update) and
the next stimulus delivered to the postsynaptic neuron (positive
update), respectively.

Using Equations (9), (11), and (10), the distribution of time
lags Gij(t) results from

GI/II
ij (t) =

∫

ds Z(t − s)pI/IIij (s, t − s). (12)

We separate synapses into two groups based on the probability
of receiving stimuli simultaneously during L/M-RR stimulation.
The first group consists of synapses that connect neurons within
the same subpopulation. This group will be referred to as
intrapopulation synapses. The second group consists of synapses
between neurons belonging to different subpopulations. These
synapses will be referred to as interpopulation synapses. The
classification of intra- and interpopulation synapses is illustrated
for a toy network in Figure 2.

First, we consider intrapopulation synapses. Corresponding
quantities will be marked by the suffix “intra” in the following.

Neurons connected by intrapopulation synapses always receive
stimuli simultaneously. In consequence, the distribution of time
lags is given by

Gintra(t) = 〈GI
ij(t)〉intra. (13)

Here the average is taken over all intrapopulation synapses. Using
Gintra(t) in Equation (8) yields the expected rate of weight change
for intrapopulation synapses

J
intra

: =
LfRR

M

∞
∫

−∞

dt′ Gintra(t′)W(t′ − td). (14)

Accordingly, we mark quantities related to interpopulation
synapses by the suffix “inter”. Neurons that are connected by
interpopulation synapses belong to different subpopulations and
only receive stimuli simultaneously when both subpopulations
are selected for stimulus delivery. Given that one of the
subpopulations is already selected, the probability to select the
other one as well is (L− 1)/(M − 1), which yields

Ginter(t) =

〈(

L− 1

M − 1

)

GI
ij(t)+

(

1−
L− 1

M − 1

)

GII
ij (t)

〉

inter

.(15)

The average is taken over all interpopulation synapses. We
introduce the expected rate of weight change for interpopulation
synapses as

J
inter

: =
LfRR

M

∞
∫

−∞

dt′ Ginter(t′)W(t′ − td). (16)

2.6. Simulation Details
Numerical integration of the LIF model presented in section 2.1
is performed using an explicit Euler integration scheme with an
integration time step of 0.1 ms.

Equation (10) is evaluated numerically using a discretization
of the time axis with bin size of 5∗10−3 ms (Figures 4A,B,E,F,G).
Plotted histograms in Figures 4C,D were obtained using a bin
size of 0.5 ms. The sum is truncated after kmax summands, where
kmax is the first integer larger than 500.0 ms/τ3. Convolutions are
calculated using the python method numpy.convolve of numpy
version 1.16.2.

3. RESULTS

To study long-lasting desynchronization by L/M-RR stimulation,
we perform numerical simulations of networks of LIF neurons
with STDP. For the chosen parameters, a stable synchronized
state with strong synaptic connections coexists with a stable
desynchronized state with weak connections; see (Kromer et al.,
2020). Networks with high initial mean weight approach the
synchronized state, while networks with low initial mean weight
approach the desynchronized state.

To prepare the network in the synchronized state, we choose a
high initial mean weight, 〈w〉(t = 0) = 0.5. This was realized
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by selecting 50% of the synapses at random and setting their
weights to one, while the other synaptic weights were set to zero.
Then, the network is simulated for 500 s in order to reach the
synchronous state, see (Kromer et al., 2020) for details.

After preparation, L/M-RR stimulation is delivered for 500
s. Afterward, we continue the simulation for another 1, 000 s
to explore potential long-lasting effects of L/M-RR stimulation.
To quantify the effect of L/M-RR stimulation, we analyze its
acute and long-lasting effects by evaluating the mean synaptic

weight 〈w〉 and the time-averaged Kuramoto order parameter ρ1,
Equation (6). To quantify acute effects, we evaluate 〈w〉 and ρ1
when the stimulation ceases (t = 995 s and1 = 10 s in Equation
6). Furthermore, to quantify long-lasting effects, 〈w〉 and ρ1 are
evaluated 1, 000 s after cessation of stimulation (t = 1, 995 s and
1 = 10 s in Equation 6).

Figure 3 shows representative time traces of the mean
synaptic weight and the time-averaged Kuramoto order
parameter obtained from simulations for different stimulation
periods T. While the Kuramoto order parameter decreases

within seconds after stimulation onset (Figure 3B) the dynamics
of the mean synaptic weight is significantly slower, as shown in
Figure 3A. As a consequence, the system might not reach the
attractor of the stable desynchronized state for short stimulation
periods due to insufficient decoupling. Throughout the paper, we
fix the stimulation time to 500 s, which turned out to be sufficient
for most parts of the parameter space.

Throughout the paper, we time-average the order parameter
over 1 = 10 s. Furthermore, results are averaged over three
network realizations. We find that results agree qualitatively
among these random network realizations. Therefore, and due
to the high computational costs, averaging over a large ensemble
of network realizations was not performed.

3.1. Robust and Long-Lasting
Desynchronization for Strong Stimulation
First, we consider the case of strong stimulation Astim = 1
in which neuronal spikes follow the stimulus pattern.
Theoretical predictions for the mean rates of weight changes

FIGURE 3 | Time traces for different stimulation durations. (A) The mean weights, 〈w〉, and (B) the order parameter, ρ1, for four different stimulation durations T. The

dashed line in (A) characterizes the weights in the stable synchronized state. Here, fRR = 10 Hz, Astim = 1, L = 5, and M = 32. The Kuramoto order parameter in (B)

is calculated every 10 s by averaging over non-overlapping time windows 1 = 10 s.
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of intrapopulation synapses, J intra, and interpopulation
synapses, J inter, are shown in Figures 4A,B for a wide range
of stimulation frequencies and fractions of simultaneously
stimulated subpopulations L/M. Negative rates of weight
change, J intra < 0, and J inter < 0, indicate a weakening of
corresponding synapses during stimulation.

A detailed comparison between simulation results and theory
is presented in Figures 4C–G. We find an excellent quantitative
agreement for the distributions of time lags, Figures 4C,D,
and trajectories of the mean synaptic weights of both intra-
and interpopulation synapses after the onset of stimulation,
Figures 4E–G.

In Figures 4H,I, we show results for themean synaptic weight,
Figure 4H, and the Kuramoto order parameter, Equation (6),
Figure 4I, shortly before stimulation ceases. Our theory separates
the parameter space into three regions: (i) a region with J intra <

0 and J inter < 0 where L/M-RR stimulation decouples all
neurons, (ii) a region where only intrapopulation synapses are
weakened (J intra < 0 and J inter > 0), and (iii) a region
where all synapses are strengthened (J intra > 0 and J inter >

0), see Figure 4H. Our simulation results show that in region
(i) L/M-RR stimulation causes long-lasting desynchronization,

while the system returns to the synchronized state in regions (ii)
and (iii), see Figures 4J,K.

Next, we analyze the impact of the fraction of simultaneously
active subpopulations L/M on long-lasting effects. Two
qualitatively different frequency ranges can be found in
Figures 4A,B. For low stimulation frequencies, fRR < 60 Hz,
stimulation improves as L/M increases. In contrast, most
pronounced long-lasting effects for high stimulation frequencies,
fRR > 60 Hz, are observed at finite values of L/M.

3.2. Moderate Stimulation Yields
Most-Pronounced Long-Lasting Effects
We study the impact of the stimulation amplitude Astim on
acute and long-lasting effects of L/M-RR stimulation for low and
high stimulation frequencies. Results are shown in Figure 5. We
find that the long-lasting effects of low-frequency stimulation
differ significantly from those of high-frequency stimulation.
For low stimulation frequencies, stronger stimulation yields
better results, see Figures 5A–C. Furthermore, for a smaller
fraction of L/M, stronger stimulation is required to get
sustained long-lasting effects. In contrast, for high stimulation

A B
C D

E F

G

H I J K

FIGURE 4 | Theoretical predictions for synaptic weight dynamics. (A,B) Expected mean rate of weight change for intrapopulation synapses J intra, Equation (14) (A),

and interpopulation synapses J inter (B), Equation (16). Colored curves separate regions with expected strengthening from those with expected weakening of synaptic

weights. (C,D) Predicted distributions of time lags Gintra (t) (C), Equation (13), and Ginter (t) (D), Equation (15) (dotted black curves), compared to simulation results

(colored histograms). (E–G) Theoretical predictions (lines) of mean synaptic weights for intra- (blue) and interpopulation (orange) synapses compared to simulation

results (circles) for different stimulation frequencies fRR and fractions of simultaneously stimulated subpopulations L/M. Parameter combinations correspond to the

three possible qualitative effects of L/M-RR stimulation: (i) weakening of all synapses (E), (ii) weakening of intrapopulation synapses (F) and (iii) strengthening of all

synapses (G). (H–K) Overall mean synaptic weight (H,J) and time-averaged Kuramoto order parameter (I,K) as function of fRR and L/M. Acute values (H,I) are

compared to long-lasting ones (J,K). Colored curves from (A,B) are shown to separate parameter regions (i)–(iii) with predicted strengthening and weakening of intra

(blue) and interpopulation (orange) synapses, respectively. Parameters: M = 32 with L = 15 and fRR = 60 Hz (C–E); L = 15 and fRR = 100 Hz (F); and L = 25 and

fRR = 100 Hz (G). We used λ(t) = δ(t) for theoretical predictions. “ac” and “ll” refer to acute and long-lasting effects, respectively.
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FIGURE 5 | Acute and long-lasting effects of L/M-RR stimulation. Effects of low-frequency (A,B) and high-frequency stimulation (D,E) shortly before the cessation of

stimulation. Mean synaptic weight (A,D) and time-averaged Kuramoto order parameter (B,E) are shown. Additionally, we show results for the time-averaged

Kuramoto order parameter evaluated 1, 000 s after cessation of stimulation in (C) (low-frequency stimulation) and F (high-frequency stimulation) to quantify

long-lasting desynchronization effects. Parameters: fRR = 30 Hz (low-frequency stimulation, A–C) and fRR = 100 Hz (high-frequency stimulation, D–F). Stimulation

duration is 500 s and M = 32. Results were averaged over three network realizations. The acute effects are measured shortly before cessation of stimulation and

long-lasting effects 1, 000 s after cessation of stimulation. “ac” and “ll” refer to acute and long-lasting effects, respectively.

frequencies, moderate stimulation yields pronounced long-
lasting desynchronization, see Figure 5F, while weak and strong
stimulation does not induce long-lasting desynchronization for
a wide range of fractions L/M. Remarkably, we also find that
the system returns to the synchronized state after L/M-RR
stimulation with very low and very high ratios L/M, Figure 5F.
Therefore, L/M-RR stimulation is most efficient for moderate
stimulation amplitudes and intermediate ratios of simultaneously
stimulated neuronal subpopulations.

Next, we explore the dependence of long-lasting effects on the
stimulation amplitude, Astim ≤ 1, and the stimulation frequency,
fRR. We find that weak and moderate stimulation are most
efficient for intermediate stimulation frequencies, as shown in
Figure 6. In contrast, strong stimulation only entails long-lasting
desynchronization if applied at low stimulation frequencies.

3.3. Stimulation With Low Spatial
Resolution Performs Better at Low
Stimulation Amplitudes
Next, we vary the spatial resolution M, scaling the distance
between adjacent stimulation sites (Figure 2). To this end, we fix
the fraction of simultaneously stimulated subpopulations L/M
and consider different spatial resolutions M. Results for low
and high stimulation frequencies fRR are shown in Figure 7.
We find that the spatial resolution strongly impacts weight
reduction for weak and strong stimulation. Low resolutions

(small M) seem to be advantageous for weak stimulation,
where smaller amplitudes are sufficient to achieve a pronounced
weakening of synapses. In contrast, a large M leads to more
synaptic weakening for moderate stimulation and a low fraction
of simultaneously stimulated sites (Figures 7A,C). Results for
strong low and high-frequency stimulation differ significantly.
For low stimulation frequencies, we observe pronounced
decoupling for all considered spatial resolutions. Contrastingly,
for high-frequency stimulation, the mean synaptic weight shortly
before stimulation ceases possesses a complex dependence on
the fraction of simultaneously activated sites and the spatial
resolution. Here, low resolutions result in higher mean weights
for small fractions (Figure 7C). For high fractions, however,
high spatial resolution may even strengthen synaptic weights,
rendering stimulation not suitable for inducing long-lasting
desynchronization. This can be seen in Figure 7D, where strong
high-frequency stimulation results in large values of the mean
synaptic weight. The latter increases with increasing resolution
M. Hence, stimulation approaches with low spatial resolution
may be advantageous for weak and very strong stimulation.

4. DISCUSSION

We studied desynchronization in networks of leaky integrate-
and-fire (LIF) neurons with spike-timing dependent plasticity
(STDP) by Random Reset (RR) stimulation, a decoupling
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FIGURE 6 | Acute and long-lasting effects of L/M-RR stimulation. Acute mean weight (A) and time-averaged Kuramoto order parameter (B) as function of stimulation

strength Astim and stimulation frequency fRR. (C,D) Same as (A,B) but evaluated 1, 000 s after cessation of stimulation. Parameters: stimulation is delivered for 500 s,

L = 16, and M = 32. “ac” and “ll” refer to acute and long-lasting effects, respectively.

stimulation technique (Kromer and Tass, 2020). RR stimulation
was designed to specifically target synaptic weights and drive
plastic neuronal networks into the attractor of a stable
desynchronized state with weak synaptic connections. This
stabilizes desynchronized activity after cessation of stimulation
and may lead to long-lasting desynchronization effects (Kromer
and Tass, 2020). The original RR stimulation paradigm suggests
the delivery of temporally and spatially randomized stimulus
patterns. To realize spatial randomization, (Kromer and Tass)
delivered each stimulus to 50% of the neurons. These neurons
were selected at random, irrespective of their locations in space
and their distance to stimulation contacts (Kromer and Tass,
2020). In a DBS setup, however, such a microscopic selection
process is not possible due to limited spatial resolution. There,
each stimulus affects a finite tissue volume, while the approach of
Kromer and Tass (2020) would require that even nearby neurons
can be stimulated independently.

Here, we present a version of RR stimulation that copes
with limited spatial resolution. Specifically, each stimulus is
delivered to a spatially coherent group of L out of M randomly
selected stimulation sites, denoted as L/M-RR stimulation. This
setup mimics the delivery of DBS through modern segmented
lead electrodes with multiple stimulation contacts (Steigerwald

et al., 2016). L/M-RR stimulation does not require single-
neuron stimulation as the approach presented in Kromer and
Tass (2020), where stimuli were administered to 50% of the
neurons that were randomly selected without considering their
distribution and location in space.

In order to analyze the performance of L/M-RR stimulation,
we apply a recently developed theoretical framework to
predict the mean rate of the stimulation-induced reshaping of
intrapopulation and interpopulation synapses. The latter connect
neurons in the same and different subpopulations, respectively
(Kromer and Tass, 2020). We find an excellent agreement
between theoretical predictions and numerical simulations for
strong stimulation amplitudes, Astim ≈ 1, where neuronal
spiking follows the stimulus pattern.

L/M-RR stimulation causes parameter-robust long-lasting
desynchronization effects. We find stimulation-induced
decoupling and related long-lasting desynchronization in the
major part of the parameter space spanned by the stimulation
frequency and the fraction of simultaneously stimulated
subpopulations L/M (Figure 4). Only for high stimulation
frequencies and large fractions, L/M-RR stimulation does not
entail long-lasting desynchronization, i.e., it is ineffective.
Here, stimuli are delivered at a high pace, which causes high
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FIGURE 7 | Acute effect of L/M-RR stimulation on the mean synaptic weight for different values of total numbers of subpopulation, M. Results for the mean synaptic

weight shortly before cessation of stimulation for low-frequency (A,B) and high-frequency (C,D) stimulation are shown. Colors indicate different total numbers of

subpopulations, M. Columns contain results for different fractions of simultaneously stimulated neuronal subpopulations L/M. Parameters: Stimulation is delivered for

500 s. “ac” and “ll” refer to acute and long-lasting effects, respectively.

neuronal firing rates and short time lags between post- and
presynaptic spiking events. As these time lags become of the
order of the STDP decay time for LTP, τ+, synaptic weights
start increasing, and stimulation becomes ineffective. This
effect causes a qualitative difference between low and high
frequency stimulation that is well-described by our theory.
Based on our results, we would expect a qualitatively similar
outcome for the original RR stimulation protocol presented in
Kromer and Tass (2020). There, the percentage of simultaneously
stimulated neurons might be comparable to the fraction L/M
of simultaneously stimulated subpopulations in the present
paper. However, this percentage was not varied systematically
in Kromer and Tass (2020). We further expect our results to be
robust with respect to the specific choice of the distribution of
interstimulus intervals, Equation (7), as long as the resulting
distributions of time lags lead to a sufficiently negative rate of
weight change, Equation (8).

Qualitative differences between low- and high-frequency
stimulation, observed for strong stimulation, are also present for
moderate stimulation amplitudes. While strong high-frequency
stimulation is ineffective, at moderate stimulation amplitudes, it
leads to long-lasing effects. This is because neurons do not spike
in response to stimuli of moderate strength that are delivered

shortly after spiking. This leads to longer time lags between post-
and presynaptic spikes, which reduces the contribution of LTP to
the synaptic weight dynamics and supports stimulation-induced
decoupling. This effect leads to a trade-off between strong and
weak stimulation. For the former, stimuli hardly impact neuronal
spiking, whereas the latter induces short time lags that lead
to LTP. As a consequence, L/M-RR stimulation performs best
at intermediate stimulation amplitudes. This trade-off differs
significantly from those presented in earlier studies reporting
optimal performance of coordinated reset (CR) stimulation at
intermediate stimulation amplitudes (Lysyansky et al., 2011;
Popovych and Tass, 2012; Ebert et al., 2014; Zeitler and Tass,
2015). These studies considered spatial stimulation profiles,
where strong stimulation affects larger neuronal populations
(Butson and McIntyre, 2008). The latter reduces the decoupling
effects of CR stimulation. In contrast, the performance of L/M-
RR stimulation becomes worse at strong stimulation amplitudes
due to an increased contribution of LTP to the synaptic weight
dynamics, due to shorter time lags.

That high stimulation frequencies can lead to qualitatively
different synaptic weight dynamics was also observed in our
recent study on multisite CR stimulation (Kromer et al., 2020).
There, high stimulation frequencies could lead to time lags
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between post- and presynaptic spikes that are even shorter than
the synaptic transmission delay. This led to highly non-linear
weight dynamics as a function of the stimulation frequency
and the number of stimulation sites, i.e., the spatial resolution
(Kromer et al., 2020). In contrast, in the present paper we
limited the minimum interstimulus interval to τ3 > td. This
ensures non-overlapping stimuli. Therefore, observed time lags
are always larger than the delay time. Nevertheless, we observe
synaptic strengthening for strong high-frequency stimulation
and large numbers of stimulation sites, which is in accordance
with the results presented in Kromer et al. (2020) for high-
frequency CR stimulation. By the way, very similar results were
obtained for a minimum interstimulus interval τ3 = 1/250 s.

An interesting question is to which extent our results for
strong high-frequency L/M-RR stimulation translate to HF
DBS. It is widely observed that symptoms return shortly after
cessation of HF DBS therapy in Parkinson’s patients (Temperli
et al., 2003); hence HF DBS may not stabilize physiological
activity after cessation of stimulation. RR stimulation represents
a temporally and spatially randomized stimulation approach
(Kromer and Tass, 2020). This raises the question of whether
long-lasting effects may be caused by sufficient randomization
of HF DBS. So far, temporally randomized versions of HF DBS
were analyzed in a few experimental studies; however, there are
mixed results on its efficacy. Furthermore, to our knowledge, all
studies were intraoperative and limited to acute effects during
stimulation. In Dorval et al. (2010), a randomized HF DBS
pattern was used to treat bradykinesia in PD patients. In their
study, interpulse intervals were distributed according to a gamma
distribution. The authors hypothesized that regular HFDBS leads
to symptom alleviation by reducing the firing irregularities in
the basal ganglia; they argue that randomized HF DBS fails to
regularize the firing and is therefore inferior to regular HF DBS.
Birdno et al. (2012) and Brocker et al. (2013) considered five
different irregular types of HF DBS. Two deterministic patterns
in which a regular pulse train was either interrupted by periods
of silence or periods of high-frequency bursts (Birdno et al.,
2012; Brocker et al., 2013); and three randomized pulse trains in
which interpulse intervals where distribution according to log-
uniform distributions of two different widths (Birdno et al., 2012;
Brocker et al., 2013) and according to a bimodal distribution
where the inverse interpulse intervals were either shorter or
longer than the range of therapeutic frequencies (Birdno et al.,
2012). Birdno et al. (2012) found that irregular HFDBS is inferior
to the regular one in treating tremor. They argue that pathological
activity may propagate during long interpulse intervals. In
contrast, Brocker et al. (2013) studied the performance of PD
patients in a simple motor task (finger tapping) and reported
improved performance during irregular HF DBS. Moreover,
their computational model showed that these randomized DBS
patterns significantly suppressed beta band power. However, as
acknowledged by the authors, the intraoperative setting of their
clinical trials limits the duration of the experiment. Therefore,
possible effects might not fully develop, and the therapeutic
effects of irregular HF DBS might be underestimated.

It is unclear whether experimental results on irregular HF
DBS apply to the L/M-RR stimulation protocol suggested in

the present study. Furthermore, the L/M-RR stimulation differs
in two ways from the studies on irregular DBS. First, L/M-
RR stimulation targets pathological connectivity rather than
pathological neuronal activity. Long-lasting changes due to
randomized HF DBS, however, have yet to be studied. As shown
in Figure 3, L/M-RR stimulation needs to be administered for a
sufficient amount of time to drive the network into the attractor
of the stable desynchronized state. For too short stimulation
time, the full potential of long-lasting effects might not be
released (Figure 3). Furthermore, as pointed out by our theory
for strong stimulation, the stimulation-induced weight dynamics
is closely related to the statistics of the interstimulus interval, see
Equation (8). Whether the irregular HF DBS protocols studied
in Dorval et al. (2010), Birdno et al. (2012), and Brocker et al.
(2013) cause a reduction of synaptic weights further depends on
the underlying plasticity mechanism. Once the latter has been
explored, Equation (8) might be used to predict the potential
long-lasting outcome. Second, L/M-RR stimulation combines
temporal and spatial randomization, while only temporally
randomized HF DBS was considered. In fact, we find that high-
frequency L/M-RR stimulation is ineffective for large fractions
of simultaneously activated stimulation sites, while low fractions
result in pronounced long-lasting effects (Figures 5D–F).

The fraction of simultaneously activated subpopulations
L/M controls the degree of spatial randomization. A fraction
of L/M = 1 corresponds to spatially regular single-site
stimulation, while low fractions result in a high degree of
spatial randomization. This fraction also impacts the frequency
at which individual subpopulations receive stimuli. In particular,
neurons receive stimuli at higher rates if this fraction is increased
for fixed stimulation frequency. However, our computational
results show that this only improves long-lasting effects for low
stimulation frequencies (Figures 5A,B). In contrast, increasing
this fraction yields worse performance for high-frequency
stimulation (Figures 5C,D). Improvement of long-lasting effects
at low stimulation frequencies results from the so-called
decoupling through synchrony, which occurs for asymmetric
Hebbian plasticity functions if the distribution of spike times
within collective spiking events becomes narrow compared to
axonal delays (Lubenov and Siapas, 2008; Knoblauch et al.,
2012). In the present paper, we use short stimuli that cause
such narrow distributions of spike times during collective spiking
events (Kromer and Tass, 2020). This supports decoupling
when stimuli are simultaneously delivered to a large number
of subpopulations, i.e., L/M ≈ 1, see Figure 5A. For
high stimulation frequencies, however, this effect is balanced
by LTP due to short time lags, as described in detail
above. Therefore, high-frequency stimulation is ineffective for
L/M ≈ 1. As a result, spatial randomization resulting from
intermediate fractions L/M increases the robustness of long-
lasting desynchronization by L/M-RR stimulation with respect to
changes in the stimulation frequency.

Of particular interest with respect to a possible
implementation of L/M-RR stimulation using a DBS setup
is the impact of the number of stimulation sites, represented by
the spatial resolutionM. Commonly used DBS electrodes possess
4–8 stimulation contacts that are arranged equidistantly along
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the electrode axes (Gielen, 2001; Butson and McIntyre, 2005).
Recently, Steigerwald et al. (2019) presented an electrode with up
to 32 stimulation contacts that can be activated independently.
For strong stimulation, the impact of the number of stimulation
sites M can be analyzed theoretically. Our theory predicts that
the dynamics of intrapopulation weights solely depends on
the fraction of simultaneously activated subpopulations L/M,
see Equations (9), (10), and (13). In contrast, the probability
of simultaneous activation of different subpopulations, and
therefore the dynamics of interpopulation weights depends on
(L − 1)/(M − 1), see Equations (15) and (16). Thus, changes
of the spatial resolution, M, while keeping the fraction L/M
constant, only affect the dynamics of interpopulation weights. As
a consequence, after sufficiently long stimulation different mean
synaptic weights can be attained, depending on the combination
of signs of the mean rates of weight change J intra and J inter,
i.e., whether stimulation reduces all weights (J intra < 0 and
J inter < 0), increases all weights (J intra > 0 and J inter > 0),
or whether only one type of weights is reduced while the other
one increases. While this determines the outcome of strong
stimulation, our simulation results provide evidence that low
spatial resolution is favorable for weak stimulation, as shown
in Figure 7. We hypothesize that this is because simultaneously
stimulated subpopulations consist of bigger localized groups
of neurons and such groups are more likely to follow the
applied stimulus pattern. Since sufficient decoupling is already
achieved for weak stimulation with low spatial resolution,
L/M-RR stimulation may be suitable for implementation in a
conventional DBS setup. There, weak stimulation reduces the
risk of side-effects (Rodriguez-Oroz et al., 2005). Furthermore,
low spatial resolution, i.e., a smaller number of stimulation sites,
is advantageous because it allows the usage of common DBS
electrodes and reduces the time for preparation and parameter
tuning. In addition, using a smaller number of simulation sites
may increase feasibility given the anatomical and topological
constraints of currently available chronically implantable depth
electrodes and the related consequences on therapeutic effects
and side effects (Volkmann et al., 2006; Krauss et al., 2020).

So far, segmented electrodes were mainly used
intraoperatively for directional HF DBS stimulation. During
directional DBS, the current flow can be directed in both the
vertical and in the horizontal plane by activation of a select
number of individual contacts. This results in high spatial
selectivity (Contarino et al., 2014; Pollo et al., 2014; Steigerwald
et al., 2019). These intraoperative studies suggest that directional
DBS may lower the threshold current for beneficial HF DBS

(Contarino et al., 2014; Pollo et al., 2014). However, the full
potential of segmented electrodes for multisite stimulation
methods such as CR or L/M-RR stimulation is yet to be
explored. In the present paper, we suggest L/M-RR stimulation
as one way to realize the recently developed RR stimulation
paradigm by means of segmented electrodes. Our theoretical and
computational results indicate that separate stimulation of a large
number of neuronal subpopulations, which may correspond to
a large number of stimulation contacts, improves long-lasting
desynchronization by L/M-RR stimulation for low stimulation
frequencies, Figure 7A.

In future studies, we anticipate exploring L/M-RR stimulation
in a detailed biophysical model of the subthalamic nucleus,
a major target region for therapeutic HF DBS stimulation
in Parkinson’s patients (Benabid et al., 1991) using more
detailed models of stimulation contacts accounting for spatial
current profiles. Furthermore, we plan to use large-scale
neuronal network models, to study how STN stimulation affects
interactions between different nuclei in the basal ganglia region.
We hope that our encouraging results motivate experimental and
preclinical studies on RR stimulation as a potential treatment
for neurological disorders that exploits recently developed
segmented electrodes (Steigerwald et al., 2019).
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