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An anisotropic quantum vacuum (AQV) has been predicted to induce quantum interferences during the

spontaneous emission process in an atomic V transition [G. S. Agarwal, Phys. Rev. Lett. 84, 5500 (2000)].

Nevertheless, the finite lifetime of the excited states is expected to strongly limit the observability of this

phenomenon. In this paper, we predict that an AQV can induce a long-lifetime coherence in an atomic �

transition from the process of spontaneous emission, which has an additional advantage of removing the need for

coherent laser excitation. We also carry out two metasurface designs and compare their respective efficiencies for

creating an AQV over remote distances. The detection of this coherence induced by a metasurface, in addition

to being yet another vindication of quantum electrodynamics, could pave the way towards the remote distance

control of coherent coupling between quantum emitters, which is a key requirement to produce entanglement in

quantum technology applications.

DOI: 10.1103/PhysRevA.101.013837

I. INTRODUCTION

The control of the spontaneous emission of quantum

emitters (QEs) has been investigated principally in a con-

fined volume by the cavity-quantum electrodynamics com-

munity [1], the archetype of which is a cavity formed by

perfect mirrors. The notion of “cavity” was then generalized to

open resonators by the nanophotonics community [2], where

strong couplings can be achieved. However, this typically only

occurs in the near field of the photonic nanostructure and

vanishes beyond a distance d ∼ λ0, where λ0 is the emission

wavelength of the QE in vacuum.

There are a few other optical systems that can affect the

spontaneous emission of QEs in the far field (d ≫ λ0). For

instance, when covering half of the QE emission solid angle

with a spherical mirror, it has been predicted that the vacuum

fluctuations can be fully suppressed at remote distances within

a volume ≈λ3
0, leading to a total inhibition of the decay of a

two-level atom [3]. In a classical picture, the field reflected

by the spherical mirror can fully interfere with the direct field

emitted by the atom: If the atom is located at the focus of

the spherical mirror such that d = nλ0/2 with n an integer

number, there is a complete suppression of the spontaneous

emission, whereas if the atom is at the position d = (n +
1/2)λ0/2 the spontaneous emission is enhanced by a factor

of 2. Such effects occur provided that the round trip time of

*emmanuel.lassalle@fresnel.fr
†david.wilkowski@ntu.edu.sg

flight for the light to go from the atom to the mirror and back is

shorter than the atom decay time 1/γ0 (with γ0 the decay rate

in free space), that is, for distances d smaller than the photonic

coherence length dCL ≡ c/2γ0 [4,5]. Such an alteration of

the decay rate was already reported in [6], where the authors

measured 1% change in the decay rate of an ion located at

30 cm from a mirror.

More recently, it has been suggested to use a reflect-

ing metasurface acting as a spherical mirror to modify the

spontaneous emission of a multilevel QE located at remote

distances [7,8]. This new paradigm unites the quantum optics

and metasurface communities [9,10], and relies on the fact

that reflecting metasurfaces made of nanoresonators can break

the isotropic nature of the vacuum to induce a polarization-

dependent response, thus creating an anisotropic quantum

vacuum (AQV). It was previously predicted that an AQV

can lead to quantum interferences in orthogonal levels of a

multilevel QE in a V configuration, that is, two excited states

and one ground state [11]. However, the predicted effects,

i.e., a population transfer between the two excited states of

≈1% [7] and an induced coherence of about 10% [8], only

last as long as the atom remains in its excited states, which is

a drastic drawback for experimental confirmations.

Although the V scheme is the one most often considered

in the literature [7,8,11–16], this paper focuses on the spon-

taneous emission properties of a QE with a � transition,

i.e., a single excited state linked to two nearly degenerate

ground states, in an AQV created by a metasurface. We

predict the generation of a coherence between the two ground

states, which survives after the photon emission. The interest
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FIG. 1. Three-level quantum emitter with a � structure. The

upper level |0〉 can decay via two transitions: either to the state |1〉
with the emission of a right circularly polarized photon denoted σ+,

or to the state |2〉 with the emission of a left circularly polarized

photon denoted σ−. ρ12 denotes the coherence between the two

ground states |1〉 and |2〉.

in the ground-state coherence arises from its long lifetime,

which allows high-resolution experiments. Moreover, it was

previously known that this coherence could only be generated

with an external coherent laser field (see [17], Chap. 3). Here,

we show that such a coherence can be simply generated

by spontaneous emission in an anisotropic vacuum (in the

absence of a laser field).

In Sec. II, we derive the master equation for the � scheme

(Sec. II A), and we show how an anisotropic vacuum can

induce a coherence between the ground states from the pro-

cess of spontaneous emission (Sec. II B). We also provide

an interpretation of this result in terms of the dressed states

of the system (Sec. II C). In Sec. III, following a phase-

mapping approach (presented in Sec. III A), we propose two

designs of metasurfaces to realize the anisotropic vacuum and

characterize their performances (Secs. III B and III C). Finally,

we assess the value of the coherence that can be achieved

using such metasurfaces, taking into account the limitations

due to the finite size of their nanoresonators (Sec. IV).

II. THEORETICAL PREDICTION: LONG-LIFETIME

COHERENCE

We consider a three-level system in a so-called � scheme:

one single excited state |0〉, which can decay into two ground

states |1〉 and |2〉 via two orthogonal dipolar transitions by the

emission of circularly polarized photons σ+ and σ−, respec-

tively (see Fig. 1). By orthogonal transitions, we mean that the

dipole moments d01 and d02 corresponding to these transitions

are orthogonal (i.e., d∗
01 · d02 = 0). They are given by d01 =

+d01�ε+ and d02 = −d02�ε− where �ε± = (�x ± i�y)/
√

2. We use

the �z direction as the quantization axis. This scheme appears

naturally in nitrogen-vacancy (NV) centers in diamond, using

the magnetic sublevels |±1〉 as the ground states and |A2〉
as the excited state [18]. It also can be found in atoms, using

the Zeeman manifold with |F, m = ±1〉 for the ground states

and |F ′, m = 0〉 for the excited state, where m denotes the

magnetic quantum numbers, and F and F ′ are the total angular

momentum quantum numbers [17].

The interaction between the atom (at position r0) and the

electromagnetic (em) environment in the vacuum state (i.e.,

no photons) is described by the interaction Hamiltonian in the

electric dipole approximation: ĤI = −d̂ · Êv (r0). The dipole

moment operator d̂ is given by d̂ = d01 |0〉 〈1| + d02 |0〉 〈2| +
d∗

01 |1〉 〈0| + d∗
02 |2〉 〈0|. The electromagnetic-field operator

Êv (where the subscript v denotes the vacuum) can formally

be written as a sum of a complex field Ê(+)
v

and its Her-

mitian conjugate (H.c.) Ê(−)
v

= [Ê(+)
v

]†: Êv (r0) = Ê(+)
v

(r0) +
Ê(−)

v
(r0). In the interaction picture (time-dependent Hamilto-

nian), and after making the rotating wave approximation, this

interaction Hamiltonian reads

ĤI (t ) = −(d01 |0〉 〈1| eiω1t + d02 |0〉 〈2| eiω2t ) · Ê(+)
v

(r0, t )

− (d∗
01 |1〉 〈0| e−iω1t + d∗

02 |2〉 〈0| e−iω2t ) · Ê(−)
v

(r0, t ),

(1)

where ωi is the transition frequency associated with the tran-

sition |0〉 → |i〉 (i = 1, 2). We derive in Sec. II A the master

equation for the reduced density matrix of the atom.

A. Master equation for the atomic density matrix

The total system (atom plus em environment) is character-

ized by the density matrix ρT (t ), which obeys the Schrödinger

equation, which, in the interaction picture, reads [19,20]

∂ρT (t )

∂t
= 1

ih̄
[ĤI (t ), ρT (t )], (2)

with ĤI (t ) given by Eq. (1). The reduced density matrix

of the atom (atomic density matrix) is obtained by taking

the trace over the degrees of freedom of the environment:

ρ(t ) ≡ Tre[ρT (t )]. In order to find the master equation gov-

erning the evolution of this reduced density matrix, we first

assume that there is no correlation between the atom and

the em environment at time t = 0, so that ρT (0) factorizes

as ρT (0) = ρ(0) ⊗ ρe(0), with ρe the reduced density matrix

of the em environment. Moreover, considering that only the

state of the atom is affected by the interaction, we assume

that, at later times t , ρT (t ) factorizes as ρT (t ) = ρ(t ) ⊗ ρe(0).

Finally, by making two other major approximations, known as

the Born and Markov approximations, we obtain the following

master equation for the atomic density matrix ρ(t ) (where we

have considered for simplicity close-lying states, ω1 ≃ ω2 ≡
ω0; see the Appendix for the details of the derivation):

∂ρ(t )

∂t
= −

[

iω0 + γ1

2
+ γ2

2

]

|0〉 〈0| ρ(t )

+ ρ00(t )
[γ1

2
|1〉 〈1| + γ2

2
|2〉 〈2|

+ κ21

2
|2〉 〈1| + κ12

2
|1〉 〈2|

]

+ H.c. (3)

In Eq. (3), ρ00(t ) denotes the population in the excited state

|0〉 (defined as ρ00(t ) ≡ 〈0| ρ(t ) |0〉), and we have introduced

the coefficients γi and κi j , the expressions of which are

γi ≡ 1

h̄2
d∗

0i · Ĉ(r0, r0, ω0) · d0i (i = 1, 2) (4)

and

κ12 ≡ 1

h̄2
d∗

01 · Ĉ(r0, r0, ω0) · d02. (5)

The coefficient γi characterizes the transition |0〉 to |i〉, and

is called the decay rate; the coefficient κ12 characterizes a
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cross-coupling between the states |1〉 and |2〉 (and κ21 = κ∗
12).

These coefficients are defined in Eqs. (4) and (5) in terms of

the correlation tensor Ĉ:

Ĉ(r, r′, ω) ≡
∫ +∞

−∞
dτ 〈Ê(+)

v
(r, τ )Ê(−)

v
(r′, 0)〉eiωτ , (6)

where the bracket indicates an ensemble average:
〈

Ê(+)
v

(r, τ )Ê(−)
v

(r′, 0)
〉

≡ Tre

[

ρe(0)Ê(+)
v

(r, τ )Ê(−)
v

(r′, 0)
]

(see the Appendix). This correlation tensor characterizes the

amplitude of the fluctuations of the electric field in the vacuum

state, which contain all the information about the dynamics of

the system since, once they are known, the dynamics of the

atom given by Eq. (3) can in principle be solved.

We now integrate Eq. (3) for an atom initially prepared

in the excited state corresponding to the following initial

conditions at t = 0: ρ00(0) = 1, ρ11(0) = ρ22(0) = 0, and

ρi j (0) = 0 for j �= i, where ρii(t ) is the atomic population in

the state |i〉 and ρi j (t ) is the atomic coherence between the

states |i〉 and | j〉. For the steady state (t → ∞), we find, for

the atomic populations, that ρ00(∞) = 0 and

ρii(∞) = γi

γ1 + γ2

(i = 1, 2), (7)

and, for the atomic coherences, that ρ10(t ) = ρ20(t ) = 0 (∀t)

and (using the fact that κ∗
21 = κ12)

ρ12(∞) = κ12

γ1 + γ2

. (8)

While the result in Eq. (7) simply shows that the popu-

lations in the steady state are in a probabilistic distribution

either in state |1〉 or |2〉, the result in Eq. (8) for the coherence

ρ12 is more surprising: it reveals that a coherence between the

two ground states can be induced by spontaneous emission,

i.e., without an external field, while to date it was thought

that a coherence between the two ground states required an

external coherent field such as a laser field ([17], Chap. 3).

Furthermore, because it involves ground states, this coherence

has in principle a long lifetime, in the millisecond range for

NV centers at room temperature [21], and in the order of sec-

onds for cold atom systems where collisions are suppressed.

Therefore, we have simply ignored the relaxation term of ρ12

in Eq. (3), which is supposed to be of much longer time than

the coherence involving the excited state.

The detection of the coherence ρ12 in NV centers can

be performed following the protocols discussed in [18]: A

magnetic field bias is applied to lift the degeneracy between

the two ground states |±1〉. It allows one to address separately

the transitions |±1〉 → |0〉 with two microwave fields, where

|0〉 is another magnetic sublevel. The presence of coherence

between the state |±1〉 results in a phase-sensitive transfer

to |0〉. Finally, the population of |0〉 is probed optically us-

ing a cycling transition with an auxiliary excited state |Ey〉
(see [18]). With cold atomic ensembles, a similar method

could be employed using the hyperfine structure of the ground

state of alkali-metal atoms. In this case, the coherence ρ12 is

generated between two states within one Zeeman manifold.

Then, two radio-frequency fields perform a phase-sensitive

transfer to a state belonging to another Zeeman manifold.

Finally, the population of this last state is optically measured.

B. Anisotropic quantum vacuum

We will now find the conditions for the existence of the

long-lifetime coherence of Eq. (8). For that, we first use the

fluctuation-dissipation theorem at zero temperature (we do

not consider the effect of the temperature, which is indeed

very small when one considers an atom emitting at optical

frequencies). This theorem links the correlation tensor Ĉ of

Eq. (6), which we recall characterizes the vacuum electric-

field fluctuations, to the imaginary part of the Green tensor Ĝ,

which describes the dissipation of the electric energy, as [11]

Ĉ(r, r′, ω) = 2h̄ω2

ǫ0c2
Im[Ĝ(r, r′, ω)]. (9)

The fluctuation-dissipation theorem shows that the amplitude

of the fluctuations is known once the imaginary part of the

Green tensor has been calculated. Making use of it, the

coefficients γi [Eq. (4)] and κ12 [Eq. (5)] can be expressed

in term of the Green tensor as

γi = 2ω2
0

h̄ǫ0c2
d∗

0i · Im[Ĝ(r0, r0, ω0)] · d0i (10)

and

κ12 = 2ω2
0

h̄ǫ0c2
d∗

01 · Im[Ĝ(r0, r0, ω0)] · d02. (11)

Next, we express the Green tensor and the dipole moments

appearing in Eqs. (10) and (11) in the Cartesian basis (�x, �y, �z)

(we recall that a static magnetic field is applied along the �z
direction, defining the quantization axis). Equation (8) can

then be recast in the following form (using the fact that Gyx =
Gxy):

ρ12(∞) = d01d02

d2
01 + d2

02
︸ ︷︷ ︸

R

× Im[Gxx − Gyy] − i2Im[Gxy]

Im[Gxx + Gyy]
︸ ︷︷ ︸

A

, (12)

where the Green tensor Cartesian components have to be

evaluated at the position of the quantum emitter r0 and at the

transition frequency ω0.

One immediately remarks that in the usual isotropic vac-

uum Gxx = Gyy and Gxy = 0, and Eq. (12) predicts null coher-

ence. Therefore, in order to generate coherence, the vacuum

has to be anisotropic. A similar result was first put forward

by Agarwal in [11] for a V configuration, where he predicted

a coherent population transfer between the two orthogonal

excited states in an AQV.

To quantify the anisotropy, the coherence in Eq. (12) can

be written as a product of two terms: the coefficients R and

A, characterizing the quantum emitter on one hand, and the

vacuum anisotropy on the other hand. R reaches its maximum

value of 0.5 when the two dipole moment amplitudes are

equal (d01 = d02). The coefficient A (referred to hereafter as

the “anisotropy”), in its general form, is a complex quantity,

and depends on the em environment which is completely

characterized by Ĝ. In this paper, we will only consider

situations where Gxy = 0 (which will be justified later), so

from now on A will be considered as a real quantity and takes

the form of a visibility with extremum values ±1. Therefore

the extrema of the coherence are ρ12(∞) = ±1/2.
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C. Interpretation in terms of dressed states

In situations where the coherence is extremum, the atomic

density matrix, after spontaneous emission, reads in the ba-

sis of the two ground states {|1〉 , |2〉}: ρ(∞) = 1
2
[

1 ±1

±1 1 ],

which corresponds to a pure state. This is in stark contrast with

the isotropic vacuum where spontaneous emission produces a

statistical mixture with a reduced density matrix ρ(∞) = 1
2
I.

One can interpret this in terms of the dressed states

of the system (atom plus field). Everything happens as if,

after the emission of a photon (t → ∞), the atom-field

“dressed state” is

|ψ (∞)〉 = 1
√

d2
01 + d2

02

1
√

Im(Gxx ) + Im(Gyy)

×{d01 |1〉 ⊗ [
√

Im(Gxx ) |X 〉 + i
√

Im(Gyy) |Y 〉]
+ d02 |2〉 ⊗ [

√

Im(Gxx ) |X 〉 − i
√

Im(Gyy) |Y 〉]},
(13)

where |X 〉 = 1/
√

2(|σ+〉 + |σ−〉) [respectively, |Y 〉 =
1/

√
2i(|σ+〉 − |σ−〉)] represents the state of photons

emitted with a linear polarization along �x [respectively,

�y]. Indeed, when tracing over the emitted photon, this

fully agrees with Eq. (12), and one also finds that

ρii(∞) = d2
0i/(d2

01 + d2
02) = γi/(γ1 + γ2) (for i = 1, 2),

in agreement with Eq. (7).

In isotropic vacuum, and when the two ground states are

equally weighted (d01 = d02, γ1 = γ2), it is well known that

the atom and the emitted photons are fully entangled [22]: at

the end of the decay process, the atom-field state is of the form

|ψ (∞)〉 = 1√
2

(|1〉 ⊗ |σ+〉 + |2〉 ⊗ |σ−〉). (14)

The reduced state of each subsystem (atom and field as well)

is thus fully incoherent, which explains why in isotropic

vacuum we obtain a reduced density matrix ρ(∞) = 1
2
I. It

also explains why in order to observe quantum beats between

the emitted photons in the vacuum a V transition is necessary,

and no quantum beats will appear in the case of a � transition

(see [22], Chap. 1.4).

However, if the back reaction of the environment fully

eliminates the X component of the polarization [i.e., then

Im(Gxx ) = 0, which can be achieved with a metasurface as

we will see later], the atom-field state at the end of the decay

process is of the form

|ψ (∞)〉 = 1√
2

(|1〉 − |2〉) ⊗ 1√
2i

(|σ+〉 − |σ−〉). (15)

This atom-field state is factorizable (as it is the case for a

V transition in isotropic vacuum), but here the atom is in

a coherent superposition of ground states (whereas for a V

transition it is the photon which is in a coherent superposition

of two different modes). This means that the reduced density

matrix of each subsystem is a pure state. In particular, we

obtain here an atomic density matrix ρ(∞) equal to the one-

dimensional (1D) projector: ρ(∞) = 1
2
[

1 −1

−1 1 ].

The environment can thus act as a quantum eraser which

erases the entanglement between the atom and the field

(emitted photon). According to the general complementary

relation between the entanglement of a system with its envi-

ronment and the degree of coherence of the reduced density

matrix of this system [23,24], the isotropic vacuum corre-

sponds to the situation where atom and field are maximally

entangled so that their coherence is minimal (zero); in con-

trast, if the environment acts exactly as a polarization filter

that destroys linear polarization along �x, it also destroys

the correlations (entanglement) between the emitted photon

and the two ground states, which fully restores the atomic

coherence. In realistic situations (as we will see in Sec. III),

only partial coherence is achieved, as an intermediary be-

tween these two extreme cases (isotropic vacuum and ideal

anisotropic vacuum).

III. METASURFACE DESIGNS

Vacuum anisotropy appears naturally in the near field of

a material media (see, e.g., [25]). For instance, anisotropic

suppression of spontaneous emission of atoms located be-

tween two close mirrors has been reported by Jhe et al. [26].

Anisotropy of Casimir-Polder interactions between atoms and

planar surfaces has also been investigated [27] leading to

atomic level mixing [28]. Resonant nanostructures are also

known to show important discrepancies between Im(Gxx )

and Im(Gyy) in the near field of, for example, metallic nan-

odisks [29], nanoparticles [30,31], or graphene [32]. Inter-

estingly, although near-field interactions can dramatically en-

hance the QE spontaneous emission because of large Im(Gii )

values, they are not better than far-field interactions for pro-

ducing an optimum value of the anisotropy A in Eq. (12).

Metasurfaces acting as a spherical mirror with

polarization-dependent responses have been proposed to

create anisotropic vacuum [7,8] in the far field. As a first

example, looking at Eq. (12), one can consider the ideal case

of a metasurface that perfectly reflects back to the QE half

of its own emission only at a particular polarization, say

the x component, leading to perfect destructive interferences

and thus Im[Gxx(r0, r0, ω0)] = 0. Considering that the other

polarization component (the y component) is not affected

and thus Im[Gyy(r0, r0, ω0)] = γ0/2, its value in vacuum,

such a metasurface might lead to an optimum anisotropy

A = −1. This was the strategy followed in [7] in order to

induce the coherent population transfer predicted in [11] for a

V configuration.

A metasurface can alternatively be designed as acting on

circular polarizations. To clarify this, instead of expressing the

quantities appearing in Eqs. (10) and (11) in Cartesian coor-

dinates [as done to obtain Eq. (12)], let us express the Green

tensor and dipole moments in the spherical basis (�ε+, �ε−, �ε0),

where �ε± = (�x ± i�y)/
√

2 and �ε0 = �z. Then, by plugging these

expressions into Eq. (8), one finds the following expression

for the coherence:

ρ12(∞) = d01d02

d2
01 + d2

02
︸ ︷︷ ︸

R

× Im(G+−)

Im(G++)
︸ ︷︷ ︸

A

, (16)

where the Green tensor spherical components have again

to be evaluated at the position of the quantum emitter

r0 and at the transition frequency ω0. This expression is
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equivalent to Eq. (12), since the Green tensor components

in the different bases verify the following relations: G+− =
1
2
(Gxx − Gyy − i2Gxy) and G++ = G−− = 1

2
(Gxx + Gyy). The

form of Eq. (16) suggests that a metasurface that mixes

the circular polarizations σ+ and σ−, thus leading to a

non-null cross-term Im[G+−(r0, r0, ω0)] �= 0, might create

a coherence. Ideally, if the metasurface totally inverses the

absolute rotation direction of the electric field with respect

to that of the incident circularly polarized one, one will have

Im[G+−(r0, r0, ω0)] = Im[G++(r0, r0, ω0)], and thus a max-

imum anisotropy A = 1. This strategy was employed in [8] in

order to induce a coherence between the two excited states in

a V configuration.

In this section, we present the two designs of the metasur-

face discussed in the above examples, we compare their per-

formances, and we assess the value of the induced coherence,

taking into account the limitations of such designs. But first

of all, we present in Sec. III A the general approach used to

make the designs.

A. Phase-mapping approach

The problem considered here is the interaction between a

planar (meta)surface and an electric dipole source of emission

wavelength λ0 located at a distance d above the surface. For

an emitter located at remote distances (in the far field d ≫
λ0), the interaction will be efficient only if the metasurface

is able to reflect and focus back the light originating from the

“point” dipole source. Thus, the metasurface must be optically

equivalent to a spherical mirror of focal length f = d/2, by

producing the following spherical phase profile:

ϕ(r) = π − 2k0|r − r0| (mod 2π ), (17)

where k0 = 2π/λ0, r denotes the coordinates of the points of

the metasurface, and r0 denotes the coordinates of the QE.

We parametrize the problem as follows: the points r lie

in the plane z = 0: r = (x, y, 0), and r0 = (0, 0, d ). In other

words, the phase accumulated through propagation should be

compensated in each point r of the flat metasurface—hence

the minus sign in Eq. (17)—by a phase shift corresponding

to the phase profile given in Eq. (17). Such metasurfaces

create interferences and a diffraction limited spot (at the

position of the QE r0), and are the equivalent in reflection of

metalenses [9,10]. They can be implemented using metallic

subwavelength reflect arrays, made of a metallic mirror, a

dielectric spacer, and subwavelength structures (also called

meta-atoms or nanoantennas) patterned on top (see Fig. 2).

By carefully choosing and positioning the meta-atoms,

the metasurface can induce local phase shifts that mimic the

spherical phase profile given by Eq. (17). This is the principle

of the phase-mapping approach. Obviously, each design is

specific for a couple of parameters {λ0, d}, so a modification

of one of these parameters leads to a new design. Good power

reflectances were reported for such metasurfaces at normal

incidence: about 80% for gold reflect arrays in the range

700–1100 nm [7,33–35] and up to 90% for silver reflect arrays

around 640–670 nm [8,36].

In order to design the metasurface, one usually extrapolates

its properties from the computations of an infinite periodic

grating. Such an approach assumes that locally the properties

FIG. 2. Unit cell of a reflect-array metasurface made of a metallic

mirror of thickness h1, a dielectric spacer of thickness h2, and a

rectangular nanoantenna of dimensions lx × ly and of thickness h3.

The dimensions of the unit cell are �UC
x × �UC

y .

of the metasurface are close to those of a periodic grating,

which is valid if the meta-atoms behave independently [9]

and is referred to as the local-periodicity approach. Adopt-

ing this approach, all the numerical simulations in this pa-

per are done using the open-source RETICOLO software for

grating analysis [37], which implements a frequency-domain

modal method known as the rigorous coupled wave analysis

(RCWA) [38–41]. Since it is a Fourier modal method, we

specify for each simulation the number of Fourier modes

retained for the computation (which are given for the direction

�x, and we use the same number of modes for the direction �y).

Moreover, all the meta-atoms considered here are nanorods

that respect a mirror symmetry, and therefore throughout this

paper Gxy = 0 [42].

In Secs. III B and III C, we present two designs aiming at

creating the coherence in the QE, and we characterize their

performances.

B. Design based on resonant-phase delays

In this section, we design the metasurface discussed in the

first example above—inspired from Eq. (12)—that must have

the following optical properties.

(i) The metasurface acts as a spherical mirror only for a

linearly polarized light along �x, resulting in Gxx(r0, r0, ω0) =
0 (destructive interferences).

(ii) The metasurface acts as a planar mirror for a linearly

polarized light along �y, so Gyy(r0, r0, ω0) is untouched.

Such a metasurface can be built from anisotropic resonant

nanoantennas, using, for example, metallic nanorods (like the

one represented in Fig. 2) with varying lengths along �x, in

order to tune the resonance and to induce different phase

shifts or resonant-phase delays on a x-polarized light that

reproduce the spherical phase profile of Eq. (17), and the same

width along �y, in order to induce a constant phase shift on a

y-polarized light that produces a flat phase profile [7,33,34].

For the simulations, we consider a two-dimensional (2D)

grating made of unit cells of the type presented in Fig. 2

with lateral dimensions of �UC
x × �UC

y = 300 × 150 nm, and
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FIG. 3. Power reflectance (in purple) and phase shift ϕ (in green)

of an incident x-polarized (respectively, y-polarized) wave as a

function of the length lx of the nanoantennas, computed for a 2D

grating (see main text). The symbols represent the simulated points,

and the solid lines are guides to the eyes. The dotted black lines

are spaced by 2π/5. The number of Fourier modes used for the

simulations is 30.

made of a gold mirror and a dielectric film of SiO2 with

respective thicknesses h1 = 130 nm and h2 = 50 nm, and a

gold nanorod patterned on top with fixed width ly = 100 nm

and thickness h3 = 30 nm. The wavelength is chosen at

λ0 = 852 nm, which corresponds to the D2 line of cesium

atom. At this wavelength, the refractive indices are n =
0.16 + i5.34 for gold and n = 1.45 for SiO2. In Fig. 3, we

computed the phase shifts (in green) and the efficiencies in

reflection (in purple) of such a 2D grating, for incident x-

and y-polarized waves at normal incidence, as a function of

the length lx of the nanorod. One can see that the phase

shift induced on a x-polarized wave (green crosses) spans

over 8π/5 (1.6π ), which corresponds to 4/5 of the 2π phase

space, while the phase shift induced on a y-polarized wave

(green circles) is rather flat. We can therefore choose five

nanoantennas to sample the entire phase space of 2π , with

respective phase shifts of 0, 2π/5, 4π/5, 6π/5, and 8π/5

(intersection with the dotted black lines spaced by 2π/5; see

dimensions in Table I). Moreover, the power reflectance of

the x-polarized wave (purple squares), which is the only one

that matters, is relatively good, remaining between 63 and

97%, the losses being due to absorption by the metal (we

check that the gold mirror is thick enough and that there is

no transmission loss).

TABLE I. Nanoantenna dimensions for sampling the phase space

from zero to 2π .

Nanoantenna lx (nm) ly (nm)

No. 1 30 100

No. 2 105 100

No. 3 125 100

No. 4 145 100

No. 5 250 100
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FIG. 4. Illustration of the phase-mapping approach for the 1D

design of the resonant-phase delay metasurface. (a) Phase profiles

to be encoded by the metasurface: the wrapped (respectively, un-

wrapped) spherical phase profile ϕx of Eq. (17) (red full line)

(respectively, red dashed line) desired for the x -polarization, and the

flat phase profile ϕy (blue line) desired for the y -polarization, starting

from the center of the metasurface at r = 0. (b) Corresponding

nanoantennas to encode the desired phase shifts ϕx and ϕy. The unit

cells of length �UC (black dashed box) containing the nanoantennas

are encompassed into supercells of length �SC (red box), spanning

the 2π phase space.

The design of the metasurface is achieved after combining

these five nanoantennas while employing the following rules:

All nanoantennas must be parallel (the varying length lx
always oriented along the �x axis), and patterned after Eq. (17)

according to the phase-mapping approach. This design is

illustrated “in 1D” in Fig. 4: In Fig. 4(a), we plot the ideal

unwrapped (respectively, wrapped) phase profile of Eq. (17)

of a x-polarized wave in dashed red (respectively, full red),

and the ideal flat phase profile of a y-polarized wave in

blue, starting from the center of the metasurface at r = 0; in

Fig. 4(a), we represent a slice of the metasurface where the

nanoantennas are distributed into supercells (one of them is

highlighted in the red box) that sample the 2π phase space,

mimicking the phase profiles of Fig. 4(a). The size of the

supercells is maximum at the center of the metasurface, and

progressively decreases with distance from the center because

the spherical phase profile varies more rapidly.

In addition to the absorption losses, the sampling of the

phase by discrete elements in the phase-mapping approach

also limits the performances of the metasurface (one talks

about discretization losses). In order to assess these discretiza-

tion losses, we compute the performances in the canonical

case of a linear-phase gradient metasurface [33,34], which

behaves as a blazed grating that diffracts entirely into the

diffraction order m = −1 only for an incident x-polarized

wave. Such a gradient metasurface is made of the same super-

cell containing nanoantennas that sample the phase regularly
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FIG. 5. Diffraction performances of a linear-phase gradient

metasurface. The inset shows a supercell of the gradient metasurface

of size �SC
x × �SC

y (see main text). (a) Reflection angle θr in the

diffracted order m = −1 of an incident plane wave polarized along �x
as a function of the incident angle θi (green circles). The generalized

Snell’s law of reflection [Eq. (18)] is also plotted (black dashed

line). (b) Power reflectance in the diffracted orders m = 0, −1, −2

(blue stars, green circles, and orange triangles, respectively) and

total reflection efficiency (black squares) of an incident plane wave

polarized along �x as a function of the incident angle θi. The number

of Fourier modes used to compute the reflectance is 30.

from 2π to zero (and from zero to 2π to diffract into the order

m = +1), repeated with periodic boundary conditions.

For the simulations, we consider a linear-phase gradient

metasurface made of supercells of dimensions �SC
x × �SC

y =
300 × 1500 nm, in which the five nanoantennas previously

selected are embedded into unit cells, with the same dimen-

sions as previously, and repeated twice [see inset in Fig. 5(a)].

The working wavelength is still 852 nm, as previously. The

angle of the diffracted order m = −1 (reflection angle θr) is

given in terms of the angle of the incident wave (incident angle

θi) by the generalized Snell law of reflection [10]:

sin(θr ) = sin(θi) + λ0

2π

∂ϕ

∂y
, (18)

where in our case ∂ϕ/∂y = −2π/�SC
y with �SC

y = 1500 nm.

We check that we perfectly recover this law in Fig. 5(a) for an

incident x-polarized wave. Thus, one can see that the diffrac-

tion angle is the same either for a periodic blazed grating or for

a smooth linear-gradient metasurface, because it only depends

on the period and not on the underlying structure [43].

In Fig. 5(b), we computed the power reflectance of the

diffracted order m = −1 for an incident x-polarized wave

(green circles) as a function of the incident angle θi, and

TABLE II. Characteristics of the supercells of the metasurface

shown in Fig. 4, labeled by integer n = 1, 2, 3, 4, 5 (starting from

the center of the metasurface): length �SC (in units of λ0), number of

unit cells N per supercell, incident angle θi of the light impinging the

supercell, and power reflectance in the order m = −1 (computed for

a linear-phase gradient metasurface made of the supercell and at the

incident angle θi). The number of Fourier modes used to compute the

reflectance is 30.

Supercell n �SC (λ0) N θi (◦) Reflectance (%)

1 3.17 9 0 60

2 1.41 4 17.6 55

3 1.06 3 24.6 50

4 0.94 2 29.4 30

5 0.82 2 33.3 30

∞ 0.50 1 90.0 0

compare it with other dominant orders m = 0 (blue stars) and

m = −2 (orange triangles). The total power reflectance is also

shown (dark squares). First, the total power reflectance, which

varies between 59 and 77%, reveals absorption losses between

23 and 41%, depending on the incident angle. Second, one can

see that the reflectance of the order m = −1 is about 60% for

incident angles θi up to 30◦, and then decreases until 40% for

an incident angle of 70◦, while mostly the reflectance of the

order m = 0 increases. This reveals that while the reflectance

into a given order depends on the incident angle θi it is

relatively robust with the variations of θi (1/3 decrease of the

reflectance of the order m = −1 over 70◦).

The final metasurface is more complex than a linear-phase

gradient metasurface since it is made of supercells of different

sizes. One can show from Eq. (17) that the largest supercell

starts at r = 0 (at the center of the metasurface) and has

a length of �SC
max = √

dλ0, and that the length of the next

supercells quickly converges towards the minimum length

of �SC
min = λ0/2. In Table II, for a design working at {λ0 =

852 nm, d = 10λ0}, we give the length �SC of the first five

supercells represented in Fig. 4(b) (and labeled n = 1, . . . , 5

starting from the center) and the number of unit cells N per su-

percell, considering a unit cell of fixed length �UC = 300 nm

(≈0.35λ0). One can see that the number of unit cells—and

therefore of nanoantennas—quickly drops from 9 (first super-

cell) to 2 (fourth supercell). Consequently, the sampling of the

phase deteriorates, leading to higher discretization losses.

We computed in Table II the power reflectance of the

order m = −1 (for an incident x-polarized wave) for different

linear-phase gradient metasurfaces made of these supercells,

and taking into account the incident angle θi (also shown) at

which the light impinges the supercell in the final metasurface.

One can see that the reflectance decreases as the number

of unit cells per supercell decreases; in other words, the

discretization losses increase.

In summary, the performances of the metasurface are re-

duced for two main reasons: the absorption losses and the

discretization losses due to the finite number of unit cells

used to sample the phase. They are better in the center of

the metasurface, and deteriorate quickly when getting further

from the center (or with increasing of the incident angle),

which limits the numerical aperture (NA) of the metasurface.
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FIG. 6. Geometric phase ϕ as a function of the rotation angle φ of

the nanorods in the plane (�x, �y) (see inset), computed for a 2D grating

(see main text) (green circles). The analytical expression [Eq. (19)] is

also plotted (black dashed line). The number of Fourier modes used

to compute the geometric phase is 30.

C. Design based on geometric phases

In this section, we design the metasurface discussed in the

second example above—inspired from Eq. (16)—that must

have the following properties.

(i) The metasurface acts as a spherical mirror.

(ii) Upon reflection, the metasurface totally inverses the

absolute rotation direction of the electric field with respect to

that of the incident circularly polarized one.

This inversion of the electric-field rotation can be achieved

by using nanoantennas which act as half-wave plates, as the

result of a phase delay of π between the long and short

axes of the nanoantennas [35,42]. Moreover, a phase shift,

called geometric phase or Pancharatnam-Berry phase, which

depends on the orientation of the antenna, is acquired through

this inversion, according to [44,45]

ϕ = 2φ, (19)

where φ denotes the angle by which the antenna is rotated (see

inset in Fig. 6). This phase shift is of geometric origin since

it is solely due to the orientation of the nanoantenna and not

to its resonance properties. Thus, the spherical phase profile

can be built by mapping the orientation of the nanoantennas

[Eq. (19)] into the spherical phase profile [Eq. (17)].

For the simulations, we consider a 2D grating made

of unit cells of the type presented in Fig. 2 with lateral

dimensions of �UC
x × �UC

y = 300 × 300 nm, and made of

a gold mirror and a dielectric film of MgF2 with respective

thicknesses h1 = 130 nm and h2 = 90 nm, and a gold nanorod

patterned on top with lateral dimensions lx = 200 nm and

ly = 80 nm and thickness h3 = 30 nm, following [35,42]. The

working wavelength is 852 nm, and the refractive indices are

n = 0.16 + i5.34 for gold and n = 1.37 for MgF2. For such

a system, the phase shift for a light polarized along �x and a

light polarized along �y is π upon reflection, at 852 nm. Thus,

the system acts as a half-wave plate working in reflection.

FIG. 7. Three-dimensional design of the geometric metasurface,

made for a distance of the dipole source d = 10λ0 from the meta-

surface, and an emission wavelength of λ0 = 852 nm. The white box

highlights the first supercell (starting from the center) of size �SC
1 =

2.7 μm, made of nine nanorods. This computer aided design was

drawn using the software SOLIDWORKS developed by Dassault

Systèmes.

We check in Fig. 6 that we recover the behavior of Eq. (19)

(shown in dashed black line) by simulating the phase shift

induced by a periodic grating of such nanoantennas all rotated

by the same angle φ (green circles). We show in Fig. 7 the

three-dimensional drawing of such a metasurface working at

{λ0 = 852 nm, d = 10λ0}. In this figure, we also highlight

the first supercell (white box) starting from the center of the

metasurface.

Next, in Fig. 8, we compute the conversion efficiency of

a circularly polarized σ+ incident wave reflected into a σ−

circularly polarized wave (cross-polarization reflectance) of

the same 2D grating as a function of the incident angle θi. One

0

20

40

60

80

100

0 10 20 30 40 50 60 70

FIG. 8. Cross-polarization (CP) power reflectance, which char-

acterizes the conversion efficiency in energy between a light circu-

larly polarized σ+ and a light circularly polarized σ−, as a function

of the incident angle θi, computed for a 2D grating (see main text).

The number of Fourier modes used to compute the CP reflectance is

30.
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can see that the cross-polarization power reflectance remains

>40% for θi < 45◦. This design does not seem to be as

good as the first design presented in Sec. III B, for which we

recall that the power reflectance into the desired order remains

>40% up to θi = 70◦ [Fig. 5(b)]. Even though the quantities

that we compare here are different, both characterize in a way

the performances of the metasurface.

IV. ESTIMATION OF THE COHERENCE INDUCED

BY THE METASURFACE

In this section, we want to assess a realistic value of

the ground-state coherence ρ12 in the steady state [Eq. (8)]

induced by a metasurface. To do so, we limit the discussion to

the first design (Sec. III B), since its performances seem to be

better than for the second design (Sec. III C).

If the dipole moments of the � transition are equal (d01 =
d02 = d), Eq. (12) [or equivalently Eq. (16)] becomes

ρ12(∞) = 1

2
× Im[Gxx − Gyy]

Im[Gxx + Gyy]
, (20)

where we recall that we consider Im[Gxy] = 0 since the

nanoantennas have a mirror symmetry. By noting that, for a

two-level atom characterized by a dipole moment d oriented

along the x axis, the decay rate is given by [46]

γx = 2ω2
0

h̄ǫ0c2
|d|2Im(Gxx ), (21)

and similarly for an orientation along the y axis, Eq. (20) can

be recast in the form

ρ12(∞) = 1

2
× γx − γy

γx + γy

. (22)

To evaluate the coherence of Eq. (22), one could use

Eq. (21) (or equivalently the expression in terms of the scat-

tered field as in [8,36]) and numerically compute the Green

tensor Ĝ (respectively, the scattered field Es) of the metasur-

face at the position of the atom, which is demanding in terms

of computation time.

Instead, we choose to take advantage of the analytical

results available for a spherical mirror [3]. We consider that

the quantity γy is not modified compared to its free-space

value: γy = γ0, while γx is altered since the metasurface acts

as a spherical mirror for such a polarization (in the case of the

first design). The alteration of γx is calculated as a function of

the power reflectance Rx (the subscript is for a light polarized

along �x) and the numerical aperture NA of the metasurface

using the following expression [3]:

γx

γ0

= 3

∫

2π

d�

4π

[

1 − |d · �|2
|d|2

]

× (1 − Rx ), (23)

where � is the vectorial solid angle, and for the power

reflectance Rx in diffraction order m = −1 we take the values

given in Table II. Rx is therefore a piecewise function, where

its value, for a given location on the metasurface, is given

by the underlying supercell. Moreover, Rx = 0 if sinθ > NA,

which takes into account the limited size of the metasurface.

Here, the use of Eq. (23), which was originally derived for

a two-level atom located at the focus of a spherical mirror

in [3], is justified since the metasurface acts as a spherical

mirror for a dipole emitter oriented along �x. In other words,
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FIG. 9. Relative decay rate modifications γx/γ0 (green circles)

and absolute coherence |ρ12| (red triangles) as a function of the

numerical aperture of the metasurface NA. For comparison, the

relative decay rate (respectively, coherence) for an ideal spherical

mirror of power reflectance Rx = 1 for the x polarization only is also

shown [green (respectively, red) dashed line].

the metasurface is optically equivalent to a spherical mirror,

and has the same Green tensor or scattered field value at

the position of the atom; generally speaking, since the decay

rate modification depends on these quantities [see Eq. (21) in

terms of the Green tensor or [8,36] in terms of the scattered

field], it should then be altered in the same way as in the

case of a spherical mirror, in the far-field limit. At the present

time, because of limitations of the computational resources,

we were not able to provide a fully numerical estimate of

the absolute coherence taking into account all the details of

the metasurface. Actually, although we made use of Eq. (23)

out of its original context (spherical mirror), we incorporated

results from numerical computations (reflectance values in

Table II), which constitutes in our eyes an acceptable compro-

mise, in between a fully numerical treatment and an educated

guess.

In Fig. 9, we show the relative decay rate modifications

γx/γ0 calculated from Eq. (23) (green circles) and the in-

duced coherence calculated from Eq. (22) (red triangles), as

a function of the numerical aperture defined as NA ≡ sin θ .

For comparison, we also show the decay rate modifications

(respectively, the induced coherence) in the case of a perfect

reflective spherical mirror (power reflectance Rx = 1) that

would only reflect a polarization along �x [green dashed line

(respectively, red dashed line)]. In this case, Eq. (23) can be

calculated analytically and reads

γx

γ0

=
√

1 − NA2 ×
(

1 − NA2

4

)

. (24)

One can see that for a metasurface of NA = 0.7 the decay

rate γx is reduced by 20% compared to γ0, with an induced

coherence of ≈0.05. Compared to the ideal case of an infinite

perfect spherical mirror, this value of the coherence is about

one order of magnitude smaller (0.5 for an ideal reflector with

NA = 1). Larger NA results only in a moderate improvement

of the effect because of the rapid drop of the reflectance,
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contrary to the ideal case. To attain near-unity efficiency in

reflection, further optimizations of the antenna geometries that

can take into consideration the coupling between neighboring

elements are required. Several methods have been proposed

including objective-first algorithms [47–49], topology opti-

mization [50], and inverse designs [51,52], which are also

applicable to improve our device efficiency notably at large

deflection angles, but beyond the scope of the present paper.

V. CONCLUSION

In this paper, we predict the creation of a long-lifetime

coherence between the two ground states of a quantum emitter

with a � configuration, induced by a quantum anisotropic

vacuum. An AQV can be engineered over macroscopic dis-

tances by a metasurface, made of metallic subwavelength

reflect arrays and having a polarization-dependent response.

We proposed and designed two of such metasurfaces, based on

the phase-mapping approach, using two different techniques:

resonant phase delays and geometric phases. We quantify the

efficiency of these metasurfaces to redirect the light on the

quantum emitter, located at remote distances, by taking into

account the limitations on the numerical aperture due to the

phase-mapping approach. Based on the exact results available

for a spherical mirror, we estimate a redirection of the light

of about 20% for a numerical aperture of 0.7, leading to a

coherence of 0.05, which is one order of magnitude smaller

than in the ideal case of an infinite and perfect reflector. Nev-

ertheless, due to the long lifetime of this coherence involving

the ground states in a � transition, this system allows for

high-resolution experiments, and this effect should be ob-

servable using the current state-of-art NV-center experimental

platform [18]. Detecting this coherence would represent an

experimental demonstration of the effect of the anisotropy of

vacuum on quantum emitters at remote distances. In addition,

this experiment would be a test of quantum electrodynamics,

in a counterintuitive regime where coherence is driven by

relaxation processes and vacuum fluctuations. Moreover, such

an experimental demonstration would also pave the way for

controlling interactions between several quantum emitters by

the means of metasurfaces, which ultimately could be used to

generate entanglement for quantum technology applications

in a new paradigm [16,36].
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APPENDIX: MASTER EQUATION DERIVATION

In this Appendix, we present the master equation frame-

work, closely following [19] Chap. 5.6 and [20] Chap. 1, that

we used to derive the master equation [Eq. (3)] in Sec. II.

1. Short notations

It will be convenient for the following calculations to

rewrite ĤI (t ) of Eq. (1) in a more compact form:

ĤI (t ) = d̂†(t ) · Ê(+)
v

(t ) + d̂(t ) · Ê(−)
v

(t ) (A1)

where d̂(t ) and d̂†(t ) are defined by

d̂(t ) ≡ −(d∗
01 |1〉 〈0| e−iω1t + d∗

02 |2〉 〈0| e−iω2t ), (A2)

d̂†(t ) ≡ −(d01 |0〉 〈1| eiω1t + d02 |0〉 〈2| eiω2t ). (A3)

Note that for clarity we dropped the label r0 appearing in

Ê(+)
v

(r0, t ) and Ê(−)
v

(r0, t ), but one must remember that the

fields are evaluated at the position of the atom r0. One must

also take note that this Hamiltonian is written in the electric

dipole and rotating wave approximations.

2. Master equation framework

In the interaction picture, the density matrix ρT (t ) of the

total system (atom plus environment) obeys the Schrödinger

equation [19,20]

∂ρT (t )

∂t
= 1

ih̄
[ĤI (t ), ρT (t )]. (A4)

The atomic density matrix ρ(t ) is obtained by taking the

trace over the degrees of freedom of the environment, ρ(t ) =
Tre[ρT (t )], and therefore obeys

∂ρ(t )

∂t
= 1

ih̄
Tre[ĤI (t ), ρT (t )]. (A5)

We formally integrate Eq. (A4),

ρT (t ) = ρT (0) + 1

ih̄

∫ t

0

dt ′ [ĤI (t ′), ρT (t ′)], (A6)

and substitute this expression in Eq. (A5):

∂ρ(t )

∂t
= 1

ih̄
Tre[ĤI (t ), ρT (0)]

− 1

h̄2

∫ t

0

dt ′ Tre[ĤI (t ), [ĤI (t ′), ρT (t ′)]]. (A7)

Assuming that Tre[ĤI (t ), ρT (0)] = 0, we make the Born

approximation: ρT (t ) = ρ(t ) ⊗ ρe(0), so that Eq. (A7) re-

duces to

∂ρ(t )

∂t
= − 1

h̄2

∫ t

0

dt ′ Tre[ĤI (t ), [ĤI (t ′), ρe(0) ⊗ ρ(t ′)]].

(A8)
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Next, we make the Markov approximation and replace ρ(t ′)
by ρ(t ) in the integrand. Therefore, we get a master equa-

tion for the atomic density matrix ρ(t ) in the Born-Markov

approximation:

∂ρ(t )

∂t
= − 1

h̄2

∫ t

0

dt ′ Tre[ĤI (t ), [ĤI (t ′), ρe(0) ⊗ ρ(t )]].

(A9)

Now, we write ĤI (t ) explicitly and expand the commuta-

tors. Using the compact form Eq. (A1) in Eq. (A9) one gets

∂ρ(t )

∂t
= − 1

h̄2

∫ t

0

dt ′ Tre[d̂†(t ) · Ê(+)
v

(t ) + d̂(t ) · Ê(−)
v

(t ),

× [d̂†(t ′) · Ê(+)
v

(t ′)+ d̂(t ′) · Ê(−)
v

(t ′), ρe(0) ⊗ ρ(t )]].

(A10)

Expanding the commutators in Eq. (A10) gives 16 terms. Noting that the trace only acts on the field operators and on ρe(0), and

using the cyclic property of the trace operation and the fact that, for instance, Tre[ρe(0)Ê(+)
v

(t )Ê(−)
v

(t ′)] = 〈Ê(+)
v

(t )Ê(−)
v

(t ′)〉, we

find

∂ρ(t )

∂t
= − 1

h̄2

∫ t

0

dt ′ 〈Ê(+)
v

(t )Ê(−)
v

(t ′)〉[d̂†(t )d̂(t ′)ρ(t ) − d̂(t ′)ρ(t )d̂†(t )] + 〈Ê(+)
v

(t ′)Ê(−)
v

(t )〉[ρ(t )d̂†(t ′)d̂(t ) − d̂(t )ρ(t )d̂†(t ′)]

+〈Ê(−)
v

(t )Ê(+)
v

(t ′)〉[d̂(t )d̂†(t ′)ρ(t ) − d̂†(t ′)ρ(t )d̂(t )] + 〈Ê(−)
v

(t ′)Ê(+)
v

(t )〉[ρ(t )d̂(t ′)d̂†(t ) − d̂†(t )ρ(t )d̂(t ′)]

+〈Ê(+)
v

(t )Ê(+)
v

(t ′)〉[d̂†(t )d̂†(t ′)ρ(t ) − d̂†(t ′)ρ(t )d̂†(t )] + 〈Ê(+)
v

(t ′)Ê(+)
v

(t )〉[ρ(t )d̂†(t ′)d̂†(t ) − d̂†(t )ρ(t )d̂†(t ′)]

+〈Ê(−)
v

(t )Ê(−)
v

(t ′)〉[d̂(t )d̂(t ′)ρ(t ) − d̂(t ′)ρ(t )d̂(t )] + 〈Ê(−)
v

(t ′)Ê(−)
v

(t )〉[ρ(t )d̂(t ′)d̂(t ) − d̂(t )ρ(t )d̂(t ′)]. (A11)

We make the two following additional approximations.

(1) 〈Ê(+)
v

(t )Ê(+)
v

(t ′)〉 = 〈Ê(+)
v

(t ′)Ê(+)
v

(t )〉 = 〈Ê(−)
v

(t )Ê(−)
v

(t ′)〉 = 〈Ê(−)
v

(t ′)Ê(−)
v

(t )〉 = 0 (which is valid for an environment in

thermodynamic equilibrium).

(2) 〈Ê(−)
v

(t )Ê(+)
v

(t ′)〉 = 〈Ê(−)
v

(t ′)Ê(+)
v

(t )〉 = 0 (which is valid for optical frequencies).

Thus, only the first two terms remain in Eq. (A11), which reduces to

∂ρ(t )

∂t
= − 1

h̄2

∫ t

0

dt ′ 〈Ê(+)
v

(t )Ê(−)
v

(t ′)〉[d̂†(t )d̂(t ′)ρ(t ) − d̂(t ′)ρ(t )d̂†(t )] + 〈Ê(+)
v

(t ′)Ê(−)
v

(t )〉[ρ(t )d̂†(t ′)d̂(t ) − d̂(t )ρ(t )d̂†(t ′)].

(A12)

By using the property of the correlation function 〈Ê(+)
v

(t ′)Ê(−)
v

(t )〉 = 〈Ê(+)
v

(t )Ê(−)
v

(t ′)〉∗, and noting the fact that

[ρ(t )d̂†(t ′)d̂(t ) − d̂(t )ρ(t )d̂†(t ′)] = [d̂†(t )d̂(t ′)ρ(t ) − d̂(t ′)ρ(t )d̂†(t )]
†
, one can see that the second term in Eq. (A12) is actually

the Hermitian conjugate (H.c.) of the first one. Therefore, we simply write Eq. (A12) as

∂ρ(t )

∂t
= − 1

h̄2

∫ t

0

dt ′ 〈Ê(+)
v

(t )Ê(−)
v

(t ′)〉[d̂†(t )d̂(t ′)ρ(t ) − d̂(t ′)ρ(t )d̂†(t )] + H.c. (A13)

3. Master equation for an atomic � transition

Equation (A13) is the starting point to calculate the dynamical evolution of any multilevel atom. Here, we proceed by writing

explicitly the terms in the integrand using the expressions for d̂(t ) and d̂†(t ) from Eqs. (A2) and (A3), which corresponds to the

� configuration with orthogonal transitions,

d̂†(t )d̂(t ′)ρ(t ) = eiω1(t−t ′ )d01 |0〉 〈0| d∗
01ρ(t ) + eiω2 (t−t ′ )d02 |0〉 〈0| d∗

02ρ(t ), (A14)

and by defining ρ00(t ) ≡ 〈0| ρ(t ) |0〉 to simplify the expressions:

d̂(t ′)ρ(t )d̂†(t ) = +eiω1(t−t ′ )ρ00(t )d∗
01 |1〉 〈1| d01 + eiω2 (t−t ′ )ρ00(t )d∗

02 |2〉 〈2| d02 + eiω1t e−iω2t ′
ρ00(t )d∗

02 |2〉 〈1| d01

+ eiω2t e−iω1t ′
ρ00(t )d∗

01 |1〉 〈2| d02. (A15)

Substituting these expressions in Eq. (A13) and by factorizing the exponential terms, we get

∂ρ(t )

∂t
= − 1

h̄2

∫ t

0

dt ′ 〈Ê(+)
v

(t )Ê(−)
v

(t ′)〉 ×
[

eiω1(t−t ′ )(d01 |0〉 〈0| d∗
01ρ(t ) − ρ00(t )d∗

01 |1〉 〈1| d01)

+ eiω2 (t−t ′ )(d02 |0〉 〈0| d∗
02ρ(t ) − ρ00(t )d∗

02 |2〉 〈2| d02)

− eiω1t e−iω2t ′
ρ00(t )d∗

02 |2〉 〈1| d01 − eiω2t e−iω1t ′
ρ00(t )d∗

01 |1〉 〈2| d02

]

+ H.c. (A16)
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We now write: 〈Ê(+)
v

(t )Ê(−)
v

(t ′)〉 = 〈Ê(+)
v

(t − t ′)Ê(−)
v

(0)〉 (the correlation function only depends on the time difference).

Making the change of variable τ = t − t ′, the next approximation is to make the upper limit tend to infinity. Equation (A16)

becomes

∂ρ(t )

∂t
= − 1

h̄2

∫ ∞

0

dτ 〈Ê(+)
v

(τ )Ê(−)
v

(0)〉 ×
[

eiω1τ (d01 |0〉 〈0| d∗
01ρ(t ) − ρ00(t )d∗

01 |1〉 〈1| d01)

+ eiω2τ (d02 |0〉 〈0| d∗
02ρ(t ) − ρ00(t )d∗

02 |2〉 〈2| d02)

− ei(ω1−ω2 )t eiω2τρ00(t )d∗
02 |2〉 〈1| d01 − ei(ω2−ω1 )t eiω1τρ00(t )d∗

01 |1〉 〈2| d02

]

+ H.c. (A17)

We finally introduce the positive part of the correlation

tensor as

Ĉ(+)(ω) ≡
∫ ∞

0

dτ 〈Ê(+)
v

(τ )Ê(−)
v

(0)〉eiωτ (A18)

to get

∂ρ(t )

∂t
= −Ŵ1(|0〉 〈0| ρ(t ) − ρ00(t ) |1〉 〈1|)

−Ŵ2(|0〉 〈0| ρ(t ) − ρ00(t ) |2〉 〈2|)
+Ŵ21ei(ω1−ω2 )tρ00(t ) |2〉 〈1|
+Ŵ12ei(ω2−ω1 )tρ00(t ) |1〉 〈2| + H.c. (A19)

with the following definitions of the coefficients:

Ŵi ≡ 1

h̄2
d∗

0i · Ĉ(+)(ωi ) · d0i (A20)

and

Ŵi j ≡ 1

h̄2
d∗

0i · Ĉ(+)(ωi ) · d0 j . (A21)

Remember that in the master equation above ρ(t ) is still in

the interaction picture, and we come back to the Schrödinger

picture assuming furthermore that the transition energies are

about the same, ω1 ≃ ω2 ≡ ω0:

∂ρ(t )

∂t
= −iω0 |0〉 〈0| ρ(t )

−Ŵ1(|0〉 〈0| ρ(t ) − ρ00(t ) |1〉 〈1|)
−Ŵ2(|0〉 〈0| ρ(t ) − ρ00(t ) |2〉 〈2|)
+Ŵ21ρ00(t ) |2〉 〈1| + Ŵ12ρ00(t ) |1〉 〈2| + H.c.

(A22)

In Eq. (A22), we have introduced the definitions of the

coefficients

Ŵi ≡ 1

h̄2
d∗

0i · Ĉ(+)(r0, r0, ω0) · d0i (A23)

and

Ŵi j ≡ 1

h̄2
d∗

0i · Ĉ(+)(r0, r0, ω0) · d0 j (A24)

defined in terms of the positive part of the correlation tensor

Ĉ(+) that reads

Ĉ(+)(r, r′, ω) =
∫ +∞

0

dτ 〈Ê(+)
v

(r, τ )Ê(−)
v

(r′, 0)〉eiωτ (A25)

where the bracket indicates an ensemble average:

〈Ê(+)
v

(r, τ )Ê(−)
v

(r′, 0)〉 ≡ Tre[ρe(0)Ê(+)
v

(r, τ )Ê(−)
v

(r′, 0)].

(A26)

Using the mathematical relation

P

(
1

x

)

= 1

x + iǫ
+ iπδ(x) with ǫ → 0 (A27)

one can demonstrate that

Ĉ(+)(r, r′, ω0)

= 1

2
Ĉ(r, r′, ω0) + i

2π
P

{
∫ +∞

0

dω
Ĉ(r, r′, ω)

ω0 − ω

}

(A28)

where Ĉ is the correlation tensor defined as

Ĉ(r, r′, ω) ≡
∫ +∞

−∞
dτ 〈Ê(+)

v
(r, τ )Ê(−)

v
(r′, 0)〉eiωτ . (A29)

Therefore, the coefficients Ŵi become

Ŵi = γi

2
+ i�ωi (A30)

with

γi = 1

h̄2
d∗

0i · Ĉ(r0, r0, ω0) · d0i (A31)

and

�ωi = 1

2π h̄2
P

{
∫ +∞

0

dω
d∗

0i · Ĉ(r0, r0, ω) · d0i

ω0 − ω

}

(A32)

where γi can be interpreted as the decay rate on the transition

|0〉 → |i〉, and �ωi is the Lamb shift of the level |i〉.
In the following, we recast the Lamb shift into the transi-

tion frequency and reduce Ĉ(+)(r, r′, ω0) as

Ĉ(+)(r, r′, ω0) ≡ 1
2
Ĉ(r, r′, ω0). (A33)

Therefore, the coefficients become

Ŵi = γi

2
with γi = 1

h̄2
d∗

0i · Ĉ(r0, r0, ω0) · d0i (A34)

and

Ŵi j = κi j

2
with κi j = 1

h̄2
d∗

0i · Ĉ(r0, r0, ω0) · d0 j . (A35)

4. Solution of the master equation

From the master equation, given in Eq. (A22), we obtain

the following equations for the atomic populations ρii(t ) and
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atomic coherences ρi j (t ) with j �= i:

ρ̇ii(t ) = γiρ00(t ) for i = 1, 2, (A36)

ρ̇00(t ) = −(γ1 + γ2)ρ00(t ), (A37)

ρ̇i0(t ) = −
(

γ1 + γ2

2
− iω0

)

ρi0(t ) for i = 1, 2, (A38)

ρ̇12(t ) = κ12ρ00(t ), (A39)

where we used the fact that κ∗
21 = κ12. Note that these equa-

tions are also supplemented by their conjugates.

The atom is initially prepared in the excited state with the

following initial conditions (at t = 0): ρ00(0) = 1, ρ11(0) =
ρ22(0) = 0, and ρi j (0) = 0 for j �= i. Solving Eqs. (A36)

and (A37) with the initial conditions above is straight-

forward. With the initial condition ρ00(0) = 1, Eq. (A37)

gives

ρ00(t ) = e−(γ1+γ2 )t ⇒ ρ00(∞) = 0. (A40)

Substituting it in Eqs. (A36) and carrying out the in-

tegration with the initial conditions ρ11(0) = ρ22(0) = 0

gives

ρ11(t ) = γ1

γ1 + γ2

[1 − e−(γ1+γ2 )t ] ⇒ ρ11(∞) = γ1

γ1 + γ2

,

(A41)

ρ22(t ) = γ2

γ1 + γ2

[1 − e−(γ1+γ2 )t ] ⇒ ρ22(∞) = γ2

γ1 + γ2

.

(A42)

Furthermore, integration of Eq. (A38) together with the initial

condition ρi j (0) = 0 for j �= i gives

ρ10(t ) = ρ20(t ) = 0 ∀t . (A43)

Finally, for the coherence ρ12(t ) given by Eq. (A39), substi-

tuting the expression of ρ00(t ) [Eq. (A40)] in Eq. (A39) gives

ρ̇12(t ) = κ12e−(γ1+γ2 )t (A44)

and after integration, together with the initial condition

ρ12(0) = 0, we find

ρ12(t ) = κ12

γ1 + γ2

[1 − e−(γ1+γ2 )t ], (A45)

and for t → ∞
ρ12(∞) = κ12

γ1 + γ2

. (A46)
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[3] G. Hétet, L. Slodička, A. Glätzle, M. Hennrich, and R. Blatt,

Phys. Rev. A 82, 063812 (2010).

[4] U. Dorner and P. Zoller, Phys. Rev. A 66, 023816 (2002).

[5] J. Kästel and M. Fleischhauer, Phys. Rev. A 71, 011804(R)

(2005).

[6] J. Eschner, C. Raab, F. Schmidt-Kaler, and R. Blatt, Nature

(London) 413, 495 (2001).

[7] P. K. Jha, X. Ni, C. Wu, Y. Wang, and X. Zhang, Phys. Rev.

Lett. 115, 025501 (2015).

[8] P. K. Jha, N. Shitrit, X. Ren, Y. Wang, and X. Zhang, Phys. Rev.

Lett. 121, 116102 (2018).

[9] P. Lalanne and P. Chavel, Laser Photonics Rev. 11, 1600295

(2017).

[10] P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R.

Devlin, Optica 4, 139 (2017).

[11] G. S. Agarwal, Phys. Rev. Lett. 84, 5500 (2000).

[12] G. S. Agarwal and A. K. Patnaik, Phys. Rev. A 63, 043805

(2001).

[13] G.-X. Li, F.-L. Li, and S.-Y. Zhu, Phys. Rev. A 64, 013819

(2001).

[14] Y. Yang, J. Xu, H. Chen, and S. Zhu, Phys. Rev. Lett. 100,

043601 (2008).

[15] L. Sun and C. Jiang, Opt. Express 24, 7719 (2016).

[16] S. Hughes and G. S. Agarwal, Phys. Rev. Lett. 118, 063601

(2017).

[17] D. Suter, The Physics of Laser-Atom Interactions, Cambridge

Studies in Modern Optics, Vol. 19 (Cambridge University,

Cambridge, England, 1997).

[18] E. Togan, Y. Chu, A. Trifonov, L. Jiang, J. Maze, L. Childress,

M. G. Dutt, A. S. Sørensen, P. Hemmer, A. S. Zibrov et al.,

Nature (London) 466, 730 (2010).

[19] S. M. Barnett and P. M. Radmore, Methods in Theoretical Quan-

tum Optics, Oxford Series in Optical and Imaging Sciences, Vol.

15 (Oxford University, New York, 2002).

[20] H. J. Carmichael, Statistical Methods in Quantum Optics 1:

Master Equations and Fokker-Planck Equations (Springer, New

York, 2013).

[21] G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham,

R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler,

V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, Nat.

Mater. 8, 383 (2009).

[22] M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge

University, Cambridge, England, 1997).

[23] G. Jaeger, A. Shimony, and L. Vaidman, Phys. Rev. A 51, 54

(1995).

[24] B.-G. Englert, Phys. Rev. Lett. 77, 2154 (1996).

[25] V. Yannopapas, E. Paspalakis, and N. V. Vitanov, Phys. Rev.

Lett. 103, 063602 (2009).

[26] W. Jhe, A. Anderson, E. A. Hinds, D. Meschede, L. Moi, and S.

Haroche, Phys. Rev. Lett. 58, 666 (1987).

[27] T. Taillandier-Loize, J. Baudon, G. Dutier, F. Perales, M.

Boustimi, and M. Ducloy, Phys. Rev. A 89, 052514 (2014).

[28] M. Boustimi, B. Viaris de Lesegno, J. Baudon, J. Robert, and

M. Ducloy, Phys. Rev. Lett. 86, 2766 (2001).

[29] I. Thanopulos, V. Karanikolas, and E. Paspalakis, Opt. Lett. 44,

3510 (2019).

[30] S. Evangelou, V. Yannopapas, and E. Paspalakis, Phys. Rev. A

83, 055805 (2011).

[31] I. Thanopulos, V. Yannopapas, and E. Paspalakis, Phys. Rev. B

95, 075412 (2017).

013837-13

https://doi.org/10.1021/acsphotonics.7b00674
https://doi.org/10.1021/acsphotonics.7b00674
https://doi.org/10.1021/acsphotonics.7b00674
https://doi.org/10.1021/acsphotonics.7b00674
https://doi.org/10.1103/PhysRevA.82.063812
https://doi.org/10.1103/PhysRevA.82.063812
https://doi.org/10.1103/PhysRevA.82.063812
https://doi.org/10.1103/PhysRevA.82.063812
https://doi.org/10.1103/PhysRevA.66.023816
https://doi.org/10.1103/PhysRevA.66.023816
https://doi.org/10.1103/PhysRevA.66.023816
https://doi.org/10.1103/PhysRevA.66.023816
https://doi.org/10.1103/PhysRevA.71.011804
https://doi.org/10.1103/PhysRevA.71.011804
https://doi.org/10.1103/PhysRevA.71.011804
https://doi.org/10.1103/PhysRevA.71.011804
https://doi.org/10.1038/35097017
https://doi.org/10.1038/35097017
https://doi.org/10.1038/35097017
https://doi.org/10.1038/35097017
https://doi.org/10.1103/PhysRevLett.115.025501
https://doi.org/10.1103/PhysRevLett.115.025501
https://doi.org/10.1103/PhysRevLett.115.025501
https://doi.org/10.1103/PhysRevLett.115.025501
https://doi.org/10.1103/PhysRevLett.121.116102
https://doi.org/10.1103/PhysRevLett.121.116102
https://doi.org/10.1103/PhysRevLett.121.116102
https://doi.org/10.1103/PhysRevLett.121.116102
https://doi.org/10.1002/lpor.201600295
https://doi.org/10.1002/lpor.201600295
https://doi.org/10.1002/lpor.201600295
https://doi.org/10.1002/lpor.201600295
https://doi.org/10.1364/OPTICA.4.000139
https://doi.org/10.1364/OPTICA.4.000139
https://doi.org/10.1364/OPTICA.4.000139
https://doi.org/10.1364/OPTICA.4.000139
https://doi.org/10.1103/PhysRevLett.84.5500
https://doi.org/10.1103/PhysRevLett.84.5500
https://doi.org/10.1103/PhysRevLett.84.5500
https://doi.org/10.1103/PhysRevLett.84.5500
https://doi.org/10.1103/PhysRevA.63.043805
https://doi.org/10.1103/PhysRevA.63.043805
https://doi.org/10.1103/PhysRevA.63.043805
https://doi.org/10.1103/PhysRevA.63.043805
https://doi.org/10.1103/PhysRevA.64.013819
https://doi.org/10.1103/PhysRevA.64.013819
https://doi.org/10.1103/PhysRevA.64.013819
https://doi.org/10.1103/PhysRevA.64.013819
https://doi.org/10.1103/PhysRevLett.100.043601
https://doi.org/10.1103/PhysRevLett.100.043601
https://doi.org/10.1103/PhysRevLett.100.043601
https://doi.org/10.1103/PhysRevLett.100.043601
https://doi.org/10.1364/OE.24.007719
https://doi.org/10.1364/OE.24.007719
https://doi.org/10.1364/OE.24.007719
https://doi.org/10.1364/OE.24.007719
https://doi.org/10.1103/PhysRevLett.118.063601
https://doi.org/10.1103/PhysRevLett.118.063601
https://doi.org/10.1103/PhysRevLett.118.063601
https://doi.org/10.1103/PhysRevLett.118.063601
https://doi.org/10.1038/nature09256
https://doi.org/10.1038/nature09256
https://doi.org/10.1038/nature09256
https://doi.org/10.1038/nature09256
https://doi.org/10.1038/nmat2420
https://doi.org/10.1038/nmat2420
https://doi.org/10.1038/nmat2420
https://doi.org/10.1038/nmat2420
https://doi.org/10.1103/PhysRevA.51.54
https://doi.org/10.1103/PhysRevA.51.54
https://doi.org/10.1103/PhysRevA.51.54
https://doi.org/10.1103/PhysRevA.51.54
https://doi.org/10.1103/PhysRevLett.77.2154
https://doi.org/10.1103/PhysRevLett.77.2154
https://doi.org/10.1103/PhysRevLett.77.2154
https://doi.org/10.1103/PhysRevLett.77.2154
https://doi.org/10.1103/PhysRevLett.103.063602
https://doi.org/10.1103/PhysRevLett.103.063602
https://doi.org/10.1103/PhysRevLett.103.063602
https://doi.org/10.1103/PhysRevLett.103.063602
https://doi.org/10.1103/PhysRevLett.58.666
https://doi.org/10.1103/PhysRevLett.58.666
https://doi.org/10.1103/PhysRevLett.58.666
https://doi.org/10.1103/PhysRevLett.58.666
https://doi.org/10.1103/PhysRevA.89.052514
https://doi.org/10.1103/PhysRevA.89.052514
https://doi.org/10.1103/PhysRevA.89.052514
https://doi.org/10.1103/PhysRevA.89.052514
https://doi.org/10.1103/PhysRevLett.86.2766
https://doi.org/10.1103/PhysRevLett.86.2766
https://doi.org/10.1103/PhysRevLett.86.2766
https://doi.org/10.1103/PhysRevLett.86.2766
https://doi.org/10.1364/OL.44.003510
https://doi.org/10.1364/OL.44.003510
https://doi.org/10.1364/OL.44.003510
https://doi.org/10.1364/OL.44.003510
https://doi.org/10.1103/PhysRevA.83.055805
https://doi.org/10.1103/PhysRevA.83.055805
https://doi.org/10.1103/PhysRevA.83.055805
https://doi.org/10.1103/PhysRevA.83.055805
https://doi.org/10.1103/PhysRevB.95.075412
https://doi.org/10.1103/PhysRevB.95.075412
https://doi.org/10.1103/PhysRevB.95.075412
https://doi.org/10.1103/PhysRevB.95.075412


EMMANUEL LASSALLE et al. PHYSICAL REVIEW A 101, 013837 (2020)

[32] V. Karanikolas and E. Paspalakis, J. Phys. Chem. C 122, 14788

(2018).

[33] S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y.

Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo et al., Nano Lett.

12, 6223 (2012).

[34] A. Pors, O. Albrektsen, I. P. Radko, and S. I. Bozhevolnyi, Sci.

Rep. 3, 2155 (2013).

[35] G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and

S. Zhang, Nat. Nanotechnol. 10, 308 (2015).

[36] P. K. Jha, N. Shitrit, J. Kim, X. Ren, Y. Wang, and X. Zhang,

ACS Photonics 5, 971 (2017).

[37] J. Hugonin and P. Lalanne, RETICOLO software for grating

analysis, Institute d’Optique, Palaiseau, France, 2005.

[38] M. Moharam, E. B. Grann, D. A. Pommet, and T. Gaylord, J.

Opt. Soc. Am. A 12, 1068 (1995).

[39] L. Li, J. Opt. Soc. Am. A 14, 2758 (1997).

[40] P. Lalanne and M. P. Jurek, J. Mod. Opt. 45, 1357 (1998).

[41] E. Popov and M. Nevière, J. Opt. Soc. Am. A 17, 1773 (2000).

[42] W. Luo, S. Xiao, Q. He, S. Sun, and L. Zhou, Adv. Opt. Mater.

3, 1102 (2015).

[43] S. Larouche and D. R. Smith, Opt. Lett. 37, 2391 (2012).

[44] S. Pancharatnam, in Proceedings of the Indian Academy of

Sciences: Section A (Springer, New York, 1956), Vol. 44,

pp. 398–417.

[45] M. V. Berry, J. Mod. Opt. 34, 1401 (1987).

[46] E. Lassalle, N. Bonod, T. Durt, and B. Stout, Opt. Lett. 43, 1950

(2018).

[47] J. R. Ong, H. S. Chu, V. H. Chen, A. Y. Zhu, and P. Genevet,

Opt. Lett. 42, 2639 (2017).

[48] S. Jafar-Zanjani, S. Inampudi, and H. Mosallaei, Sci. Rep. 8,

11040 (2018).

[49] N. Schmitt, N. Georg, G. Brière, D. Loukrezis, S. Héron, S.

Lanteri, C. Klitis, M. Sorel, U. Römer, H. De Gersem et al.,

Opt. Mater. Express 9, 892 (2019).

[50] J. Yang and J. A. Fan, Opt. Lett. 42, 3161 (2017).

[51] A. Y. Piggott, J. Lu, T. M. Babinec, K. G. Lagoudakis,

J. Petykiewicz, and J. Vučković, Sci. Rep. 4, 7210
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